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Abstract

This thesis reports a study with the aim of assessing the possibilities
of detecting and characterising the early stages of pitting corrosion, which is
located on the remote side a thick aluminium plate. The work concentrated on
the use of ultrasonic techniques. An incoming ultrasound plane wave is
scattered from a corrosion pit, and the scattered field can provide
information about the size and the shape of the surface perturbation and
therefore of the extent of corrosion present on the surface. The corrosion
pit can be represented as an axisymmetric indentation in the stress free
surface of an elastic half-space, and the three-dimensional nature of pits
requires numerical models capable of simulating three-dimensional elastic wave

scattering processes.

The numerical method used here is an indirect boundary method. The
incident compressional or shear wave is expanded in into an infinite series of
spherical vector functions. The scattered field can also be described as an
infinite series of outgoing spherical waves with unknown coefficients. For
numerical purposes both series are truncated to a finite number of terms.
The boundary conditions of wvanishing normal stress components along the
free boundary are applied using a least squares matching method which gives
the coefficients for the outward travelling waves. The axisymmetric nature
of the surface obstacle allows a decomposition of the three-dimensional
scattering problem to a set of two-dimensional subproblems with a given
angular dependence, which can be solved separately and the solutions are
then superimposed to give the full three-dimensional solution. The results
obtained with the numerical model are compared with experimental data and

support the findings of the theoretical predictions.
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normally incident on to a surface indentation with the shape

of a segment of a hemisphere, where 28 _ 1.0, d_ 0.25

As a

and v = 0.34
Amplitude of the surface displacements in the x—z plane for

a SV wave normally incident on to a surface indentation with

the shape of a semi-ellipsoid, where 2a _ 1.0, g = 0.25

N\s
and v = 0.34

Amplitude of the surface displacements in the y —z plane for
a SV wave normally incident on to a surface indentation with

the shape of a semi-ellipsoid, where 28 _ 1.0, g = 0.25

As
and v = 0.34
Amplitude of the far-field displacements in the x—z plane for
a SV wave normally incident on to a surface indentation with
the shape of a semi-ellipsoid, where %3 = 1.0, g = 0.25
and v = 0.34
Amplitude of the far-field displacements in the y —z plane for
a SV wave normally incident on to a surface indentation with

the shape of a semi-ellipsoid, where 2a _ 1.0, g = 0.25

As
and v = 0.34
Differential cross-section in the x —z plane for a SV wave
normally incident on to a surface indentation with the shape
of & semi-ellipsoid, where 22 = 1.0, § = 0.25 and » = 0.34
Differential cross-section in the y —z plane for a SV wave

normally incident on to a surface indentation with the shape

of a semi-ellipsoid, where i—a = 1.0, g = 0.25 and v = 0.34
8
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118

119

120

121

122

Amplitude of the surface displacements in the x—z plane for
a SV wave normally incident on to a surface indentation with

the shape of a segment of a hemisphere, where i—@ = 1.0,
&

d ~ 05 and v - 0.34
Amplitude of the surface displacements in the y —z plane for

a SV wave normally incident on to a surface indentation with

the shape of a segment of a hemisphere, where 2a _ 1.0,

As
d - 0.5and v = 0.34
Amplitude of the far-field displacements in the x —z plane for

a SV wave normally incident on to a surface indentation with

the shape of a segment of a hemisphere, where 2a _ 1.0,

As
d - 0.5 and v = 0.34
Amplitude of the far-field displacements in the y —z plane for

a SV wave normally incident on to a surface indentation with

the shape of a segment of a hemisphere, where 2a _ 1.0,

As
d - 05 and v = 0.34
Differential cross-section in the x—z plane for a SV wave
normally incident on to a surface indentation with the shape
of a segment of a hemisphere, where i—: = 1.0, g = 0.5
and v = 0.34
Differential cross-section in the y —z plane for a SV wave
normally incident on to a surface indentation with the shape
of a segment of a hemisphere, where i—:’ = 1.0, g =05

and v = 0.34
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125

126

127

128

129

Amplitude of the surface displacements in the x—z plane for
a SV wave normally incident on to a surface indentation with

the shape of a semi-ellipsoid, where )%5 = 1.0, g =05
8

and v = 0.34
Amplitude of the surface displacements in the y —z plane for

a SV wave normally incident on to a surface indentation with

the shape of a semi-ellipsoid, where i—a = 1.0, g = 0.5
8

and v = 0.34
Amplitude of the far-field displacements in the x—z plane for
a SV wave normally incident on tc a surface indentation with

the shape of a semi-ellipsoid, where %\2 = 1.0, g = 0.5
8

and v = 0.34
Amplitude of the far-field displacements in the y —z plane for

a SV wave normally incident on to a surface indentation with

the shape of a semi-ellipsoid, where ‘i—a = 1.0, g = 0.5
&

and v = 0.34
Differential cross-section in the x —z plane for a SV wave

normally incident on to a surface indentation with the shape

of a semi-ellipsoid, where %\_a = 1.0, g = 0.5 and v = 0.34
8

Differential cross-section in the y —z plane for a SV wave
normally incident on to a surface indentation with the shape

of a semi-ellipsoid, where i—a = 1.0, g = 0.5 and v = 0.34
2]

Amplitude of the surface displacements in the x—z plane for

a SV wave normally incident on to a surface indentation with

the shape of a segment of a hemisphere, where i—a = 1.0,

s

d - 0.75 and v = 0.34
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131

133

134

135

Amplitude of the surface displacements in the y —z plane for

a SV wave normally incident on to a surface indentation with

the shape of a segment of a hemisphere, where da 1.0,

As
d = 0.75 and v = 0.34

Amplitude of the far-field displacements in the x—z plane for
a SV wave normally incident on to a surface indentation with

the shape of a segment of a hemisphere, where i—a = 1.0,
s

d - 0.75 and v = 0.34
Amplitude of the far-field displacements in the y —z plane for

a SV wave normally incident on to a surface indentation with

the shape of a segment of a hemisphere, where 2a _ 1.0,
S

A

d - 0.75 and v = 0.34

Differential cross-section in the x—z plane for a SV wave

normally incident on to a surface indentation with the shape

of a segment of a hemisphere, where %_a = 1.0, % = 0.75
8

and v = 0.34
Differential cross-section in the y —z plane for a SV wave
normally incident on to a surface indentation with the shape

of a segment of a hemisphere, where 2a _ 1.0, g = 0.75

As
and v = 0.34
Amplitude of the surface displacements in the x—z plane for
a SV wave normally incident on to a surface indentation with
the shape of a semi-ellipsoid, where %ﬁ = 1.0, g = 0.75

8

and v = 0.34
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136

137

138

139

140

141

142

143

Amplitude of the surface displacements in the y —z plane for
a SV wave normally incident on to a surface indentation with

the shape of a semi-ellipsoid, where i—a = 1.0, g = 0.75
s

and v = 0.34
Amplitude of the far-field displacements in the x—z plane for

a SV wave normally incident on to a surface indentation with

the shape of a semi-ellipsoid, where % = 1.0, g = 0.75
8

and v = 0.34

Amplitude of the far-field displacements in the y —z plane for

a SV wave normally incident on to a surface indentation with

the shape of a semi-ellipsoid, where i—a = 1.0, g = 0.75
&

and v = 0.34
Differential cross-section in the x—z plane for a SV wave

normally incident on to a surface indentation with the shape

of a semi-ellipsoid, where 28 _ 1.0, g = 0.75 and v = 0.34

As
Differential cross-section in the y —z plane for a SV wave
normally incident on to a surface indentation with the shape
of a semi-ellipsoid, where 22 = 1.0, = 0.75 and v = 0.34

s

Amplitude of the surface displacements in the x—z plane for
a SV wave normally incident on to a hemispherical surface
indentation with i—a = 1.0 and v = 0.34

Amplitude of the surface displacements in the y —z plane for
a SV wave normally incident on to a hemispherical surface
indentation with i—: = 1.0 and v = 0.34

Amplitude of the far-field displacements in the x —z plane for

a SV wave normally incident on to a hemispherical surface

indentation with % = 1.0 and v = 0.34
8
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144

145

146

147

148

149

150

151

Amplitude of the far-field displacements in the y —z plane for
a SV wave normally incident on to a hemispherical surface
indentation with i—: = 1.0 and v~ = 0.34

Differential cross-section in the x—z plane for a SV wave
normally incident on to a hemispherical surface indentation
with %2 = 1.0 and v = 0.34

Differential cross-section in the y —z plane for a SV wave
normally incident on to a hemispherical surface indentation
with %3 - 1.0 and v = 0.34

Shape and dimensions of the aluminium test block in top view
and side view

Experimental configuration for the measurement of the
ultrasonic field scattered from a hemispherical surface
indentation in an aluminium block

Amplitude of the far-field displacements for a P wave
normally incident on to a hemispherical surface indentation
in an aluminium half-space with %‘i = 0.25 and v = 0.34
Amplitude of the far-field displacements for a P wave
normally incident on to a hemispherical surface indentation
in an aluminium half-space with %—2 =05 and v = 0.34
Amplitude of the far-field displacements in the x—z plane
for a SV wave normally incident on to a hemispherical

surface indentation in an aluminium half-space with

28 _ 10and v = 0.34
\s
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152

153

154

155

156

157

Amplitude of the far-field displacements in the y —z plane
for a SV wave normally incident on to a hemispherical
surface indentation in an aluminium half-space with

28 = 1,0 and v = 0.34

As '

Amplitude of the far-field displacements in the x—z plane
for a SV wave normally incident on to a hemispherical
surface indentation in an aluminium half-space with

22 - 2,0 and v = 0.34

As

Amplitude of the far-field displacements in the y —z plane
for a SV wave normally incident on to a hemispherical
surface indentation in an aluminium half-space with

28 - 2,0 and v = 0.34

As

Rayleigh wave amplitude as function of the azimuth angle ¢
for a compressional wave with a frequency of 1 MHz normally
incident on to a small hemispherical surface indentation with
a diameter of 1.6 mm.

Rayleigh wave amplitude as function of the azimuth angle ¢
for a compressional wave with a frequency of 1 MHz normally
incident on to a large hemispherical surface indentation with
a diameter of 3.2 mm.

Rayleigh wave amplitude as function of the azimuth angle ¢
for a shear wave with a frequency of 2 MHz normally

incident on to a small hemispherical surface indentation

with a diameter of 1.6 mm.
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158

159

160

161

162

163

164

Rayleigh wave amplitude as function of the azimuth angle ¢
for a shear wave with a frequency of 2 MHz normally
incident on to a large hemispherical surface indentation
with a diameter of 3.2 mm.

Rf trace of a compressional wave pulse reflected back
normally from a plane surface with a hemispherical surface
indentation of 3.2 mm diameter for a normally incident
compressional wave pulse with a centre frequency of 1 MHz
Frequency spectrum of a compressional wave pulse reflected
back normally from a plane surface with a hemispherical
surface indentation of 3.2 mm diameter for a normally
incident compressional wave pulse with a centre frequency
of 1 MHz

Rf trace of a shear wave pulse reflected back normally from
a plane surface with a hemispherical surface indentation of
3.2 mm diameter for a normally incident shear wave pulse with
a centre frequency of 2 MHz

Frequency spectrum of a shear wave pulse reflected back
normally from a plane surface with a hemispherical surface
indentation of 3.2 mm diameter for a normally incident shear
wave pulse with a centre frequency of 2 MHz

Ultrasonic inspection of a corrosion pit using a pulse-echo
configuration with an ultrasound pulse incident at o = 45°
Ultrasonic inspection of a corrosion pit using a pitch-catch

tandem configuration
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165

166

167

168

169

170

17

172

Amplitude of the surface displacements for a P wave normally
incident on to a hemispherical surface indentation with

%2 - 05and v = 0.25

P

Amplitude of the surface displacements for a P wave normally
incident on to a hemispherical surface indentation with

28 _ 10and v = 0.25
Ap

Amplitude of the far-field displacements for a P wave normally
incident on to a hemispherical surface indentation with

28 _ 05and v = 0.25
Mo

Amplitude of the far-field displacements for a P wave normally
incident on to a hemispherical surface indentation with

f\—a = 1.0 and v = 0.25
P

Differential cross-section for a P wave normally incident on
to a hemispherical surface indentation with ?\—: = 0.5 and

v = 0.25

Differential cross-section for a P wave normally incident on
to a hemispherical surface indentation with %ﬂ = 1.0 and

P
v =025

Amplitude of the surface displacements for a P wave normally

incident on to a surface indentation with the shape of a

segment of a hemisphere, where %3 = 1.0, d_ 0.5 and

P a
v = 0.25

Amplitude of the surface displacements for a P wave normally
incident on to a surface indentation with the shape of a

semi-ellipsoid, where i——a = 1.0, g = (0.5 and v = 0.25

P
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173

174

175

176

177

178

179

180

Amplitude of the far-field displacements for a P wave normally
incident on to a surface indentation with the shape of a
segment of a hemisphere, where %—:} = 1.0, g = 0.5 and

v =025

Amplitude of the far-field displacements for a P wave normally
incident on to a surface indentation with the shape of a

semi-ellipsoid, where 22 = 1.0, § = 0.5 and v = 0.25
<3

Differential cross-section for a P wave normally incident on

to a surface indentation with the shape of a segment of a

hemisphere, where 22 = 1.0, § = 0.5 and » = 0.25

N

Differential cross-section for a P wave normally incident on
to a surface indentation with the shape of a semi-ellipsoid,

where 22 = 1.0, 4 = 0.5 and v = 0.25

F o)

Amplitude of the surface displacements in the x—z plane for
a SV wave normally incident on to a hemispherical surface
indentation with i—': = 0.5 and v = 0.25

Amplitude of the surface displacements in the y —z plane for
a SV wave normally incident on to a hemispherical surface
indentation with 22 = 0.5 and » = 0.25

S

Amplitude of the far-field displacements in the x—z plane for
a SV wave normally incident on to a hemispherical surface
indentation with %—3 = 0.5 and v = 0.25

Amplitude of the far-field displacements in the y —z plane for

a SV wave normally incident on to a hemispherical surface

indentation with -2)\—‘! = 0.5 and v = 0.25

S
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181

182

183

184

185

186

187

Differential cross-section in the x—z plane for a SV wave
normally incident on to a hemispherical surface indentation

mm%9=&5mdu=&%
8

Differential cross-section in the y —z plane for a SV wave
normally incident on to a hemispherical surface indentation
with 22 - 0.5 and v = 0.25

8

Amplitude of the surface displacements in the x—z plane for

. a SV wave normally incident on to a surface indentation with

the shape of a segment of a hemisphere, where i—a- = 1.0,
8

d - 05and v =025

Amplitude of the surface displacements in the y —z plane for
a SV wave normally incident on to a surface indentation with

the shape of a segment of a hemisphere, where i—a = 1.0,

d - 05and v =025

Amplitude of the far-field displacements in the x—z plane for

a SV wave normally incident on to a surface indentation with

the shape of a segment of a hemisphere, where %3 = 1.0,

S

d - 0.5and v =025

Amplitude of the far-field displacements in the y—z plane for

a SV wave normally incident on to a surface indentation with

the shape of a segment of a hemisphere, where 2a _ 1.0,

Ns
d - 05and v =025

Differential cross-section in the x—z plane for a SV wave

normally incident on to a surface indentation with the shape

of a segment of a hemisphere, where %g = 1.0, g— = 0.5

s

and v = 0.25
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188

189

190

191

192

193

194

Differential cross-section in the y —z plane for a SV wave
normally incident on to a surface indentation with the shape

of a segment of a hemisphere, where % = 1.0, g = 0.5
8

and v = 0.25

Amplitude of the surface displacements in the x—z plane for

a SV wave normally incident on to a surface indentation with

the shape of a semi-ellipsoid, where %_a_ = 1.0, g = 0.5

s

and v = 0.25
Amplitude of the surface displacements in the y —z plane for

& SV wave normally incident on to a surface indentation with

the shape of a semi-ellipsoid, where i—a = 1.0, g =05
8

and v = 0.25
Amplitude of the far-field displacements in the x-—z plane for
a SV wave normally incident on to a surface indentation with

the shape of a semi-ellipsoid, where %_a = 1.0, % = 0.5
L

and v = 0.25
Amplitude of the far-field displacements in the y —z plane for

a SV wave normally incident on to a surface indentation with

the shape of a semi-ellipsoid, where 28 _ 1.0, d . 0.5

As a
and v = 0.25

Differential cross-section in the x—z plane for a SV wave
normally incident on to a surface indentation with the shape

of a semi-ellipsoid, where 2a _ 1.0, g =0S5and v = 0.25

As
Differential cross-section in the y —z plane for a SV wave
normally incident on to a surface indentation with the shape

of a semi-ellipsoid, where 22 = 1.0, § = 0.5 and v = 0.25
s
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196

197

198

199

200

201

202

203

Amplitude of the surface displacements in the x—z plane for
a SV wave normally incident on to a hemispherical surface
indentation with i—: =1.0and v = 0.25
Amplitude of the surface displacements in the y —z plane for
a SV wave normally incident on to a hemispherical surface
indentation with i—: = 1.0 and v = 0.25
Amplitude of the far-field displacements in the x—z plane for
a SV wave normally incident on to a hemispherical surface
indentation with )2\—*: - 1.0 and v = 0.25
Amplitude of the far-field displacements in the y —z plane for
a SV wave normally incident on to a hemispherical surface
indentation with %—3 =1.0 and v = 0.25
Differential cross-section in the x—z plane for a SV wave
normally incident on to a hemispherical surface indentation
with 22 = 1.0 and v = 0.25

A\s
Differential cross-section in the y —z plane for a SV wave
normally incident on to a hemispherical surface indentation
with % = 1.0 and v = 0.25
Amplitude of the surface displacements in the x—z plane for
a P wave incident under 30 degrees on to a hemispherical
surface indentation with %3 = 0.5 and v = 0.25
Amplitude of the surface displacements in the y —z plane for
a P wave incident under 30 degrees on to a hemispherical
surface indentation with i—: =05 and v = 0.25
Amplitude of the far-field displacements in the x —z plane for

a P wave incident under 30 degrees on to a hemispherical

surface indentation with i—a =0.S5and v = 0.25
14
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205

206

207

208

209

210

Amplitude of the far-field displacements in the y —z plane for
a P wave incident under 30 degrees on to a hemispherical

surface indentation with i—a = 0.5 and » = 0.25
<)

Differential cross-section in the x —z plane for a P wave
incident under 30 degrees on to a hemispherical surface

indentation with f\—a =05 and v = 0.25
D

Differential cross-section in the y —z plane for a P wave
incident under 30 degrees on to a hemispherical surface

indentation with %a- = 0.5 and v = 0.25
P

Amplitude of the surface displacements in the x —z plane for a

P wave incident under 30 degrees on to a surface indentation

with the shape of a segment of a hemisphere, where 28 _ 1.0,

Ao
d - 05and v =025
Amplitude of the surface displacements in the y —z plane for a
P wave incident under 30 degrees on to a surface indentation

with the shape of a segment of a hemisphere, where %g = 1.0,
<]

d - 05and v =0.25
Amplitude of the far-field displacements in the x—z plane for
a P wave incident under 30 degrees on to a surface indentation

with the shape of a segment of a hemisphere, where i—a = 1.0,
7]

d - 05and v =025
Amplitude of the far-field displacements in the y —z plane for
a P wave incident under 30 degrees on to a surface indentation

with the shape of a segment of a hemisphere, where %’- = 1.0,
D

d - 05and v =025
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211 Differential cross-section in the x —z plane for a P wave
incident under 30 degrees on to a surface indentation with
the shape of a segment of a hemisphere, where %—3 = 1.0,
d - 0.5and v =025 269
212 Differential cross-section in the y —z plane for a P wave

incident under 30 degrees on to a surface indentation with

2a

the shape of a segment of a hemisphere, where e 1.0,
P
d - 05and v =025 269
213 Amplitude of the surface displacements in the x—z plane for a

