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ABSTRACT

In this thesis, a H igh O rder Feedback neural NET or HOFNET and its 
optoelectronic im plem entation are discussed in detail. The HOFNET 
implements 'high order' by using a feedback loop and norm alisation in 
each iteration. The order of the HOFNET is not fixed but increases by one 
after each iteration. In the HOFNET system, the input pattern  is inserted 
in the m iddle of the system and is correlated in every iteration, so the time 
varying noise in the input pattern will be averaged. This is confirmed by 
the mathematical analysis and com puter simulations. An optoelectronic 
system of the HOFNET is set up by using a Fourier Transform hologram 
array for information storage and an electrically addressed spatial light 
modulator in the feedback loop. The gain for the compensation of the loss 
in the optical correlation system is obtained by using a computer and a 
spatial light modulator. We have stored initially 3 patterns and later 14 
different patterns in the holograms for pattern  recognition and w ith a 
partial pattern as an input, the system successfully recognised the input 
pattern and recovered the obscured parts after 2 (in 3 pattern case) and 3 or 
4 (in 14 pattern case) iterations, respectively. In this prim ary system, the 
feedback is serial through a computer. We designed two optical parallel 
feedback systems for the HOFNET by using optoelectronic devices. One is 
based on an optical fibre amplifier. The other is more attractive and the 
design uses an optically addressed spatial light m odulator in one feedback 
loop for providing gain and a m ultiple quantum  well based SEED device 
in the other feedback loop for prov id ing  norm alisation. Thorough 
analysis and computer simulation have been done for this net.
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DEFINITIONS & ABBREVIATIONS

DEFINITIONS

N: num ber of neurons in one dimensions;
M: number of stored patterns;
0m: threshold in the Ham ming net;

modulation or spatial carrier frequency of a hologram; 
*: conjugate sign;
*: correlation;
<8>: convolution;
x, y: coordinate pair in the spatial domain;
|i, v: coordinate pair in the frequency domain; 
f: focal length of a lens;
X: wavelength;
F.T.: Fourier Transform symbol;
5: Dirac delta function;
G: gain.

ABBREVIATIONS

EDFA: Erbium Doped Fibre Amplifier;
FTH: Fourier Transform Hologram;
HOFNET: High Order Feedback neural NET;
ITO: Indium  Tin Oxide;
MQW: Multiple Q uantum  Well;
OASLM: Optically Addressed Spatial Light Modulator; 
PCM: Phase Conjugate Mirror;
SEED: Self-Electrooptic Effect Device;
SLM: Spatial Light Modulator;
SNR: Signal to Noise Ratio.



Chapter One

INTRODUCTION

A rtificial neural netw orks a ttem pt to achieve good perform ance at 
ana logous p rocessing , such  as p a tte rn  recogn ition , v ia dense  
interconnection of sim ple com putational elements. An artificial neural 
netw ork usually has three characteristics:

(a) It consists of a large num ber of simple processing units (neurons);
(b) each processing element is connected to m any or possibly all of the 

others;
(c) the netw ork is program m ed to respond appropriately to inputs by 

adjusting the weights of the connections between neurons during 
the learning procedure.
The idea of artificial neura l netw orks is from  our p resen t 

understanding  of the biological nervous system — brain. A num ber of 
m athem atical m odels, which were called neural netw ork models, were 
p roposed  to sim ulate  the perform ance of the b rain  (m uch m ore 
simplified). They have great potential in areas such as speech and pattern 
recognition w here m any processings are pursued in parallel and high 
com putational rates are required. C urrently  the best neural netw ork 
systems are far from equalling hum an performance in such applications. 
N eural netw ork models explore m any hypotheses sim ultaneously using 
densely  para lle l nets com posed of m any com putational elem ents 
connected by links with varying weights. Recently, there has been a great 
deal of theoretical progress to justify optimism about future applications, 
and this has focused attention on the hardw are realization of neural 
netw ork architecture.

Research into neural networks has a long history. Establishment of 
detailed mathematical models began nearly fifty years ago with the work 
of McCulloch and Pitts [McC43], Hebb [Heb49]. More recent work by

- 9 -



Chapter One Introduction

Hopfield [Hop82], Grossberg [Gro86], Rumelhard and McClellard [Rum86], 
Psaltis [Psa85,86], Lee [Lee86] and Gile [Gil87] has led to a new resurgence of 
the field. This new  interest is due to the developm ent of new  netw ork 
topologies and algorithms, novel optical devices and systems.

Electronics and optics are the two approaches under consideration 
for the hardw are realisation of neural netw ork models. There are two 
basic com ponen ts th a t need  to  be im plem ented : n eu rons and  
interconnections. The neurons are typically simple thresholding elements 
that can be implemented by a single switching device (i.e., transistor). The 
switching speed or the accuracy required for the neurons can be performed 
by current electronic technology. A practical neural computer may require 
millions of neurons operating in parallel. This requirem ent by itself is also 
achievable by electronics. H ow ever, each of the neurons m ust be 
connected to several thousand other neurons, and these interconnections 
m ust be m odifiable so that learning can take place. W hile this dense 
connectivity is relatively difficult to achieve electronically, optics is 
particularly well suited for the realisation of interconnections. Optics can 
provide three dim ensional interconnects [Goo89] and the connection 
weights can be modified easily by using photorefractive or liquid crystal 
materials [Psa88b; Sat91; Web91].

A variety of optical architectures for the realization of neural 
networks have been proposed [Psa85, 87, 88b; Jan88a; Whi88a, b; Sel89b; 
Yu90, 91] by using two basic optical devices: holograms (especially volume 
holograms) and spatial light m odulators (SLMs) (electrically addressed or 
optically addressed). Spatial light m odulators are used to simulate a two- 
dimensional array of neurons at the neural plane, whereas holograms and 
other passive optical elem ents com prise the optical interconnecting 
system. The basic optical neural computer architecture is shown in Fig 1.1. 
As shown in Fig 1.1, the optical interconnections in the neural network 
can be constructed in three dimensions, compared with two-dimensional 
im plem entation in electronics. A second advantageous feature is the 
relative ease w ith  which learning can be accom plished in dynam ic 
holograms in photorefractive crystals [Tan85; Psa88b; Her86]. There are 
other advantages of the optical im plem entation over the electronic one, 
such as parallel processing, however, learning and three-dim ensional 
storage of information are the most important.

- 10 -



Chapter One Introduction

Output
SLM
Input

Hologram
Interconnections

Feedback with 
Threshold & Gain

Fig. 1.1 Optical Neural Network Architecture

Hopfield proposed a new neural netw ork model, based on the 
Hebbian learning rule in 1982 [Hop82]; it is called the "Hopfield model". 
Since then, many optical systems based on the Hopfield model (also called 
the outer product model) or its modified version: the inner product model 
[Pae87; Ath86] have been proposed and set up in laboratories. Such neural 
networks have a disadvantage that the memory capacity is very small 
(M « 0.15 N, where M is the num ber of patterns stored in the system and 
N is the number of pixels (elements) in one pattern). If more patterns are 
stored in the network, the system performance will deteriorate sharply 
and will converge into spurious results or give incorrect answers. Based 
on the Hebbian learning rule and the Hopfield model, the high order 
neural networks were proposed [Lee86; Psa86, 88a; Gil87]. The motivation 
for investigating high order neural networks is the increase in storage 
capacity that results from the increase in the num ber of independent 
variables or degrees of freedom in the neural networks [Psa88a]. Several 
models have been proposed and optically im plem ented [Jan89; Lin89; 
Ath86]. Generally we can classify them into two kinds: outer product high 
order neural network and inner product high order neural network, the
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Chapter One Introduction

details of which are covered in chapter two.
High order neural network models have a higher memory capacity, 

b u t their hardw are, either optical or electronic, is m ore difficult to 
im plem ent because the num ber of interconnections in the netw ork 
increases exponentially [Gil87]. Optics can im plem ent three dimensional 
interconnections, bu t the dynamic range of optical devices is quite small 
(only 27dB available recently in an Asymmetric FP m odulator) [Whi89], 
which limits the high order im plem entation [Owe87]. In order to solve 
these problem s, we propose a new  High O rder Feedback neural NET 
model, which is abbreviated to, HOFNET. Its optical or optoelectronic 
im plem entation requires neither a large num ber of interconnects nor 
optical devices with large dynamic range. The nonlinearity in this system 
is im plem ented by the feedback loop. The degree of nonlinearity is not 
fixed but equal to the num ber of iterations. In this system the input 
pattern is correlated w ith the stored patterns in every feedback loop, so if 
the input pattern or the system contains tim e-dependent noise, the noise 
will be averaged and can easily be suppressed in optics. The penalty for 
such advantages of the HOFNET is that the system is spatially variant. So 
the input pattern m ust be put exactly in the same position as reconstructed 
patterns from the hologram.

The layout of this thesis is as follows. In chapter two, we briefly 
describe several neural network models which are related to the HOFNET 
or are of help to understand  the algorithm  of the HOFNET. Then the 
im portant m em ory recording technique: holography, is introduced in 
chapter three. We emphasise the Fourier transform  holograms, which are 
used in our optical HOFNET system. In this chapter, we also introduce the 
spectral correlation system  and prove that the system  can detect the 
similarity of two patterns. Following that, in chapter four, we review the 
optical neural network systems, set up by other institutions in recent years. 
From chapter five, we start to discuss the principle of the HOFNET, its 
optoelectronic system  design and construction. Chapter five covers the 
details of the HOFNET: principle, m athematical analysis and com puter 
sim ulations (noise and  pattern  recognition). Then, in chapter six, we 
describe an optical HOFNET system w ith serial electronic feedback (via 
electrically addressed spatial light m odulator (E-SLM)), and some basic 
experim en ta l re su lts  o b ta in ed  from  o u r ex p erim en ta l system ,
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Chapter One Introduction

demonstrating pattern recognition, are shown. Furthermore, the design of 
two more optical HOFNET implementations with optical parallel feedback 
loops is discussed in chapter seven. At the end, conclusions and future 
work proposals are given.

In this thesis, all the holograms are supposed to be thin unless they 
are specified. N  is the num ber of neurons in one dim ension, so if the 
patterns are two-dim ensional, the num ber of neurons in one pattern  is 
N 2. This thesis m ainly concentrates on the system design. Therefore, 
a lthough  I have u sed  and  d iscussed  briefly  several optical or 
optoelectronic devices, such as the optically addressed  spatial light 
m odulator and m ultiple quantum  well devices, I have not researched on 
them in depth.



Chapter Two

NEURAL NETWORK MODELS

2.1 Hopfield Model

The Hopfield neural netw ork model was proposed by Hopfield in 1982 
[Hop82] and is norm ally used with binary inputs. This net is based on the 
Hebbian learning rule [Heb49l and suitable for auto-associative memory 
and solving optim ization problem s. It consists of a large num ber of 
neurons and  all the neurons are fully interconnected to each other 
although not to themselves. The strength of the interconnections between 
neurons are symmetric and updated  according to the Hebbian learning 
rule, while the neurons are just the simple nonlinear thresholds, such as 
the sigmoid or clipped functional threshold [Lip87]. Three kinds of non
linear thresholds are commonly used in neural networks (Fig. 2.1):

(a) Sigmoid threshold

f(x) =  zftt a  is a constant (2.1)
1 + e

(b) Logic threshold

f(x) =
1 (x > l)
x (0 < x < 1) (2.2)
0 (x < 0)

(c) Clipped threshold

f 1 (x > 0)
f(xH  1 n (Z3)l - l  (x < 0)

- 14 -
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f(x)

► x ► x

(b) Logic (c) Clipped(a) Sigmoid

Fig. 2.1 Nonlinear Thersholds

The outputs of the network are fed back to the neurons after a threshold to 
start a new iteration. So the Hopfield net can be considered to be composed 
of (1) Interconnections; (2) Threshold; (3) Feedback. The neuron-typed 
Hopfield net architecture is shown in Fig. 2.2. It m ay be regarded as an 
auto-associative system  w ith  N  nodes containing binary  inputs and 
outputs (bipolar or unipolar). Suppose a set of binary and bipolar vectors 
V(m) (m=l, 2, ...., M), each containing N elements V j ( m )  (i=l, 2, .... N), are 
stored in a matrix Tjj, according to the Hebbian learning rule, Tjj can be 
written as

vTmi) v (mo)

v2(mi) _ > vim o)

VN-l(mi)^

v ( m i)  - > Vmo)

Fig. 2.2 Hopfield Neural Network Model
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Chapter Two Neural network models

M
Tjj = ^ v i (m)vj(m) ( i * j )  

m=l
Tii = 0  (i = j) (2.4)

w here Tjj = 0 means that no neurons are connected to themselves. If the 
m em ory is addressed by one of the stored vectors, say vj (mi), it yields the 
ou tpu t as follows:

N
v i(m o) =  TjjVj(mi)

j=l
M N 

m=l j=l
M N

= (N - l)v i(m i)+  X  2LvjC1111)vj(m)v iCm>
m*mij*i (2.5)

Vi(mo) is composed of the sum  of two terms: signal and unw anted cross
talk. Suppose vj(m) has the same probabilities of +1 and -1, the sum of the 
unw anted cross-talk term s is -V(M-1)(N-1) [Far85]. So the signal to noise 
ratio is

N  -1SNR =
V (M -1)(N -1) 

N (N » 1 ,  M » 1 )
M (2.6)

If N is sufficiently larger than M, w ith high probability the elements of 
vector Vi(mo) will take the sign of the corresponding elements Vj(mi). 
Thresholding of V i(m o) will therefore give V j(m i)

Vi(mi)= sgn [v^mo)] (2.7)

W ith this model, the maximum num ber of stored patterns is lim ited to 
[Lee86]
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Chapter Two Neural network models

(2.8)

or roughly 0.15N [Hop82], w hen N is small. If the stored patterns are 
orthogonal to each other, with careful selection, the memory capacity can 
be as high as half of the neurons of one pattern [Sel89a]. But to practical 
use, it is still a small num ber. Abu-Mostafa and St. Jacque [Abu85] have 
perform ed a theoretical analysis for storage capacity of object dom ain 
neural netw orks, they found the upper lim it of the num ber of stored 
patterns is N.

W hen the memory is addressed by a binary vector that is not one of 
the stored vector, the net w ould give a binary valued vector output which 
is an approxim ation of the stored vector that is at the shortest Hamming 
distance from the input vector. The Hamming distance is defined as the 
num ber of pixels in one vector that are different from the corresponding 
ones in another vector. If this output vector is fed back and used as the 
input to the network, the new output is generally a more accurate version 
of the stored vector and continued iteration converges to the correct 
vector. If the stored vectors are unipolar binary (0, 1) Uj(m), the above 
equations are then applicable w ith [2ui(m)-l] replacing Vj(m) and Uj(mi) 
replacing Vj(mi). For such vectors, the SNR of the estimate ujCmi) can be 

shown to be lower by a factor of V2 [Far85; Hop82].
The Hopfield net can work synchronously and asynchronously. The 

energy of the net is defined as

1 N N
E = — - £ £ Tjjvi(mi)vj(mi) (2.9)

z j*ii=l

AE due to Avj(mi) is given

N
AE = -AvjCmO^T-VjCmi)

j*i
= - Avj (mi)Vj (mo)
= -Avi(mi)sgn(vi(mi)) (2 .10)

- 17 -



Chapter Two Neural networkmodels

If Vj(mi) changes from +1 to -1, AE=-(-l-l)x(-l)=-2<0; if Vi(mi) changes 
from -1 to +1, AE=-(+l+l)x(+l)=-2<0. Thus, the algorithm for altering 
Vj(mi) always causes E to be monotonically decreased. State changes will 
continue until a least (local or global) E is reached.

In the above discussion, Xjj=Tji, that means the matrix is symmetric. 
An asymmetric Tjj can lead to the possibility that a minimum will be only 
m etastable and will be replaced in time by another minimum. Additional 
asymmetric terms could be easily generated by a minor modification

M-l
ATjj = A ^  Vj (m +1)vj (m) (2.11)

m=l

W hen they are added to Tjj and A is reasonably adjusted, the system 
w ould spend a while near V (m) and then leave and go to a point near 
V(m+1). In the Hopfield net, we set Tjj=0, which causes the net to e\olve 
tow ard a local m inim um  of an energy function. Selviah [Sel87, 89b] and 
Gindi [Gin88] found that the net w ith Tjj=M resulted in slightly improved 
performance compared with that of one with zeros in the diagonal. This is 
because the net evolves only w hen updates that lower the energy by a 
sufficient am ount are accepted. If the diagonal elements are not zero and 
take, instead, a value of M, then the system is easier to implement 
optically, since all of the element's values are then completely determined 
by the Hebbian learning rule [Sel87, 90].