P wave incident under 30 degrees on to a surface indentation

with the shape of a semi-ellipsoid, where i—: = 1.0, g =05

and v = 0.25 270
214 Amplitude of the surface displacements in the y —z plane for a

P wave incident under 30 degrees on to a surface indentation

with the shape of a semi-ellipsoid, where 2—2 = 1.0, g =05

and v = 0.25 270
215 Amplitude of the far-field displacements in the x —z plane for

a P wave incident under 30 degrees on to a surface indentation

with the shape of a semi-ellipsoid, where %;—’) = 1.0, g— = 0.5

and » = 0.25 271
216 Amplitude of the far-field displacements in the y —z plane for

a P wave incident under 30 degrees on to a surface indentation

with the shape of a semi-ellipsoid, where 2a _ 1.0, d_os5

o a

and v = 0.25 271

Page 37



217

218

219
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221

222

223

224

Differential cross-section in the x—z plane for a P wave
incident under 30 degrees on to a surface indentation with
the shape of a semi-ellipsoid, where %9 = 1.0, g = 0.5

P
and v = 0.25

Differential cross-section in the y —z plane for a P wave
incident under 30 degrees on to a surface indentation with
the shape of a semi-ellipsoid, where %?) = 1.0, g = 0.5

and v = 0.25

Amplitude of the surface displacements in the x—z plane for
a P wave incident under 30 degrees on to a hemispherical

surface indentation with )2\—3 =1.0and v = 0.25
23

Amplitude of the surface displacements in the y —z plane for

a P wave incident under 30 degrees on to a hemispherical

surface indentation with %a_ =10 and v = 0.25
P

Amplitude of the far-field displacements in the x—z plane for
a P wave incident under 30 degrees on to a hemispherical
surface indentation with ?\—: = 1.0 and v = 0.25

Amplitude of the far-field displacements in the y —z plane for
a P wave incident under 30 degrees on to a hemispherical
surface indentation with %—: = 1.0 and v = 0.25

Differential cross-section in the x —z plane for a P wave
incident under 30 degrees on to a hemispherical surface
indentation with i—: = 1.0 and v = 0.25

Differential cross-section in the y —z plane for a P wave

incident under 30 degrees on to a hemispherical surface

indentation with i—a =1.0 and v = 0.25
P
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225

226

227

228

229

230

231

232

Amplitude of the surface displacements in the x —z plane for
a SV wave incident under 30 degrees on to a hemispherical

surface indentation with %3 = 0.5 and v = 0.25
g

Amplitude of the surface displacements in the y —z plane for
a SV wave incident under 30 degrees on to a hemispherical

surface indentation with %3 = 0.5 and v = 0.25
S

Amplitude of the far-field displacements in the x —z plane for
a SV wave incident under 30 degrees on to a hemispherical

surface indentation with %g = 0.5 and v = 0.25
8

Amplitude of the far-field displacements in the y —z plane for
a SV wave incident under 30 degrees on to a hemispherical

surface indentation with %9 = 0.5 and v = 0.25
S

Differential cross-section in the x—z plane for a SV wave
incident under 30 degrees on to a hemispherical surface

indentation with %"- = 0.5 and v = 0.25
S

Differential cross-section in the y —z plane for a SV wave
incident under 30 degrees on to a hemispherical surface

indentation with i—-a = 0.5 and v = 0.25

8

Amplitude of the surface displacements in the x —z plane for a

SV wave incident under 30 degrees on to a surface indentation

with the shape of a segment of a hemisphere, where i—a- = 1.0,

s

d - 05and v =025
Amplitude of the surface displacements in the y —z plane for a
SV wave incident under 30 degrees on to a surface indentation

with the shape of a segment of a hemisphere, where %9 = 1.0,

8

d - 05and v =025
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235

236

237

238

Amplitude of the far-field displacements in the x—z plane for
a SV wave incident under 30 degrees on to a surface indentation

with the shape of a segment of a hemisphere, where i—a = 1.0,
8

d _0.5and v =025

Amplitude of the far-field displacements in the y—z plane for

a SV wave incident under 30 degrees on to a surface indentation

with the shape of a segment of a hemisphere, where i—a- = 1.0,

S

d-05and v =025

Differential cross-section in the x—2z plane for a SV wave

incident under 30 degrees on to a surface indentation with

N
the shape of a segment of a hemisphere, where ‘i—a = 1.0,
s

d - 0.5and v =025

Differential cross-section in the y —z plane for a SV wave
incident under 30 degrees on to a surface indentation with

the shape of a segment of a hemisphere, where %\_a = 1.0,
8

d - 0.5and v = 0.25

Amplitude of the surface displacements in the x—2z plane for a

SV wave incident under 30 degrees on to a surface indentation

with the shape of a semi-ellipsoid, where 22 = 1.0, § = 0.5

s

and v = 0.25
Amplitude of the surface displacements in the y —z plane for a
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1. Introduction

1.1 Motivation, outline and contribution

This section gives a brief summary of the motivation for this study,
an outline of the presented thesis and a statement of the claims for original

contributions of this research.

1.1.1 Statement of the problem and outline of the thesis

The development of methods for the detection and characterisation of
corrosion with the aid of ultrasound has for a long time been in the shadow
of efforts concentrated on the detection of cracks and inclusions in solid
materials [I — 3]. A crack$ usually starts on (or close to) the surface of a
material and grows inwards. It can be detected due to strong scattering signals
emanating from the crack [2]. Inclusions are wholly immersed in a matrix
material and the ultrasonic field scattered from such inclusions will normally
consist of compressional and shear waves radiated into various directions,

which can be detected with pulse-echo or pitch-catch tandem configurations

[21.

Corrosion is a surface feature, and its detection in the early stages of
its growth from a remote surface is difficult. In its advanced stages it can be
detected by a loss-of-back-wall-reflection if the corrosion creates a rough
surface (4] or by pulse-echo methods using thickness gauges when the overall
thickness of the material has been reduced [5]. Methods used for the
detection of corrosion are largely empirical [6], and there is an increasing

need for theoretical investigations into the ultrasonic scattering from
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corroded surfaces in order to devise methods that can detect and size small

amounts of corrosion.

This study was initiated in order to look for possibilities of detecting
the early stages of pitting corrosion in aluminium aircraft structures using
ultrasound. The corrosion pits appear as small isolated surface features
located on the remote side of a thick aluminium plate and the work looks at
the scattering of ultrasonic compressional and shear waves from one single
isolated pit. The pit is represented by a three-dimensional hemispherical or
shallow surface indentation in a plane half-space. The surface diameter of
the pit is assumed to be between about 1 mm and 6 mm, and the frequency of
the incident plane wave is in the range from 1 MHz — 5 MHz, thereby giving

a diameter to incident wavelength ratio of the order of one.

In order to investigate the scattering of compressional or shear waves
from a corrosion pit with a surface diameter of the order of one incident
wavelength a numerical simulation method is employed. The three-dimensional
nature of pits requires methods capable of simulating elastic wave scattering
in three dimensions. The most powerful methods for the simulation of
scattering from three-dimensional geometries in the mid-frequency regime are
boundary methods (7]. They are widely used in geophysics, where the surface
movements of valleys and ridges under the influence of earthquake waves are

calculated [8].

A conceptually simple indirect boundary method simulating the
scattering of elastic waves from three-dimensional hemispherical surface
indentations was published in [9, 10]. This method was adapted and extended

for the present study in order to obtain information on the scattered far-
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field from axisymmetric surface indentations that can help to design new

methods for the detection of corrosion in the early stages.

This thesis gives a detailed account of the used numerical method and
presents a range of numerical results for the near and far-field scattered
from various axisymmetric surface indentations together with some
experimental support. These results are then interpreted in order to give
some suggestions for the development of new methods to detect pitting
corrosion in its early stages. The thesis is divided into the following

sections :

Chapter one is designed to give an insight into the nature of corrosion
and investigates the applicability of different mathematical and numerical
methods to the given problem. Emphasis is placed on the fact that corrosion
is a genuinely three-dimensional phenomenon, and the advantages of the

chosen chosen numerical method are explained.

Chapter two deals with the mathematical description of the indirect
boundary method. It exploits the multipole expansion of the solution to the
elastic wave equation together with a least squares point matching method.
The method has the advantage that for axisymmetric surface indentations it
is possible to break the three-dimensional scattering problem down into two-
dimensional sub-problems, which in turn can be modelled very efficiently with

moderate computer facilities rather than supercomputers.

Chapter three investigates the accuracy of the numerical method and
presents results calculated with the method described in chapter two. The
shape of the surface feature is varied, and the incident wave can be of

compressional or shear wave type under normal or non-normal incidence.
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Three types of results can be obtained from the numerical simulations :
a) The displacements along the surface in the vicinity of the indentation
b) Far-field displacement radiation plots

¢) Far-field differential scattering cross-section radiation plots

In addition measurements are presented and compared with calculated results.

Chapter four discusses the numerical and experimental results
presented in chapter three and gives suggestions for new methods for the
detection of pitting corrosion in early stages. Some suggestions for further

improvements a}d extensions of the present work conclude the main part of
h

the thesis.

Appendices A — D contain detailed derivations of the employed
numerical expressions and these sections are included for the benefit of

further workers along the lines of this work.

Appendix E contains further numerical results and is added for the

sake of completeness.
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1.1.2 Claim of contribution

The numerical method presented in this study is based on work carried
out in the field of geophysics. Seismologists and earthquake engineers are
interested in the surface movements of canyons and valleys under the
influence of compressional, shear or Rayleigh waves incident at various
angles [8 — 10]. The diameter of such a surface indentation is usually of the
order of an incident wavelength, and therefore methods developed in
seismology can often also be transferred to ultrasonic testing. However, in
the area of ultasonic nondestructive testing the interest is focussed mainly
on displacements and energy distribution at some distance from the scatterer
rather than in the vicinity of it. This means that the methods developed in
seismology have to be extended in order to provide information on the far-

field displacements and the far-field scattered energy.

Claim of contribution 1 : The present work applies and extends a numerical
method presented in [8 — 10] to the area of nondestructive testing. The
extension of this method consists of calculating the displacements and
stresses in the near as well as in the far-field, thereby providing important
information that can be applied to the area of nondestructive testing.

Claim of contribution 2 : The method has been extrended to cover
hemispherical as well as non-hemispherical shallow axisymmetric surface
indentations for normal and non-normal incidence. To the authors knowledge
there are only two case reported in the literature dealing with near-field
results for non-normal incidence of a compressional wave on to three-
dimensional surfaée features with dimensions of the order of one incident
wavelength. The first case is concerned with the scattering from a

hemispherical indentation, the second case deals with the scattering from an
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axisymmetric ridge [8]. The present work proceeded indepentently from these
results, and a comparison of calculated results with published results shows
very good agreement. A range of novel results are presented for the near-
field displacements as well as for the far-field displacements and the
differential cross-section in the far-field for compressional and shear plane
waves incident under normal and non-normal incidence on to various surface
features.

Claim of contribution 3 : An investigation into the stability and accuracy of

the numerical method has been carried out. It was found that the method is
sensitive to the number of basis functions used to describe the scattered
field. This was not reported in [8 — 10], and some of the results presented in
[9] do not seem to employ the optimum number of basis function, thereby
allowing for improvements. The choice of an optimum number for the basis
functions is also critical for the far-field computations, since the far-field
calculations lead to incorrect results when carried out outside the stable
region. This phenomenon is due to the finite accuracy and word length of
computers used for computations rather than an intrinsic error of the
numerical method.

Claim of contribution 4 : Measurements have been carried out and are

presented to support the findings of the numerical simulations. The
experiments were carried out in order to measure the far-field quantities
scattered from a hemispherical surface indentation with a diameter of the
order of an incident wavelength, where the incident wave was a compressional
or shear wave under normal incidence. To the authors knowledge, these
measurements have not been reported in the literature before.

Claim of contribution 5 : The interpretation of the numerical simulations and

the experiments give a novel insight into the difficulties of detecting pitting
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corrosion in early stages and may help to devise new methods in the area of

the detection and characterisation of pitting corrosion. Suggestions emerging

from this work are :

— The frequency of the incident wave should be chosen so that the
wavelength is smaller than the depth of the expected corrosion pits.

— Shear wave transducers should be used rather than compressional wave
transducers.

— The ultrasonic beam should be non-normally incident on to the corroded
surface, and the use of pitch-catch tandem configurations will be of

advantage.

This work was presented at two conferences in summer 1989 and the

contributions are published in the corresponding conference proceedings :

1) Peter H. Albach and Leonard J. Bond : Numerical Simulation of Elastic
Wave Scattering from Three-Dimensional Axisymmetric Surface Features,
Review of Progress in Quantitative Nondestructive Evaluation, 23rd July —
28th July 1989, Bowdoin College, Brunswick, Maine, USA, Conference

Proceedings to be published by Plenum Press

2) Peter H. Albach and Leonard J. Bond : Three-Dimensional Numerical
Simulation of Elastic Body Wave Scattering from a Half-Space with
Hemispherical or Shallow Surface Indentations, IUTAM Symposium on Elastic
Wave Propagation and Ultrasonic Nondestructive Evaluation, 30th July —
3rd August 1989, Boulder, University of Colorado, USA, Conference

Proceedings to be published by Elsevier Science Publishers
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1.2 Corrosion in NDE

Although recent years have shown a great deal of progress in the
development of new NDE techniques for detecting cracks and inclusions in
metals [1 — 3, 11], there is now also an increasing need for the development
of new of methods for the detection and characterisation of corrosion in its
early stages {5, 6, 12, 13]. Often corrosion is located on the remote and
inaccessible side of metal structures (e.g. inside aluminium aircraft fuel

tanks), and visual inspection is not possible.

Radiography and thermal neutron radiography can be used to inspect
complex structures, but a main drawback of these techniques is the size of
the technical equipment which makes in-service inspection very difficult or
impossible. Also both sides of the object under inspection have to be

accessible [6].

Acoustic emission testing requires heating of the surface of the tested

object and is therefore also unsuitable for in-service inspection [5, 6].

Eddy current techniques are mainly used to detect thickness changes
of thin aluminium alloy layers with a thickness of up to 7.6 mm. They can
also be used in multiple layered structures [14, 15]. The eddy current
instrument is calibrated using taper gauges. The loci of lift-off, corrosion and
cracks can then be distinguished on the impedance plane display of the test

instrument [16, 17].

Ultrasonic techniques are mainly used for monitoring relatively thick
single layered objects. The basic method commonly employed is the pulse-

echo inspection, see Fig. 1. Two variants of this method are possible, their
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use depends on the roughness of the corroded area [4 — 6, 18] :

— Material thinning due to corrosion creates a new interface. The pulses
reflected from this new interface arrive in a much shorter time period at
the ultrasonic receiver than the pulses reflected from the original back
surface of the material. The recording of the reflected pulses on an A-
scan display calibrated to the original thickness of the material then
allows the estimation of the remaining thickness of the material. By using
a focussed transducer it is possible to focus the incident beam below the
surface at the depth of the expected corrosion and thereby minimising the
scattering noise.

— Corrosion generally results in a rough surface. An ultrasonic beam
incident on a very rough surface is scattered in a wide range of
directions, thus allowing only very little of the incident energy to reach
the receiver — a reflected pulse can only be observed in a highly
attenuated form (or not at all). This is commonly called the "pulse-echo
loss-of -back-wall-reflection technique”. A C-scan recording then leads to a
map of the corroded areas. The loss-of-back-wall-reflection method can
give ambiguous results, since other effects (like excess paint on the front

surface) can also be the cause of strong attenuation [4].

| [
X/ X/
RX RX

corroded surface

Fig. 1 : Ultrasonic pulse-echo inspection of a corroded surface.
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The detection and characterisation of corrosion is of particular
importance in aircraft inspection and maintenance. An aircraft is a highly
complex structure. Heavy demands are made on the airframe where at the
same time the weight of the frame has to be kept at a minimum. Often areas
that are exposed to a corrosive environment are not easily accessed, like fuel
tanks and the inside of the passenger cabin (which is covered with panels)
including the vicinity of lavatory systems. Many areas under severe load
consist of several different metals bonded together and are therefore

suscseptible to certain kinds of corrosion (6, 18].

Six common types of corrosion are encountered in aircraft engineering

[6, 18] and are shown in Fig. 2 :

TYPES OF CORROSION

7 (D1 5

PITTING EXFOLIATION INTERGRANULAZ
(INTERGRANULAR.)
- ‘ (_\\J“’
(AL i
(ri } él } {_ |
CREVICE £ STEE%% CORROSICN  MICBCRIAL
&GALVANIC CRACKING ( UNIFORM )

Fig. 2 : Most common types of corrosion encountered in aircraft engineering,

diagram taken from [18]
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— Pitting corrosion

Pitting corrosion is an electrochemical reaction which causes the

occurence of holes in metals. The holes may be small or large in diameter.
They can undercut the surface, and subsurface damage is sometimes much

more severe than indicated by the surface appearance, see Figs. 3 and 4.

Fig. 3 : Pitting of stainless steel by acid-chloride solution, taken from [19]
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Fig. 4 : Chemical processes occuring during pitting corrosion. The metal (M)

is attacked by an aerated sodium cloride solution. The diagram was

taken from [19]

— Intergranular corrosion

This form of corrosion attacks the grain boundaries of a material. In its

advanced stage it becomes

— Exfoliation corrosion

A large amount of grain boundaries have been attacked. This results in
the delamination of thin layers of the affected material and causes a

considerable loss of strength due to material thinning, see Fig. 5.
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Fig. 5 : Superficial pitting (left) and exfoliation corrosion (right) of

aluminium-copper-magnesium alloy, taken from [20]

— Crevice and galvanic corrosion
Both crevice and galvanic corrosion occur when metal is in direct contact
with a second material. If this second material is a metal different from
the first one and both materials are exposed to an electrolyte, galvanic
corrosion takes place, i.e. electrolytic dissolution of the less corrosion
resistant material [19]. If metal is in direct contact with any material (e.g.
sealing compound) but the contact is such that crevices between the two
materials occur, then a basis for crevice corrosion is given. Any
chemically active material which gets into the crevice between the two

materials will dissolve them, as can be seen in Fig. 6.
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Fig. 6 : Crevice corrosion on a large stainless steel pipe flange, taken

from [19]

— Stress-corrosion cracking
Stress-corrosion cracking occurs when at the same time a metal is under
tensile stress and a corrosive medium is present. The surface of the metal
exposed to the corrosive medium remains virtually unattacked while fine
cracks progress through the material. The cracks can occur along grain
boundaries when intergranular attack is present, as shown in Fig. 7, but

they can also advance without any reference to grain boundaries [19].
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Fig. 7 : Intergranular stress-corrosion cracking of brass, taken from [19]

— Microbiological corrosion
Microbiological corrosion occurs when material is exposed to a biologically
active environment. In aircraft engineering these situations arise for
example inside aluminium aircraft fuel tanks which contained contaminated
fuel. The growth of fungi inside the tanks leads to corrosion of the fuel

tank walls, where pitting corrosion is usually predominant [20].
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1.3 Mathematical models for the scattering from a corroded surface

The aim of this study is to assess the possibilities of detection and
characterisation of pitting corrosion located on the remote side of thick
aluminium plates using ultrasound. Initially the question of how to represent
a corroded surface had to be addressed. It was found that two approaches are

possible :

[) The corroded surface is represented as a randomly rough surface.

The shape of the surface can be considered as being generated by a random
process. The parameters of that statistical process (like mean value, standard
deviation and autocorrelation function) determine the roughness of the
surface and therefore the properties of the corrosion. An ultrasonic beam
scattered from such a randomly rough surface can be split into two parts —
the coherently scattered field (or mean field) and the diffuse (or fluctuating)
field!. Either part can serve as an indication of the roughness of the
surface. Two theoretical approaches to the scattering of elastic waves from
randomly rough surfaces can be found :

— Perturbation theory [22 — 24], whereby the roughness of the surface is
expressed in terms of equivalent stresses on the mean, flat surface. The
deviations of the actual surface from the mean surface have to be small
compared to the wavelength (i.e. it is a low fequency approximation). Also
the gradient (slope) of the rough surface has to be much smaller than one,

so that multiple scattering can be neglected. These limitations impose

1 A comprehensive literature review on acoustic and elastic wave

scattering from rough surfaces including detailed explanations of theories and

approaches can be found in [21]
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severe restrictions on the number of permissible surface shapes, and the
approach seems to lead to results similar to the scattering from smooth
surfaces [25].

— Kirchhoff theory [26,27], whereby the radius of curvature of the
surface is assumed as smaller than the wavelength of the incident wave.
The surface then behaves as if it was locally flat and reflects the
incident wave at any point in the specular direction. Restrictions due to
the Kirchhoff approximation are that the scale of roughness has to be
much larger than the wavelength (i.e. it is a high frequency
approximation) and that multiple scattering is not taken into account.

Both of the above mentioned approaces allow surfaces with roughness in one

or two dimensions.

Experimental investigations into the scattering from rough surfaces
have only been carried out for the acoustic (scalar) case. An object with a
randomly rough surface was immersed in a water tank together with an
ultrasound transducer. The signal backscattered from the surface was

analysed using scalar Kirchhoff theory [28 — 33].

It seems that some types of corrosion (like exfoliation corrosion) can
be represented very effectively as a random surface, whereas other types

(like pitting corrosion) have to be assumed as deterministic surface features :

II) The corroded surface is represented as a flat surface with deterministic

perturbations
Many theoretical studies deal with elastic scattering from obstacles {34 — 37].
In the area of NDE they are mostly concerned with scattering from either

surface-breaking and subsurface cracks (e.g. [38 — 40)) or elastic inclusions
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and defects in bulk material (e.g. [41 — 49]). The scattering from extended
surface disturbances of an elastic half-space has attracted some attention in
the field of geophysics and earthquake research. Of prime interest is here
the examination of the ground motion of valleys, alluvial deposits and ridges
under the influence of body waves and Rayleigh waves originating from
earthquakes or explosions. Work carried out in this area include :

— The solution of two-dimensional time dependent scattering problems using
finite difference methods [50 — 54]. Here the second order partial
differential equation governing the propagation of elastic waves is
approximated by a finite difference scheme. This allows the solution of
scattering problems with incident pulses rather than time harmonic plane
waves. The number of possible boundary shapes, normally restricted due
to the finite difference grid, can be extended by using a combined finite
difference — finite element method for the spatial discretisations and a
finite difference scheme for the temporal discretisation [55, 56]. These
methods are very effective for incident shear and compressional wave
pulses as well as for incident Rayleigh wave pulses. Unfortunately, the
extension of finite difference and mixed finite element — finite difference
schemes to three spatial dimensions requires supercomputers (at least at
this moment in time) due to massively increased computation time and
storage requirements. Recently reported three-dimensional (finite
difference models can include material anisotropy and inhomogenities
within the bulk material (57, 58]. For axisymmetric geometries with
axisymmetric excitation a reduction of the three-dimensional problem down
to two dimensions is possible by choosing appropriate boundary conditions
for the reduced problem (this is sometimes refered to as 2 % dimensional

geometries), see [59].
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— The solution of two-dimensional elastic scattering problems from periodic

interfaces using a boundary integral equation method [60]. This topic is
also of special interest to microwave engineers, since delay lines and
signal-processing devices used in microwave systems employ surface-
acoustic-wave (SAW) devices. These SAW devices convert microwave
signals into Rayleigh waves by means of a corrugated surface. The
Rayleigh wave undergoes a time delay and is then converted back into
microwave signals [61 — 63].
Experimental data for incident ultrasonic pulses is compared with the
theoretical model, taking account of finite beamwidth and time dependence
via spatial and temporal Fourier analysis. The agreement between theory
and experimental data was shown to\ be very good [64 — 681. A different
method, known as Rayleigh method (where the scattered field is expanded
into outgoing plane waves), has also been applied successfully to compute
the scattering from periodic surface profiles [69, 70].

— The solution of two-dimensional and three-dimensional scattering from
surface obstacles using perturbation theory [61 — 63, 71 — 73]. Here, as
for the case of a randomly rough surface, the dimensions of the surface
perturbation have to be small compared to the wavelength and the slope
of the obstacle has to be smaller than one. It is then possible to replace
the irregularity by a stress distribution on the plane, undisturbed
surface. The problem is now reduced to Lamb’s problem for distributed
surface sources, which can be solved. Comparisons with experimental data
show good agreement as long as the assumptions are met (e.g. slopes below
25°), see [74, 75].

— The solution of two-dimensional and three-dimensional scattering from

surface and subsurface obstacles using boundary methods. The term
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boundary methods encompasses a variety of mathematical approaches. In
contrast to finite difference and finite element methods, where the wave
equation is satisfied approximately inside the computational domain and
accurately at the boundaries (except for the radiation condition at
infinity), boundary methods satisfy the wave equation and the radiation
condition exactly, while approximating the boundary conditions [76]. This
can be done in various ways. One common approach is to write the
solution to the wave equation as an integral equation, which is then
solved by numerical means [77]. Another, conceptually simpler method, is
to expand the elastic stresses and displacements inside the computational
domain into a (possibly infinite) set of trial functions with unknown
coefficients. The trial functions (which are also called basis functions)
are exact solutions of the elastic wave equation, and the unknown
coefficients are chosen such that the boundary conditions of the problem
are satisfied approximately. This method avoids the cumbersome numerical
treatment of integral equations, which are often singular. A suitable set
of trial functions for the two-dimensional case of a half-space with a
surface disturbance can, for example, be constructed from Lamb’s solutions
for buried compressional and shear line sources. These solutions implicitly
satisfy the boundary conditions on a stress free plane surface and the
Sommerfeld-Kupradze elastic radiation condition at infinity. Several of
these solutions with the line sources placed above the disturbance are
superimposed. The appropriate choice of coefficients to these solutions
guarantees that the boundary conditions along the surface perturbation
are satisfied in the least squares sense [78, 79]. An alternative to the trial
functions desgbed above was given in [80]. Here the set of basis functions

is taken as the multipole expansion of the solution of the elastic wave
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equation in full space. This choice has the disadvantage that the
treatment of the boundaries has to be extended to the stress-free surface
of the half-space since none of the elements in the expansion satisfies the
condition of zero normal stress along a plane free surface on its own. On
the other hand it turns out that these elements are numerically much
simpler to construct, and that an extension from two-dimensional to three-
dimensional geometries is straight forward [8 — 10]. This is not the case
for the solutions of Lamb’s problem, where the solutions for point sources
(i.e. the three-dimensional solutions) are much more involved than the
sclutions for line sources [81, 82]. For the two-dimensional case finite
element methods have been incorporated into the boundary method in
order to account for multiple scattering effects near the surface

disturbance. This also speeds up the numerical calculations [83 — 91].

The three-dimensional deterministic nature of corrosion pits and their
similarities to hemispherical valleys suggests the use of boundary methods
for simulating the scattering from a metal plate attacked by pitting corrosion.
It is assumed that the metal plate can be described by a half-space with a
hemispherical surface disturbance representing an isolated pit. The elastic
field generated by the ultrasound transducer is approximated by an infinite

plane compressional or shear wave incident on the corroded surface, see

Fig. 8.
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The scattering of elastic waves from a layered half-space with
irregular interfaces using the Rayleigh method is investigated in [116, 117].
The geometry is assumed to be two-dimensional, periodic in space, and the field
scattered from the irregular interface is expanded into a finite series of
outward propagating homogeneous and inhomogeneous plane waves. This results
in a set of coupled integral equations, which are solved in the (spatial) Fourier
domain. The period of the geometry has to be sufficently large in order to
avoid aliasing effects in the Fourier domain. The incident wave field can be a
plane wave [116] or a cylindrical wave generated by a line source [117]. The
main drawback of this method is that it does not completely describe the
scattered wave field near the corrugated surface, since near the surface the
existence of inward travelling waves is possible. The errors due to the
incomplete description of the scattered field can be kept small if the slope of
the corrugated surface is small and the wavelength of the incident wave does

not exceed the dimensions of the irregular surface.

The scattering of pulsed P, SV and SH waves from two-dimensional
surface discontinuities using finite element analysis is examined in [118]. The
geometries under investigation (triangular ridge, semi-cylindrical alluvial valley
and a deep earthquake zone) are modelled with quadrilateral finite elements
and the wavefields are propagated in the time domain by a fourth order
Runge-Kutta algorithm. An extension of this method to three dimensions is
theoretically possible, but will result in a massive increase in computer

memory and cpu time.
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The high frequency seismic wave resonances in a three-dimensional
semi-elliptical sedimentary basin are calculated in [119]. The scalar wave
equation is solved in triaxial ellipsoidal coordinates using high frequency
asymptotics and the WKB approach. A uniform elastic and isotropic sediment
of semi-elliptical shape is located on the surface of a half-space, and high
seismic contrast between the sediment and the half-space is assumed. This
creates the conditions for resonant wave modes trapped in the basin for near
normal incidence of compressional or shear waves. The modes can be
visualized through ray tracing. Since this method is based on a high
frequency scalar wave approximation, mode conversion and low frequency

phenomena can not be studied.

The wave expansion method described in [9] and employed in this study
is also used in [120] in order to investigate the diffraction of shear waves
from a three-dimensional hemispherical alluvial valley located on the surface
of a half-space. The incoming plane shear wave and the reflected components
due to the stress free surface of the half space are expanded in spherical
coordinates. The scattered and refracted field components due to the alluvial
valley are given as finite series of spherical vector functions with unknown
coefficients, which are determined by fulfilling the boundary and interface
conditions in a least squares sense. In order to obtain results in the time
domain a range of calculations in the frequency domain for different diameter
to wavelength ratios are carried out. A fast Fourier transform then provides

time domain traces for a given incident wave pulse.
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Fig. 8 : Compressional plane wave incident on a plane surface with
hemispherical surface disturbance representing a corrosion pit,

taken from [9]
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2. Numerical method

2.1 Basic idea

The most appropriate choice for the modelling of scattering from

spherical and hemispherical objects is a spherical coordinate system :

— The elastic wave equation is separable in spherical coordinates

— The elastic displacement can be expressed in terms of three scalar
potentials, each of them obeying the scalar wave equation in spherical
coordinates

— all boundaries are along coordinate surfaces and therefore the boundary
conditions take a simple form

— The functions describing the coordinate dependences of the three scalar
potentials are spherical Bessel functions, Legendre polynomials and
trigonometric functions, all obeying certain recurrence relations. These
recurrence relations can be employed to eliminate any derivatives of these
functions and therefore simplify numerical computations considerably (e.g.

stress components are easily calculated).

In order to compute the interaction of time harmonic elastic plane
waves with a hemispherical pit with a radius of the order of A\, (at 2 MHz
this is equivalent to a radius of 3 mm in aluminium) the following method is
employed :

a) The reflection of elastic plane waves along a plane stress free boundary
is described analytically, and the results are easily expressed in spherical
coordinates.

b) The shape of the plane boundary is now deformed by a hemispherical

indentation. The elastic field scattered from this indentation can be

Page 65



represented as the analytical solution valid for the plane boundary plus a
distortion due to the hemispherical pit. The disturbance can be
represented as an infinite series of scalar potential solutions with
unknown coefficients. For numerical computations the series has to be
truncated, thus causing an error. The coefficients of the series can be
determined in such a way as to minimise the error of the stress
components along the stress free boundary (including the hemisphere) with
a least squares point matching method.

c) Having obtained the coefficients of the series it is now possible to
calculate the displacement in an area surrounding the hemisphere very
accurately. It is also possible to evaluate the far-field radiation patterns
generated by the surface disturbance if asymptotic formulae for the
spherical Bessel functions are used. This gives insight into how pits

reflect and scatter elastic waves generated by an ultrasonic transducer.

Fig. 9 : Geometry of a cartesian and a spherical coordinate system,

taken from [9]
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2.2 Theory

2.2.1 The multipole expansion of the elastic field

The elastic wave equation can be written as (see e.g. 36, 90, 91)

(N +2uwgraddivi — gcurlcurl @ — p =0 (2.1)
where 1 is the elastic displacement. Any vector field can be expressed as the
sum of the gradient of a scalar potential ¢ and the curl of a vector potential
A, where the divergence of A is taken as zero. This is known as the
Helmholtz theorem [41, 92]

U = grad ¢ + curl A (2.2a)
div A = 0 (2.2b)
The substitution of (2.2a) and (2.2b) into (2.1) leads to a scalar and a vector

wave equation for the two potentials

2 V% —p=0 (2.3a)
2 = (A -i; 2u) (2.3b)
EVIA —A=0 (2.4a)
2 = % (2.4b)

p designates the density, and the material constants A\ and u are always
positive (except for nonviscous fluids, where u is zero [92, 93]) and therefore
¢t > ¢ (2.5)

For time harmonic wave propagation all field quantities are proportional to
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e ’“* and equations (2.3) and (2.4) simplify to?

Vo + ki@ =0 (2.6a)

2 _w?_ wp
K3 N T (2.6b)
VA +k2A=0 (2.7a)

s = =5 = 7 (2.7b)

Equations (2.3) and (2.6) represent compressional wave motion with kp, as the
compressional wave number, whereas equations (2.4) and (2.7) represent shear

wave motion with ks as the shear wave number

Any shear plane wave can be decomposed into two shear plane waves
with orthogonal polarisation. This raises the question whether it is possible
to split the shear vector potential into two independent parts, each part
describing one polarisation. An analysis of (2.2a) and (2.2b) in orthogonal
curvilinear coordinates shows that for six coordinate systems (including
spherical coordinates) it is indeed possible to replace the vector potential A
by two scalar potentials ¥ and X, each being the solution to the scalar wave

equation in the corresponding coordinate system [41, 94, 95].

There are now three contributions to the displacement 4 derived from
the three scalar potentials. In spherical coordinates (where (r, 6, ¢) denote
the coordinate components) they are defined as follows :

2 Time harmonic dependence of all field quantities is assumed from now

Jwt

on, and the factor e~ will be omitted
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=L (kp,1,0,8) + M (ke, 1, 0, §) + N (ks, T, 0, ¢) (2.8)

where
L (kp, 1, 8, ¢) = grad ¢ (kp, 1, 0, @) (2.9a)
V% + k2@ =0 (2.9b)
M (ks, 1, 8, $) = curl (r ¥ (ks, T, 6, ¢) &) (2.102)
= grad (r ¥) X é-r (2.10b)
V% + k2yp =0 (2.10c)
N (ks, T, 0, @) = kls curl curl (r X (ks, T, 0, @) &) (2.11a)
= E1; grad B(r)() + ks T X €r (2.11b)
V% 4+ kZx=0 (2.11¢)
with

ér : unit vector in radial direction
X, : compressional wave number

ks : shear wave number

The elements of the stress tensors are derivatives of the displacement

components. In spherical coordinates they can be written as [92]

orr = N div @ + 2u P (2.12)
Too = N div & + 2u [} aa“‘; + U (2.12b)
Ogp = Ndiv i + . ;21‘:1 5 831: + ur sin 0 + ug cos 6 (2.12¢)
Oro = Tor = it |2 4 | [38‘3‘ — uO]] (2.12d)
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3
Org = Tgpr = U e + 1 dur _ uy sin 9]] (2.12¢)

| or r sin 0 | 0¢

(1 Bu )
Tog = Tgo = K %B_J’+rs}n9 ai;—u,,cose (2.121)
with
ivi=2 o 13  u 1|94 - 2
div u ar+rae+r+rsin9[a¢+“’s‘“9+“°°°” (2.12¢g)
The stress — potential relationships are easily derived if equations (2.8) —

(2.11) are substituted into the set (2.12). Detailed expressions for the
displacement and stress components in terms of the three scalar potentials

can be found in Appendix A.

The general solution of the scalar wave equation in spherical
coordinates is well known and can be found, for example, in [41, 94, 96]. For a

scalar potential ¢ (k, r, 0, ¢) the solution can be written as an infinite series

of the form

ok, r, 0, ¢) = i i i 8o,m,n Pa,m,n k, r, 0, ¢) (2.13a)
n=0 m=0 oc=e

Pemn (k, 1, 8, #) = zn(kr) Pr(cos 6) cos(mg) (2.13b)

©Yomn (k, T, 8, ) = za(kr) PR(cos 0) sin(mg) (2.13¢)

with the following meaning for the subscripts

o’ : index for the azimuth dependence

e’ : even azimuth dependence
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o’ : odd azimuth dependence

m’ : order of solution in the azimuth direction

n’ : order of solution in the colatitude direction

Zr is a spherical Bessel function of the first, second or third kind
and of order n

P: is the associated Legendre Polynomial of order (n, m).

Equations (2.13) combined with (2.8) — (2.11) and the equivalent set
for the stress components (see Apendix A, equations (A.10)) make it possible
to write down explicit expressions for the displacement and stress
components. The occurring derivatives can be eliminated using recurrence
relations, so that numerical computations can be carried out easily. Such

expressions can be found in [41, 94 — 96] and are derived in Appendix B.

Any time harmonic wave motion in unbounded space can now be
described as an infinite series, provided that the correct choice for the radial
dependence has been made (i.e. Bessel functions of the first kind for
geometries including the origin and Bessel functions of the third kind for

geometries extending to infinity)

ao,m,n ia,m,n (kp, r, 9, ¢) +

Mo

u(r, 8 ¢) = nzo i

3
o
qQ

1l
®

E bo,m,n Ma,m,n (ks, 1, 0, &) +

Ms
Ms

n*=0 m=0 o=e

00 I3 [«] -

Z E 2 Comn Nom,n (ks 1, O, ?) (2.14)
n=0 m=0 o~e

The ac,m,ny bo,m,= and co,m,= are unknown and have to be determined for any

given problem. For numerical calculations the infinite series have to be
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truncated and therefore constitute an approximation to the physical problem.
An example of the series expansion of a particular type of wave motion, a
vectorial plane wave, is given in Appendix C and will also be considered in

the next chapter.
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2.2.2 Plane waves and their reflection from plane stress free surfaces

In unbounded space, two different types of plane elastic waves can be
distinguished, according to their propagation velocity :

- Compressional waves propagate with wave speed cp, and the displacement
associated with this wave type is oriented in the direction of propagation.
Compressional waves (commonly also called P waves) are marked with the
subscript ’p’.

Up = €p eikp; (2.15a)

& Il kp (2.15b)

— Shear waves propagate with wave speed cs and the displacement associated
with this wave type is oriented normal to the direction of propagation.
Two different polarisations are possible. Shear waves with anti-plane
motion, i.e. with horizontal displacement are called horizontally polarised
shear waves (or short SH waves) and are characterized by the subscript
’sh’. Shear waves with in-plane motion, i.e. with vertical displacement are
called vertically polarised_ shear waves (or short SV waves) and are

marked with the subscript ’sv’.

fign = Bgn @ K0T (2.16a)
8.n L ke (2.16b)
figw = Bev elKST (2.17a)
dsv L Ks (2.17b)
dev L 8on (2.17¢)
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Without loss of generality the wave propagation vector k can be
assumed to lie in the x—z plane (due to the axisymmetry of the problem).
The P and SV wave displacements are then also in the x—z plane, and the SH
wave displacement is in the y direction. The P and SV waves are said to be

decoupled from the SH wave.

The decomposition of a vectorial plane wave of arbitrary polarisation

in terms of the spherical vector wave functions i, M and N is given in [94]

. kT _ o & R n (n — m)!
°e Eo;o;e em 1 (2n+1)(n+m)!