2.2 The Hamming N et

The Hamming net is also called the "Optimum m inim um  error classifier" 
[Lip87], which calculates the Hamming distance to the exemplar for each 
class and selects that class with the m inim um  H am m ing distance. The 
diagram of the Ham ming net is shown in Fig. 2.3. Weights and thresholds 
are first set in the left subnet such that the matching scores generated by 
the outputs of the m iddle nodes in Fig. 2.3 are equal to N minus the 
Ham ming distances to the exemplar patterns. These matching scores will 
range from 0 to the num ber of elements in the input (N) and are highest 
for those nodes corresponding to classes with exemplars that best natch  
the input. Usually a threshold of N /2  is chosen in these nodes. Thresholds 
and weights in the right MAXNET are fixed. All thresholds are set to zero

- 18 -



Chapter Two Neural network models

and weights from each node to itself are 1, while the weights betw een 
nodes are inhibitory with a value of -e, where e < 1 /M  (M is the num ber of 
patterns stored in the net). After weights and thresholds have been set, a 
binary pattern  w ith N  elements is presented to the input of the net. It 
m ust be presented long enough to allow the matching score outputs of the 
left subnet to settle and initialize the output values of the MAXNET. The 
input is then rem oved and the MAXNET iterates until the output of only 
one node is positive. Classification is then complete and the selected class 
corresponds to that node w ith  a positive ou tpu t. The m athem atical 
algorithms are represented as follows. In the left subnet (Fig. 2.3):

Tim= Vi(m), 0m= N /2  (2.12)

where l< i< N ,l< m < M , V j(m ) is one of the binary patterns stored in the 
interconnections. Tjm is the connection w eight from input i to node m 
and 0m is the threshold in that node.

same neuron
A

Output
Input

Fig. 2.3 Hamming Net Model

In the right subnet (MAXNET): 

tM = 1 (k=l)
tu =-e (k * l,e< l/M ) (2.13)

where t^i is the connection w eight from node k to node 1 and all the
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Chapter Two Neural network models

thresholds in this subnet are zero. W hen an unknow n inpu t pattern  
Vi (mi) is inserted in the left subnet, the output of node m in the MAXNET 
can be written as

N
om(0) = Ft(X T imV i(m i)-em) (2.14)

i=l

where Ft is a logic threshold (Fig. 2.1(b)). Here and below it is assumed that 
the maximum input to this threshold never causes the output to saturate. 
After the n th  iteration of the MAXNET, the output of the subnet can be 
written as

M
om(n) = Ft(om( n - l ) - e  £ o k( n - l ) )  (2.15)

kt*m

This process is repeated until convergence at which point the output of 
only one node remains positive.

It can be proven that the MAXNET will always converge as long as 
the inhibitory interconnection w eight e is less than 1 /M  [Sel89b]. The 
Hamming net has a num ber of obvious advantages over the Hopfield net. 
It implements the optim al m inim um  error classifier when bit errors are 
random  and independent, and thus performance of the Hopfield net m ust 
either be worse than or equivalent to that of the Ham m ing net in such 
situations. The Ham ming net also requires fewer connections (M(M+N)) 
than the Hopfield net (N(N-l)). Finally, the Hamming net does not suffer 
from spurious ou tpu t patterns which can produce a 'no-m atch' result 
[Lip87].

2.3 Matched Filter Model (Inner-Product Model)

2.3.1 Matched Filter Model

The matched filter network is mainly used for pattern recognition [Sel89b]. 
It is formally identical to the vector-matrix multiplication operation in the 
synchronous Hopfield neural network. It is well known that the best way 
to recognise the existence of a known signal in the presence of unknown,
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Chapter Two Neural network models

additive noise is to perform the correlation between the input noise signal 
V(mi) and the known signal V(m) and to see if this is greater than some 
threshold:

N
V(mi)* V(m) = ^ v ^ m i^ O n )  (2.16)

i= l

where * means correlation and the i subscript indicates the bit index. The 
m atched filter model is show n in Fig. 2.4. Instead of representing the 
w eighted interconnection net of a vector-m atrix m ultip lier (Hopfield 
model), it is represented as a bank of correlating matched filters [Van64]. 
When an input pattern Vj(mi) is passed through a matched filter w ith an 
im pulse response of the pattern complex conjugate *V(m) (which, since 
we assume real signals throughout, is equal to V(m)), the output gives a 
m easure of the closeness for the m atch of V(mi) and V(m). Hence, to 
distinguish which code vector V(m) is closest to the input vector V(mi), it 
is necessary to distribute the input code in equal measure to each of a bank 
of m atched filters as shown in Fig. 2.4 and to search for the largest 
correlation output.

O utput
V(mi)

Input

Feedback Looi

V(l)

V(2)

V(M)

V(l)

noise
gate

noise
gateV(2)

V(M)

threshold

Fig. 2.4 Matched Filter Model

Only the m agnitude of the central correlation spike is relevant for 
the degree of match betw een V(mi) and V(m) since the central spike 
corresponds to an exact overlap of the m em orised codes and the input
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code [Sel89b]. Thus, the correlation sidelobes and m uch of the associated 
noise can be gated out. In an optical implementation this function might 
be perform ed by one pinhole for each filter [Pae87]. Hence a set of Dirac 
delta functions can be formed which are scaled by m agnitudes of the 
correlation peaks in each channel. These pass into a second bank of 
matched filters which have the impulse responses of the memorised codes 
V(m). Each channel has, therefore, two filters and the output from each of 
the second filters is the corresponding code scaled by the m agnitude of the 
correlation peak. The scaled output codes from each channel are sum m ed 
together before being supplied to the nonlinear threshold. The ou tpu t 
after the threshold is generally closer to one of the stored patterns than the 
original input is. This is fed back to the input to start a new iteration to get 
an even more accurate output. After several iterations, a perfect output, 
which is one of the stored patterns, is given. Selviah et al [Sel89b] have 
proved the equivalence of the m atched filter netw ork and the vector 
matrix multiplication neural network (e. g. Hopfield model).

2.3.2 Feature extraction

Feature extraction means that one extracts useful information from a set 
of patterns, which is characteristic of that set of patterns. The main 
purpose of the feature extraction in pattern recognition is to encode or 
modify the stored patterns so that their similarities are suppressed and 
their differences are em phasised. Therefore, a greater separation in the 
correlation m agnitudes is achieved. This corresponds to perform ing 
automatic feature extraction on the original stored patterns, V(m) (vj(m), 
i= l, 2,..., N; m =l, 2,..., M) to create a new set of feature patterns F(m) (fi(m), 
i= l, 2,...,N; m =l, 2,..., M) with the essential features of the original patterns 
which distinguish each from the rest of the set. A sim plified feature 
extractor is shown in Fig. 2.5 [Sel89a]. A memory pattern V(k) is presented 
to the system and features of it are calculated and organized into the 
elements of a feature vector F(k). The feature pattern  produced from a 
particular original pattern  depends on the exact nature of the other 
original patterns in the set. One way in which this can be done is by using 
a modification of the Gram-Schmidt orthogonalisation procedure [Koh88]. 
This technique produces linear combinations of the original features that
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are independent of each other. This is usually  in tended  to im prove 
discrimination, but its prim ary objective is to simplify the required post
processing by performing dimensionality reduction. One iterative feature 
extraction algorithm based on the modified Gram-Schmidt technique can 
be summarised as follows (Fig. 2.5):

Feedback

V(l)

V(2) V(2)

O utputInput

V(M) V(M)

x (1 + PN)

Fig. 2.5 Feature Extraction System

(1) Initialise the feature pattern, before any iterations, to be the original 
pattern

F(m)<0) = V(m) (2.17)

(2) At the nth iteration evaluate

M
G(m)<”> = F(m)‘n-,>(1 + pN) -  p £ (F (m )(n-” • V(m))V(m) (2.18)

m=l

Repeat for all m where G(m)(D, for example, is the unnorm alised feature 
code after one iteration;

(3) Perform the nth normalisation
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(2.19)G(m)(n,N  
G(m)(n> • V(m)

w here p < l/M  determines the rate of convergence. Step (2) and (3) are 
repeated  1 /p  times to give final feature patterns. More accurate final 
feature patterns are obtained for smaller values of p.

2.3.3 Orthogonal coding

The orthogonal patterns are completely independent of each other. For a 
space spanned by N  independent coordinates, the m axim um  num ber of 
orthogonal patterns is lim ited to N. The classical computational m ethod 
for the evaluation of orthogonal projections is the Gram-Schmidt process 
[Koh88]. Let there be M distinct Euclidean vectors denoted by V (l), V(2), 
V(M), a new orthogonal vector basis O(m) (m =l, ..., M) is defined by the 
recursion

0(1) = V(1)

O(m) = V(m) -
m  |0(i>r

w here (V(m), O(i)) is the inner product of V(m) and O(i) and the sum 
m ust be taken over such terms for which O(i) 5*0. According to the Gram- 
Schmidt process, there exists a set of orthogonal vectors, but the elements 
of the vectors can be any value. In the neural netw ork, we are more 
interested in binary data. One way to produce N  orthogonal binary and 
bipolar patterns is described as follows (let N  be 16):

(1) Set

o l = { 1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 )  (unit vector);

(2) Reverse the second half of the elements of the unit vector
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02 = {1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 , -1, -1, -1, -1, -1, -1, -1, -1)

(3) D ivide o l , o2 in to  two parts w ith equal length  and reverse the 
second half of each part, we have

03 = {1,1,1,1, -1, -1, -f , -1 ,1 ,1 ,1 ,1 , -1, -1, -1, -1)
04 = {1,1,1,1, -1, -1, -1, -1, -1, -1, -1, -1,1,1,1,1}

(4) Divide o l , o2, o3, o4 into four parts and  reverse the second half of 
each part, we have

05 = {1,1, -1, -1 ,1 ,1 , -1, -1 ,1 ,1 , -1, -1 ,1 ,1 , -1, -1}
0 6  = {1 , 1 , -1 , -1 , 1 , 1 , -1 , -1 , -1 , -1 , 1 , 1 , -1 , -1 , 1 , 1}
07 = {1,1, -1, -1, -1, -1 ,1 ,1 ,1 ,1 , -1, -1, -1, -1,1,1}
0 8  = {1 , 1 , -1 , -1 , -1 , -1 , 1 , 1 , -1 , -1 , 1 , 1 , 1 , 1 , -1 , -1 }

(5) Similarly repeat step (4), we can have the rest 8 vectors

09 = {1, -1,1,-1,1, -1,1, -1,1, -1,1, -1,1, -1,1, -1} 
olO={l, -1,1, -1,1, -1,1, -1, -1,1, -11, -1,1, -1,1} 
o ll= { l, -1,1, -1, -1,1, -1 ,1 ,1 , -1, 1, -1, -1,1, -1, 1} 
ol2={l, -1,1, -1, -1,1, -1,1, -1,1, -1 ,1 ,1 , -1,1, -1} 
ol3={l, -1, -1,1,1, -1, -1 ,1 ,1 , -1, -1 ,1 ,1 , -1, -1,1) 
ol4={l, -1, -1 ,1 ,1 , -1, -1,1, -1 ,1 ,1 , -1, -1 ,1 ,1 , -1} 
ol5={l, -1, -1,1, -1 ,1 ,1 , -1,1, -1, -1,1, -1,1,1, -1} 
ol6={l, -1, -1,1, -1 ,1 ,1 , -1, -1 ,1 ,1 , -1,1, -1, -1,1}

From the above algorithm, N  m ust be an integer power of 2. If N  does not 
satisfy this condition, N  orthogonal patterns exist, bu t possibly not binary 
and bipolar. Fig. 2.6 is the 16 orthogonal patterns, each with 16 elements. 
Here white elements stand for +1, and black ones -1.
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0 8
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0 I 6

Fig. 2.6 Sixteen Orthogonal Binary and Bipolar Patterns 
(each with 4x4 pixels)

2.4 High-order Neural Networks

2.4.1 Outer-product model

As mentioned above, the Hebbian-learning-rule based Hopfield model has
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a limited memory capacity (N/41ogN). W hen M exceeds the capacity, a lot 
of m inim um  energy states turn  into spurious states and the netw ork's 
ability to recognise the m em orised pa ttern s is drastically  reduced. 
Furthermore, this net has a symmetric m em ory matrix, so it can only be 
used for an auto-associative m em ory system . A higher order neural 
netw ork model has a m uch larger m em ory capacity by increasing the 
num ber of interconnections and can be used  for hetero-associative 
memory [Lee86; Che86]. In such a model, the Hebbian matrix is replaced by 
a m ultiply associated high order correlation tensor

M
Tili2..jlj2..klk2..= 2  uil(m)ui2(m)...Vj1(m)vj2(m)...wkl(m)wk2(m)...

m=l
(2.21)

where U(m), V (m ),..., W(m) belong to one of the stored pattern set. They 
are multiply associated in the sense that one could recall any pattern from 
the set by an input of partially correct rem ainder patterns in the set. 
Following the Hopfield net, we define an energy function

E  =  ”  ^  ( SilS i2 * * * * jl* j2 * * * rkirk2 * * * ̂ ili2... jl j2...klk2...)  ( 2 .2 2 )
il,i2..jl,j2..kl,k2„

In this expression, we have set the threshold to zero for convenience. 
Note also that we have used a set of patterns (S, T, R...) with connections 
among neurons in different patterns, as well as among neurons within 
the same pattern. Different patterns may have different sizes.

The dynamic evolution of the neurons is governed by

Sil  — F t I T ,
\J2..jlj2..klk2..

ili2...jljZ..klk2...Si2* ‘ * * jl* j2* * * rk irk2 ■ (2.23)

The updating of the neurons can be done either asynchronously or 
synchronously. Such a net always converges to a point with m inim um  
energy. For auto-associative recall, we have the tensor
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M
Tyk... = X Vi(m)Vj(m)Vk(m)‘

m=l
(2.24)

O utput of the neurons is

(2.25)

where Vj (mi) is an input pattern and energy is

M f  V
E = -  £  v i(mi)vj(mi)vk(mi).,.Tijk = - ] £  ]T v ^ m i ^ m )

i,j,k... m = l \  i
(2.26)

where n is the order of the correlations.

2.4.2 Inner-product model

In the outer-product model, the order of the tensor is very high according 
to the degree of the high order. It is difficult to implement it practically, 
either electronically or optically. In order to implement such a net, we re
write the evolution of the neurons for auto-associative memory and re
organise it as

N M
vi(m o)= £  £ v i(m)vj(m)vk(m)...vj(mi)vk(mi)

(j/k,...)m=l

l j = l  k=l

(  N
= ^V j(m ) ^ v ^ m K jto i )

m=l V i=1

M

m=l

M

I
m=l

M

(2.27)

w here
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N
(2.28)

is an inner-product between the stored vectors and the input vector and n 
is the order of correlation. If n  = 1, it is equivalent to the m atched filter 
model (linear inner-product model). Such high order nets can have a large 
m em ory capacity and can be im plem ented optically m uch more easily 
than outer-product high order nets [Pae87; Owe87].

From the above analysis, we can see an outer-product model can be 
converted  in to  an inner-p roduct m odel. They are equ iva len t in 
functioning characteristics. Generally speaking, inner-product m odels 
require a large num ber of interconnections,which can be im plem ented 
optically. The inner-product m odel, however, needs nonlinear neurons 
for its im plem entation, in which electronics has some advantage over 
optics.

2.5 Multilayer Perceptron

The idea of the m ultilayer perceptron was originally used to solve the 
problem s of m apping from the sim ilarity structure of the inpu t to a 
different similarity structure of the output, such as the exclusive-or (XOR) 
problem. The algorithm of the m ultilayer perceptron is based on the so- 
called generalised delta rule (GDR) [Rum86]. This net first uses the input 
vector to produce its own output vector and then compares this w ith the 
desired output, or target vector. If there is no difference, no learning takes 
place. Otherwise the weights are changed to reduce the difference. If there 
are no hidden units, the net becomes the perceptron model [Koh88]. The 
rule for changing weights follows the presentation of in p u t/o u tp u t pair p

where tpj is the target input for th e /th  com ponent of the ou tpu t vector 
for pattern p, opj is the ;th  element of the actual output pattern produced 
by presentation of input pattern p, ipj is the value of the zth element of 
the input pattern, 5pj = tpj -  opj, and ApTjj is the change to be made to the 

weight from the zth to the ;th  unit following presentation of pattern p.

)ipi -  nSpjipi (2.29)
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For the m ultilayer perceptron model (Fig. 2.7), there exists hidden 
units, bu t the learning algorithm  can still be deduced from the above 
equation if we modify this equation a little. We rewrite the above equation 
as

A p T j i  — T jS p jO p j (2.30)

We use Opj to replace ipp Here opj are the input elements to that layer. So 
for the first layer

°pi — Jpi (2.31)

OutputInput

Internal Layers

Fig. 2.7 Multiplayer Perceptron with Error Back Propagation

and for the internal layers, the opi is the output from the previous layer. 
The determ ination of the error signal is a recursive process which starts 
with the output units. If a unit is an output unit, its error signal is very 
similar to the standard delta rule. This is given by

5 pj =  (tpj ~  °pj)Ft,j (netpj) (2 3 2 )

w here Ft'j(rtetpj) is the derivative of the threshold function. A useful 
threshold function is the logistic activation function in which
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° p j -  _ £ T..0 .+e. (2*33)*-> j‘ p« j
l + e *

where 0 j is a bias similar in function to a threshold and netpj is

netpj =  X Tji°pi +  e j (234 )
i

It is interesting to note that the linear threshold function, on which the 
perceptron model is based [Rum86], is discontinuous and hence will not 
suffice for the GDR. The error signal for hidden units for which there is no 
specified target is determ ined recursively in terms of the error signals of 
the units to w hich it d irectly  connects and the w eights of those 
connections. That is

8pj = Ft 'j (netpj) X 8 pkTkj (2.35)
k

whenever the unit is not an output unit.
So the application of the GDR involves two phases:

(1) The input is presented and propagated forward through the network 
to com pute the ou tpu t value opj for each unit. This ou tpu t is then 
compared w ith the targets, resulting in an error signal for each output 
unit.

(2) A backward pass through the network is involved (analogous to the 
initial forward pass) during which the error signal is passed to each unit in 
the network and the appropriate weight changes are made.

In this net, not all weights need to be variable. Any num ber of 
weights in the network can be fixed.

2.6 Comments on Neural Networks

N eural netw orks try to sim ulate the functions of the brain. They are 
designed to be good at processing analog data, such as pattern recognition, 
speech processing etc. They do not do digital calculations as well as the 
present electronic computers. So they are com plem entary machines to 
electronic computers rather than better replacements. Electronics has been
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shown not to be very successful for implementation of neural computers 
with a large number of neurons because of their planar connections due to 
the interference of two intersected electrical signals and it offers only a 
lim ited fanout and connectivity. So although it is useful for a small 
num ber of neurons, it does not scale as the num ber of neurons increases. 
There is no interference of two intersected optical beams in the free space, 
optics can provide a large num ber of very complex interconnections. 
Recently optical implementations of neural computers have been the hot 
subject, stim ulated by the developm ent of high quality  spatial light 
m odulators and some other high speed logic optoelectronic devices 
[Tan85; Whe88]. The difficulty in storing large information in a small area 
still exists because of lack of a suitable material like silicon in electronics. 
Photorefractive m aterials have been used as the inform ation storage 
m edia and up to 500 patterns have been stored in a L iN b0 3 m aterial 
recently [Mok91]. It is still too far from practical use. We look forward to 
the breakthrough in storage media. It m ight take a time for optical neural 
computers to emerge from the laboratory.
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HOLOGRAPHY

3.1 Introduction

The roots of holography can be traced back to work by Gabor [Gab48]. A 
hologram  is an interference pattern  which contains all the information 
about a surface or transparency in a coded form. The hologram is recorded 
on a photographic plate with high resolution. During exposure, this plate 
is located in the front of the object in such a way that it is illum inated not 
only by the light from the object (which is also called object beam), but also 
by another beam of light (reference beam) which is coherent to the object 
beam. So the interference fringes are formed in the plate. A special feature 
of the holographic m ethod is the explicit or implicit interaction of two 
beam s of m utually  coherent light. A hologram  does not contain any 
elements resembling the object. The recorded image of an object is made 
visible by illuminating its hologram with the reference beam. A hologram 
is characterised by a high degree of redundancy. It can be divided into 
several parts and reproduces the same image from any part. But the 
sharpness of the image and its three-dimensional nature become weaker 
and w eaker as the size of the p a rt is reduced [Sor71]. The term  
"holography" originates from the Greek work "holo" w hich m eans 
complete and "grapho" which means "writing", so the composite word 
m eans complete recording. Hologram s were originally stim ulated by 
trying to increase the resolution in electron microscopes [Gab48, 49]. It was 
found that if an object was recorded in a hologram  by a beam with 
wavelength of X1 and reconstructed by another beam w ith wavelength of 
X2, the reconstructed image could be magnified by the order of \ 2/ ^ i  [Yu73]. 
Later holographic technique was found to be useful for storing three- 
dimensional objects. Such a hologram can reveal a real three dimensional 
picture. When you change the viewing position, you can see the different
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parts of the image stored in the hologram. Fourier transform  holograms 
are especially useful to store information because of their inform ation 
compression [Kni74]. A whole page of text can be stored in a very small 
hologram , say 200pm. As the hologram  includes phase inform ation as 
well as am plitude inform ation, it is w idely used for image processing 
systems, such as pattern recognition, image deblurring, and pseudo-colour 
encoding [Lee81]. There are two kinds of hologram, the thin or planar 
hologram  and the thick or volum e hologram . If the thickness of the 
recording gelatine, s, is much less than the fringe period of the hologram, 
d, say s<10d, it is called a planar hologram, otherwise it is called a volume 
hologram [Kog69; S0 I8 I]. As an example, a holographic plate, Kodak 649F 
has the thickness of emulsion, about 15 pm. When it is used to record a 
transm ission hologram, the fringe period, d, is several microns, such a 
hologram is regarded as a thin hologram. If, however, it is used to record a 
reflection hologram, in which d is less than one micron, such a hologram 
can be regarded as a thick hologram.

Recently, m ore interest has been directed tow ards holographic 
interconnections. It is stim ulated by liquid crystal and photorefractive 
materials which can record real-time volume holograms. In the volume 
hologram s, one-to-one interconnections are proposed by using special 
coding because of the Bragg angular selectivity [Psa88c; Mid89]. Recently 
optical interconnections have been im plem ented by the use of volume 
holograms in photorefractive m aterials [Yeh88; Bra89]. First, we discuss 
the basic principles of holograms. Then Fourier Transform holograms are 
introduced and based on this, the Van der Lugt matched filter correlation 
system  [Van64; C0 I8 I] is described. After that, we discuss another 
correlation system, which we call the spectrum  correlation system. It is 
used in our neural netw ork (HOFNET) system. Finally, we cover the 
encoding m ethods for inform ation storage and describe the m em ory 
capacity. In this chapter, all the hologram s are assum ed to be thin 
transmissive ones, unless they are specified.

3.2 Holographic Principle

A hologram records not only the am plitude distribution of an object as in 
normal photographs, but also the phase information. The first hologram 
was formed by Gabor [Gab48] using visible light. As highly coherent light —
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laser was not available when Gabor m ade the first hologram, he m ade the 
hologram  by using a highly transm issive object illum inated by a light 
source. The transm itted light consists of two components: (1) a strong, 
uniform plane wave directly passed; (2) a weak scattered wave generated 
by the image. So the object beam has the same angle as the reference beam. 
Such recording would relieve the requirement for light coherence, but the 
d ifficult is tha t the reconstructed  im age is superim posed  on the 
background light [Goo69]. Because of this, such holograms are called on
line holograms. In order to overcome this difficulty, a hologram  can be 
stored by using one beam illuminating the object and another beam as a 
reference beam, which has an angle to the object beam. Such recording 
requires a good coherent light source to make sure that at any point in the 
photographic plane, the light from the object is coherent w ith that from 
the reference. As in such a hologram, the object beam  has a different 
direction from the reference, such a hologram  is called an off-line 
hologram [Col71]. The first successful off-line hologram was made by Leith 
and Upatnieks [Lei62]. A general hologram recording system is shown in 
Fig. 3.1, a separate reference beam derived from the same coherent source 
is used to illuminate the photographic plate during the recording process, 
at an offset angle 0 to the beam  from the object. For sim plicity, this 
reference beam  is assum ed to be a collim ated beam  w ith uniform  
intensity. In this system, the amplitude distribution in the recording plane 
is the Fresnel diffraction of the object, so such holograms are also called 
Fresnel holograms.

The complex am plitude from the object beam at any point (x, y) on 
the photographic plate can be written as

°(x,y) = |o(x,y)|exp[-i<j)(x,y)] (3 .1)

and that of the reference beam is

r(x, y) = r exp(i27i^x) (3.2)

where o(x,y) is the object am plitude at point (x,y) in the photographic 
plane, (|)(x,y) is the phase distribution, ^=sin 0 /  X is the m odulation or 
spatial carrier frequency, r is the constant amplitude of the reference beam 
and X is the wavelength of the laser. Since the reference beam has uniform
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intensity, only its phase varies across the photographic plate. Here we 
assume that the phase of the reference beam is zero at the origin of the 
coordinates. The resultant intensity at the photographic plate is

Laser
Object Beam M l

Photographic
Plate

Object

Reference
Beam

El, E 2: Expanders 
CL:
M l, M2: Mirrors

CLE2
Collimated Lens

M2

Fig. 3.1 Arrangement for Recording a Hologram

I(x,y) = |r(x,y) + o(x,y)|2

= |r(x,y)|2 +|o(x,y)|2 

+ r|o(x,y)| exp[—i<J)(x,y)] exp(-i2rc£x)

+ r|o(x,y)| exp[i<|>(x,y)] exp(i27c£x) (3 3)

that is

I(x, y) = r2 + |o(x, y)|2 + 2r|o(x, y)| cos[2rc£x + <|)(x,y)] (3.4)

The third term on the right hand side of the equation indicates that the 
am plitude and phase of the object are encoded, respectively. They are 
m odulated by a set of interference fringes with a spatial carrier frequency 
equal to

It is assum ed that this plate is processed in such a way that its 
am plitude transmittance t (the ratio of the transm itted am plitude to that 
incident on it) is a linear function of the intensity and can be written as
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t = t0 + pTI (3.5)

where t0 is a constant background transmittance, T is the exposure time 
and p is a param eter determ ined by the photographic material used and 
the processing conditions. Substitute Eq. (3.3) into Eq. (3.5), the amplitude 
transmittance of the hologram is, accordingly,

where t^to+pT r2.
To reconstruct the image, the hologram is illum inated once again, 

as shown in Fig. 3.2 with the same reference beam that was used to record 
it. The complex am plitude u(x,y) of the transm itted beam is, in this case 
also, the sum of four terms, each corresponding to one of the terms of Eq. 
(3.6), and can be written as

u(x,y) = r(x,y)t(x,y)

+r|o(x,y)|exp[-i(J)(x,y)]exp(-i2^x)

+r|o(x,y)|exp[i<|)(x,y)]exp(i2 j^x)} (3.6)

= Uj (x, y) + u2 (x, y) + u3 (x, y) + u4 (x, y) (3.7)

Real image 
(Term 4) >

Term 1 &2

Virtual image 
(Term 3)

Hologram

Fig. 3.2 Reconstruction of the Hologram
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w here

uj = tirexp((i27t£x)

u2 = pTr|o(x,y)|2 exp(i2jrf;x)

u3 = PTr2o(x,y)

u4 = PTr2o* (x, y) exp(i4^x) (3 .8)

where * means complex conjugate.
The first term on the right hand side of Eq. (3.7), u^x.y), is merely

the attenuated reference beam, which is a plane wave directly transmitted 
through the hologram. This directly transmitted beam is surrounded by a 
halo due to the second term, u2(x,y), which is spatially varying. The 
angular spread of this halo is determ ined by the angular extent of the 
object. The third term , u3(x,y) is identical with the original object wave, 
except for a constant factor, and generates a virtual image of the object in 
its original position; this wave makes an angle 0 w ith  the directly 
transm itted light. Similarly, the fourth term , u4(x,y), gives rise to the 
conjugate image. However, in this case, the fourth term  includes an 
exponential factor, exp(i4rc£x), which indicates that the conjugate image is 
deflected off the axis at an angle approximately twice w hat the reference 
wave makes with it. Thus, even though two images - one conjugate (u4) 
and one original (u3) - are reconstructed in this setup, they are angularly 
separated from the directly transmitted beam and from each other, and if 
the offset angle 0 of the reference beam is made large enough, it is possible 
to ensure that there is no overlap.

The m inim um  value of the 0 is required to ensure that each of the 
images can be observed w ithout any interference from the others, as well 
as from the directly transm itted beam and the halo of scattered light 
surrounding it. It is determined by the minimum spatial carrier frequency 
5 for which there is no overlap between the angular spectra of the third 
and fourth terms and those of the first and second terms. Suppose the 
highest frequency in the spatial frequency spectrum of the object beam is 
£m. According to the calculation [Har84], if the spatial carrier frequency t, is 
chosen so that

^  3  ( 3 . 9 )
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then u3 and u4 will not overlap ^  and u2. As £ = sin 0/A,, so the minimum 
requirement for 0 is

0 > sin _1 (3A, £ m) (3.10)

3.3 Fourier Transform Holograms (FTHs)

A nother in teresting and im portan t category of hologram  recording 
configurations is one in which the interference at the photographic plate is 
between the Fourier transform of the object and a parallel reference beam. 
Such hologram s are called Fourier Transform  H ologram s (FTHs). A 
typical optical arrangem ent for recording a FTH [Col71] is shown in Fig.
3.3. The object, a transparency, located in the front focal plane of a Fourier 
transform  lens FL, is illum inated by a parallel beam of coherent light. If 
the complex am plitude leaving the object plane is o(x,y), then the complex 
amplitude of the object beam at the photographic plate, located in the back 
focal plane of lens FL, is

Laser BS object Beam

Ml

M2 FL
Photographic
Plate

Reference Y 
Beam CLl

CL2

E2

M3

Fig. 3.3 Fourier T ransform Hologram Recording Setup
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0(n , v) = F.T.{o(x,y)} (3.11)

w here F.T. is the Fourier Transform  function (see A ppendix). The 
complex am plitude of the reference beam at the photographic plate is

where R is the constant amplitude, f is the focal length of the lens CL2, 
(x, y) is the coordinate pair in the object plane and (p, v) is the coordinate 
pair in the Fourier Transform plane or the photographic plane (see Fig. 
3.3). The relation between (p, v) in the frequency domain and (x, y) in the 
spatial dom ain is

For simplicity we suppose the reference am plitude R is 1. The intensity of 
the interference pattern formed by these two beams is, therefore,

I(n,v) = |R (h , v ) + O (IX, v )|2

= l + |0(n,v)|2 +0(n,v)exp(-i2jc4Xf|i) + 0 ’((x,v)exp(i27t^Wn) (3 .14)

To reconstruct the image, the processed hologram is placed in the 
front focal plane of lens FL and illuminated with a parallel coherent beam 
with am plitude A as shown in Fig. 3.4. For simplicity, we suppose A = 1. It 
is assum ed as before, that the am plitude transm ittance of the processed 
hologram is a linear function of I(p, v), the complex am plitude of the light 
transmitted by the hologram is

U(p,v) = t0 + pTI(p,v)

= (t0 + pT) + pT |0  (p, v)|2 +

+ PT 0 (p ,v ) exp(-i27c£Afp) + pTO *(p,v) exp(i27t^A,fp) (3.15)

The complex am plitude in the back focal plane of lens FL is the inverse

R(p,v) = Rexp(i27C^Aip) (3.12)
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Fourier transform of U(|i, v) (see Appendix)

u(x,y) = F.T. {U(p,v)}
= (t0 + PT) 8 (x,y) + pT o(x,y) * o(x,y)

+ pT o(x + y) + PT o*(-x + £Af,-y) (3.16)

As shown in Fig. 3.4, the first term  on the right-hand side of Eq. (3.16) 
comes to a focus on the axis, while the second term forms a halo around it. 
The third term corresponds to the original object shifted downw ards by a 
distance or fsin0 , while the fourth term is the conjugate of the original 
object inverted and shifted upw ards by the same amount. Both the images 
are real and can be recorded on a photographic film placed in the back focal 
plane of lens FL.

Fourier transform holograms (FTHs) have a useful property called 
space invariance that the reconstructed image is stationary even when the 
hologram  is translated in its own plane. This is because a shift of a 
function in the spatial dom ain only results in its Fourier transform being 
m ultiplied by a phase factor which is a linear function of the spatial 
frequency. This phase factor has no effect on the intensity distribution in 
the image. In the Fourier transform  hologram , the object inform ation 
which usually occupies a large area is compressed in the vicinity of the 
focal point and the area used to record the hologram is small compared to 
the object itself. The size of the FTH depends on the focal length f, the 
wavelength of the laser, the fineness structure of the object pattern and the

Lase

Hologram

f

Fig. 3.4 Reconstruction of the Fourier Transform Hologram
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aberration of the FT system. So FTHs can be used for the purpose of high- 
density recording.