X {_ kL e - f’a,m,n(a, ﬁ)] I:a,m,n(kpg 9! ¢) +
p

. éa,m,n(a, ﬁ)] K/la,m,n(km 9, ¢)

1 -
\In (n + 1)[[e

— i [é . ﬁa,m,n(a, ﬁ)] ﬁa,m,n(ks, 6, ¢)] } (2.18)

where & is the polarisation of the plane wave and k is either the
compressional or the shear wave vector. The spherical vector harmonics 13, B
and ¢ together with the polarisation vector & constitute the expansion
coefficients. A detailed discussion of equation (2.18) may be found in

Appendix C.

Equation (2.18) can be simplified considerably if the propagation vector
is located in the x—z plane. The azimuth (¢) dependence of the spherical
vector wave functions reduces to either sin(m¢) or cos(m¢) terms and
summation over the parity is no longer neccessary. Also the series expansion

for a compressional wave will consist only of Lor» Wwhereas the
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decomposition of any shear wave will employ only Mo,m,n and ﬁa.m,n (see

Appendix C).

A compressional plane wave incident at an angle 8, on to a stress free
plane surface will generally result in two different reflected waves [92, 93],
see Fig. 10 :
— A compressional plane wave reflected at 0p

— A shear plane wave with vertical polarisation reflected at 0s,

where

0o =0, (2.19a)
. |sin 8,

0s» = arcsin [T] (2.20a)

RN [N
K k, 7 (2.20b)

If A, denotes the amplitude of the incident wave, then the amplitudes of the

reflected waves are given by

sin 20s. sin 20, — KZ cos?® 205y

Ap = A (2.19b)
P ' sin 20s» sin 20, + K? cos? 20¢,

for the reflected compressional wave and

Aew = A, —2 K sin 20, cos 20s. (2.20¢)

sin 20sv sin 20, + KZ cos® 20sv

for the reflected shear vertical wave.

Page 75



stress free surface

!

Y4

Fig. 10 : P wave incident on a stress free plane surface

Similarly, a shear plane wave incident at 0, on a stress free plane
surface generally gives rise to a reflected shear and a compressional plane
wave. The decomposition of shear waves into plane waves with horizontal and
vertical polarisation requires the investigation of two cases :

An incident shear plane wave with horizontal polarisation results in a
reflected shear plane wave only, the angle and amplitude of this reflected
wave being (see also Fig. 11)

O = 0, (2.21)

Ash - Ag (2 .22)

stress free surface

Fig. 11 : SH wave incident on a stress free plane surface
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An incident shear plane wave with vertical polarisation, however, generates
both a reflected shear vertical wave and a compressional wave, see Fig. 12 :
— The shear vertical wave reflects at s, with amplitude As.

— The compressional wave reflects at 0p with amplitude Ap

Osv = 0, (2.232)

0, = arcsin (K sin 6,) (2.242)

sin 20p sin 20, — K? cos® 20,

Asv = A, — 2 2
sin 20p sin 20, + K° cos® 20,

(2.23b)

K sin 40,
sin 20, sin 20, 4+ K% cos® 26,

Ap = (2.24b)
As equation (2.20b) indicates, K is always greater than one. This means that
there is a critical angle 8. for the incident shear vertical wave, above which
the product of K and sin 9, is greater than one

0cr = arcsin [,lc] (2.25)
Mathematical analysis shows that above the critical angle the reflected
compressional wave changes its character from a propagating plane wave to a
wavetype decaying exponentially with depth and propagating along the stress
free surface, a so-called surface wave (or inhomogeneous plane wave). For
this wave type the decomposition (2.18) is no longer valid. A shear vertical
plane wave incident beyond the critical angle will therefore in this study be
excluded. Expanding the incident and reflected stress and displacement
components in the unperturbed half-space in cylindrical coordinates with a
subsequent coordinate transformation allows the incorporation of surface
- waves (reflected inhomogeneous P waves as well as incident Rayleigh waves)
into the model [9]. This improvement is planned as the next step in the

further development of this work.
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stress free surface

!

Z

Fig. 12 : SV wave incident on a stress free plane surface

Surface waves can also occur as an independent solution to the elastic
wave equation when a stress free surface is present. This wave type is called
a Rayleigh wave and consists of the superposition of an inhomogeneous
compressional wave and an inhomogeneous shear wave, both travelling with

Rayleigh wave velocity ¢, along the stress free surface [97]. If the surface is

plane, then
< <
cr [ cs i cp (2.26)

As in the case of inhomogeneous compressional waves, the series expansion
(2.18) can not be applied to Rayleigh waves. It is, however, plausible to
assume that such a decomposition is possible for both types of surface waves

(i.e. that the expansion (2.14) is complete in a half-space).

Page 78



2.2.3 Implementation of the least squares matching method

For an incident plane wave the deformed surface of a stress free
elastic half-space gives rise to scattered waves that are no longer simple
plane waves. These waves can be described as a superposition of the plane
waves reflected from the ideal half-space plus a perturbation term. The
perturbation term is given as a (for numerical reasons) finite series of
spherical vector functions with unknown coefficients. The coefficients are
determined in such a way that the normal stress components are
approximately zero along the ideally stress free surface. This can be
achieved in the following way :

— For a hemispherical surface indentation in a half-space the boundary

conditions can be written as

Cgo (1, 0, ¢) = 0 (2.27a)
Oro (r, 0,0) =0 (2.27b)
Og4 (r, 6, 0) =0 (2.27¢)
for

a<r <™ (2.27d)
0=7/2 (2.27e)
0<¢ <27 (2.271)
and

orr (1,0, §) = 0 (2.28a)
Oro (r, 6, ¢) = 0 (2.280b)
Org (1, 0, ) = 0 (2.28¢)
for

r=a (2.28d)
0<o<? (2.28e)
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0<¢ <27 (2.281)
where a is the radius of the hemispherical surface obstacle.

The stress components due to the half-space are sampled along the
distorted surface in an area of, say, — 3a < r < 3a. The number of
sampling points employed is n, along the hemisphere and n, along the plane
part of the surface, the numbers are chosen so that the distribution of
points along the entire surface is equidistant (see Fig. 13). The half-space
satisfies equations (2.27) by definition, and therefore the sampled normal
stress components along the plane part of the surface vanish. This will,
however, not be the case for the normal stresses on the surface of the
hemisphere.

The normal stress components at the sampling points along the hemisphere

are

& Fhs | - the |;i (2.29)
1 <i<nm (2.290b)
and sampling along the plane surface yields

én Fne Iﬁ -1 |§t -0 (2.29¢)
n +1<i<n +n, (2.29d)

Here é. indicates the normal to the surface and the subscript ’hs’ refers
to the half-space. The three normal stress components are, as is commonly

done, combined in vector form to give the so-called traction vector t.
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stress free surface

L Il d d i - 1

+ $ 4 + $ + - — T— ————— ' $ 4 : ".._{—bx

:

Fig. 13 : Sampling path in the x—2z plane indicating the stress free surface of

a half-space with hemispherical surface indentation

— Now the stress components due to the spherical vector functions (see

Appendix B, equations (B10) — (B.15)) are evaluated

- Ll -
én Gpmn | = tpman | (2.30a)
Ty Ty
- - -
€n Ty.m,n |- = tv,m,n |4 (2.30b)
Ty Ty
& Tx,mn I;. = tx,mn lf. (2.30¢)
t 1

at the sampling points along the hemisphere

1<i<n (2.304)
and at the sampling points along the plane surface

n, +1<i<n +n (2.30e)
Spherical Bessel functions of the third kind (i.e. spherical Hankel
functions of the first kind) were chosen for the radial dependence of the
spherical vector functions and hence the stress components in order to

guarantee outgoing spherical waves at infinity.
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— Observing the boundary conditions along the sampling points leads to a set

of linear equations

Np-1 n - - - -

z E amn temn | + bm,n tw,m,n . + cmn tymn I~ + ths I" =0

n=0 m=0 Ty ) Ty Ty
(2.31a)

for the sampling points along the hemisphere

1 <i<n (2.31b)

and for the sampling points along the plane surface

n, +1 <i<n +n, (2.31¢)

where n, is the number of terms employed for the series expansion. A
summation over the parity in equation (2.31a) is not neccessary for
reasons that will become clear in chapter 2.2.4.

The system (2.31) conmsists of 3 X (n; + n;) complex equations with
3 X !‘—'—“—(3'-"2—+—U complex unknowns. If the total number of sampling
points is chosen so that the number of equations is equal to the number
of unknowns, then (2.31) is a (hopefully) determined system of equations
with a unique solution for the unknown coefficients am,n, bm,n and cm,n.
This solution enforces the boundary conditions at the sampling points, but
allows for non-zero normal stress components in the intervall between
them.

— The total number of sampling points can also be chosen to be much
greater than the number of unknowns. The system (2.31) is then
overdetermined and can be solved in a least squares sense [98 — 100}. This
means that the normal stress components are no longer forced to vanish at

certain points but that their deviations from zero along the sampling

points (the so-called residuals) are minimised, thus ensuring small but
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slowly varying errors everywhere along the boundary. Equation (2.31a)

can now be written as

7 - - - -
= m;o amn te,m,n f'i + bm,n tw,m,n ;i + cmn tymn |§t =~ — t, ;‘
(2.32a)
1 S i S n + n; (2.32b)

or in matrix form?
A% =t (2.33)
The vector X contains the unknown coefficients amn, bm,» and cma, the
~ vector t contains the traction components at the sampling points and the
matrix A (called the design matrix) consists of the normal stress
components due to the potentials ¢, ¥ nd x at the sampling points. The
overdetermined system of linear equations (2.33) is solved in the least
squares sense by QR factorisation or by singular value decomposition of

the matrix A, details can be found in [98 — 100].

In the limit for nn — < and under the assumption that the spherical
vector functions form a complete set in the elastic half-space it can be
shown that the error residuals along the boundary will vanish everywhere on

the surface, thus giving an exact solution to the scattering problem.

3 The matrix character of a quantity is indicated by underlining
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2.2.4 Azimuthal decomposition of the elastic field

The shape of the surface perturbation is axisymmetric with respect to
the z axis and is therefore independent of the azimuth coordinate ¢. This
allows a decomposition of the three-dimensional scattering problem into
several two-dimensional sub-problems with given ¢ dependence :

The azimuth dependence of the displacement and stress components of the
incident and scattered wave field are described as a superposition of
trigonometric functions

f(¢) = mio An cos(m¢) + Br sin(mg) 2.349)
where f(¢) can be a stress or displacement component.

This is a Fourier expansion of the function f(¢) with respect to the (spatial)
variable ¢ in the interval [0, 27]. The shape of the scatterer is independent
of ¢ and therefore does not alter the azimuth dependence of the the
individual Fourier components of the elastic field, hence it is possible to

regard each component separately.

Equation (2.34) simplifies if the wave vector of the incident wave is
located in the x—z plane. This amounts to a rotation of the coordinate
system around the z axis so that either Arn= 0 or B = 0 for all m. The
angular dependence of the displacement components then reduce to (see
Appendix C) :

a) incident P or SV wave
Ur, Ug, Orr, Ogg, T4y and o, are proportional to cos(mg)
Uy, 0.4 and Oy, are proportional to — sin(m¢)

and
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b) incident SH wave
Ur, Ug, Orry Tggy T4y 8nd 0.4 are proportional to sin(me)

u,, 0.4 and oo, are proportional to cos(me)

In the case of normally incident compressional or shear waves (i.e.
plane waves with a wave vector parallel to the z axis) the angular
dependence simplifies even more. For normally incident compressional waves
the displacement varies in the z direction, and there is no azimuth variation
of the displacement or stress components :

Ur, Ug, Orry Oge T4y and o, are non-zero, but without any ¢ dependence and
Uy, 0.4 and Oy are zero.

For normally incident shear vertically polarised waves the displacement
varies in the x-direction :

Ur, Ug, Orry, Ogey Tgg and oo are proportional cos ¢,

Uy, Org and og4 are proportional to — sin ¢.

Normally incident shear horizontally polarised waves consist of a
displacement component in the y direction only :

Ur, Ug, Orr, Tggy, Og4 and o, are proportional to sin ¢,

uy, 0,4 and o4y are proportional to cos ¢.

The general case of compressional or shear waves incident onto a
stress free surface with the wave vector located in the x—z plane can be
split into n» sub-problems. These can be regarded as two-dimensional with a
fixed azimuth dependence (0 < m < nn—1) factorised out of the problem (see
Appendix C, equations (C.16) and (C.18)). The scattering problem can now be
solved for each of the sub-problems separately, whereby equations (2.32) are

rewritten as
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ﬂm'l - - -
amn tomn |~ + bm,n tw,m,n .+ Cmn txmn l- = = ths.l-
1‘1 ri ri

n=m Ty

(2.35a)
1 <i<n +n (2.35b)
0 <m < nn—1, m fixed (2.35¢)

due to the requirement* that n > |m|.

Then the azimuth dependence is taken into account and the problems are
superimposed to give the full three-dimensional solution. For normally
incident plane waves there is only one sub-problem, m = 0 for compressional

waves and m = 1 for shear waves.

* There will be no contribution to the displacement and stress

components for |m| > n since then the Legendre polynomials Pr are

identically zero
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2.2.5 Non-hemispherical surface obstacles

It is possible to apply the least squares matching method described in
chapter 2.2.3 to axisymmetric surface obstacles with a cross-sectional shape
other than that of a semi-circle. This requires a modification of the
boundary conditions (2.28). The normal é. and the tangential &, to the surface
of the disturbance are no longer equivalent to é, and &, respectively. The
vanishing normal stress components along the surface of the indentation are
now linear combinations of the different components of the stress tensor in
spherical coordinates. They can be obtained by a coordinate transformation,

see [101] :

Onn = Orpr COS° @ + Oge sin’ & — 2 0, COS & sin a (2.36a)
Ont = Orr COS Q. SiN & — Ogy COS A SiN O 4 O, COS 20 (2.36b)
Ong = Org COS A — Ogy Sin (2.36¢)

The tangential stress components can be expressed as

Osr = Orr SiN% @ + Oge cos? & + 2 0, COS @ Sin & (2.36d)
O'¢¢ = U'¢¢ (2.366)
Oiy = Org Sin &0 + Ogy COS (2.36f)

and.the displacement are now

Ur = Ur COS 0. — U, Sin o (3.37a)
U = Ur Sin & + u, cos a (2.37b)

where o is the rotation angle in the r — 8 plane, see Fig. 14. Due to the
axisymmetry of the geometry the ¢ component is not affected by the

rotation and is therefore not shown in the diagram.
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Fig. 14 : Unit normals and rotation angle o of a coordinate transformation in

the r — @ plane

The angle o depends on the form of the surface and is a function of the

coordinates r and 0. Four cross-sectional shapes were considered and their

shape is given in spherical coordinates in a parametric form together with the

rotation angle and the angle o, with the normal to the plane free surface at

the intersection :

a) Hemicircle of given radius a
This case is trivial :

r(t)=a

6=t

o (t) =0

0<t<3

OL(,-'O
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b) Section of a hemicircle with given surface diameter 2a and depth d, see

Fig. 15. This case includes the hemicircle as special case (d = a) :

r(t) - JRz —~2Rhecost + h? (2.39a)
- R sin t
0 (t) = arctan [R s — h] (2.39b)
- h sin t
a (t) = arctan [R—— h cos t] (2.39¢)
0 <t < 2 arctan g (2.39d)
d2 + a2
R =5~ (2.39%)
h=R —d (2.39f)
h

o = arctan (2.39)

RZ _h2

o O~ — = —

!
|
l
S I
|
!
zl

Fig. 15 : Surface obstacle with the shape of a section of a hemicircle
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c) Semi-ellipse with given surface diameter 2a and depth d, see Fig. 16.

This case includes the hemicircle as special case (d = a) :

r(t) =y a?sin? t + d? cos? t

0 (t) = arctan [% tan t]

2 2 :
o (1) = arctan [(a —d )ac:s t sin t]

0<t<Z

[\

(10=0

Fig. 16 : Surface obstacle with the shape of a semi-ellipse
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d) Section of a semi-ellipse with given surface diameter 2a, depth d and angle

o, see Fig. 17. Cases a — ¢ are included for special values of a, d and o, :

r(t) = Jbg sin?t + b2 cos?t — 2 b, h cos t + h? (2.41a)
0 (t) = arctan [E—E-%i—h] (2.41v)
o (t) = arctan [(bg — bi)l s;: icgzs}: ctsbtl h sin t (2.41c¢)
0 <t < arccos 3 _t:_ 5 (2.414)
h = _"zztznt‘a": = (2.41e)
b,=d +h (2.410)

(d +h)a

a + e 2.41g)
~|d2 +2dh

bz"

¢
7

.

NE

[ O,

Fig. 17 : Surface obstacle with the shape of a section of a semi-ellipse
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The modified boundary conditions along the stress-free surface can now be

written as

O (r, 0, 9) = 0 (2.42a)
Tro (r, 0, ) = 0 (2.42b)
Ogy (1,0, 8) =0 (2.42¢)
for

a<r <o (2.42d)
0=x/2 (2.42¢)
0 <¢ <27 (2.42f)
and

Orn (r 6, ¢, ) =0 (2.43a)
Ore (1, 0, ¢, ) = 0 (2.43b)
Opng (r, 0, 8, 0) = 0 (2.43c)
r=r(t) (2.43d)
6=101(1) (2.43¢e)
a =qa (t) (2.43f1)
for

0 <t < tnaz (2.43g)
0<¢ <2r (2.43h)

where the sampling path along the surface of the indentation is determined
by its shape, and the sampling points are given by discrete values of the
parameter t within the limits

t=0 r=d 0=0 a=20

t = tnaz r=a 9=g a = Qg

The unknown coefficients in the expansion of the scattered field can

now be calculated in exactly the same manner as previously described. The
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only alteration to chapter 2.2.3 is that now the normal stress components
consist of a linear combination of stress components in spherical coordinates
rather than one single stress component. However, since the stress
components (2.36a) — (2.36f) emerge from the same potential, the expansion

coefficient will be the same for all six components.

By modelling the scattering from surface indentations other than
hemispheres some consideration has to be given to the representation of the
scattered field. The expansion (2.14) employs only outgoing spherical wave
functions. For many types of surface shapes (e.g. surface obstacles that
undercut the surface) such an expansion does not represent all occuring
wavetypes, since incoming waves due to multiple scattering have been
neglected. This problem has recieved widespread attention in form of the so-
called Rayleigh hypothesis in the area of electromagnetic wave scattering
{102, 103). The surface shapes that are considered in this study were
originally chosen so that the scattered field could safely be represented in
terms of solely outward propagating elastic waves : hemispheres and segments
of hemispheres will not give rise to multiple scattering, independent of the
angle of incidence of the incoming plane wave. Some investigations were then
made into the scattering from semi-ellipsoids. A representation of the
scattered field by only outgoing waves gives physically meaningful results,
and therefore seems to be correct, see chapter 3. The scattering from the
generalised surface feature of a section of an ellipsoid (shape d) has not been
investigated so far (although implemented in the computer simulation

program), and a further study might reveal interesting results for this case.
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Chapter 3 : Results

3.1 Numerical accuracy

In order to test the accuracy of the multipole expansion of the elastic
field it is most useful to compare the computed values of a truncated
expansion of a known harmonic wave motion with the values derived from the
analytic expression of that wave motion. This has been done using expansion
(2.18) for compressional and shear plane waves propagating at arbitrary angles
through an unbounded elastic medium. The maximum number of terms in (2.18)
Nmaz Was chosen to be 12, 16 and 20, and the computed displacement
components were divided by the values obtained from the analytic expression
for plane waves. The normalised magnitude and phase of the u, displacement
component of P and SV waves plotted against the normalised distance from
the origin kr are shown in section 3.2. The results for SH waves are identical
to the results for SV waves, also the graphs of the normalised displacement
components uy and u; are identical to the ones of u», and so plots for these
cases were omitted. Figures 18 — 29 show clearly that the accuracy of the
expansion improves with increasing number of terms. Both magnitude and
phase are stable up to a critical point (kr).,;;, then the approximation breaks
down. The value of this critical point increases with increasing number of
terms. From this it is reasonable to conclude that the accuracy is mainly
determined by the spherical Bessel functions zn(kr). The relation between the
number of terms and the critical values for kr is tabulated below, where the
critical point is defined as :
kr = (kr).~;: when normalised magnitude < 0.99

or normalised magnitude > 1.01
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compressional wave shear wave

number of terms (03 3 JU (kr)erit
8 3.0 5.2
12 6.7 1.5
16 10.5 12.0
20 135 14.2

Table 1 : Critical values of kr for a multipole expansion of a plane

compressional or shear wave

This table shows that it is possible to represent a plane compressional
or shear wave by a multipole expansion using 20 terms with 1% accuracy in a
domain of kr < 13.0 or r < 2A. This result will equally apply to any kind of

wave motion, provided that the expansion coefficients are properly chosen.