3.4 Van der Lugt Matched Filter (Spatial Correlation System)

The Van der Lugt m atched filter [Van64; Col71] is used to recognise a 
pattern from several patterns by correlation. For example, if we w ant to 
recognise a pattern g(x,y) from a bank of patterns fi(x,y) ( i= l , ..., M), we can 
correlate g(x,y) w ith all fj(x,y) and decide their sim ilarities according to 
their correlation magnitudes. The larger the correlation peak is, the more 
similar will be the two patterns. One way to perform the correlation of two 
patterns f(x,y) and g(x,y) is by the m ultiplication of their Fourier 
Transform spectra. By the convolution theorem,

where F(|i,v) and G(ji,v) are the Fourier transform s of f(x,y) and g(x,y) 
respectively. In optics, multiplication is much easier to implement and the 
Fourier transform can easily be performed by a lens. So instead of directly 
perform ing the correlation, we im plem ent the m ultiplication and then 
Fourier Transform it. The problem , as you see from Eq. (3.17), is the 
recording of a conjugate Fourier transform spectrum of g(x,y). The system 

proposed by Van der Lugt for storing the G*(|i,v) is the same as Fig. 3.3 
with o(x,y) replaced by g(x,y) and the correlation implementation system is 
shown in Fig. 3.5. So the transmittance t of the processed hologram (see Eq. 
(3.5) becomes

Here we still suppose the am plitude of the reference beam is 1. We insert 
an unknown pattern f(x,y) in the front focal plane of lens FL1 and at the 
back focal plane, where the FTH is placed, we get the Fourier transform of 
f(x,y), that is F(p,v).

(3.17)

t(|L v) = (t0 + PT) + pT|G(|i, v )|2 +

+ (3TG(}i, v)exp(-i27t^A.fjj.) + pTG*(ji, v)exp(i27t^fji) (3.18)
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Laser

FLl Hologram FL2

j 0 /
• \ /

O’

Fig. 3.5 Van der Lugt Matched Filter Correlation System

So after the hologram, the amplitude can be expressed as

U(|i,v) = F(ji,v) x t(|i,v)

= F(|i,v)(t0 + pT) + pTF(n,v)[G(n,v)f 
+ |3TF(|i, v)G(|i, v) exp(-27c£Afji)
+ pTF(|i, v)G* (p., v) exp(27i^Xf|i) (3.19)

At the back focal plane of lens FL2, the complex amplitude is

u (x \y ') = F.T.{U(n,v)}

= (t0 + PT)f(x,,y ,) + pTf(x,,y ,)<8)g(xl,y ,)*g(x',y')

+ pTf (x', y') <8> g(x*, y ') ® 8(x' y ')

+ f (x', y' )* g(x', y ') <E> 8(x' -£Af, y ') (3 .20)

where (x", y') are coordinates in the back focal plane of lens FL2.
The first term is the attenuated image of the input pattern  and the 

second term  is the auto-correlation of g(x',y') (a little bit sim ilar to 8 -  
function) which is convoluted by the pattern f(x ',/) . It contributes to a halo 
superim posed w ith the first term. The th ird  term  is the convolution 
between the input pattern and the stored pattern, shifted dow nw ards at 
x '= - ^ f  or (-fsinG). The fourth term is the correlation of f(x',y') and g(x',y') 
located upwards a tx '= ^ f  or (fsinG). If f(x,y) is the same as g(x,y), then the
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system performs the auto-correlation, which results in a very bright spot at 
the position x '= f sin0. So we can use this method to detect the similarity of 
the inpu t pattern  f(x,y) and  the stored pattern  g(x,y) or for pattern  
recognition according to the brightness of the correlation spot.

As the Van der Lugt matched filter system uses correlation in the 
spatial domain, we call this system as "the spatial correlation system". By 
putting different filters in the filter plane (the back focal plane of lens FL1 
or the front focal plane of lens FL2), the input pattern can be processed in 
the way you want, for example image addition or subtraction, deblurring 
etc., so such a system is also called a 4-f image processing system. Usually 
the Fourier transform  hologram of an object occupies a very small area 
and the spectrum of the object consists of a very bright zero-order spot plus 
weak side-lobes. W hen the input pattern is rotated, its Fourier spectrum  
looks the same before, so it is difficult to align them. In the next section, 
we will describe "the spectrum correlation system", which occurs in the 
spectral domain.

3.5 Spectral Correlation System

The spectral correlation system is shown in Fig. 3.6. This is a spatial 
variant system. This time the hologram recorded in Fig. 3.3 is put in the 
front focal plane of the lens FL1 and f(x,y) is placed in the back focal plane 
of the lens FL1 or the front focal plane of the lens FL2. When a parallel 
beam reconstructs the hologram, suppose the hologram  is processed as 
before, then the am plitude after the hologram can be written as

The term  which interests us is that containing the spectrum  of the 
conjugate pattern, that is the last term on the right hand side of Eq. (3.21). 
We block all the other terms. At the back focal plane of lens FL1 where the 
pa ttern  g*(x,y), w hich is the sam e as g(x,y) for a real pattern , is 
superim posed with pattern f(x,y). At the back focal plane of lens FL2, the 
correlation of the Fourier transforms of the two patterns is

+ G(|j,,v)exp(-i27C^Xip) + G * (p, v)exp(i27rf^fp)} (3.21)
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F(|i,v) * G(|i,v) = F.T. {f (x, y)g(x, y)} (3.22)

where * means correlation and f(x,y) and g(x,y) are let to be real patterns.

T  ' T
Laser

Optical
Block

CL1 H

FL2FL1

Fig. 3.6 Spectrum Correlation System 

By the definition of the Fourier transform

F(|i,v) * G(|i,v) = J Jf(x,y)g(x,y)exp[-j2rc(px + vy)]dxdy (3.23)

At the centre of the correlation plane, where |i=0, v=0, we have

F(ji.,v) * G(fj.,v)|^_0 v=Q = J J f (x, y)g(x, y)dxdy (3.24)

This equation is just Parseval's Theorem for real patterns [Sor71]. This is a 
correlation between the spectra of the two patterns, so we call it "the 
spectrum  correlation". According to Eq.(3.3), the term in the right hand 
indicates the similarity of the two analogue patterns f(x,y) and g(x,y). So we 
can use the zero order of spectrum correlation to replace that of pattern 
correlation to indicate the similarity. The advantage of this replacement is 
that we can record the Fourier transform  hologram s w ith the same 
m odulation frequency for all patterns to be stored during the learning 
procedure (see chapter 6 ). This elim inates the problem  of diffraction 
efficiency variation due to the m odulation frequency variation of the 
holograms. A nother advantage is that we can im plem ent the parallel 
correlation by using a spatially m ultiplexed hologram  array, which

- 4 5 -



Chapter Three Holography

elim inates the cross-talk  of the hologram s if they are s to red  
superimposedly.

3.6 Holographic Memories

H olographic m em ories are an attractive candidate for large capacity 
neural-netw ork-based com puter storage system s, such as arithm etic 
databases. They offer the potentials of providing parallel associative search 
capability to the whole stored data base and perhaps can include data 
processing within the memory itself. A rapid retrieval of stored data is 
essential for neural netw ork based systems. Generally the holographic 
m em ory capacity is lim ited by the holographic resolutions, while the 
resolutions are lim ited by the size of the hologram  aperture, and the 
spatial frequency limit of the recording medium. Yu [Yu73] found that the 
m inim um  resolvable distance in holography is p roportional to the 
wavelength of the coherent source used for the wavefront construction 
and to the distance between the object and the recording medium, and it is 
inversely proportional to the size of the hologram  and the spatial 
frequency limit of the recording medium.

U sually , Fourier transfo rm  ho log ram s are used  to store 
inform ation, since Fourier transform  hologram s have some advantages 
e.g., spatial invariance, spectrum  processing, inform ation compression. 
There are three kinds of holographic memories, specified respectively as:

(1) Angularly multiplexed;
(2) Spatially multiplexed;
(3) Hybrid.

In the angularly m ultiplexed recording (Fig. 3.7(a)), the holograms 
are superim posed on the same area of the recording m edium  and to 
enable them  to be d istingu ished , each hologram  has a d ifferent 
m odulation frequency so the angles betw een the reference beam and 
patterns to be stored m ust be set differently for each stored pattern. As all 
the hologram s are superim posed  together, there is cross-talk  or 
interference between them. In the real time hologram  case, such as in 
photorefractive materials, the new hologram  storing possibly erases the 
previous ones, so all the patterns to be stored in the system have to be
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updated from time to time [Psa88b].

H H

(a) Angularly multiplexed recording

H  L H

(b) Spatially multiplexed recording

(c) Hybrid recording

Fig. 3.7 Holographic Memories

W hen such holograms are replayed by a parallel beam, there are 
differences between planar holograms and volume holograms (Fig. 3.8). In 
the planar hologram case, all the stored patterns will be reconstructed. If 
the m odulation frequency and position and the w avelength of the 
reconstruction beam are the same as those of one of the stored holograms, 
then the pattern corresponding to that hologram will be replayed without 
distortion, but all the others will be distortedly reconstructed and shifted. 
For the volum e hologram  case (Fig.3.8b), how ever, the m odulation  
frequency and the position of the reconstruction beams m ust be the same 
as or very close to those of one of the stored patterns. O therwise, no
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pattern will be replayed because of the selectivity of the Bragg diffraction 
angle [Col71], if the w avelength is kept unchanged for recording and 
reconstructing. If the w avelength is changed, then the m odulation  
frequency an d /o r the position m ust be changed as well, in order to match 
the Bragg diffraction condition, bu t such changes usually  resu lt in 
aberrations in the reconstructed pattern [Col71].

Reference for A Reference for A

Photographic
Plate

Developed
Plate

Reference
forB

Reconstructed
Image

&  
y

Reference for A

Volume
Medium

Reference
forB

Reference For A

Volume Plate Reconstructed
Image

A
A

/

Fig. 3.8 Comparison of Planar and Volume Holograms 
( (a) Planar Hologram; (b) Volume Hologram )

In the spatially m ultiplexed recording system , the m odulation 
frequencies for all the patterns are the same, while the positions on the 
recording plate are different. The advantage of such recording is that there 
is no cross-talk between the stored patterns and the num ber of stored 
patterns can be increased by using a larger recording material. Actually, the 
size of the recording plate is limited by the f-number of the lens, unless a 
lenslet array is used. In this recording system, there is no difference 
betw een the planar and volume hologram s except for the diffraction 
efficiency and memory capacity. In the hybrid recording configuration, 
both frequency m odulation and hologram position change are involved. 
Such a recording system is especially useful for volume holograms. In the 
volume medium, each small area can store a num ber of patterns by using 
angularly m ultiplexing and also we can store a series of such pattern

- 4 8 -



Chapter Three Holography

groups in other positions by using spatial m ultiplexing. Generally the 
larger the hologram, the better the resolution and the signal to noise ratio 
(SNR) [Sor71]. But actually the difference is very small unless the size of 
the hologram  is comparable to the grating period. So we can divide the 
recording plate into a num ber of sub-sectors and in each sub-sector m any 
hologram s can be stored by using angular multiplexing, the num ber of 
stored patterns depending on the thickness of the recording m edium  and 
the wavelength.

o (x,y) Ground glass

Object beam
Conjugate
beam

Image
o(x,y)

Side AReference beam 
(a) Hologram Recording (b) Reconstruction

Fig. 3.9 Fresnel Holographic Memory

A lthough Fourier transform  hologram s are comm only used for 
pattern storage, Fresnel holograms can also be used for such purpose. A 
optical setup for pattern storage and its reconstruction system are shown 
in Fig. 3.9. The transparent pattern o(x,y) is illuminated by a parallel beam, 
a piece of ground glass is placed just after the transparency, so that the 
input pattern is encoded randomly. In the recording plate, which is put a 
distance 2f away behind the inpu t pattern, the w hole inform ation is 
d istribu ted  over every physical point because of the ground glass 
scattering. So we use an aperture in front of the recording plate to confine 
the hologram  in a small area. The sm allest size is lim ited by the 
m inim um  resolvable structure of the input pattern, not by the f-number 
of the lens as in the FTHs' case. Another difference is that the system used 
here is an image system, rather than a Fourier transform system, so the 
am plitude distribution in the recording plane is the Fresnel of the input 
pattern. When we replay the hologram recorded in Fig. 3.9(a), we use the

- 4 9 -



Chapter Three Holography

conjugate beam  of the reference beam used for hologram  recording, so 
there will be a real pattern reconstructed in the plane 2f away from the 
hologram  (Fig. 3.9(b). We have designed an optical HOFNET neural 
network system based on this hologram and the details will be covered in 
chapter 7.

H ologram s store in form ation  associatively  in the  recording  
m aterial, so they are very useful for the neural netw ork memory. The 
memory capacity is an im portant factor for this kind of application. We 
will discuss this factor for the planar hologram and the volume hologram 
respectively. The m em ory capacity can be defined as the maximum bits 
that can be stored in a holographic material. If the hologram is thin, the 
theoretical memory capacity can be written as [Psa88c]

Mp = 4 -  (3.25)
A,

where S is the area of the recording material and X is the wavelength. If 
the hologram is thick, however, the memory capacity can be written as

Mv ■*—y (3.26)
X

w here V is the volum e of the recording material. Equations (3.25) and
(3.26) are used only for the com parison of thin hologram s and thick 
holograms. For the real materials, the m em ory capacity will be reduced 
greatly by considering noise level, the dynam ic range of the refractive 
index, cross-coupling etc. [Sol89]. Suppose V = lx lx lcm 3, X is 0.5 pm , then 
Mv is on the order of 1012. For the same memory capacity, if using a thin 
hologram, the area m ust be in the order of 10000 cm2. If a pattern contains 
100x100 bits, then 108 patterns can be stored. For inform ation storage 
(including interconnections), volume holograms are more compact than 
p lanar hologram s. Recently 500 hologram s have been stored in a 
photorefractive m aterial LiNbC>3 [Mok91]. Each hologram  contains an 
image with 320 by 220 pixels, so the total memory capacity is

500 x 320 x 200 = 3.52 x 107 (3.27)

Considering some factors, which affect the memory capacity, such as noise,
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refraction  m odu la tion  dep th , pow er [Sol90], this resu lt is quite 
encouraging.
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Chapter Four

REVIEW OF OPTICAL NEURAL NETWORK SYSTEMS

4.1 Introduction

Systems to sim ulate the operations of the hum an brain by emulating its 
anatomic structure are called artificial neural networks [See chapter two]. 
Like the brain, they are composed of a large num ber of simple processors 
that are extensively interconnected. Optical technology matches well to the 
architecture of a neural netw ork system , because the technology's 
strengths lie in those areas that are indispensable to a neural netw ork 
system for the interconnections of a large num ber of processing elements. 
The w eaknesses of optics are in areas that are less critical for the 
functioning of a neural netw ork system, such as the ability to perform  
intricate logic operations at the processor level. As optical processing 
elements communicate through light beams, they can be connected to one 
another w ithout attaching a cum bersom e w ire betw een each pair of 
elem ents and they need not be confined to the restrictive p lanar 
configurations of silicon chips [Bel86 ]. Optical interconnections for 
im plem entation of neural networks are being considered as a means of 
relieving communication bottle necks encountered in VLSI chips [Goo84].

In neural network systems, inform ation is associatively stored in 
interconnections betw een processors, rather than  in the processors 
them selves [Lip87]. The large degree of parallelism  and the three 
dim ensional (3-D) interconnection capability, are required. A lthough 
electronics is very useful for a neural netw ork system w ith a small 
num ber of neurons, it could no t im plem ent a large num ber of 
interconnections because of the interference betw een two intersecting 
connections. Optical systems are the best choice for the neural network 
im plem entations. Recently such optical im plem entations have been 
receiving considerable attention [Lin89; Hor90; Far89; Yu90; Jan88a;
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Whi88a]. Many researchers have tried to modify the Hopfield model, so 
that it is suitable to be im plem ented practically (optically or opto- 
electronically) [Sha89; Gin88]. The optical requirements have been studied 
thoroughly  [Yar86; Gho88 ; Oth89]. The m ost prom ising devices for 
establishing optical interconnections in optical neural system s are 
holograms [Psa88c]. Holograms are best known as a means of generating 
3-D images, but more generally they represent an effective technique for 
recording and reconstructing the intensity of a light ray as well as the 
direction in which it was travelling. A planar hologram  can direct any 
light beam on one side of it to any point on the other side, provided the 
total num ber of points and light beams do not exceed the num ber of 
resolvable spots on the film. A volum e hologram  m ade from  a 
photorefractive crystal is even more prodigious in its capability to connect 
light emitters to light detectors, bu t the recording and encoding is also 
m ore complex. An optical neural netw ork system  is usually based on 
holographic techniques for interconnections and opto-electronic devices 
for logic processing, while their algorithm relies on the model [See chapter 
two]. They can have the ability of error correction and highly parallel 
inform ation  processing. The incorporation  of non-linear feedback 
enhances dramatically error-correction capability and storage capacity of 
the ho lo g rap h ic  m em ory. In the  n eu ra l n e tw o rk s , in h ib ito ry  
interconnections (a bipolar interconnection matrix) are usually required. 
A lthough it is possible to implement negative interconnections optically 
by using phase encoding, it would make the system too complex to be 
practical. Several m ethods have been proposed and carried out. We 
describe them in the following sections.

As there are so many optical neural network systems that have been 
dem onstrated in the w orld, it is difficult to cover all of them in one 
chapter. Here we m ainly discuss those related to our neural network 
(HOFNET), that is those based on the Hebbian learning rule and roughly 
classify them into two kinds of nets: one is called the outer product model 
system (Hopfield model) and the other the inner product system (Matched 
filter model) [Sel89]. First, in section 4.2, we describe the first optical neural 
system based on the matrix-vector multiplication algorithm [Psa85]. In Sec.
4.3, linear optical neural network systems are presented [Jan88a; Pae87]. 
We will present them as the outer product model and the inner product 
model respectively. In Sec. 4.4 optical systems based on high order neural
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netw orks which have a higher m em ory capacity are presented [Jan89; 
Owe86]. The layouts are similar to Sec. 4.3. A brief conclusion is given at 
the end of the chapter.

4.2 Opto-electronic Neural Network Using Vector-Matrix Multipliers

The first optical neural netw ork system based on the Hebbian learning 
rule was implemented by using the vector-matrix m ultiplier [Goo78]. It is 
shown schematically in Fig. 4.1, in which the array of light-emitting diodes 
(LED's) represents N  logic elements w ith binary states (LED on or off), 
which are to be interconnected in accordance w ith the Hopfield model 
(See section 2.2.1) [Psa85; Far85]. This is accomplished by the addition of 
nonlinear feedback (including feedback, thresholding, and gain) to the 
well-known optical vector-matrix m ultiplier [Psa87]. Gain is included to 
compensate for losses. The optical feedback has the thresholding (non- 
linearity) and the gain concentrated between the photo diode (PD) array 
and the LED array, which can be fabricated monolithically on GaAs or 
replaced by a optical transistor amplifier [Tan85].

PD array Threshold & 
Gainv -(mo)

Spatial Light Modulator 

T::LED array 

v^mi)

Feedback Loop

Fig. 4.1 Vector-Matrix Multiplier Based Optical Neural Network 

M ultiplication of the vector by the m atrix in these schemes is
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accom plished by horizontal and vertical cylindrical lenses. In opto
electronics, it is difficult to directly implement bipolar interconnections. 
There are two main m ethods to cope with this problem. One is to divide 
the interconnection m atrix into two parts and T^', so can be 
written as

where both T ij+  and Tij" are non-negative and Vj(m) is one of the M stored 
patterns in the matrix. The other method is to use a DC bias and the details 
will be introduced in the next section. One way to implement the bipolar 
in terconnection  m atrix  is show n in Fig. 4.2. It is realized opto- 
electronically w ith incoherent light by assigning its negative and positive 
values to adjacent rows. Light passing through each row  is focused onto 
adjacent pairs of photo diodes of the PD array that are electronically 
connected in opposition, as shown in Fig. 4.2 [Psa86c]. So the penalty is that 
the num ber of detectors is twice of the neurons (LEDs).

H ere the positive and negative elements of each row of the T^ 
matrix are separated into two subrows, one for positive values and one for 
negative. The light transm itted through the two subrows is integrated 
horizontally with the aid of another set of anamorphic lenses and brought 
to focus on two adjacent photo diodes of the PD array connected in 
opposition. The ou tpu t of the first diode pair circuit will be applied 
through an electronic thresholding circuit to the first element of the LED 
array, as shown in Fig. 4.1. Similar connections are made between other 
detector pairs of the photo detector array and corresponding elements in

(4.1)

PD1

Output 
—0

Fig. 4.2 Implementation of Bipolar Interconnections
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the LED array. Thus if an input pattern Vj(mi) is displayed in the LED 
array, the output can be written as

N
v j(mo) = ^ T ijv i(mi)

i=l

- p V - T p v . t a u )  ( 4 a

w here VjOni) is the inpu t pattern  and the netw ork fires according to 
w hether Vj(mo) exceeds the threshold or not.

Such a system is very useful for image processing and it can process 
information in parallel. In this system the input pattern is limited to one- 
dim ension only, o therw ise the interconnection m atrix  cannot be 
im plem ented in a plane. In the following sections, we will discuss some 
neural network systems, which can process two dimensional patterns.

4.3 Optical Linear Neural Network Systems

W hen we consider the possibility of optically storing 2-D patterns, each 
pattern containing NxN neurons, in a neural network system, we directly 
extend the Hopfield model to 2-Ds (See section 2.2.1), and the patterns are 
stored in a four-dimensional tensor. Since we have only two independent 
spatial variables to work w ith in an optical system, it is difficult to 
im plem ent such m ulti-dim ensional interconnections. One solution is 
direct: the N 4 interconnections are divided into N 2 2-D interconnections 
which can be processed by optics (outer-product model) [Yu90; Lu90; 
Yan90b; Lin89]. The other solution is to modify the Hopfield model so that 
it can be implemented by 2-D interconnections (inner product) [Psa85, 87; 
Pae87; Sof86 ; Owe86]. Here two kinds of im plem entation based on the 
ou ter p roduct m odel and  the inner p roduct m odel are described 
respectively (see chapter two for the definition of outer product and inner 
product models).

4.3.1 Optical linear neural network based on the outer product model

Extending the 1-D N neuron Hopfield neural network into the 2-D NxN 
one, the algorithm equation becomes
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v ii( m o ) = ^ ^ T ]ldiv]k(mi) (4.3)
k = l1=1

where T lk ij is

M

TUai = X vlk(n ')vij(m ) (4-4)
111=1

where vlk (m) represents the state of the /A:th neuron of the mth stored 
pattern, Tlkij- is a 4-D interconnection weight matrix, vlk(mi) is an input
pattern and lk and ij are the pixel positions in the patterns. In order to
implement the 4-D interconnections, the matrix T lk ij is partitioned into an 
array of 2-D submatrices T n i j, T 12j j , . . . ,  T N N ij, in which each submatrix is an 
NxN size. Thus we can see that a 4-D associative memory matrix can be 
displayed as an N 2 2-D array representation.

To avoid using bipolar interconnections, one solution has already 
been m entioned in the above section. Another way is to add a constant dc 
component to the clipped binary and bipolar interconnection T lkij to obtain 
a non-negative interconnection T ^  and com pensate it w ith an input- 
dependent thresholding operation as

v,j(mo) = (4.5)
1=1 k=l 1=1 k=l

w here

Tikij = Tikij+ 1 (4-6)

Here for all 1, k, i, j, T lk ij is assumed to be hard clipped, that means if it is 
more than zero, it takes +1; or else it takes -1. The other alternative, 
similar to this method, to avoid bipolar interconnections was described by 
White [Whi88a, b, c], in which the Hopfield model is rearranged to be in 
two parts to rem ove negative connections and  does not require  
subtraction stages [Psa85] or a time varying threshold level [Jan88a, b], so it 
is ideally suitable for an optical implementation.
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1211
2111

Ground
Glass

Hologram

Fig. 4.3 One to N Holographic Interconnections

The architecture for im plem enting one to N  interconnections 
holographically is shown in Fig. 4.3. For a fixed ij, say 11, the matrix Tlkll is 
arranged in a two dimensional array according to the subscript indices lk. 
A ground glass is put behind the input plate, which is inserted in the front 
focal plane of lens L, so that at the back focal plane in the position (11), all 
the information is collected. In Fig. 4.3 we use F.T. holograms, so we call it 
a focused system. Jang [Jan88a,b] implemented the same interconnection 
by using a unfocused system. . Fig. 4.4 is a focused system by using Fourier 
tran sfo rm  ho log ram s. In each ho log ram  e lem en t H^, all the 
interconnections T lk ij (1=1,...,N, k=l,...N ) are recorded. So when it is 
reconstructed, 1 to N 2 interconnections are implemented.

In Fig. 4.4, each of the NxN m ulti-element hologram  performs an 
interconnection of 1 to N 2 (in Fig. 4.4, N=2). Each pixel in an NxN input 
pattern can either illuminate (if the pixel is on) or not illuminate ( if it is 
off) a corresponding hologram element located behind it. Each hologram 
element contains an NxN pattern; the full set of connection patterns is 
N 2xN 2. The light from each element of the NxN connection hologram is 
projected onto a single NxN detector array to carry out the summation. 
The thresholding operations enhance the power and the contrast of the 
output image. The zeroth-order diffracted beam is itself the binary pattern 
o u tp u t and  all the firs t-o rd e r d iffracted  beam s rep resen t the 
interconnections of the neuron elements. In the system both the zeroth- 
order diffracted beam and the first-order diffracted beam  are utilized 
[Jan88a].
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Zero Order Output

SubtractionFeedback loop

threshold and gain

Fig. 4.4 2-D Optical Neural Network Based on Outer Product Model

Other examples of optical systems of the 2-D Hopfield m odel are 
constructed by using a high-resolution liquid-crystal television [Yan90; 
Lu90; Yu90]. In these systems a lenslet array is used to replace the 
hologram  array to im plem ent 1 to N 2 interconnections. Recently an 
associative memory system based on time encoding by using an echo 
correlator was proposed [Bel91].

4.3.2 Optical linear system based on the inner product model

The 2-D inner product model algorithm can be extended directly from the 
1-D model described in chapter one. It is written as follows [Pae87]:

(4.7)

or its analog equivalent [Psa85]
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m=l

where * means correlation and ® means convolution; fmi(x,y) is an input 
pattern, fm(x,y) is one of the stored patterns (m=l,2,..., M) and fmo(x,y) is the 
ou tpu t pattern. So the optical im plem entation of this system can be 
decomposed into three steps. Firstly, the inner product of the input pattern 
and each stored pattern  is calculated. Actually it is the zeroth-order 
correlation which detects the similarity between the input pattern and the 
stored patterns [see chapter three]. This can be optically calculated by a 4-f 
image processing system by using matched filter technique. Secondly, each 
inner product or correlation should be m ultiplied or correlated by the 
stored patterns. Finally weighted sum m ation is carried out over all the 
stored patterns with the weight equal to the zero-order correlation to give 
the final output.

The m em ory in this neural netw ork can be form ed by storing 
patterns in the form of a conventional Fourier transform hologram. All of 
the patterns to be stored are m odulated by a different reference frequency 
(Fig. 3.6) which is equivalent to a different angle between the reference 
beam and each object beam. It is called angular m ultiplexed encoding. 
Such an arrangem ent gives the correlation ou tpu ts separately in the 
correlation plane so that individual processing for each channel can be 
m ade [Owe87]. For simplicity, we assume that the reference frequencies 
change by a constant increment between subsequent recordings. When we 
record the interference betw een all the patterns to be stored and the 
reference beam on a holographic plate at the Fourier transform plane, after 
processing, the am plitude transmittance of the hologram becomes

m  z

ti (H/V) = X  Fm v )+ exp[-j2 itXf(4mn + £mv)]
m=l
M

= X(M -/v)exp[-j27tAf (£mp. + £mv)] + other terms 
m=l (4.9)

where Fm(p,v) is the Fourier transform of fm(x, y) and and
Cm = Co + m §C are the modulation frequencies which depend on the angle 
of incidence of the reference beam. and 5£ are the frequency differences
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between two adjacent recordings.
The whole optical neural network system is show n in Fig. 4.5. The 

input pattern is placed at plane P | and is Fourier transformed by lens L j. Its 
Fourier transform  illum inates the holographic m em ory placed at the 
Fourier plane P2. The correlation of the input pattern and each stored 
pattern  is form ed at plane P3 by lens L2. The inner product values are 
sam pled by an array of pinholes at plane P3. Each pinhole is positioned 
exactly where each of the stored patterns was centred when the Fourier 
transform  hologram  was recorded. Therefore, if the input is one of the 
stored patterns centred on the optical axis, then a sharp auto-correlation 
peak will be formed at plane P3 on one of the pinholes. Light emerging 
from each pinhole is retroflected by a phase conjugate m irror (PCM) 
[Ath86 ] or even a m irror placed immediately after the pinholes [Pae87], 
and the reflected light illuminates the hologram to form the reconstructed 
patterns of all of the memories at the output plane P4. The reconstruction 
due to light from each pinhole is the entire composite memory shifted by 
the position of the pinhole. At the origin in the plane P4 we obtain the 
superim position of all of the memories. The strength with which each 
m em ory is represented in this superim position is proportional to the 
value of the inner p ro d u ct betw een the in p u t p a tte rn  and the 
corresponding stored pattern. A window is placed at P4 to select only the 
desired central portion of the reconstructed patterns.

p i  f h  { p2

Hologram

Output

Pinhole array 
and Phase Conjugate Mirror

Fig. 4.5 Optical Linear Neural Network Based on Inner Product Model
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In the output plane P4, there are totally M2 patterns reconstructed, if 
the patterns are stored in planar holograms. Each retroflected beam from 
each pinhole will reconstruct all the M patterns, but they are shifted from 
each other because of the thin hologram. If the m odulation frequency 
difference betw een the adjacent hologram s is big enough [see chapter 
three], then for each reconstruction beam, only one pattern  is located in 
the centre and all the other patterns are located outside the centre pattern. 
All the other M(M-l) patterns are discarded and most of the light energy is 
wasted, so the reconstructed patterns are very weak. If, however, the 
patterns are stored in a volum e hologram , then because of the Bragg 
diffraction angular selectivity, only M patterns are reconstructed and 
superim posed at the central area in the plane P4. So in this system, 
volume holograms are preferred.

We now briefly describe the operation of this system analytically. 
Insert the input pattern fmi(x,y) into the plane Pj in Fig. 4.5. Then, the term 
of interest in the amplitude of the light diffracted by the hologram is

M
t2(H,v)= X Fmi^/V)P^(|x,v)exp[-2icXf(^mn + ̂ mv)] (4.10)

m=l

where Fmi(|i,v) is the Fourier transform of the input pattern fmi(x,y), t2 is 
the am plitude d istribution of one diffracted beam  and (p,v) are the 
coordinates in the spectral plane. At the correlation output plane P3, the 
light amplitude is the Fourier transform of Eq. (4.10)

M

y') = X  (fmi (x'. y' )* fm (x', y')) ® 8 (x' -Xf^m, y' )
m=l
M

= Egm(x'.y')®5(x’-> i4 in/y'-W^m) 
m=l (4.11)

where gm(x', yO is the correlation of fm(x',y') with fmi(x',y') and (x', y') are 
the coordinates in plane P3. The correlation output, which is sampled by 
the pinhole array and reflected by the PCM at plane P3 will reconstruct the 
hologram again. The am plitude distribution t4 ( j l l ,  v) of the light travelling 
from right to left in Fig. 4.5, immediately to the left of P2, is given by
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M M

t4(ivv) = £  £ g m(0/0)F;.(n/v)exp{-j2icXf[p.(^m -  %m.) + v(£m -  £„.)])
m=lm'=l

(4.12)

The light at the output plane P4 is the Fourier transform of Eq. (4.12). The 
total light amplitude at P4 can be written as

M M

t5(x,y) = £  £g„(0 ,0)4 ,.[x+W (Sm y+xf(f;m -£„■)] (4.13)
m=lm'=l

Note that in the above equation, unless m =m ', the reconstructed patterns 
will emerge on off-axis positions. If the hologram  is thick, then according 
to the Bragg diffraction angular selectivity, only other terms which satisfy 
m=m' come out. So if we pu t a window, whose size is equal to that of a 
stored pattern, in the centre of the plane P4, then we have

M

t6(x'y > = £ g m (° '° )C (x-y) (4-14)
m=l

where t6 is the am plitude distribution in the central window. If fm(x,y) is 
real,

fm(x,y) = C (x,y) (4*15)

So we have

M
t6(x, y ) = £ g m(0<0)fm(x,y) (4.16)

m=l

Compare the result in Eq.(4.16) with Eq. (4.7) or (4.8), we see that the optical 
system we described performs exactly the same as the inner product neural 
network system.

If the input pattern is more similar to a stored pattern than others, 
then that stored pattern will be displayed at the output plane, but at the 
same time all the other memories are also weakly read out. This crosstalk 
can be eliminated if the stored images are binary, in which case the output
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can be thresholded and fed back to the input for m ultiple iterations.
An advantage of the holographic m em ory in neural netw orks is 

that a limited am ount of shift invariance is possible if Fourier transform  
holograms are used [Owe86; Psa86; Ath86]. If thin holograms are used, the 
am ount of permissible input pattern shift w ithout am biguity in pattern  
identification is lim ited by the angular separation betw een reference 
beams. As it is shown in Fig. 4.5, the output consists of all of the stored 
patterns. Assuming the input object is centred on-axis, the desired ou tpu t 
will also be centred on-axis. The others, w hich are undesired , are 
positioned off-axis. The separation between these patterns is determ ined 
by the angular separation between the reference beams used to record the 
patterns. The correlation and convolution operations of the memory, as 
the input pattern is shifted the output pattern will also shift and rem ain 
coincident with the input pattern. Psaltis et al [Psa86 ] have analysed this 
problem and found that full shift invariance over the entire field of view 
w ithout ambiguity is possible only if a single pattern is stored. As the 
num ber of stored patterns increases, the perm issible shift decreases. If 
thick holograms are em ployed to record the information, an additional 
limit is involved in the shift invariance: the Bragg selectivity effect. Shifts 
in the input pattern  result in shifts in the angular spectrum  of plane 
waves incident on the hologram. If the shifts are too large, the Bragg 
condition will no longer be met and the pattern will not be reconstructed.