An investigation of the accuracy of the stress components generated
by a plane compressional or shear wave shows that the value of the critical
point there is somewhat lower than that for the critical point for the
displacements (using the same number of terms). This is to be expected since
the stress components are derivatives of the displacements and will therefore

be less accurate.

A further point that needs investigation is the handling and accuracy
of the least squares point matching procedure. Ideally an increase in the
number of basis functions leads to an increase in accuracy. However, this
also lowers the condition number of the design matrix A due to spherical
Hankel functions of high order evaluated near the origin. The high order

basis functions become linearly dependent within the numerical accuracy of
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the computer program and the least squares method generates inaccurate
results. The coefficients obtained for a set containing degenerated basis
functions still produce a least squares approximation to the scattering
problem in the near-field, but they do not reflect any longer the true
physical contribution of each basis function to the scattered field (since the
degeneracy is only numerical, not actual). As a consequence the far-field
results will be incorrect when obtained from a set of basis functions that are
degenerate in the numerical sense. Also the near-field results will become
increasingly inaccurate with an increasing number of degenerate basis
functions. There will be an optimal value for the number of basis functions
just before degeneracy occurs. This optimal value can be found by increasing
the number of basis functions until the singular value decomposition indicates
the break down in accuracy via the spread of singular values with respect to
a tolerance parameter {98 — 100]. The example given below looks at the rank
of the design matrix and the total least squares residual (i.e. the sum of all
the residual normal stress components along the sampling points) as the
number of basis functions increases. The chosen scattering problem was also
calculated in [9], it consists of a compressional wave normally incident on to a
hemispherical surface indentation in a half-space. The ratio of diameter of
the surface obstacle to incident wavelength is 0.5, i.e. the radius of the
hemispherical indentation is a quarter of an incident wavelength. It can
clearly be seen that with increasing number of basis functions the least
squares residual decreases, thereby giving improved solutions. As soon as the
set of basis functions contains linearly dependent elements the matrix
becomes degenerate and the acuracy degrades. The observation of this is
independent of the incident wave type, angle of incidence and material

properties. All the examples presented in this thesis were calculated using
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the optimum value for the number of basis functions, which for the example
below is 13 basis functions. The result given in [9] employs 15 basis functions
and it can be seen that the least squares residual for this case is higher than
the residual of the result presented here (see section 3.3). The residual
normal stress components normally have their largest values near the rim of

the indentation.

Number of basis rank of design total least
functions nnaz matrix A squares residual
10 38 2.7916

11 42 2.5166

12 46 2.1026

13 50 1.6635

14 52 (degenerate) 2.5926

15 50 (degenerate) 4.6154

16 42 (degenerate) 29.649

Table 2 : Total least squares residual as function of the number of basis

functions in the multipole expansion

It was found that the least squares matching method is not very
sensitive to the number of points along the sampling path as long as the total
number is much greater than the number of basis functions used in the
expansion of the scattered field. Due to the axisymmetry of the surface
perturbation it is possible to perform the least squares matching procedure
along the positive x axis only for a given azimuth dependence (see chapters

2.2.4 and 2.2.5). The number of sampling points used to obtain the results
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shown in this chapter were :

ng, = 35 along the surface indentation

ng, = 45 along the plane surface, a < x < 3a

So far, there have been very few publications on elastic wave
scattering from three-dimensional surface features [8], all of which deal with
the surface amplitudes near the indentation. The number of cases available
for a comparison of results is therefore limited and has to be confined to a
discussion of the near-field results. The method presented here follows the
approach of [9], where the surface motion of a three-dimensional
hemispherical surface indentation under the influence of normally incident
compressional waves was investigated. The results obtained by [9] for this
case are shown in section 3.3, where they are compared with results
calculated here. They compare very well, and the minor discrepancies can be
explained by the difference in the number of employed basis functions and
possibly by a different treatment of the corners between the surface
disturbance and the plane surface. No information on the treatment of these
corners is given in [9], but it is assumed that the edges were rounded. This
can be concluded from the horizontal surface movements, which are shown as
smooth curves in [9]. The present study assumes sharp corners throughout,
which are 90 degrees for a hemispherical surface indentation. This results in
a less smooth behaviour of the horizontal surface movements near the corner

and in slightly larger surface movements along the plane surface.

Cases of non-normal incidence of elastic waves on to a hemispherical
surface indentation were published in [8] and [104]. These cases were also
compared to calculated results in section 3.3. The results presented in (8]

(Figs. 34 and 35) were calculated by the same method that was used here and
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show very good agreement. The surface movements of the x displacement
component shows a slightly larger amplitude in the y-z plane near the rim of
the indentation for the case calculated for this study. This could be due to a
rounded corner in [8] or due to a different arrangement of the sampling points
near the corner. The number of basis functions used was chosen to be 13 for
the result obtained by the present study, and is not known for the result
given in [8]. A difference in the number of basis functions could also
contribute to the slightly stronger surface motion in Fig 35. The results
presented in [104] were calculated with a wave expansion method employing
the orthogonality and the power series representation in r, the radial
distance, of the spherical wave functions. The surface displacements in [104]
are only given outside the indentation, and due to their presentation it is
difficult to compare the shape of the surface displacements with results

calculated here. A detailed discussion can be found in section 3.3.

A great number of studies have been caried out in order to calculate
the near-field displacements of compressional and shear waves scattered from
two-dimensional canyons [78, 80, 83, 105 — 107]. Results for these cases are
considered as limiting cases and are compared with three-dimensional results

in section 3.3.

Section 3.4 presents the surface displacements and far-field plots for
compressional wave incident under 60 degrees and a shear waves normally
incident on to a on to a growing pit in an aluminium plate with Poisson’s ratio
v = 034, The various stages of the growing pit are represented by
hemispherical and shallow surface indentations of various shapes and

dimensions.
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Section 3.5 compares numerical (single frequency) results with
measurements for a compressional or shear wave pulse normally incident on
to a hemispherical surface indentation in an aluminium block. Two different
surface features were considered : the first was 1.6 mm in diameter, the
second was 3.2 mm in diameter. The centre frequency of the incident
compressional wave pulse was 1MHz (with a compressional wavelength of 6.4
mm in aluminium), and the centre frequency of the incident shear wave pulse
was 2 MHz (with a shear wavelength of 1.6 mm in aluminium), thereby giving

the following diameter to incident wavelength ratios at the centre frequency :

— incident compressional wave : 28 0.25 and 0.5

>“£nc

— incident shear wave : 22 = 1.0 and 2.0

>‘lnc
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3.2 Expansion of plane compressional and shear waves in terms of spherical

vector functions
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3.3 Comparison of results obtained by this study with published results

This section presents a comparison of the three-dimensional near-field
results calculated in this study with two-dimensional and three-dimensional
near-field results published in the literature. In Figs. 30 — 33 the surface
movements of a hemispherical surface indentation generated by a normally
incident compressional plane wave are compared with results published in [9].
The diameter to compressional wavelength ratio is varied between 0.25 and
1.5. The number of basis functions chosen for the different cases are given
below and differ from [9] due to reasons given in section 3.1. Poisson’s ratio

is v = 0.25 for all cases.

%‘3 basis functions used here basis functions used in [9]
} <3

0.25 11 10

0.5 13 15

0.75 15 15

1.5 18 15

Table 3 : Comparison of the number of basis functions used here and in [9]

Figs. 34 and 35 compare the surface displacements of a compressional
plane wave incident under 60 degrees on to a hemispherical surface
indentation with a diameter of one shear wavelength. The plots at the top of
the page were calculated here, the plots at the bottom of the page were
published in [8]. The number of basis functions for the expansion of the
scattered field in {8] is not known and was chosen to be 13 for the present

study. Poisson’s ratio is v = 0.25 as before. A discussion of these results can
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be found in section 3.1.

Figs. 36 — 41 show the surface displacements of a compressional wave
incident under 30 degrees and a horizontally polarised shear wave incident
under 60 degrees on to a hemispherical surface indentation with a diameter to
shear wavelength ratio of 0.5 and Poisson’s ratio v = 0.25. The results were
computed by a wave expansion method described in [104], which employs the
orthogonality of the spherical wave functions and their power series
representation in r, the radial distance. Figs. 42 — 45 show the displacements
for the same cases calculated with the method presented here. Due to the
presentation of the results in [104] it is difficult to compare the amplitude
of the displacements. It can be seen that the displacement components
computed at some distance from the indentation have the same wvalues,
whereas the displacement components close to the rim of the indentation are
different. This could be due to the fact that the two methods satisfy the
boundary conditions along the stress free surface in different ways, which
can result in different emphasis of the corners between the indentation and
the half-space and therefore different displacements near the indentation.
The shape of the displacement components along the x and y axes is similar
for the results calculated here and in [104), except that the x displacement
component shown in [104] oscillates along the y axis for both the P and the
SH case (Figs. 36 and 39), whereas it decays without oscillation in Figs. 43
and 45. The case of an incident SV wave presented in [104] can not be
calculated here, since the angle of incidence is 45 degrees and therefore

beyond the critical angle of the reflected P wave (see chapter 2.2.2).

The calculation of surface displacements for incident compressional

and shear waves on to semi-cylindrical canyons has been the subject of
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investigations for some time. This scattering geometry is two-dimensional, and
the comparison of surface displacements with the results from three-
dimensional cases provides some information on the limitations of two-
dimensional approximations to three-dimensional scattering problems. Three

cases are considered here.

The first case looks at the in-plane displacements for a compressional
wave incident under 30 degrees on to a semi-cylindrical canyon (Fig. 48) in
comparison to the in-plane displacements generated by a compressional wave
incident under 30 degrees on to a hemispherical indentation (Fig. 42). The
dameter to incident shear wavelength is i—: = 0.5 for both cases. The two-
dimensional results were calculated with the same boundary method that is
used here (see [80]), and the Poisson’s ratio for this case is v = 0.33 compared
to the Poisson’s ratio for the three-dimensional case, which is v = 0.25. It
can be seen that curves for both the horizontal and vertical displacements
have the same shape for the two-dimensional and the three-dimensional case,
but the amplitudes are slightly larger for the displacements calculated for

the two-dimensional geometry.

The second case looks at the anti-plane displacements for a
horizontally polarised shear wave incident under 60 degrees on to a semi-
cylindrical canyon and a hemisphere with 2—3 = 0.5 for both cases. The two-
dimensional results were calculated with a wave expansion method presented
in [105] and are shown in Fig. 50. The three-dimensional results are shown in
Fig. 44. As for the case of the incident compressional wave, the shape of the
curve for the horizontal displacement is almost the same in two and in three

dimensions, whereas the amplitudes are larger for the two-dimensional

geometry. This might be expected, since the two-dimensional geometry does
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not take any account of displacements in the plane perpendicular to the

incident wave vector (y-z) plane, which are significant in three dimensions.

The last case looks at the in-plane and the anti-plane displacements for
a normally incident shear wave on to a hemisphere with %: = 0.5. The in-
plane displacements for the two-dimensional case were calculated in [80] and
are shown in Fig. 48, the anti-plane displacements were calculated in [105] and
are shown in Fig. 49. The three-dimensional results are shown in Fig. 46 for
the in-plane components and in Fig. 47 for the anti-plane components and the
shape of the curves for the in-plane and the anti-plane displacement
components compare quite well with the two-dimensional results. It can
therefore be concluded that two-dimensional approximations to three-
dimensional geometries give a qualitative analysis of surface movements in

the plane of observation, while neglecting surface movements occuring in the

plane perpendicular to the two-dimensional approximation.
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Fig. 30 : Amplitude of the surface displacements in the x—z plane for a
compressional wave normally incident on a hemispherical surface
indentation with i—: = 0.25 and Poisson’s ratio v+ = 0.25. Top : result
obtained by the present study, bottom : result published in [9].
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Fig. 31 : Amplitude of the surface displacements in the x—z plane for a
compressional wave normally incident on a hemispherical surface
indentation with i—: = 0.5 and Poisson’s ratio v = 0.25. Top : result
obtained by the present study, bottom : result published in [9].
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Fig. 32 : Amplitude of the surface displacements in the x—z plane for a
compressional wave normally incident on a hemispherical surface
indentation with 2—: = 0.75 and Poisson’s ratio v = 0.25. Top : result
obtained by the present study, bottom : result published in [9].
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Fig. 33 : Amplitude of the surface displacements in the x —z plane for a
compressional wave normally incident on a hemispherical surface
indentation with i—a = 1.5 and Poisson’s ratio v = 0.25. Top : result
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obtained by the present study, bottom : result published in [3].
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Hagnitude

Fig. 34 : Amplitude of the surface displacements in the x —z plane (plane of
the incident wave vector) for a compressional wave incident under
60 degrees on to a hemispherical surface indentation with i—a =1.0

&

and Poisson’s ratio v = 0.25. Top : result obtained by the present

study, bottom : result published in [8].
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Fig. 35 : Amplitude of the surface displacements in the y —z plane (plane
perpendicular to the incident wave vector) for a compressional wave
incident under 60 degrees on to a hemispherical surface indentation
with i—a = 1.0 and Poisson’s ratio v = 0.25. Top : result obtained by

§

the present study, bottom : result published in [8].
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Fig. 36 : Surface displacements ur for a compressional wave incident under 30

degrees on to a hemispherical surface indentation with %3 = 0.5 and
S

Poisson’s ratio v = 0.25, published in [104].
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Fig. 37 : Surface displacements u, for a compressional wave incident under 30

degrees on to a hemispherical surface indentation with 2a 0.5 and
L

A
Poisson’s ratio v = 0.25, published in [104].
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Fig. 38 : Surface displacements u: for a compressional wave incident under 30

degrees on to a hemispherical surface indentation with ia = 0.5 and
s

Poisson’s ratio v = 0.25, published in [104].
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Fig. 39 : Surface displacements u, for a horizontally polarised shear

wave incident under 60 degrees on to a hemispherical surface

indentation with i—a = 0.5 and Poisson’s ratio v = 0.25, published

s

in [104].
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Fig. 40 :

Fig. 41 :

Surface displacements u, for a horizontally polarised shear
wave incident under 60 degrees on to a hemispherical surface

indentation with 2a _ 0.5 and Poisson’s ratio v = 0.25, published

As
in [104].
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Surface displacements u: for a horizontally polarised shear

wave incident under 60 degrees on to a hemispherical surface
indentation with 22 = 0.5 and Poisson’s ratio = 0.25, published

in [104].
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Fig. 42 : Surface displacements in the x —z plane for a compressional wave
incident under 30 degrees on to a hemispherical surface indentation

with 2a _ 0.5 and Poisson’s ratio v = 0.25. Eleven basis functions
8

were used in the expansion.
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Fig. 43 : Surface displacements in the y —z plane for a compressional wave
incident under 30 degrees on to a hemispherical surface indentation

with 2 0.5 and Poisson’s ratio v = 0.25. Eleven basis functions
8

were used in the expansion.
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Fig. 44 : Surface displacements in the x—z plane for a horizontally polarised
shear wave incident under 60 degrees on to a hemispherical surface
indentation with i—a = 0.5 and Poisson’s ratio v = 0.25. Eleven basis

s

functions were used in the expansion.
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Fig. 45 : Surface displacements in the y —z plane for a horizontally polarised
shear wave incident under 60 degrees on to a hemispherical surface
indentation with i—a = 0.5 and Poisson’s ratio v = 0.25. Eleven basis

s

functions were used in the expansion.
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Fig. 46 : Surface displacements in the x—z plane (plane of polarisation) for a
shear wave normally incident on to a hemispherical surface
indentation with % = 0.5 and Poisson’s ratio v = 0.25. Eleven basis

s

functions were used in the expansion.

Magnitude

Fig. 47 : Surface displacements in the y —z plane (plane perpendicular to
polarisation) for a shear wave normally incident on to a
hemispherical surface indentation with % = (0.5 and Poisson’s ratio

v = 0.25. Eleven basis functions were used in the expansion.
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Fig. 48 :

Horizontal surface displacements u. and vertical surface

displacements u, for a compressional wave (left) and a vertically
polarised shear wave (right) incident on to a semi-cylindrical canyon
with i—: = 0.5 and Poisson’s ratio v = 0.33. The angle of incidence
is given by 7. The dashed curves were calculated in {78], the

straight curves were calculated by [80]. The diagram was published

in [80].
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Fig. 49 : Surface displacements for a horizontally polarised shear wave
normally incident on to a semi-cylindrical canyon. The diameter to
shear wavelength ratio i—a = 7 is varied from 0.25 to 2.0. The

S

diagram was published in [105].
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Fig. 50 : Surface displacements for a horizontally polarised shear wave
incident under 60 degrees on to a semi-cylindrical canyon. The
diameter to shear wavelength ratio %5 = 7] is varied from 0.25 to 2.0.

&

The diagram was published in [105].
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3.4 Compressional wave incident under 60 degrees and shear wave normally

incident on to an axisymmetric pit at different stages of growth

This section presents the amplitude of the surface displacements, the
amplitude of the far-field displacements and the differential scattering cross-
section of the scattered far-field for a compressional wave incident under 60
degrees or a shear wave normally incident on to an axisymmetric pit in an
aluminium half-space at different stages of growth. Poisson’s ratio is v~ = 0.34
and the far-field calculations were carried out at the normalised distance
g = 1000. The differential scattering cross-section was calculated wusing

equation (D3a) in Appendix D. Eight different pit shapes are considered :

(a) a hemisphere with KZ’_a_ - 0.5 and o = 90°
inc

(b) a segment of a hemisphere with 22 = 1.0, 4 = 0.25 and o = 28.1°
inc

(c) a semi-ellipsoid with 2% = 1.0, = 0.25 and & = 90°
inc

(d) a segment of a hemisphere with )\l?— = 1.0, g = 0.5 and o = 53.1°
inc

(e) a semi-ellipsoid with )\2—8 = 1.0, g = 0.5 and o« = 90°
inc

(f) a segment of a hemisphere with XZ_a_ = 1.0, g = 0.75 and a = 73.7°
inc

(g) a semi-ellipsoid with )\2—3 = 1.0, ;—l = 0.75 and o = 90°
inc

(h) a hemisphere with)?a = 1.0 and o = 90°
inc

where 2a is the surface diameter and d the depth of the indentation. the
angle of the corners between the indentation and the plane surface is denoted
by o. Feature (a) represents a hemispherical pit with a diameter of half an
incident wavelength. Features (b) — (g) are shallow axisymmetric indentations
with a surface diameter of one incident wavelength, but with different

shapes. The depth of the pit varies from -)‘—’g"ﬁ (features (b) and (c)) over )\Z“’
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(features (d) and (e)) to % Mine (features (f) and (g)). The hemispherical
indentation (h) has a surface diameter of one incident wavelength and

therefore a depth of M"c.