4.4 Optical High Order Neural Network Systems

Linear neural netw orks based on the Hebbian learning rule have low 
storage capacity [Psa88a; Lee86]. To overcome this limit, non-linear or high 
order neural network models have been introduced. One model called a 
nonlinear discrim inant model or high order outer product model was 
proposed [Psa86; Lee86; Gil86] and some optical implementations of such 
systems are presented. Also based on the inner product model, Soffer et al 
[Sof86; Owe86] proposed a high order inner product model which has a 
nonlinearity in the correlation domain. Firstly, we will describe an optical 
quadratic neural netw ork system based on a high order outer product 
model. This is the highest order to have been im plem ented before the 
work in this thesis. Then an optical system to im plem ent high order 
neural networks based on the inner product model is presented.
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4.4.1 Optical neural network based on high order outer product model

N eural network systems with order higher than two are very difficult to 
im plem ent [Lam89; Liu86], unless the HOFNET m odel is used. We 
describe a quadratic  neural netw ork  system  based on holographic 
technique w ith 1-D patterns stored in the system as an example of high 
order neural netw ork implementation. In the quadratic neural netw ork 
with N  neurons, N 3 interconnections are required. It can be realized with 
an optical vector-matrix multiplier and hologram array or microlens array 
for the interconnections [Jan89; Lin89, 90; Hor89].

The hologram array recording is shown in Fig. 4.6 and an optical 
high order neural network system is shown in Fig. 4.7. As in optics, only 
two independent spatial variables are available, it is difficult to implement 
N 3 interconnections between the neurons. The algorithm  of the second 
order neural network is as follows

N N
V i(m o ) =  W ijkV j(m i)v k(m i)  (4.18)

j=l k=l

where is the tensor where patterns are stored

M
w ijk = v i ( m ) v j ( m ) v k ( m )  (4.19)

m=l

Slight m odifications of the above equation  are m ade for optical 
implementation. First, clip the tensor as before, that means if the element 
of the tensor is m ore than zero, it takes 1 or else it takes -1. This 
modification allows the use of a binary spatial light m odulator. Split the 
above equation into two equations

N
Tij =  £ s g n ( W j j k ) v k ( m i )

k

N
v i  ( m o )  =  X s g n ( T j j ) v j ( m i )

j (4.20)
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where the sgn function is the same as the hard clipped function as shown 
in Fig 2.1. As it is done in the previous section, in order to avoid 
processing bipolar data, we add a constant dc to the sgn(Wjjk) and sgnCTjj) 
respectively to get their corresponding interconnection tensor Wi)k and 
m atrix TV, where Wijk = sgn(Wijk) + 1 and TV = sgnCT^ ) + 1. The details can 
be seen in section 4.3.1. Now these non-negative interconnections can be 
easily implemented by using a 3-D interconnection m ethod [Jan88a]. The 
m atrix Tjj is the weighted sum m ation and each term  Wijkvk(mi) may be 
calculated by representing vk(mi) by an element of a binary unipolar 1-D 
SLM and perform ing interconnections w ith a subhologram  recorded in 
Fig. 4.6.

W ijk
(k=l,..JST)

IsSE
Ground 
glass

W i l l W 1 2 : W 131 W 1 4 W l S l W i f i

W 2 11 W 2 21 w 2 31 w 2 41 w 2 5 1 w 261

W 31 1 W 3 21 W 3 31 W 341 w 3 51 W 3 6 I

W 4 1 1 W 4 21 W 4 31 w 4 4 1 W 4 5 1 W 4 6 I

W 5 1 1 W 521 W 5 3 1 W 541 W S 5 1 W 5 6 I

W s i l W 6 21 W 6 3 1 W 6 4 1 W 6S1 W 661

Fig. 4.6 Holographic Recording System for NxNxN interconnections

To obtain T-, incoherent sum m ation of such N  projected patterns 
should be accomplished in the image plane of N  subholograms as shown 
in Fig. 4.7. Each 2-D non-negative interconnections Wijk that can be 
im plem ented by a 2-D SLM (the ON state means 2 and the OFF state 
means 0) is recorded in the corresponding hologram element. The ground 
glass in Fig. 4.6 is used not only to overcome the dynamic range problem 
of hologram  plates bu t to random ise the phases so that incoherent 
addition can be perform ed in the image plane. The thresholding level is
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the total num ber of l 's  in an input pattern  (see section 4.3.1). A 2-D 
detector array w ith at least N 2+l elements detects the image of TLj and the 
threshold level; the thresholding operation is executed electronically to 
obtain Ty. The non-negative m atrix is displayed in a program m able 2-D 
SLM and used in the next step.

Step 2 is simply a vector-matrix multiplication. The total system is 
shown in Fig. 4.7, where the vector-matrix multiplication is accomplished. 
A parallel beam, which is m odulated by an input pattern displayed on a 1- 
D spatial light m odulator is used to reconstruct the hologram recorded in 
Fig. 4.6. The first o rder diffraction im plem ents the sum m ation of 
EWijkv k(mi) which, after thresholding, is displayed on a 2-D SLM to 
represent Ty. The undiffracted light (zero-order) passing through the 
hologram  is used  to illum inate  the 2-D SLM to im plem ent the 
sum m ation of ETyVj(mi). This light beam passes a cylinder lens and is 
collected by a 1-D detector array. This final detected pattern is thresholded 
and fed back to the input 1-D SLM to start a new iteration.

1-D SLM w

1-D detector 
array

Threshold
Threshold

2-D SLM _*

Feedback and Gain

Fig.4.7 Optical neural network based on high order inner product model
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4.4.2 Optical neural network based on high order inner product model

The configuration of an optical associative neural system  based on the 
high order inner product model is shown in Fig. 4.8. It is implemented by 
putting non-linear devices, say phase conjugate m irrors (PCMs) in the 
correlation dom ain of a conventional neural netw ork system [Owe87; 
A th86 ], e.g., the one described in Sec. 4.3.2. The m em ory is recorded 
utilising angular multiplexing of training patterns, as show n in Fig. 2.1. 
The optical feedback and nonlinearity in the correlation dom ain are used 
to improve system performance.

HologramInput BS

Output

Nonlinear Device
(Phase Conjugate Mirror) 

Fig. 4.8 Optical Neural Network Based on High Order Inner Product Model

The non-linear device, e.g., PCM is positioned in the optical loop of 
the system (Fig. 4.8). W hen a partial or distorted object addresses the 
hologram, a set of partially reconstructed reference beams is produced. 
Each reconstructed beam is weighted by the correlation of the input object 
with the stored object associated with that particular reference beam. The 
reference beams are detected by the nonlinear devices and the outputs are 
retroflected back tow ard the hologram, which reconstructs the complete 
stored objects. The replayed objects are phase conjugated by the PCM and
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the process is iterated until a self-consistent solution of the system is 
found. These self-consistent solutions or eigenfuntions of the system are 
simply the stored objects in the hologram. Non-linearities in the back focal 
plane of lens L2 tend to form regions of attraction in state space around the 
stored objects and increase the memory capacity greatly, as discussed in 
section 2.3.1.

Generally speaking, a high order inner product neural netw ork 
model is more easily implemented optically or opto-electronically than an 
outer product one w ith the sam e order. In the inner product m odel 
system, the large num ber of interconnections in the outer product model 
system  corresponds to the requirem ents for large dynam ic ranges of 
devices because of the use of non-linear devices. O therw ise, the 
correlation peaks will be sa tu rated  and selection of the m axim um  
correlation peaks becom es im possible. Therefore, a lthough the non- 
linearity in the back focal plane of lens L2 could enlarge the difference of 
the correlation peaks, it also makes the second largest one saturate to the 
same value as the largest one, both equal to the possible output of the 
devices, that is the saturated ou tpu t (Fig. 4.9). In order to solve this 
problem, we designed a novel inner product system, in which the non- 
linearity is increased by one after every iteration, and  during  each 
iteration, the correlation peaks are normalised. So the requirement for the 
large dynamic ranges for devices is alleviated. The details are presented in 
chapters six and seven.

intensity intensityintensity

saturation line saturation linesaturation line

A p 
position

I m 
position position

(c)(a)
intensity distribution 
falling on the device

magnified intensity 
distrubution

intensity output 
of the device

Fig. 4.9 Saturation Problem
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4.5 Conclusion

We have briefly discussed the optical systems of neural networks based on 
the Hebbian learning rule. Because of the limit of the thesis length, it is 
very difficult for us to cover all of the optical neural network systems here. 
Another class of neural networks, which have a learning capability, have 
been causing m ore a tten tion  recently  [Yos89a, b; Psa90a; Lu90;]. 
A pplications of neural netw orks include pa ttern  recognition [Son88 ; 
Psa90a], w ord break [Pae89], image processing [Yeh89] etc.
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Chapter Five

HIGH ORDER FEEDBACK NEURAL NETWORK

(HGHFNED

5.1 Introduction

We show ed earlier (see chapter two), that high order neural netw orks 
have a larger m em ory capacity than linear neural netw orks having the 
same num ber of neurons [Lee86; Psa88a]. The increase in storage capacity 
of high o rder neural nets is a resu lt of the increased num ber of 
independent parameters or degrees of freedom needed to describe a higher 
order associative m apping [Psa88a]. Although a two-dimensional array of 
neurons can interconnect with another two-dimensional array of neurons 
by using volum e hologram s (three-dim ensional in terconnects), the 
independent interconnections are lim ited to N 3, where N  is the num ber 
of pixels that are available in one dim ension, rather than  N 4 [Mid88; 
Psa88c]. That means we could not connect d irec tly  N 4 independent 
interconnects; only N  to N 2 or N 3/2 to N 3/2 connections can be performed. 
Special selection of N 3 independent interconnects from the whole N 4 has 
been discussed [Mid88 ; Psa88c]. Therefore, for a Hebbian-learning-rule 
based neural netw ork, the m axim um  order of the nets w ith  one
dimensional N  neurons is two, which requires N 3 interconnections, if we 
use one hologram to perform the interconnection. For a neural network 
with the order higher than two, say, three, w ith one-dimensional neurons 
(N), the full interconnections are N 4. It is very difficult to im plem ent 
either optically or electronically such complicated interconnects, when the 
num ber of neurons N  is very large. One solution to this problem  is to 
divide N 4 interconnections into N times of N 3 or N 2 times of N 2 

interconnections, which results in a complex system [Yu90; Lu90; Jan89]. 
The other solution is to modify the high order neural network so that the
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high order could be im plem ented by using nonlinear devices [Owe87; 
A th8 6 ]. Such nets are called inner-product high order neural nets (see 
section 2.4.2). In the inner product high order neural nets, the high order 
is perform ed by a nonlinear response of a device in the correlation 
domain, so the dynamic range of the device used in the system should be 
large enough to accom m odate the nonlinear output. Because of the 
limited dynamic range of optical devices, typically less than 30dB [Sel90], it 
is difficult to implement a net optically w ith an order higher than two. So 
up  to now, only second order neural netw ork  system s have been 
demonstrated optically [Liu89; Jan89; Hor90].

Another problem about the high order neural net is noise tolerance. 
In the inner product model, the system indicates the similarity according 
to the size of the correlation peaks of the input pattern and stored patterns. 
As the input pattern is presented only once in such a system, the noise in 
the input pattern will be frozen. W hen the input pattern is similar to two 
stored patterns, the difference between the correlations is very small. Quite 
often, the correlation betw een the noised input pattern  and the m ost 
similar stored pattern is less than that betw een the noised input pattern 
and the second most similar stored pattern, which will result in a wrong 
answ er or converging into a local m inim um . Based on the Hopfield 
m odel and using the advantage of the H am m ing net that it always 
converges to the correct answer (no local minimum) [Lip87], we propose a 
novel High O rder Feedback neural NET, which we call abbreviatedly 
HOFNET. The HOFNET is very similar to the matched filter net [Sel89 or 
see section 2.4] and consists of a bank of correlators. The nonlinearity is 
used  to enlarge differences of the correlation  o u tp u ts  by using 
norm alisation in each iteration. The nonlinearity is im plem ented by a 
feedback loop, instead of nonlinear devices, while the feedback loop is 
necessary for a Hebbian-learning-rule based net to have an error correction 
capability. So we do not require nonlinear devices to implement the high 
order HOFNET. In section 5.2, we discuss the algorithm of the HOFNET 
and show how the nonlinearity is implemented by a feedback loop. Noise 
analysis of the HOFNET is discussed in section 5.3. Com puter simulations 
for noise and pattern recognition are described in section 5.4. Conclusions 
are given at the end.
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5.2 Principle of the HOFNET

INPUT INTERCONNECTS OUTPUT

FEEDBACK WITH 
THRESHOLD & GAIN

Fig. 5.1 Conventional Neural Network

In the conventional neural netw ork (Fig. 5.1), w hen an input pattern is 
inserted into the system, it is interconnected to all the stored patterns. 
After processing (summation, threshold and gain), the network gives an 
output, which is fed back as a new input pattern to start a new iteration. So 
the input pattern is used only at the beginning of the iterations. If the 
input pattern  contains tim e-varying noise, the noise will be "frozen", 
which might result in a wrong answer or spurious convergence. In our 
HOFNET system, how ever, the input pattern  is correlated in every 
iteration, so the time-varying noise in the input pattern will be averaged. 
Before we discuss the HOFNET in detail, we give an example to see how 
the noise affects the result. Suppose we store two patterns A and B in a 
neural network system, an input pattern C is a little more similar to the 
p a ttern  A than  to the pa ttern  B and their norm alized  noise-free 
correlations are 0.8 (A & C) and 0.75 (B & C) respectively (1.0 means 
completely correlated). If the noise level is 5% of the correlation outputs, 
then the correlation between the patterns A and C is (0.80 ± 5%X0.80 ), that 
is from 0.84 to 0.76 and the correlation betw een patterns B and C is 
( 0.75 ± 5%x0.75 ), that is from 0.7875 to 0.7125. There is an overlap between 
these two correlation variations, so possibly at one time the correlation
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between patterns B and C is larger than that between patterns A and C 
(Fig.5.2). If the input pattern is sampled at this time, a wrong answer will 
be given.

£ 0.84
O•rt4->

%(-1(-1 0.80
o
U 0.7875
13
CD
.3
13 0.76
S 0.75
l-H
O
£

0.7125"

j------  Overlap Area

/
- 1

}

’i

-
1u_
1

Fig. 5.2 The Effect on the Correlation Amplitudes of Noise

The design of HOFNET is to try to average the noise and enlarge the 
differences of the correlations betw een the inpu t pattern  and stored 
patterns by giving the power to the correlation outputs and norm alising 
them. It has some sim ilarity w ith the m atched filter neural netw ork 
model [Sel89]. The diagram of the matched filter net is shown in Fig. 5.3. It 
consists of M parallel correlator channels, w here M is the num ber of 
known exemplar patterns stored in the learning procedure. Each channel 
acts as an individual correlator which correlates the input pattern, vA (mi), 
w ith one of the stored patterns, V(m) (m =l, ..., M) ( which contains N 
elements v^m ), i= l, 2, ... , N). The correlation ou tpu t at each channel 
reconstructs the corresponding stored pattern in a weighted way. All the 
reconstructed patterns are sum m ed and thresholded to give an output, 
which, generally speaking, is more similar to a stored pattern than the 
input pattern. The output pattern is fed back to start a new iteration.
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O utput
Input

Nloise
Gate

Noise
Gate

Noise
Gate

Noise
Gate

V(l)V(l)

V(2)V(2)

V(3) V(3)

V(M) V(M)

Threshold

FEEDBACK LOOP

Fig. 5.3 Matched Filter Model of Hopfield Net

The H igh O rder Feedback neural NETwork, or HOFNET is very 
similar to the m atched filter model except for the use of nonlinearity to 
the correlation outputs. The diagram of the HOFNET in parallel to Fig. 5.3 
is shown in Fig. 5.4. It also consists of M parallel channels. Each channel 
acts as an individual correlator which correlates the input pattern, v^m i), 
with one of the stored patterns, V(m) (m =l, ..., M). Here in Fig. 5.4, the 
column (a) contains all the stored patterns V(m), C(m) is the correlation 
output between the input pattern and stored patterns. The column (b) is a 
nonlinear function to give the nth  pow er to the correlation C(m). The 
colum n (c) has two functions: (1) norm alisation; (2) threshold . It 

normalises the correlation output (C(m))n from the column (b) and sets 
the threshold as: if the norm alised correlation K(m) is larger than N /2 , 
keep its original value, or else it is set to be zero. The normalized outputs 
reconstruct the stored patterns in a weighted way to give an output. The 
weight K(m), apparently, depends on the correlation value C(m) and the 
nonlinear degree n. In the HOFNET system, the nonlinear function is 
implemented by the feedback loop and the n is not fixed but increases by 
one after every iteration. Take the previous example,

C(l) = 0.80; C(2) = 0.75 (5.1)
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V (l) V (l)
N /2

O utputV(2)V(2)Input

V(3) V(3)N /2

V(M) V(M)

(a)

Fig. 5.4 Matched Filter Model of HOFNET

The normalised correlation from the column (b) is

K(i) = N  X (C(i))n /  (Cmax)n (i = 1,2) (5.2)

where C m ax is 0.8 and N  is 2. Table 1 lists the correlation from the column 

(b) (C(i))n and K(i) for different n.