2

Figure numbers for Figure numbers

a P wave incident for a normally
Case at 60 degrees incident SV wave
(a) Figs. 51 — 56 Figs. 99 — 104
(b) Figs. §7 — 62 Figs. 105 — 110
() Figs. 63 — 68 Figs. 111 — 116
(d) Figs. 69 — 74 Figs. 117 — 122
(e) Figs. 75 — 80 Figs. 123 — 128
(f) Figs. 81 — 86 Figs. 129 — 134
(2) Figs. 87 — 92 Figs. 135 — 140
(h) Figs. 93 — 98 Figs. 141 — 146

Table 4 : Figure numbers of the results for the cases (a) — (h) presented in

this section

The polar plots showing the angular distribution of the far-field
displacements and the scattering cross-section are normalised for each case to
the maximum value occuring either in the x—z or in the y—x plane. The
cases relate to each other as given below, where case (a) has been chosen

arbitrarily as normalisation.
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scaling factor of the

case Figure numbers far-field displacements
(a) Figs. 53, 54 1.0
(b) Figs. 59, 60 0.53
(c) Figs. 65, 66 0.60
(d) Figs. 71, 72 0.97
(e) Figs. 77, 78 1.2
) Figs. 83, 84 2.2
(g) Figs. 89, 90 2.7
(h) Figs. 95, 96 3.9

Table 5 : Scaling factors of the far-field displacement plots for the cases

(a) — (h) and a P wave incident at 60 degrees

scaling factor of the

case Figure numbers differential cross-section
(a) Figs. 55, 56 1.0

(b) Figs. 61, 62 0.45

(c) Figs. 67, 68 0.58

(d) Figs. 73, 74 3.1

(e) Figs. 79, 80 4.3

) Figs. 85, 86 7.3

(g) Figs. 91, 92 11.3

(h) Figs. 97, 98 24.2

Table 6 : Scaling factors of the differential cross-section plots for the cases

(a) — (h) and a P wave incident at 60 degrees

Page 129



scaling factor of the

case Figure numbers far-field displacements
(a) Figs. 101, 102 1.0
(b) Figs. 107, 108 0.37
(c) Figs. 113, 114 0.51
(d) Figs. 119, 120 0.72
(e) Figs. 125, 126 0.83
(f) Figs. 131, 132 1.2
(g) Figs. 137, 138 1.3
(h) Figs. 143, 144 1.8

Table 7 : Scaling factors of the far-field displacement plots for the cases

(a) — (h) and a normally incident SV wave

scaling factor of the

case Figure numbers differential cross-section
(a) Figs. 103, 104 1.0
(b) ~ Figs. 109, 110 0.28
(c) Figs. 115, 116 0.53
(d) Figs. 121, 122 1.0
(e) Figs. 127, 128 1.4
f) Figs. 133, 134 3.0
(g) Figs. 139, 140 3.4
(h) Figs. 145, 146 6.4

Table 8 : Scaling factors of the differential cross-section plots for the cases

(a) — (h) and a normally incident SV wave
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3.5 Comparison between numerical predictions and measurements

In order to check the calculations of the numerical model a range of
measurements were carried out. The available equipment was an ultrasound
pulser-receiver “Panametrics Pulser Receiver Model 5052 PR”, two
compressional wave transducers with a centre frequency of 1 MHz, one shear
wave transducer with a centre frequency of 2 MHz and normal beam direction
and a wide band Rayleigh wave transducer with a centre frequency of 1 MHz.
Two aluminium blocks were designed in order to allow the measurement of the
field scattered from a hemispherical indentation in the plane rectangular side
of each block. The shape of the blocks can be seen in Fig. 147. All facetes
have the same distance from the hemisphere and were machined in order to
create a flat surface for the transducers at multiples of 15 degrees. The
experimental configuration is shown in Fig. 148. A compressional or shear
wave is normally incident on to the surface indentation (1), the scattered
body waves are measured every 15 degrees along the facetes (2), and the
Rayleigh waves can be measured on the plane surface (3) in which the
hemispherical indentation (4) was machined. Both aluminium blocks were 100.0
mm in depth and the distance of each facet from the indentation was 142.5
mm. The indentation machined in the first block had a diameter of 1.6 mm,

the indentation in the second block was 3.2 mm in diameter.

Page 179



100 mm

- e —

142.5 mm

Fig. 147 : Shape and dimensions of the aluminium test block in top view
and side view. The diameter of the hemispherical indentation is

d=32mmord =1.6 mm

Page 180



Pulser/Receiver Digital

-g—
¥—  Ppanametrics —®—  (Oscilloscope
———1 5052 PR

(3)

(ﬂj

Test Block

Fig. 148 : Experimental configuration for the measurement of the ultrasonic
field scattered from a hemispherical surface indentation in an

aluminium block
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The compressional and shear wavelength at 1 MHz and 2 MHz are :

1 MHz : \p = 6.398 mm, A\s = 3.122 mm

I

2 MHz : \p = 3.199 mm, A\s = 1.561 mm

and therefore the diameter to incident wavelength ratios were

a) incident compressional wave at 1 MHz, A\, = 6.398 mm

block 1 block 2
diameter 2a 1.575 mm 3.175 mm
2a 0.25 0.5

Mo

b) incident shear wave at 2 MHz, As = 1.561 mm

block 1 block 2
diameter 2a 1.575 mm 3.175 mm
28 1.0 2.0

s

The far-field displacements calculated with the numerical method at the
appropriate distance (142.5 mm) for these diameter to wavelength ratios are
shown on the next three pages. The polar plots are normalised for each case

and the maximum values relate to each other as follows :

a) normally incident compressional wave

2a

Ao Figure numbers scaling factor of the
far-field displacements

0.25 Fig. 149 1.0

0.5 Fig. 150 7.4
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b) normally incident compressional wave

2a

P Figure numbers scaling factor of the
far-field displacements

1.0 Figs. 151, 152 1.0

2.0 Figs. 153, 154 7.8

The numerical results indicate that the scattering process is stronger for the
larger indentation, and that for all four cases the scattered field is largely
confined to a layer close to the plane surface with a small amount of energy
scattered into the bulk material. For a normally incident compressional wave
the scattered field is axisymmetric and the presence of a compressional as
well as a shear wave component oriented along the surface gives rise to an
axisymmetric Rayleigh wave propagating away from the hemispherical
indentation (Figs. 149, 150). For a normally incident shear wave the scattered
field is no longer axisymmetric (see chapter 2.2.4). The displacement
components in the plane of polarisation of the incident wave (here chosen as
the x—z plane, Figs. 151, 153)) show an azimuth dependence of cos ¢, i.e.
have their maxima in the x—z plane and vanish in the y—z plane. The
displacement components in the plane perpendicular to the polarisation (here
the y —z plane, Figs. 152, 154) show an azimuth dependence of sin ¢, i.e. they
have their maxima in the y—z plane and vanish in the x—z plane. The
numerical results for a normally incident shear wave indicate that scattered
field in the plane of polarisation (x—z plane) consists of a compressional and
a shear wave component along the surface, therefore giving rise to a
Rayleigh wave propagating in the direction of polarisation. The scattered
field in the plane perpendicular to the plane of polarisation has a shear wave

component only, and therefore no Rayleigh wave should be observed in this
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plane. The experiments carried out support these results. The measurement
of the amplitude of the Rayleigh wave component at a constant radius around
the hemispherical indentation for angles of multiples of 22.5 degrees is
presented in Figs. 155 — 158. The azimuth dependence of the Rayleigh wave
component has the predicted shape. For a normally incident compressional
wave the Rayleigh amplitude is virtually independent from the azimuth angle
¢ (Figs. 155, 156), for a normally incident shear wave the Rayleigh amplitude
has a cos ¢ dependence with its maxima in the plane of polarisation and
different polarity for each of the two lobes (Figs. 157, 158). The numerical
calculations predict that the amplitude of the surface wave components fer
an incident shear wave will be about 8 times larger for the wavefield
scattered from the large hemisphere than the amplitudes of the wavefield
scattered from the small hemisphere, and the ratio is even larger for the case
of an incident compressional wave. The experimental results show that the
Rayleigh wave amplitudes for an incident P wave as well as for an incident
SV wave are approximately twice as large for the large surface indentation
compared to the Rayleigh waves generated by the small hemisphere. This
discrepancy between theory and experiment can be explained by the fact that
the numerical model does not explicitly include Rayleigh waves in the
expansion of the scattered field, and becomes inaccurate in a qualitative
sense when the scattered field consists predominantly of surface wave

components (see also Chapter 4 and Appendix D).
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tSD°

15 ¢ Rayleigh wave amplitude as function of the azimuth angle 0 for a
compressional wave with a frequency of | MHz normally incident on
to a small hemispherical surface indentation with a diameter of

1.6 mm. The original scale was 10 mm = 0,001 V.
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Fig. 156 : Rayleigh wave amplitude as function of the azimuth angle <« for a

compressional wave with a frequency of 1 MHz normally incident on

to a large hemispherical surface indentation with a diameter of

3.2 mm., The original scale was 10 mm = 0,02 V.,
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157

shear wave with a
small hemispherical

The original scale

W

Ifo’

S Rayleigh wave amplitude as

function of

frequency of 2 MH:z

surface

as 10 mm

indentation

= 001 v,
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we

158 + Rayleigh wave amplitade as function of the azimuth angle < for a
shear wave with a frequency of 2 MHz normally incident on to a
large hemispherical surface indentation with a diameter of 3.2 mm.

The original scale was 10 mm = 0.02 V.,
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The measurement of body wave components along the facets of the
aluminium blocks did not give any information on the field scattered from the
surface indentation. The following reasons are believed to be the explanation
for this :

a) The beam width of the transducers were very wide and any incident wave
was reflected by the plane surface into a range of angles up to 45 degrees
away from the normal, therefore effectively drowning any signal due to the
scatterer. Due to the strong signal reflected back normally (in the direction
of incidence) from the plane surface it was also not possible to seperate out
any component scattered back normally from the indentation. This can be
seen in Figs. 159 — 162, where the rf traces of the pulses reflected back
normally for a normally incident compressional and shear wave are shown
together with their spectra. For angles beyond 45 degrees the signal to noise
ratio of the measured signal was very poor and it was not possible to
identify any scattered wave components in the rf traces.

b) The frequency spectrum of the compressional wave transducer has a
minimum at 2 MHz (the centre frequency of the shear wave transducer), and
the frequency component of the shear wave spectrum is 10 dB down at 1
MHz (the centre frequency of the compre‘éiona] wave transducer) compared to
its maximum at 2 MHz (see Figs. 160, 162). The overlap of the two spectra
therefore does not seem to be sufficient for an effective measurement of
compressional wave components due to an incident shear wave and vice versa.
c) The numerical predictions indicate that for three of the four investigated
cases the surface components are much stronger than the body wave
components. The fourth case, a compressional wave incident on to the small
hemisphere (with a diameter to wavelength ratio of 2a _ 0.25) generates a

Mo

shear wave component with a maximum at approximately 80 degrees. This
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component can be thought of as an approximation of the shear component of
a Rayleigh surface wave.

d) A comparison of experimental and theoretical results has to take account
of the fact that the computations were carried out using a single frequency
model whereas the measurements employed ultrasound pulses containing a
range of frequencies. The spectra of the compressional and shear wave
transducers show strong maxima at the centre frequency of each transducer
and have a narrow bandwidth (Figs. 160, 162). This allows a comparison of
experimental and theoretical results as long as the calculations are carried
out for frequency components near the centre frequency of the transducers.
This was done in this study, where the results for an incident compressional
wave were calculated for a frequency component at 1MHz (Figs. 149, 150) and
the plots for an incident shear wave were obtained for a frequency

component of 2 MHz (Figs. 151 — 154).
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Fig. 159 : Rf trace of a compressional wave pulse reflected back normally
from a plane surface with a hemispherical surface indentation of
3.2 mm diameter for a normally incident compressional wave pulse

with a centre frequency of 1 MHz
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Fig. 160 : Frequency spectrum of a compressional wave pulse reflected
back normally from a plane surface with a hemispherical surface
indentation of 3.2 mm diameter for a normally incident

compressional wave pulse with a centre frequency of 1 MHz
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diameter for a normally incident shear wave pulse with a centre

frequency of 2 MHz
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Fig. 162 : Frequency spectrum of a shear wave pulse reflected back normally
from a plane surface with a hemispherical surface indentation of
3.2 mm diameter for a normally incident shear wave pulse with a

centre frequency of 2 MHz
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4 Discussion and Conclusion

4.1 Discussion of the numerical and experimental results

This section is divided into three parts. The first part looks into the
performance of the numerical method and comments on its advantages and
limitations. The second part discusses the far-field results together with the
experimental results and its implications for the detection of pitting

corrosion. The third part looks at the surface movements in the near fieid.

4.1.1 Performance of the numerical method presented in this study

The indirect boundary method presented in this study is a powerful
tool for the numerical simulation of elastic wave scattering from
axisymmetric surface indentations in three dimensions. It requires far less
computer memory and cpu time than three-dimensional finite element or finite
difference methods, and it is possible to use mini computers or work stations
in order to obtain simulation results. An extension to non-axisymmetric
surface indentations is straightforward, but it is then no longer possible to
decompose the three-dimensional problem into two dimensional sub-problems,
and the computation time and storage requirements will rise by an order of

magnitude.

The main drawback of this method is that it is based on time harmonic
wave motion and provides only single frequency results. In order to obtain
results for time dependent (pulsed) incident wave fields the simulation
program could be employed several times for different diameter to wavelength

ratios with subsequent Fourier synthesis in the time domain.
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There are two limitations to the method presented here that need
further attention :
a) The method is applicable to incident P and SH waves at all angles, but is,
for the time being, restricted to SV waves below the critical angle. This is
due to the chosen expansion of the incident wavefield. An extension of the
numerical method to SV waves beyond the critical angle is possible by using
an expansion given in [9].
b) The scattered field is expanded in terms of a finite number of spherical
vector functions, which have a far-field dependence of xl' This expansion is
no longer accurate when the far-field contains a significant surface wave
component, which has a far-field dependence of :ll=r The far-field results for
this case will be qualitatively accurate, but do no longer give a quantitative
analysis of the different contributions to the far field due to Rayleigh
waves, compressional waves and shear waves. This problem can be overcome
by including surface wave terms explicitely in the expansion of the scattered

field (see also Appendix D).

Remedies to the problems outlined above together with further
possible improvements and extensions of the numerical method will be

discussed in chapter 4.2.
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4.1.2 Discussion of the far-field results and measurements

The far-field results obtained by the numerical model together with
the experimental results presented in chapter 3.5 give a good understanding
into the difficulties of detecting pitting corrosion in early stages. From the
plots in section 3.4 it can be seen that the depth of the indentation has some
influence on the scattering behaviour. Shallow indentations with a depth
smaller than one incident wavelength generate body waves scattered back
approximately into the direction of incidence (e.g. Figs. 71, 72, 119, 120),
whereas hemispherical indentations with a diameter of the order of one
incident wavelength generate strong surface wave components with very little
energy scattered back into the bulk material (Figs. 95, 96, 143, 144). It seems
that hemispherical surface features give strong body to Rayleigh wave mode

conversion.

Due to the normalisation of surface diameter and depth of the
indentation with respect to the incident waverlength the scattering of shear
waves does not appear to be as strong as the scattering of compressional
waves (in aluminium A\p = 2 \s), but it can generally be observed that the
amplitudes of the scattered wave components increase with the size of the

scatterer (see Tables 5 — 8).

By comparing the far-field plots of two different cross-sectional
shapes (a segment of a hemisphere and a semi-ellipsoid) with the same surface
diameter and depth it can be seen that the directional pattern of the
scattered far-field displacements and energy have not changed drastically
(e.g. Figs. 71, 72 compared to Figs. 77, 78). It can, however, be observed that

amplitudes of the scattered field have increased for the semi-ellipsoidal
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indentation with sharp 90 degrees corners between the obstacle and the plane
surface compared to the indentation with the shape of a segment of a

hemisphere, where the corners are not as sharp (Tables 5 — 8).

For very shallow indentations (with a depth of an eighth of an
incident wavelength) the sharpness of the the corners is reflected in the
least squares residual of the numerical matching procedure, which is much
higher for the semi-ellipsoid (Figs. 63 — 68 for an incident P wave and Figs.
111 — 116 for an incident SV wave) than for the segment of a hemisphere
(Figs. 57 — 62 for an incident P wave and Figs. 105 — 110 For an incident
SV wave). This implies a loss in accuracy for shallow surface indentations
with sharp corners and is to be expected due to the choice of an expansion
of the scattered field into spherical functions which are unsuitable for this
geometry. For increasing depth of the indentations these differences in
accuracy disappear as the angles between the indentation and the plane

surface approach 90 degrees.

The directional patterns of shallow surface obstacles change quite
smoothly to the directional pattern of a hemisphere when the depth of the
shallow indentations is increased and the shape of the indentation approaches
a hemisphere. This can be seen for the case of a compressional wave incident
at 60 degrees in Figs. 59, 60 (with $ = 0.25), Figs. 71, 72 (with § = 0.5), Figs.
83, 84 (with ¢ = 0.75) and Figs. 95, 96 (hemisphere with 3 = 1.0). The same
transition can be observed for the case of a normally incident shear wave in
Figs. 107, 108 (with § = 0.25), Figs. 119, 120 (with § = 0.5), Figs. 131, 132 (with
g = (.75) and Figs. 143, 144 (hemisphere with g = 1.0). The energy scattered
into body waves decreases, whereas the energy travelling along the plane

surface as Rayleigh waves increases.
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An interesting observation is that for most cases the scattered shear
wave components dominate the scattered field not only for an incident shear
wave but also for an incident compressional wave. This is especially noticable
for a compressional wave non-normally incident on to shallow indentations,
where a strong shear wave component can be observed in the plane
perpendicular to the plane of the incident wave vector (Figs. 60 and 72),
which also resuls in strong surface movements in the near field (Figs. 58 and
70). This is a three-dimensional phenomenon and can not be deduced from
two-dimensional simulations of elastic waves scattered from canyons. It can
not be observed for shear waves non-normally incident on to shallow surface

indentations (Figs. 231 — 242 in Appendix E).

The experimental results presented in chapter 3.5 support the findings
of the numerical simulations. For compressional and shear waves normally
incident on hemispherical surface indentations strong Rayleigh waves are
generated. These Rayleigh wave were measured and they showed the
predicted azimuth dependence. Body waves reflected back into the bulk

material could not be observed.

These findings lead to the following suggestions for the development
of new experimental procedures for use in detecting pitting corrosion on the
remote side of aluminium plates :

— The frequency of the incident wave should be chosen so that the
wavelength is smaller than the depth of the expected corrosion pits. This
will avoid the predominant scattering into Rayleigh waves.

— Shear wave transducers should be used rather than compressional wave
transducers. As can be seen from the numerical simulations, the shear

wave components dominate the scattered field, and it shoud be easier to
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measure them rather than measuring the scattered compressional wave
components.

The ultrasonic beam should be non-normally incident at angles around 45
degrees on to the corroded surface, see Fig. 163. Successful applications
of this technique have been reported in [6]. The use of pitch-catch
tandem configurations can avoid that the signal generated by the
corrosion pits is drowned by the ultrasound pulse reflected from the
uncorroded parts of the surface, see Fig. 164.

The detection of a hemispherical pit with a diameter of 1 mm in an
aluminium plate will require a shear wavelength below 0.5mm, therefore

frequencies above 6 MHz should be used.
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tandem configuration

Page 204



4.1.3 Discussion of the surface displacements in the near-field

It can be seen that the strength of the surface movements increases
with increasing size of the indentation (e.g. Figs. 51, 52 compared to Figs. 93,
94). For normally incident shear waves there are significant vertical surface
movements near the rim of the indentation (e.g. Figs. 99, 129) if the depth of
the indentation approaches the order of an incident wa\}elength. For normally
incident compressional waves strong horizontal surface movements can be
observed (Figs. 165, 166 in Appendix E, see also [9]). There is some influence
of the rim of the indentation on the surface mocvements, which results in a
less smooth behaviour of the displacements near the rim and a slight increase
of the surface movements for the indentations with sharp 90 degrees corners
(semi-ellipsoids, Figs. 75, 76, 87, 88)) compared to the indentations that have

corners below 90 degrees (segments of hemispheres, Figs. 69, 70, 81, 82).

An interesting observation 1is that for non-normally incident
compressional waves on to shallow surface indentations there is a resonance
phenome;non of the horizontal displacements in the plane perpendicular to the
plane of the incident wave vector, resulting in a standing wave pattern (Figs.
58, 70, 82). The surface movemé’ts are especially strong for a surface
indentation with a surface diameter of one incident wavelength and a depth of
a quarter of an incident wavelength (Fig. 70), although the resonances can
also be observed for other shallow indentations. The resonances diminish with
increasing depth of the indentation and are no longer significant for the case
of a hemispherical surface obstacle (Fig. 94). The phenomenon seems to be
independent of the sharpness of the rim, since it can be observed for
indentations with the shape of a segment of a hemisphere (e.g. Fig. 70) as

well as for indentations shaped as a semi-ellipsoid (e.g. Fig. 76). The strong
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surface movements result in strong shear wave components in the far-field
for that plane (Fig. 72). The resonance phenomenon is absent for the case of
non-normally incident shear waves incident on to shallow indentations, see

Fig. 232 in Appendix E.
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4.2 Suggested further improvements to the numerical simulation model

As already indicated in section 4.1.1, there are several possiblities for

improving and extending the work presented here by :

a) investigating the scattering of SH waves incident at all angles on to
axisymmetric surface indentations. Although implemented in the existing

computer program, this feature has so far not been exploited.

b) examining the influence of smooth corners on the scattering process

This can easily be achieved by altering the sampling path so as to

create smooth corners between the surface indentation and the plane surface.

c) taking account of incident SV waves beyond the critical angle and incident

Rayleigh waves

This can be achieved by following the strategy outlined in [9). The
incident and reflected waves in the unperturbed half-space are expanded in
cylindrical coordinates with subsequent coordinate transformation rather than
expanded directly in spherical coordinates. Surface waves with field
components exponentially decaying away from the plane surface are then
easily described, and a Fourier decomposition of incident, reflected and
scattered field components with respect to the azimuth component ¢ is still

possible.
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d) taking account of an outwardly propagating Rayleigh wave in the scattered

field expansion

This can be achieved by including surface wave terms explicitly (one
for each azimuth component) in the expansion used to describe the scattered
field. It would then be possible to get quantitatively accurate values for the

scattered far-field and the scattering cross-section, because surface wave

1
Nr
).

terms (with a far-field dependence ~ ) are no longer approximated by body

waves (with a far-field dependence ~

-

e) taking account of incident wave fields other than plane waves (e.g. point

sources below the surface)

This can be achieved by either superimposing a set of incident plane
waves or by expanding the incident wave field appropriately. It is, for
example, possible to expand a point source at a given location in terms of

spherical vector functions centered at another location, see [108].

f) taking account of incident wave fields with a given time dependence

This can be achieved by implementing the computer programs on the
Cray supercomputer available at the University of London Computer Centre.
The programs will then require very little computing time, and for a given
geometry several runs for different frequencies with subsequent Fourier

synthesis in the time domain are possible.
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g) taking account of irregularly shaped axisymmetric surface indentations

(e.g. flat bottomed hole)

This can be achieved by using a hybrid finite element / boundary
method, see [86, 89]. The scattering is split into two regions : an inner region,
bounded by a hemisphere, and an outer region. The (multiple) scattering
inside the inner region can easily be modelled with finite elements. The
radiation condition is fulfilled by an expansion of the wave field into
spherical vector functions in the outer region, and continuity of

displacements and stresses combines the two regions.

h) comparing numerically obtained near-field results for shallow surface

indentations with pertubation theory

Shallow surface indentations with the shape of segments of a
hemisphere can be considered as small pertubations of an elastic half-space,
as long as the depth of the indentation is much smaller than the incident
wavelength. The surface displacements in the vicinity of such a shallow
indentation could then be compared to diplacement results obtained with

perturbation theory [72].

i) taking account of non-axisymmetric surface indentations

At the time of completion of this work a study dealing with elastic
wave scattering from non-axisymmetric surface indentations was published in
{109]. The study employs the wave function expansion approach that is also
presented here, without restricting the geometry to axisymmetric features,

where a decomposition of the tree-dimensional scattering problem into two-
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dimensional sub-problems is no longer possible. The computer program written
in the course of this work can, at the expense of computing time and memory
capacity, be extended to non-axisymmetric features in a straighforward

manner.
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Appendix A

The potentials ¢, ¥ and X in the appendices A and B are assumed to be given
by the expansions (A.6) — (A.8). Equations (A.5) and (A.10) give the
contribution of the individual potential components ¢@n,n, ¥n.r and X=.» to the
displacement and stress components, and equations (A.11) and (B.1) — (B.3) are
written down for the individual components of the potentials ©n.»n, ¥n.» and
Xm,». The indices (m,n) in equations (A.5), (A.10), (A.11) and (B.1) — (B.3) were

omitted and are implied.



Displacement and stress components in spherical coordinates

The displacement vector G that satisfies the time harmonic elastic
wave equation in spherical coordinates can be written as superposition of the

spherical vector wave functions f., M and ﬁ, see [41, 94]

=L (kpr, 00 +Mksr 6 ¢) + N (ks 1, 6, ¢) (A1)
where
L (kp, r, 8, ¢) = grad © (kp, 1, 0, ¢) (A.2a)
V% 4+ k3 =0 (A.2b)
M (ks, 1, 6, ) = curl (r ¥ (ks, 1, 6, 8) &) (A.3a)
= grad (r ¥} X ér (A.3b)
V% +kiyp =0 (A.3c)
N (ks, T, 0, ¢) = k-l—s curl curl (r ¥ (ks, 1, 6, @) &) (A.4a)
= k-l-s grad 3(812() + ks X ér (A.4b)
VX +kEx =0 (A.4c)
with

é- : unit vector in radial direction

kp : compressional wave number

ks : shear wave number

The components of the displacement vector are therefore dependent on the

scalar potentials ¢, ¥ and x [41]

nin + 1)

_ o
ur_8r+ ks

X (A.5a)
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_19p 1 ary) 1 34ry)
YT fP0 T rsind 0 | Ker 200r
w, =1 % 10y 1 d%(rx)
? r sin 0 9¢ r 30 ks r sin 6 3¢ or

(A.5b)

(A.5¢)

The scalar potentials, being solutions to the scalar wave equation in spherical

coordinates, can be written down explicitly as a series of spherical Bessel

functions, Legendre polynomials and trigonometric functions, see [41, 94 — 96]

@ (kp, 1, 6, ¢) = i i i 8g,mn VYo,mn (Kp, T, 6, @)
n=0 o=e

=0

3

Ms
M=
Mo

Y (ks, r, 0, ¢) = ba,m,n Vcr,m,n (ks, T, 9, ¢)

[
o
3

[
o
qQ

i
®

n

Mo

©o n
X ks, 1, 6, ¢) = Z 2 Cco,mn Vo,mn (ksy T, 0, &)
n=0 =0 o

m=0

[\

Vemnn (k, T, 8, ¢) = za(kr) PR(cos 0) cos(mg)

Vomnn (k, T, 8, ) = zn(kr) PZ(cos 8) sin(mg)

with the following meaning for the subscripts

0’ : index for the azimuth dependence

e’ : even azimuth dependence

o’ : odd azimuth dependence

m’ : order of solution in the azimuth direction

'n’ : order of solution in the colatitude direction

Z» is a spherical Bessel function of the first, second or third kind

and of order n

P? is the associated Legendre Polynomial of order (n, m).
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The stress components in spherical can also be expressed as functions

of the scalar potentials ¢, ¥ and x

2 2
Orr = —NKE @ + 2 %;‘-f +22 aa(r’}) + K2 x] (A.10a)
- — K2 24 _ 2 W ., 8%
Toe ANkp 0 + =% + 892 p—— cos 0 36 sin 0 50 59
2u 3¥rx)
1 A.10b
K. 0 or +n(n + 1) X] ( )
2 2u| 1 d% cos @ 9p
O’¢¢ )\ kp KD + rz sm29 a¢ + Sln 9 89]
+ 24 |cos 8 %% %Y + 2U
r sin 0 |sin 0 3¢ 00 d¢ ks r? sin’0
3 2
X [:2:;) + n(n + 1) sin®@ X + cos 0 sin 6 8 (raxe)] (A.10¢)
o0 + 2| B0 B0l _u %
re 2 "3ro0 36| rsin6lde " 5roe
24 ax _ 9%rx) _ (ker) 8X
T [" (m+ D5 —%re0 ~ 2 (A.10d)
- 2u ¥ _dp|  ujaw _ 3%
e T T Zsin 6 [r or d¢ 3¢] tr [39 T 3rag
_2u X _ (ks r)® 3X _ 3%rx)
ke 12 sin @ {" (n + 13 5 7 86  ar 8¢ (A.10e)
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2
oe¢=+l‘—[sinei¢——cose%’;]

2 2
K [cos @ sin 0 8—w — sin?0 CRY oY

r sin’g 00 207 T 3¢
2ﬂ . 83x 82X
ks r° sin’0 [r sin 0 S0 06 50 5r0s (A.10f)

These equations are derived from equations found in [41]. They have been

expanded using the relations (A.2b), (A.3b) and (A.4c) as well as

% (rx)
ar?

rvViyx = &-rj——l) X (A.11)

which can be found in [96].
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Appendix B

Numerical treatment of the displacement and stress components

The implementation of equations (A.5) and (A.10) into a computer
program requires the elimination of any derivatives occurring. This can be
done in a very elegant manner by wusing some properties of the scalar
potentials and its components, largely resulting from equations (A.2b), (A.3b),

(Ad4c) and (A.9). The the following set of equations was compiled from

[41, 96].

3% _ 1 3p

-é-!—‘-2-=r—2[—2r§—k§,r2go+n(n+l)<p (B.1)

% _  cos § 9 m?

-567 —m—a-g—n(n+l)<p+sin29(p (B'z)
2

—AK2 @ = i—fj [— teorl (kpr)Z] © (B.3)

az_’a‘g.(ﬁ - % za(kr) — k zn+l(kr) (B.4)

a(rzanikr)) =(n + 1) za(kr) — k r z,;,(kr) (B.5)

aP,”,‘(ggs 0 _ Sil‘ll 5 \— (n + m) P7_,(cos 8) + n cos 8 Pr(cos 9)] (B.6a)

r

oPr(cos 0) _ _1
o0 sin 6

~— (n + 1) cos § PR(cos 8) + (n — m + 1) P37, (cos 9)]

\

(B.6b)
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The incorporation of (B.1) — (B.5) and (B.6b) into (A.5) and (A.10) leads
to a set of equations that is easy to implement on a computer. For the sake
of transparency the contribution from each potential to the displacement and
stress components is listed separately. A corresponding set of equations is
obtained when instead of recurrence relation (B.6b) the alternative equation
(B.6a) is used. Such a set can be found in [41, 95]. However, for computational
reasons it was prefered to employ equation (B.6b). The azimuth dependence of
the displacement and stress components is given at the end of each component
in vector component form, the upper part denotes even azimuth dependence
of the corresponding scalar potential, the lower part denotes odd azimuth

dependence.

ur due to © (= L) :

n cos(mg)
Ur,p,m,n =- F zn(kpr) - kp Zn+1(kpr) P;’:(COS 9) . (B.7a)
sin(mg)
ur due to ¥ (= M) :
Ur p,mn = 0 (B.7b)
ur due to x (= N;) :
R+ 1) Pieos 0) | S (B.7¢)
r,x,mn = ——)——— Zna\Ksl n(COS .
Hrx ks r sin(me) ¢
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uG due to © (= Le) M

_ Zn(kpr)
Ye.pmm = sin @

X cos(me) (B.8a)
sin(m¢)

ue due to ¥ (= M,)

[— (n + 1) cos 8 PR(cos 8) + (n — m + 1) P, (cos 6)

— sin(mg)
- 0 4 (B.8b)
Ug,,m,n sin 0 Zn(ksr) Pn(COS 6) [ Cos(m¢) “
u, due to X (= Ny) :
1
Ug,x,m,n = Sll!.l 0 [% Zn(ksr) — Zn+1(ksr)]
X [— (n 4+ 1) cos 8 Pr(cos 8) + (n — m + 1) P7, (cos @)
cos(me) (B.8c)
sin(mg)
uy due to @ (= L) :
— sin(mg)
- m m (B.9a)
Ugomn = Toin B zn(kpr) PR(cos 0) [ cos(me) ] a

uy due to ¥ (= M) :

Z‘n(ksr)
sin 0

X cos(mé) (B.9b)
sin(m¢)

=

Ug . m,n [-— (n + 1) cos 0 Pr(cos 6) + (n — m + 1) P, (cos 6)
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uy due to X (= Ny) :

sin(meg)

_ m [n+1 n — sin(mg)
Yy xmn = Sin B [—k—s—r—— zn(ksr) — zn+l(ksr)] Pr(cos 0) [ cos(me) (B.9¢)
orr due to ¢ :
( 2
Orr.emn = i'—“: [n2 — n — @] Zn(kpl‘) -+ 2 kp r zn+1(kpr)] P#(COS 9)
Pcos(m¢)
X sin(me) (B.10a)
orr due to ¥ :
Orrp,mn = 0 (B.10b)
orr due to x :
Orrx,mn = —2ki: 'ﬂr_j_'__l_) [(n — 1) za(kst) — ks T Zp44(ksr)| PR(cos 0)
« cos(mg)
sin(me) (B-10e)
Oge due to ¢ :
2
Te6,p0,m,n = i_l; [[[— n2 - Q(Sz—r)“ + (kpr)Z] Zn(kpr) - kp r Zn+1(kpr)] ZL(COS 9)
1 2 m
+ v [[m +m + 1) cos29] Pr(cos 6)
cos(mg)
— [n —m 4 1] cos 8 P, (cos 9)] zn(kpr)] [ ] (B.11a)
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Oge due to ¥ :

Co0,pmn = r2:inrge Zn(ksr) [— (n + 2) cos 0 Pi(cos 8)
— sin(mg)
+ (n — m 4+ 1) P, (cos 6)] [ ] (B.11b)
cos(me)

O due to X :
To6,x,mn = % [— ["2 + n] [n Zn(ksr) — ks 1 zn+1(ksr)] PZ(cos 0)

+ L [(n + 1) Za(kst) — ke T z,,.H(ksr)]

sin
X [[m2 + (4 1) cos20] P7(cos 0)
cos(mg)
— (h — m 4+ 1) cos 8 P, ,(cos 9)]] [ _ } (B.11c)
sin(me)
g4 due to @ :
2
Tgs,0,mn = i_u [[[ n — (ksTr) + (kpr)z] Zn(kpr) — kp r Zn+1(kpr)] 1’?(008 9)
1 I 2 m
+ % [ [m 4+ (n + 1) cos 9] Pr(cos 0)
cos(me)
+ [n —m + 1] cos 8 Py, (cos 0)| zn(kpr) ) (B.12a)
sin(m¢)
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O44 due to ¥ :

2um
r sin%0

— sin(mg)
X [ :| (B.12b)
cos(me)

U¢¢ due to X :

Zn(ksr) [(n + 2) cos 8 PR(cos ) — (n — m + 1) P, (cos 6)

U

T gs,x,mn = ke 2 sinZ6
8

[n (n + 1) sin@ PZ(cos ) za(ksr)

l
+ {(n 4+ 1) zaksr) — ke 1 zn+1(ksr)]
L

(
X |- [(n + 1) cos?0 + m2] Pr(cos 6)

[ 1] . ) cos(mg) (B.120)
4+ in —m + cos n+1{cos sin(mé) J2c
O, due to ¢ :
21
Treemn = F 0 [(n — 1) Za(kpr) — kp 1 znﬂ(kpr)]
X [—— (n + 1) cos 8 PR(cos 8) + (n — m + 1) Pg,(cos 9)]
cos(mg)
X [ } (B.13a)
sin(m¢)

Page 220



o, due to ¥ :

Oro,p,mn = 1-_%1—:11@ [(n — 1) za(kst) — ks 1 Z,44(ksT)| PR(coS 0)
|~ sin(mg)
cos(me) (B.130b)

0.0 due to X :

U ksr)?
Tro,x,mn = ks_rz—s_m—e an -1 — (2_1')] Zalksr) 4+ ks r Zn+1(ksr)]

,

X |—(n + 1) cos § PR(cos ) + (n — m + 1) Pp,,(cos 6)]

. —cos(md’)
sin(mo) (B.13c)
L
o, due to @ :
2 m
Crppmn = rz_l;nm—e {(n — 1) za(kpr) — kp r z,,,(kpr)| P7(cos 8)
y — sin(mg) 5
cos(me) (B.14a)
o,y due to ¥ :
0r¢,'p,m,n = r S/:n 9 [[(n - 1) Zn(ksr) - ks r Zn+1(ksr)]
X [(n + 1) cos 8 Pr(cos 6) — (n — m + 1) P7, (cos 9)]
v cos(mg) 5
sin(mg) (B.14b)
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0,4 due to X :

24 m ksr)?
Org.xmn = m [[n2 —1 = 2r) ] Zn(kst) + ks r z, . (ksr)
— sin(me)
X Pr(cos 6) (B.14c)
cos(mg)

Ogs due to © :

Cogommn = r?‘;ﬁ) [— (n 4+ 2) cos 6 Prl(cos 8) + (n — m + 1) Py, (cos )
— sin(mg)
X za(kpr) cos(me) (B.15a)
Ogs due to ¥ :
2 2 . m
Tog,p,mn = : si‘;:ze [[“ s gn + 2 sind —n —1 — m2] Pr(cos 0)
cos(mg)
4+ (n — m + 1) cos 6 Py, (cos 9)] Za(ksr) [ ) ] (B.15b)
sin(me)
Cgs due to X :
Cog,x,m,n = ks__i‘;—::n% [(n + 1) za(ker) — ks 1 Zn+1(k8r)]
X |— (n + 2) cos 6 Pr(cos 8) + (n — m + 1) P7, (cos 9)]
[ sin(mg)
X cos(me) (B.15¢)
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Due to the occurrence of the terms sin™'@ and sin~?0 equations
(B.7) — (B.15) are, in the numerical sense, singular at 8 = 0 and *. They are,
however, not singular in the analytical sense, since they describe physical
phenomena that are continuous in space. Also, the singular terms have largely
appeared due to the elimination of dertivatives of Legendre polynomials, see
(B.6b). It can be shown that, if propper limiting procedures are applied,
equations (B.7) — (B.15) are finite at 8 = 0, 7. This limiting process has been
applied to the displacement components (B.7) — (B.9) in order to allow for
continuous displacement everywhere. The stress components (B.10) — (B.15)
where not modified since they do not need to be computed at the numerical
singularity. For the limiting procedure some properties of the Legendre

polynomials have to be employed. The following equations were used, they

can be found in [96].

m Pé."i(nccz)s 0 _ °°§‘ 8 i(n —m + 1) (n + m) P Xcos 0) + P2 (cos 6)]
+ m sin 8 Px(cos 0) (B.16)
W - % [(n —m 4+ 1) (n + m) P?! (cos 8) — PF*! (cos e)] (B.17)

0 m 0

Pr(cos 0)|,_, = { ) - ?_é 0 (B.18a)
0 m =< 0

PR(cos 0)],__ = { (—1)" C— 0 (B.18b)
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With equations (B.18) it follows that (B.16) is zero at 6 = 0, ¢ for all m apart

fromm =1
Pi(cos §)) _n(n + 1)
sin 0 |,_, 2

Pr(cos 0))  _ (_ qy» n(n £ 1)

sin 0 |,_,

2

Also equation (B.17) is non-zero only for m = 1

dPx(cos 0)
20

6=0

dPx(cos )
%0

o=x

___n(n+1)

2

= (— nﬂ(ﬂ‘l"l)
(—1) ——

(B.19a)

(B.19b)

(B.20a)

(B.20b)

The contribution of the scalar potentials to the displacement components at

0 = 0 can therefore be written as follows

ur due to @ :

contribution for m = 0 only

Ur o,0,n = % zn(kpr) - Kp Zn41(Kpr)

ur due to ¥ :

Urpmn = 0
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ur due to X :

contribution for m = 0 only

u,.,x,o,n = ﬂ_(l‘;(:‘r_‘—_l) Zn(ksr)

u, due to ¢ :

contribution for m = 1 only

n (n + 1) za(kpr) |COS @

Ugp1,n =

< r sin ¢
ug due to P :
contribution for m = 1 only
a -n( +1) Zn(ksr) — sin ¢
Spilim 2 e cos ¢
ug due to X :
contribution for m = 1 only
ntn +n +1 cos ¢
Ug,x,1,n = D) Ker Zna(ksr) — z,, (ksr) sin ¢

uy due to ¢ :

contribution for m = 1 only

_n(n 4+ 1) za(kpr) [~ sin ¢
Hswin 2 r cos ¢
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u, due to ¥ :
contributon for m = 1 only
n(n + 1) cos ¢
Uy »,1,n — —'_2‘—— Zn(kst) sin ¢ (B.23b)
uy due to X :
contribution for m = 1 only
nin +1[n +1 — sin ¢

Uy, x,1,n = ) Ker Zn(ksr) — Zn_H(ksI') cos ¢ (B.23c)

The component u- is independent of ¢ and vanishes for scalar potentials with
an odd azimuth dependence. The displacement components at & = =« are
obtained by multiplying (B.21) — (B.23) with the factor (— 1)*, see equations

(B.18) — (B.20).
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Appendix C

Expansion of a vector plane wave using spherical vector functions

It is possible to represent a vector plane wave as an infinite series of
the spherical vector wave functions f,, M and N. In order to write down this
expansion in a compact form three new vector functions have to be
introduced, the so-called spherical vector harmonics [94, 110]. The variables
o and B denote colatitude and azimuth, respectively. As in Appendix B, the
even and odd azimuth dependence is given by the components in square

brackets, upper part meaning even and lower part meaning odd 8 dependence.