Table 1 Correlation Change with the Nonlinearity n

n 1 2 3 4 5 6 8 10 11

(C(l))n 0.8 0.84 0.51 0.41 0.33 0.26 0.17 0.11 0.086

(C(2))n 0.75 0.56 0.42 0.32 0.24 0.18 0.10 0.056 0.042

K(l) 2 2 2 2 2 2 2 2 2

K(2) ' 1.98 1.75 1.65 1.54 1.45 1.36 1.19 1.05 0

From the above table, we see that when the nonlinearity gets higher ( n is 
larger), the norm alised correlation difference becomes larger as well. 
When n is 11, the smaller one is less then half of N, so is thresholded. The 
m inim um  nonlinearity n required to select the largest correlation and 
threshold all the others depends on the closeness of the correlation
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outputs and num ber of patterns stored in the system. The closer the 
correlation outputs are, or the greater the num ber of the stored patterns is, 
the larger n is required. At the sam e time the dynam ic range of the 
nonlinear device m ust be very large. The HOFNET, however, implements 
the nonlinear function by the feedback loop, so this requirem ent does not 
exist in the HOFNET system.

One channel of the HOFNET is show n in Fig. 5.5. Each channel 
performs the same processing functions starting with the multiplication of 
an input constant signal level, A, by the Fourier transform  of one of the 
known stored patterns, FT(vj(m)) = V(m). The ou tpu t AVXm) is inverse 
Fourier transform ed to give Avj(m), which is then m ultiplied by the 
complex conjugate of the inpu t pattern , Vj(mi), w hich for real inpu t 
patterns is just Vj(mi) itself. This is follow ed by  a fu rther Fourier 
transform  w hich, by the convolution theorem , yields the requ ired  
correlation (denoted by *). Finally we filter out the side-lobe of the 
correlation and let the zero-order pass through an amplifier of gain g to 
give Ag(V(m )*V(m i)), which is fed back to the start of the loop to 
continue similar iterations. The output, taken before the multiplication by 
the input pattern, is given on repeated iterations by

Av i (m)v. (mi) A(V(m)*V(mi)) Av. (m )_______ 1 1
> 4 - * -  V mi> - * - <  F T > - * -

AV(m)
V(m) IFT

Output

FEEDBACK LOOP

Fig. 5.5 Single Channel of HOFNET

Before iteration: Avj(m),

After 1st iteration: AtgfVfm^VXmi^jv^m),

After 2nd iteration: A[g(Vr(m)*\^r(mi))]2Vj(m),
 /

After n t h  iteration: A[g(V,(m)*V'(mi))]nvi(m).
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So at the output plane after the n t h  iteration, we have the sum m ation of 
the outputs from all channels

It is the inner-product or the zero-order correlation of the Fourier spectra 
of the input pattern and the stored patterns. We have proved in chapter 
three that it also indicates the similarity of the input pattern and the stored 
patterns. Actually it is equal to

The difference of the HOFNET with the high order m atched filter is 
that the order of the nonlinearity of the network is not fixed bu t increases 
by unity on each iteration until the strongest signal is selected and all the 
others are suppressed. Each iteration performs an independent calculation 
of the correlation which is m ultiplied by the product of all of the earlier 
similar calculations circulating in the loop. So time varying noise within 
the net or on the input pattern tends to be averaged out. The loop gain is 
given by

If G is unity in one channel, then the signal in that channel circulates at 
constant am plitude. If G is greater than unity  the signal m agnitude 
increases as the loop iterates, increasing at higher rates the closer the input 
pattern is to the known stored pattern in that channel [Sel90]. If G is less 
than unity the signal in that channel decreases, ultim ately vanishing or

v. (mo) = £  A(g V(m) * V (mi))n v{ (m)
m

(5.3)m

where C(m> is

C<m> = g V  (m) * V  (mi) (5.4)

N
(5.5)

i=l

G = gCVXm^VXmi)) (5.6)
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iterating at noise level. The value of G (and hence g) determ ines the 
radius of attraction of the net around each of the stored patterns. By setting 
G correctly we can arrange that only input patterns sufficiently similar to 
the known stored pattern in the channel persist, circulating w ithin the 
loop.

To see this clearly consider the case when the known stored patterns 
(having N pixels or bits) are all N  of the orthogonal members of a binary 
(+1, -1) set [Sel90], so that they are all equal Ham ming distance apart (the 
Hamming distance is N /2 . If the input pattern, also assum ed to be binary 
(+1, -1), is less than N /4  bits different from a given pattern, s l f  say, then the 
correct answer will be obtained if it converges to Sj. If it is m ore than N /4  
bits different, it will be closer to another of the orthogonal stored patterns 
and so it should not converge to Sj. Therefore, we need to set the radius of 
attraction area w ith the pattern  slr to N /2 . We w ant pa tterns w ith 
correlations greater than N /2  to persist and those less to vanish. This can 
be achieved by setting (VXm^VXmi)) = N / 2  for G = 1 giving a fixed gain 
of g = 2 /N  [Sel90]. If any binary input pattern is pu t into the net, each 
channel will iterate bu t only one pattern will persist. Because only the 
channel with the pattern stored which is most similar to the input pattern 
will have a gain greater than loss and all the other channels have the gain 
less than loss. Therefore, all others will decay to zero on sufficient repeated 
iterations so giving the correct answer.

In practical systems, it is not convenient to im plem ent inhibitory 
interconnections, especially in optics. We can use phase patterns to 
perform negative interconnects, but the phase patterns are invisible and it

is not easy to keep the phase at exactly 180° shift for m inus one 
interconnects. In our system , however, there are no direct inhibitory 
interconnections. We selects the maximum correlation by feedback loop, 
normalisation and threshold.

Compare the output Vj(mo) after the n t h  iteration w ith an inner 
p roduct high order neural netw ork system  w hich has a nonlinear 
response in the correlation plane [Owe87] (See section 3. 1. 2 ). The 
nonlinear function can be written as

f(x) = x k (5.7)
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where x is the correlation output or input to the nonlinear device, and k is 
the nonlinearity of the device response used in the system. W e conclude 
that our system is equivalent to the inner product high order net and the 
order of the HOFNET is not fixed but increases by one after every iteration. 
After the wth iteration, the HOFNET has the same order as the inner 
product net w ith the nonlinearity k=n.

Rewrite equation (5.3) as

Vi(mo) = A(C(mi))n v t(mi) + A S(C(m))n Vi(m) (5.8)
m*mi

(Signal) (Noise)

The signal to noise ratio is

SN R  =   lC(ml)l  (5.9)

m^mi

Assume that the binary and bipolar vj(m) have the values of +1 or -1 with 
equal probability. Expressions for C(m) according to the phase diffused 
model [Kra82] are given as

2NC(m) = + N 8(m -  mi) (5.10)

where 5(m-mi) is Dirac-Delta function. Therefore the SNR can be written 
as

Nn
SNR  « , —  (5.11)

V M

Here the definition of noise has some difference from the usual one. The 
noise mentioned here is actually the cross-correlation between the input 
pattern and the stored patterns except the one which is most similar to the 
input pattern. If n= l, then the net becomes a linear neural network, such 
as the Hopfield net. Suppose when SNR = X, the netw ork can converge
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into a correct answer. For the linear neural network (n=l),

N
SN R  -  J — 

VM
(5.12)

C /1d»-lo»4- J
-)-*

Ph
XJQJ
o-J-lCO

J-HQ)

d
£

1000

100 -

10 ■ -

M~N3
M~N
M ~N

Outer product
model

N, Number of Neurons per Pattern

Fig. 5.6 Comparison of Storage Capacity for Various Nonlinearities

So we can have the M =N /X 2. W hen N is not very large, we can have 
approxim ately M>0.15N. From the same level of noise, for a nonlinear 
network with order n, the memory capacity can be written as

M » 0.15N" (5.13)

It is clear M is proportional to N n. Thus w ithout considering limits set by 
the available dynam ic range of devices, the storage capacity can be 
increased by increasing the num ber of iterations. The im provem ent in 
storage capacity of the non-linear ne tw ork  is analogous to the 
im provem ent in storage capacity found by others for high order 
discrim inant models based on the outer p roduct neural models [Lee86; 
Psa86]. Ow echko d id  som e calculations for non linear holographic 
associative m em ory system s based on the  inner p roduct net and 
confirmed the above mathematical analysis (Fig. 5.6) [Owe87].
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5.3 Noise Analysis of the HOFNET

In section 5.2, we discussed the principle of the HOFNET w ith no noise 
involved. In practice, noise exists everywhere, so now we consider the case 
which involves both system noise ns(T, i) and input noise n^x, m), where

x is the time and the system noise is also a function of the channel m 
(m =l, ..., M) and input noise a function of the pixel i (i=l,..., N). The 
system can be represented in Fig. 5.7. The input pattern Vi(mi)+nj(xo/ i)

correlates with all the stored patterns V(m) (m=l, ..., M) to give correlation 
outputs:

O 1)(m )=[vi (m i)+ n I(x0 ,i)]*Vi(m )+ns (x0, m ) (5 .14)

where x0 is the time when the system starts to operate and C(1)(m) is the 
first correlation from channel m.

Input 
v  i (mi) Output

V(m) V(m)Cmax

N/2

C (2)

Fig. 5.7 HOFNET with Time Dependent Noise

C(i)(m) goes to an amplifier and is thresholded and fed back to multiply 
the new correlation outputs at time Xj, so
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C(2)(m)=CM(m) [vi(m i)+nI( t1, i)]5tvi(m)+ns(x1, m) (5.15)

Consequently, after the nth iteration, we have

C(n)(m) = C(n 1)(m)[vi (mi) + nI(X(n_1),i)]stv i(m) + ns (T(n_1),m) (5.16)

The output Vi (mo) at the output plane is

M
(5.17)

m=l

Insert C(1)(m ),..., C(n)(m) into Eq. (5.17), v^mo) can be written as

Vi (m o) =  £  X ( v i ( m ) v i ( m i ))"  v i ( m )
m=l v i=l J

M

m=l

M

N
X (V i(m )*  Vi(mi))
i=l

+ £ n s(tn. „ m )v,(m )

n-2 /  >\

X  X vi(m )n i(t j,i) + n s(t j>m ) 
j=0 V i

k ( m )

m=l

(5.18)

From the above equation, if we suppose that ng(x, m) and n^x , i) are

random  and tim e-varying noises and the stored patterns and the input 
pattern are binary (+1, -1) with equal probability of +1 and -1, then all the 
terms in the right hand side of Eq. (5.13) are zero except for the first term. 
Therefore, if the noises (system noise and input noise) are time varying, 
then at the output plane, the noises will be averaged out. The result will 
not be affected, as the same noise level will be added to all the channels.

5.4 Com puter Simulations

The purpose of this design is to find a system which is noise tolerant and 
overcomes the limited dynamic range of the devices, as optical systems 
produce noise and optical devices have a lim ited dynam ic range (now 
27dB is obtainable by an asymmetric FP MQW m odulator [Whi89]). Here
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we did some computer simulation for noise analysis. The architecture was 
sim ulated to assess the tolerance to both time independent noise and time 
varying noise. The inputs consisted of patterns formed on a grid of 8x8=64 
pixels. We defined the characters 0 to 9 and the letters A to Z on this grid 
(Fig. 5.8). For differing num bers of patterns stored, M = 5, 10, 20, 30, we 
inpu t noisy patterns and  found the probability  of convergence. For 
example, we entered the pattern for a letter A but having 3 pixels reversed 
(i.e. +1 replaced by -1 or vice versa). The positions of these pixels were 
chosen random ly num erous times and the probability of correct recall was 
calculated. This was repeated for all the m em orised characters. These 
results describe the behaviour for time independent noise. In addition we 
input patterns in which, using our earlier example, the 3 pixels chosen 
change in time so that a different random  choice of pixels was m ade at the 
next time step. This was used to assess the averaging ability of the net 
design and to check that time dependent noise was not a problem.

The results are show n in Fig. 5.9. These show clearly that as the 
input noise was increased, in terms of the num ber of reversed pixels, that 
the probability of correct recall dropped quite suddenly after a certain noise 
threshold. The net could tolerate more time dependent noise than time 
independent noise as a result of the modifications m ade. If no special 
modifications have been m ade we m ight expect identical curves for both 
types of noise of equal m agnitude. Fig. 5.10 plots the am ount of input 
noise against the num ber of stored patterns assum ing an 70% probability 
of correct recall. This shows that the tolerance to input noise drops with 
the num ber of stored patterns but that more time dependent noise can be 
tolerated particularly for memory capacities less than 0.5 N. The improved 
perform ance w ith  respect to tim e dependen t noise is particu larly  
im portant for optical systems with high levels of internal system noise.

One application of neural netw orks is pa ttern  recognition. The 
HOFNET can be used to recognise a pattern from a highly distorted 
pattern, especially w hen the noise is tim e-dependent. First, as in the 
previous section, we trained the HOFNET with digits 0 to 9 and capital 
letters A to Z and then gave a distorted input to see the procedure of 
convergence. Fig. 5.11 is an example. A pattern with 8 pixels reversed (1 
changes to 0 vice versa) is inserted into the system, the network will start 
to iterate. After the first iteration, the output is similar to B or 8, rather 
than S. This is because the B is very similar to 8, 6, 9 3 etc., so it is a local
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Fig. 5.8 36 Patterns Stored in the HOFNET (N=64, M=36)
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M  = 5

0 5 1 0 1 5 2 0 2 5 3 0 3 5
Number of reversed pixels

(a) 5 Patterns Stored in the HOFNET System

M = 10

0 5 1 0 1 5 3 52 0 2 5 3 0
Number of reversed pixels

(b) 10 Patterns Stored in the HOFNET System
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(c) 20 Patterns Stored in the HOFNET System
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(d) 30 Patterns Stored in the HOFNET System

Fig. 5.9 Probability of Correct Recall as a Function of Input Noise (N=64) 
 Time dependent noise  Time independent noise
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x Time dependent noise 
' Time independent noise4 0
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Number of stored patterns (M)

Fig. 5.10 Maximum Input Noise for Correct Recall 
as a Function of Memory Capacity (N=64)

Input Pattern O utput after 
2 iterations

Output after 
11 iterations

Output after 
34 iterations

O utput after 
36 iterations

O utput after 
17 iterations

O utput after 
37 iterations

Fig. 5.11 Pattern Recognition Procedure
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Fig. 5.12 Average Hamming Distances of Stored Patterns

Fig. 5.12 is the average H am m ing distances for all the stored 
patterns. As defined before (see chapter two), the Hamming distance is the 
num ber of corresponding different pixels of two patterns. We calculate the 
Ham m ing distances between one pattern and all the other patterns and 
average it over the num ber of patterns. The H am m ing distance of the 
pattern B or 8, as shown in Fig. 5.12, is very small, which means that they 
are very similar to other patterns, e.g. 6, 9, 3. Therefore, when a pattern is 
inserted into the system, the system tends to recognise it as a more stable 
pattern  B or som ething similar to it. To avoid this problem , Twaij et al
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[Twa91] proposed a feature extraction learning algorithm which tries to 
enlarge the difference of two patterns and suppress their similarity. So the 
patterns after feature extraction, have almost the same Hamming distance. 
The local m inim um  problem  is removed. As the iteration proceeds, the 
ou tp u t starts to change, getting closer to S. After 37 iterations, the 
correction is given.