“ cos(mB) |
Prala, B) = Pr(cos o) | ér (C.1)
sin(mp)
. cos(mp)
Bamnlat, B) = -———— grad (PZ‘(cos a) | . ] (C.2a)
‘5“ in +1 sin(mf)
- 1 [SPﬁ(cos o) cos(mB) 2
Jnn + 1) B sin(mg) |
m n — sin(mB) | _
+ s o Pz(cos o) cos(mB) ey (C.2b)
- cos(mg)
Cralat, 8) = ——f—— curl [Pﬂ(cos a)| . ‘r]
«In (n +1) sin(mf)
( cos(mf)
- —"T _ |grad [P?(cos a)| | ] hod ér] (C.3a)
«ln n + DI sin(mf)
( — sin(mf)
-1 + =B _ PZcos a) s &
«In (n +1| Sma cos(mpB)
__ 9PZ(cos a) cos(mB) |
o | sin(mg) €4 (C.3b)
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The dérivatives occuring in (C.2) and (C.3) can be eliminated using some of

the equations given in Appendix B

Brala, 8) = 1 [[(n + 1 — m) P7, (cos o)
Jn (n + 1) sin «
(n + 1) cos & Pi(eos o)) | 0
— (n cos a Pi(cos a)f | L %)

+ m Pr(cos a)

— sin(mf) | |
s (C.4a)

cos(mp)

The apparent singularity of (C.4a) for n = O is misleading. It can be shown

(see [94]) that5

Boola, B) = 0 (C.4b)

— sin(mB)

Canlet, B) = 1 [m Phlcos o)
Jn(n + 1) sina

cos(mp)

— [(n + 1 — m) Py, (cos @) — (n + 1) cos o Pr(cos a)]

cos(mpB) | |
¢ (C.5a)

sin(mf)

éoo(a, B) = 0 (C.Sb)

For ¢ = 0, ® the equations (C.4) and (C.5) are numerically singular. A

limitation process yields for o = 0

5 The case n = 0 implies that also m = 0, since always n >{m|
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- 1
Pon(at, B) = 0 er (C.6a)

f’mn(cx, B)=20 otherwise (C.6Y)
Bl B =L {nn + D el PR s P (C.7a)
lna,B—§ n (n + sin 3 € + cos 3 € Ja
Barrla, B) = 0 otherwise (C.7b)

éln(as B) =

[ ] L]

cos 8 sin B8

— sin 8 cos B .
«]n (n 4+ 1) [ €0 — ee] (C.8a)
Crnlo, B) = 0 otherwise (C.8b)

For a = 7 equations (C.6a), (C.7a) and (C.8a) have to be multiplied by the

factor (— 1)°

- o

The vector harmonics P, B and C are orthogonal functions and closely

related to the spherical vector wave functions L, M and I:I, many details may

be found in [94, 110].

It is now possible to write a vector plane wave as

. ik & 2 n (n — m)!
°e nEOmEOGEe €m1(2ﬂ+1)(n+m)!

% {_ kL & - Pomalc, ,6)] Lo,m,n(kp, 0, #) +
P
. éo,m,n(a, ﬁ)] N’Ia,m,n(ks, 99 ¢)

—1 |1z
«|n(n+1)[[e

— i [é . éo,m,n(a, 6)] Na,m,n(ks, 6, ¢)] } (C.9
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where the index ’o’ stands for even or odd azimuth dependence and & gives
the polarisation of the plane wave. The radial dependence of the potentials ¢,
¥ and X (and therefore also the radial dependence of the i, M and I:I) in
expansion (C.9) is given by spherical Bessel functions of the first kind in

order to ensure the boundedness of the displacement at the origin. Also

1 m>0
€m={ (ColO)
2 m=20

Two different spherical coordinate systems are employed in equation (C.9)
— (k, o, B) denotes the coordinates of the wave vector
— (r, 8, ¢) denotes the coordinates of the point of obervation
Plane waves with three different polarisations are possible
— compressional plane waves (P waves) :
é =28 and k = kp with &, being parallel to kp
— shear horizontally polarised plane waves (SH waves) :
e = é&,, and k = ks with e, being perpendicular to Ks
— shear vertically polarised plane waves (SV waves) :
é =& and k = ks with &s, being perpendicular to &, and ks
In spherical coordinates the wave vector points in &, direction
k =k & (C.11)
The polarisation vector €, then also points in é, direction
€p = &r (C.12)
Without loss of generality it can be assumed that the wave vector k lies in
the x—z plane, i.e.
=0 (C.13)
Then €, and €s» will be in the x—z plane (they will also be perpendicular)

whereas é., will be in e, direction. The shear wave polarisation vectors can
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now be written as

€spn = é¢ (C.149)

and

ésv = - ée . (C.IS)
3

see also Fig. & The minus sign in equation (C.15) appears in order to turn
(C.12), (C.14) and (C.15) into a right handed orthogonal coordinate system (i.e.
ér X &g = €sv). It can now be seen from equation (C.9) that a compressional
plane wave is generated as a series of I:a,m,n only and an arbitrarily polarised
shear wave consists of Ma,m,n and ﬁo,m,n without contribution from any f.a,m,n.
A derivation of equation (C.9) can be found in [111] for the longitudinal part
(i.e. compressional waves) and in [112] for the transverse part (i.e. shear

waves), for details see also [108].

Due to equation (C.13) the azimuth dependence of the field components
in (C.9) will be either even or odd, not a linear combination of both (since
sin(mB) = 0). This and (C.12), (C.14) and (C.15) can be used to write down a
simplified expansion in place of (C.9) where each plane wave type can be
considered separately. The tilde () above the spherical vector harmonics and
the displacement components signalises that the azimuth dependence has been

factorized out§,

6 The following definition is intended to simplify the notation of a

diagonal matrix

a a 0 O
diag | b | = 0 b O
c 0 0 ¢
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2 ikef =™ X (n —m)!
- m 2 1
P nzo;oe(n—l_)(n—i-m)!
cos(mg) Orp,mn
n+l
X dlag COS(m¢) lk_p Pr,m,n(a) ﬁO,P,m,n (C16a)
— sin(mg) Uy p,m,n
. kel _ & 2 (n — m!
= = (2 1) —— 2=
Ssn © nzo";oé(n_‘_)(nﬁ-m)!
sin(m¢) 0
T ~
X diag | sin(mg) [__l_ Cypmnla) | — Gio pmn
cos(mg) ln (n + 1 Uy pmn
ﬁr,x,m,n
_ in+1 - -
=== By nnl@) | Uox,mn (C16b)
«ln (n +1) a
¢Px,mﬂn
oy oo n
ésv elksr - 2 E €m (211 + 1) g:;—:l;:
n=0 m=0 . :
cos(m¢) 0
N ~
X diag | cos(mg) [————l___‘_ Comnl@) | Uopmn
— sin(m¢) n(m+1) — Ug,p,m,n
ﬁr,x,m,n
:n+1 -~ .
- =t Be,m,n(a) Ug,x,m,n ] (C16c)
\In n +1) a
¢’xlmln

The stresses generated by a plane compressional or shear wave can be

obtained by the same decomposition as the displacement components. Due to

the symmetry of the stress tensor (o,; = o) it is possible to write the
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stress components in vector form.

correct, but it simplifies the notation substantially. Hence, instead of

Orr Urg Org
+~—
O =| Org ©Ogs Ogg

Org Cop UTgg

the notation

r -

Orr

is mathematically not entirely

(C.17a)

(C.17b)

will be used. The stress components due to a compressional plane wave are

then given as

n

gp=-iz €m(2n+1

n*=0 m=0

X diag

L

.n+1
l+

kp Pr,m,n(a)

X

cos(mg)
cos(mg)
cos(mg)
cos(me)
— sin(mg)

— sin(meg)

pe

&rr,v,m,n
699,¢,m,n
&¢¢,¢,m,n
&re,w,m,n
6r¢,vp,m,n

Tog,0,m,n

)(n—m)!
n + m!

(C.18a)



The stress components due to a horizontally polarised shear plane wave are

written as

o= T 3 en(n 4+ A

=/ (n + m)!
. -
sin(m¢)
sin(még)
sin(me)
X diag | |
sin(m¢)
cos(me)
cos(mg)
0
— Goo,p,m,n
i® - — Gyp,p,mn
X | === Cy,m nlc) .
n (n + 1) - are,n,m.n
&r‘t,w,m,n
&9¢.w.m,n
6rr,x,m,n
699,)(:7".77-
intl ~ O g9,x,m.n
— 1 By pnalo) | (C.18b)
«jn n +1) O re,x,m,n
G g, xsmm
&6¢,x,m,n
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and the stress components due to a vertically polarised shear plane wave can

be expanded as

X diag

cos(mg)
cos(m¢)
cos(mg)
cos(mg)
— sin(mg)

— sin(mg)

€m (21’1 + 1)

n — m!

(n

+ m)!

0
&ee,v,m,n
&¢¢.t,7n.n
&re,t,m,n

- 6"rft*,aﬂ,m,n

— Oeg,p,m,n

c rr,X,m,n
&ee,x,m,n
&¢¢,X,m-n
&re,x,m,n

Ors,x,m,n

Tog,x,m,n

(C.18c)

where the tilde indicates that the azimuth dependence has been factorized

out of the stress components and the defined notation for a diagonal matrix

is employed.
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Appendix D

Far-field approximation and differential scattering cross-section

A close look at equations (B.7) — (B.15) in Appendix B reveals that

the following displacement components decay with 1 and will therefore be the

r
dominant part in the far-field (all other components decay with Lz or stronger
r
and can therefore be neglected) :
— u, due to potential ¢, this constitutes an outward propagating spherical
longitudinal (compressional) wave
cos(me)
Ur,p,mn =~ — Kp Zpy(kpr) Prlcos 0) | . (D.1a)
sin(m¢)

— u, due to the potentials % and X, this gives the first polarisation

component of an outward propagating spherical transverse (shear) wave

m n — sin(mg)
Uopmn = 5 zZn(ksr) P7(cos 9) cos(me) (D.1b)
Ug,5,m,n ~ — Zns;l;(l%sﬂ [—— (n + 1) cos 8 Pr(cos 0)
~ cos(mg)
+ (n — m + 1) Py y(cos ) sin(me) (D.1c)

— uy due to the potentials % and X, this gives the second polarisation

component of an outward propagating spherical transverse (shear) wave
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Ug pman =~ — '%ks;) [— (n + 1) cos 0 Pr{cos 0)

n cos(m¢)
+ (n — m + 1) Py, (cos 0) sin(me) (D.1d)
m n — sin(mg)
Ugxmn = — =5 Zn41(ksr) PR(cos 0) cos(me) (D.le)

Hankel functions of the first kind have a simple asymptotic form for large

arguments [113] :

kr — ’%)
za(kr) = hQkr) ~ — i QT (D.2a)
tr — )
Znpi(kr) = B (kr) ~ — & (D.2b)
kr > 1 (D.2¢c)

and combining equations (D.1) with (D.2) allows very efficient computations in
the far-field.

The differential cross-section R is defined as the average rate per
unit area at which energy is scattered into the radial direction by the
surface obstacle. It is equivalent to the Poynting vector in electromagnetic

theory? [114]

(D.3a)

R=% %) [u: Orr + Ug Ore + Uy 0',,,]]
r,0,8

r > 1,0 and ¢ fixed (D3.b)

7 the superscript "%’ indicates the complex conjugate
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The displacement and stress components in (D.3a) are given by the expansion
(2.14) of the scattered field due to the surface indentation in the far-field.
Equation (D.3a) can be evaluated separately for the scattered compressional
wave components (due to the potential ¢) and for the scattered shear wave

components (due to the potentials ¥ and X).

The differential scattering cross-section defined by (D.3) will be
quantitatively accurate as long as there is no significant scattering into
surface wave modes. Representation (2.14) does consist of a finite number of
body waves with a far-field dependence of -11:, whereas surface waves
propagate with 4—1_; in the far-field and their energy is confined to a thin
layer along the surface. Expansion (2.14) is sufficient for a qualitative
analysis of the scattered far-field energy, but it gives inaccurate
quantitative results when most of the energy is scattered into Rayleigh
waves. This could be remedied by including surface wave terms explicitly in

(2.14) and treating them seperately when evaluating the scattering cross-

section, as was done in [115].

Page 238



Appendix E

Supplementary results

This appendix introduces further results obtained by the numerical

method presented above and is included for the sake of completeness.

Normally incident compressional and shear waves

This section presents the amplitude of the surface displacements, the
amplitude of the far-field displacements and the differential scattering cross-
section of the scattered far-field for a compressional or shear wave normally
incident on to a hemispherical or shallow surface indentation in a half-space
with Poisson’s ratio v = 0.25. The far-field calculations were carried out at

the normalised distance L = 1000. Four different surface indentations are

4l

considered :

(a) a hemisphere with 28 _ 0.5 and o = 90°

xtnc
(b) a segment of a hemisphere with )?_a = 1.0, g = 0.5 and o = 53.1°
inc
(c) a semi-ellipsoid with ;22 = 1.0, § = 0.5 and a = 90°
{inc

(d) a hemisphere with ng— =1.0 and o« = 90°
inc

where 2a is the surface diameter and d the depth of the indentation. The
angle of the corners between the indentation and the plane surface is denoted
by o. Features (a) and (d) represent hemispherical pits with a diameter of
half an incident wavelength and one incident wavelength respectively.
Features (b) and (c) are shallow axisymmetric indentations with a surface
diameter of one incident wavelength and a depth of a quarter of an incident

wavelength each, but with different shape.
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Case
(a)
(b)
(c)
(d)

Table 9 : Figure numbers of the results for the cases (a) — (d) presented in

displacements and the scattering cross-section are normalised for each case in
the way described in chapter 3. The maximum values of each case cases

relate to each other as given below,

Figure numbers
for a normally
incident P wave
Figs. 165, 167, 169
Figs. 171, 173, 175
Figs. 172, 174, 176

Figs. 166, 168, 170

arbitrarily as normalisation.
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Figure numbers
for a normally
incident SV wave
Figs. 177 — 182
Figs. 183 — 188
Figs. 189 — 194

Figs. 195 — 200

this section for a normally incident P or SV wave

The polar plots showing the angular distribution of the far-field

where case (a) has been chosen



scaling factor of the

case Figure numbers far-field displacements
(a) Fig. 167 1.0

(b) Fig. 173 0.62

(c) Fig. 174 0.58

(d) Fig. 168 4.0

Table 10 : Scaling factors of the far-field displacement plots for the cases

(a) — (d) and a normally incident P wave

scaling factor of the

case Figure numbers differential cross-section
(a) Fig. 169 1.0
(b) Fig. 175 1.2
(c) Fig. 176 1.0
(@ Fig. 170 48.0

Table 11 : Scaling factors of the differential cross-section plots for the cases

(a) — (d) and a normally incident P wave
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scaling factor of the

case Figure numbers far-field displacements
(a) Figs. 179, 180 1.0

(b) Figs. 185, 186 0.63

(c) Figs. 191, 192 0.73

(d) Figs. 197, 198 2.1

Table 12 : Scaling factors of the far-field displacement plots for the cases

(a) — (d) and a normally incident SV wave

scaling factor of the

case Figure numbers differential cross-section
(a) Figs. 181, 182 1.0
(b) Figs. 187, 188 0.79
(c) Figs. 193, 194 1.1
(h) Figs. 199, 200 8.9

Table 13 : Scaling factors of the differential cross-section plots for the cases

(a) — (d) and a normally incident SV wave
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Compressional and shear waves incident at 30 degrees

This section presents the amplitude of the surface displacements, the
amplitude of the far-field displacements and the differential scattering cross-
section of the scattered far-field for a compressional or shear wave incident
under 30 degrees on to the surface indentations considered above. The polar
plots are again normalised and the maximum values relate to each other as

given below.

Figure numbers for Figure numbers
a P wave incident for SV wave incident
Case at 30 degrees at 30 degrees
(a) Figs. 201 — 206 Figs. 225 — 230
(b) Figs. 207 — 212 Figs. 231 — 236
(c) Figs. 213 — 218 Figs. 237 — 242
(d) Figs. 219 — 224 Figs. 243 — 248

Table 14 : Figure numbers of the results for the cases (a) — (d) presented in

this section for a P or SV wave incident at 30 degrees
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scaling factor of the

case Figure numbers far-field displacements
(a) Figs. 203, 204 1.0
(b) Figs. 209, 210 1.3
(©) Figs. 215, 216 1.6
(d) Figs. 221, 222 3.9

Table 15 : Scaling factors of the far-field displacement plots for the cases

(a) — (d) and a P wave incident at 30 degrees

scaling factor of the

case Figure numbers differential cross-section
(a) Fig. 205, 206 1.0
(v) Fig. 211, 212 4.5
(c) Fig. 217, 218 7.6
(d) Fig. 223, 224 44.5

Table 16 : Scaling factors of the differential cross-section plots for the cases

(a) — (d) and a P wave incident at 30 degrees
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scaling factor of the

case Figure numbers far-field displacements
(a) Figs. 227, 228 1.0

(b) Figs. 233, 234 0.76

(c) Figs. 239, 240 0.76

(d) Figs. 245, 246 3.1

Table 17 : Scaling factors of the far-field displacement plots for the cases

(a) — (d) and a SV wave incident at 30 degrees

scaling factor of the

case Figure numbers differential cross-section
(a) Figs. 229, 230 1.0

(b) Figs. 235, 236 1.2

(c) Figs. 241, 242 2.0

(h) Figs. 247, 248 26.7

Table 18 : Scaling factors of the differential cross-section plots for the cases

(a) — (d) and a SV wave incident at 30 degrees
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