5.5 Conclusions

The HOFNET system has some advantages over other neural netw ork 
systems. Firstly, in the HOFNET system, the input is correlated in each 
iteration, so the system  is more noise-tolerant. Also in the HOFNET 
system, the nonlinearity is implemented by a feedback loop, rather than 
nonlinear devices, so the high order is not limited by the dynamic range of 
nonlinear devices. Although the HOFNET system is designed specifically 
for optical implementation, it can also be used for electronic construction. 
In our system , no direct inhibitory interconnects make it easier to 
implement, both optically and electronically.
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Chapter Six

OPTICAL HOFNET SYSTEM

6.1 Introduction

In this chapter, we discuss the optical or optoelectronic implementation of 
the HOFNET system. The optical HOFNET system has some differences 
from conventional ones. First we modify the usual form ulation of the 
holographic m em ory in neural networks. We calculate the similarity of 
the inpu t pattern  and the stored patterns according to the zero-order 
spectrum  correlation or the m ultiplication of the input pattern  and the 
stored patterns (see section 3.4). The am plitude or intensity distribution of 
this correlation is usually different from that of pattern correlation (spatial 
correlation) (see section 3.3), but if we consider only the zero-order, as we 
discussed previously, it indicates the similarity of the input pattern with 
each of the stored patterns. We have designed two optical HOFNET 
systems, which we call a focused system and a lensless system, respectively 
and we have optically im plem ented the focused system. In the focused 
system, the patterns are stored in the form of Fourier transform  spectra 
and a lens is used to make the Fourier transform , while in the lensless 
system , the patterns are stored directly  in the hologram  (Fresnel 
hologram ), no lenses are used in the recording system. Actually, the 
lensless system is only a pseudo-spectrum  correlation, as in this system 
Fresnel diffraction theory is used. The details are discussed in section 6.3. 
The focused system requires only spatially m ultiplexed hologram s in 
order to cope w ith correlation outputs separately, that means that all the 
holograms are recorded in the same way (spatially m ultiplexed), so it is 
easy to eliminate the problem of the diffraction efficiency varying, as the 
d iffraction  efficiency is u sually  the function of the m odulation  
frequencies. The lensless system, however, involves both spatial and 
angular changes. W hen we record a pattern in the form of holograms, a
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diaphragm  is used in front of the recording plate to limit the size of the 
hologram. As soon as the pattern is stored, another pattern  is pu t in the 
exact position as the previous one and the diaphragm  is m oved to a 
different position while the reference beam is unchanged. But m oving the 
d iaphragm  causes the incident angle of the object beam  w ith  the 
holographic plate to change as well, so the holograms are recorded in the 
hybrid way (see section 3.5). The details are discussed in section 6.3. More 
im portantly, we increase m em ory capacity by using non-linearity in the 
correlation plane, which is implemented by a feedback loop, instead of 
nonlinear devices in that plane [Owe87]. The feedback loop is necessary for 
a Hebbian-learning-rule based neural net in order to m ake the system 
have error correction capability. In section 6.2 and 6.3, we discuss the 
im plem entation  and design of the HOFNET. In bo th  system s, an 
electrically addressed ferroelectric liquid crystal spatial light m odulator is 
used in the feedback loop, which is discussed in section 6.4. Some 
experimental results are given in section 6.5. Comments on these systems 
are given at the end.

6.2 Focused Optical HOFNET System

The optical HOFNET system contains two main parts: correlation or inner 
product sub-system and feedback sub-system. The inner products of the 
input pattern and the stored patterns indicate the similarities of them. We 
have proved that the zero order of the spatial or spectrum  correlation of 
two patterns is equivalent to the inner product of the two patterns. Here 
the spectrum  correlation system (Fig. 3.6) is selected for such a task and 
patterns are stored in holograms in a spatially multiplexed way (Fig. 6.1 or 
see section 3.5). The patterns are stored in the form of their Fourier 
transform  spectra, which are im plem ented by a lens, so we call this 
recording the "focused" recording, and consequently call the system based 
on such a hologram the "focused" optical system. Here we let all the 
patterns be am plitude m odulated binary unipolar patterns (black and 
white). As soon as one Fourier transform  hologram  is recorded, the 
recording plate is moved laterally so that another hologram is recorded in 
a different position in the holographic plate, while the angles between the 
reference beam and the object beams keep unchanged. The whole focused 
optical HOFNET system is shown in Fig. 6.2 and the photograph of the real
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system is shown in Fig. 6.3.

v(l) v(2)

V(l)
V(2)

Fig. 6.1 Spatially Multiplexed Hologram Recording

Controller

SLM

In p u t/
Output

PC-XT

SLM Gain /
Normalization

Fig. 6.2 Focused Optical HOFNET System

The spatially multiplexed hologram array H recorded in Fig. 6.1 is 
replayed by a parallel beam which is spatially m odulated by a spatial light 
m odulator (SLM). The SLM is an electrically addressed ferroelectric chiral 
smectic C liquid crystal one produced by STC Ltd, now called BNR. The 
thickness of the liquid crystal layer is 1.7 pm. The SLM is divided into M 
"subsectors", each corresponds to a hologram elem ent recorded on the 
plate. According to the translation invariance property  of the Fourier
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transform  hologram  and the recording condition during the learning 
procedure, all of the reconstructed patterns will be superim posed at the 
back focal plane of lens LT. If an amplitude modulated binary input pattern 
is inserted in this plane and superimposed on the reconstructed patterns, 
at the back focal plane of lens L2, the correlation peaks which indicate the 
similarities between the input pattern and the stored patterns are obtained. 
These correlation peaks are fed back to control the transmittance of their 
corresponding subsectors in the SLM.

Fig. 6.3 Photograph of the Optical HOFNET System

The SLM consists of binary, unipolar 128x128 pixels in an area of 
about 2cm x 2cm, each pixel having a size of 165 pm x 165pm. The average 
contrast ratio is about 13dB, including the gaps between adjacent pixels. 
For a single pixel, however, the on-off contrast can be as high as 25dB. In 
our system, 4x4 or 16 patterns are stored in the hologram array and the size 
of each hologram element is 3mm in diameter and the spacing between 
two adjacent holograms is 5mm (Fig. 6.4). So the SLM is divided into 4x4 
subsectors each with the size of 5mm x 5mm, so that each subsector 
matches the size of one hologram. Each subsector, therefore, contains

- 9 4 -



Chapter S ix  Optical H O F N E T  System

32x32 binary pixels (black and white) (Fig. 6.5). The SLM is used to control 
the transmitted light passing through it by setting its transmittance of each 
subsector to be proportional to the correlation output of the corresponding 
channel. As the correlation outputs are changed continuously, we, ideally, 
require a grey level SLM. However, since this was not available at our 
present laboratory, we simulated grey levels on the binary SLM by further 
subdividing the subsector into 8x8 units, each containing 4x4 pixels. This 
resulted in 16 sim ulated grey level steps. This scheme gives a more 
uniform transmittance than if the subsector were not subdivided.

3mm

5mm

Fig. 6.4 Spatially Multiplexed Hologram Array

2cm (128pixels) 0.625mm (4 pixels)

Fig. 6.5 Grey Level Simulation by the Binary SLM
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Before the system starts to iterate, the transm ittance of all of the 
subsectors of the SLM is set to be the highest (completely transparent). So 
the light intensity falling on the hologram  elem ents is uniform . The 
correlation ou tpu ts, how ever, depend  on the sim ilarity of the inpu t 
pattern and the stored patterns in corresponding channels. These outputs 
are fed back to control the transm ittance of subsectors of the SLM via a 
computer. The transmittance of a subsector is set to be proportional to the 
correlation output in the corresponding channel. On the second iteration, 
the intensity of the reconstruction laser beam  falling on the hologram  
elements is no longer uniform, but is m odulated by the SLM. The pattern 
which is most similar to the input pattern will be illuminated by the same 
light as during the first iteration (the corresponding subsector of the SLM 
is norm alised to have the highest transm ittance), thus the correlation 
peak in that channel will keep unchanged. The other hologram elements 
are illum inated  by w eakened light, so the correlation ou tp u ts  in 
corresponding channels decrease com pared to those during  the first 
iteration. After several iterations, the weaker correlations will fall below a 
threshold  assum ing the m axim um  correlation is norm alised to keep 
constant in each iteration. Fig. 6.6 shows an example of the procedure of 
the maximum correlation output selection.

Correlation output Correlation output Correlation output
during 1st iteration during 2nd iteration during 3rd iteration

> 1 I

if
)

A .

<

A  ^  A  ^
Channels Channels Channels

(a) (b) fc)

Fig. 6.6 Maximum Correlation O utput Selection Procedure

Suppose the training patterns we discuss here are binary (the 
patterns can be analogue, the supposition of binary patterns is only for easy 
comparison w ith neural netw orks), so the set of patterns stored in the
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hologram can be written as

v(m) = {v1(m ),...,vi(m ),...,vN(m)} (m = l,..., M) (6.1)

Suppose the Fourier transform of v(m) is V(m'), then

V(m’) = {V1(m,)/.../Vk(m,)/...,VN(m')) (m '= l,..., M) (6.2)

For simplicity, we let the interval distance betw een tw o adjacent sub
holograms be 1 and only consider one dimension. So the hologram array 
H  can be expressed as

g(x) = V(m’) <g> 5(x -  m ') (6.3)

where delta 6 is the Kronecker delta function and x is spatial position in 
the hologram  plane. In the back focal plane of lens L 1/ we obtain the 
Fourier transform of g (x), where an input pattern v(mi) (v1(m i),..., v^m i), 

vN(mi)) is injected, so at the back focal plane of lens L2, we have the 
Fourier transform  of the m ultiplication of the input pattern  v(mi) a n d  
stored patterns v(m) (m =l, 2, ..., M). If we pu t a pinhole array at this plane 
to threshold all the high orders of the correlation, after the pinhole array, 
we have the amplitude distribution on this plane

C(x)(1) = ^ v i(m)vi(m i)® 8(x -m ) (6.4)
i=l

where C (x)(1) (C (x)(1) = 0, unless x=m) is the correlation output or inner

product during the first iteration. C (x)(1) is fed back to adjust the SLM 
transmittance so that the transmittance of each subsector is proportional to 
its corresponding zero order correlation value. Now the light intensity 
falling on the holograms is m odulated. At the end of this iteration and 
after the pinhole, we will get

/  N \ 2
C(x)(2)= ^ v i(m)vi(mi)

V i J
® 5 ( x - m )  (6.5)
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(2)
w here C(x) is the correlation ou tp u t du ring  the second iteration. 
Similarly, after the «th iteration, we have an output at the back focal 
plane of lens L2

C(x)(n) =
f  N \ n

v4 (m) vt (mi) ® 5(x -  m)
u=i )

(6 .6)

At the inpu t/ou tpu t plane we have an output

M
Vj(mo)=

m =l 

M /  N \ n
= X  ^ ^ n O v ^ m i)  v i(m)

m=l V i=l (6.7)

By comparing this equation with the high order inner product model of 
Owechko et al [Owe87], where the output is

M
Vi(mo) = ^► (̂COrOjv^m) (6.8)

m =l

The nonlinearity function f(x) is 

f(x) = xn

Comparing equations (6.7) and (6.8), we know our system is equivalent to 
the inner product model system w ith a nonlinearity in the correlation 
plane. The signal to noise ratio of such a system can be written as [Owe87]

SNR = , IC(l° )( (6.9)
IIC (i)(n)l2

V * i .

where iQ corresponds to the channel w ith maximum correlation. Here the 
SNR means the ratio of the inner product of the input pattern with the 
m ost similar stored pattern , to the square root of the sum of inner 
products of the input pattern with the other stored patterns.
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As it is discussed in chapter five, suppose individual pixels of the 
patterns have the values +1 and -1 with equal probability, we can calculate

where 8 is the Kronecker delta function. Substituting equation (6.10) into 

equation (6.9) and approximating, we have

From equation (6.11), we can see that the m em ory capacity is roughly 
proportional to N n [Owe86] (or see section 2.4). So the theoretical storage 
capacity of high order neural netw orks depends on the o rder of the 
nonlinearity (the value of n  in equation (6.7)). In our system, n is equal to 
the num ber of iterations. So the nonlinearity is not fixed but increases by 
one on each repeated iteration. It does no t require m any iterations to 
ensure that the memory capacity limited by the net architecture is greater 
than  the m em ory capacity lim ited by optical com ponents. A nother 
interpretation is that for the same m em ory capacity repeated iterations 
reduce the error rate since this results in a greater differential gain and 
more averaging to reduce noise.

In the above discussion, we did not consider the noise problem. 
Now we start to discuss this problem. If the system and the input pattern 
contain time-varying noise, then the equation (6.4) becomes, for the first 
correlation calculation,

w here C(tq) is the correlation between the input pattern and the stored 
patterns with noise, nj( Xq) is the tim e-varying input noise at time instant 
t 0 and ns( t 0 ) is tim e-varying system  noise pow er at time instant %q,

C (i)(n) [Kra82]

(6.10)

(N, M » 1 ) (6.11)

N
C(x)(1> = V jO n ^ V iO n i) + n^To)) <g> 8(x -  m) 4- n s (x0)

i=l
= C(T0) (6.12)
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which may be caused by scattering or the detectors. So C(x)(1) is the 
function of time. W hen C ( x ) ( 1 > is fed back to control the SLM 
transmittance of the subsector, we will get after the second iteration

( N ^
C(x)(2> = C(x)(1) £ VjCrnXviCmi) + n ^ ) )  ® 8(x -  m) + n s (x!)

\i=l )
= C(x0)C(x1) (6.13)

w here C(x1) is the correlation sam pled at time % . Similarly, after the nth  

iteration, we have at the back focal plane of lens L2

C(x)<n> = C(x)<n_1) Vi (m)( Vi (mi) + ̂  (xn_i)) ® 8(x -  m) + n s (xn_j)
Vi=l

= C(x0)C(x1)...C(xn_1)

(6.14)

w here C(x ) is the correlation sam pled at time x ... Now C(x)(n) is then-l 1 n-1
multiplication of correlations sam pled at different times xQ, x ,..., x ^ .  So if

the noise is time dependent, then the noise will be averaged. Compared to 
those systems where the input pattern is used only at the beginning [Psa85; 
Owe87], this system is more tolerant to the tim e-varying noise.

6.3 Lensless Optical HOFNET System

Usually in optical neural networks, the patterns are stored in the form of 
Fourier transform holograms [see section 3.1 or Pae87]. Actually, Fresnel 
hologram s can also be used to store inform ation  or im plem ent 
interconnections [Jan88a, b; Jan89]. Here we introduce a novel system, 
where the Fresnel holograms are used for pattern storage. The holograms 
are recorded in the hybrid way, that means the m odulation frequencies 
and positions for the stored patterns in the hologram array are different 
from each other [see chapter three]. The recording system is shown in Fig. 
6.7. The ground glass is used to diffuse the phase of the pattern, so that any 
point in the recording area contains all the information from the pattern. 
As soon as one pattern is stored, the aperture in front of the hologram to 
limit the size of the hologram  elem ent is moved laterally and another
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pattern  is stored in a different position. The difference, compared to the 
Fourier transform  hologram s, is the aperture m oving, rather than the 
holographic plate moving. It results in a m odulation frequency change of 
the recorded pattern as well as a position change. The distance between the 
input pattern o1(x,y) and the holographic plate is set to be dj, and there is 
no lens used in the system . So the recording pattern  is the Fresnel 
diffraction of the input pattern. Because of the ground glass, at any point 
in the recording plate, the am plitude can be written as

Ground glass

Object beam

Reference beam

h*—
Ground glass <̂ (x,y)

d 2

H

Object beam

Reference beam

,1z’

Fig. 6.7 Lensless Holographic Memory Recording

0(x’,y') = 0 l(x ,y )eXP(- i 27tk-r)

(6.15)

w here k is the propagation vector and k is equal to 1 A ;  r is the vector 
pointing to (x', y ')  from (x, y) and r is

r = -^(x'-x)2 + (y '-y )2 + (d,)! (6.16)

where (x, y) and (x', y0 are the coordinate pairs in the object plane and the 
recording plane, respectively. Suppose, for simplicity, the amplitude of the 
parallel reference beam is 1 and the reference beam lies in parallel to the 
x 'o 'z '  plane, then the reference is
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R = exp(-j2jc^x/) (6.17)

where = —-— is the carrier frequency, so at the recording plate, the total 
A.

intensity distribution is

I(x'/y') = |o(x’/y')+Rf

= |0 ](x',y’)|2 + l+ o 1(x ,y )CXP  ̂ r ^exp(j2rc%x')
r

exp(j27tk-r)
(6.18)

Suppose the holographic plate is linearly processed (see chapter two), 
w hen the processed hologram  is read by the conjugate reference beam, 
then the fourth term in Eq. (6.18) which we are interested in, becomes

If M patterns Oi(x,y) (i=l, ..., M) are stored in the holographic plate at 
different positions ( x ^ y /) ,  then the total amplitude is

All these patterns are superim posed together. The whole lensless optical 
HOFNET system is shown in Fig. 6.8. A lens with focal length f is pu t 
behind the hologram, dj away. The hologram is reconstructed by a broad 
parallel beam, so that all the stored patterns are replayed. An input pattern 
g(x,y) is pu t just in front of the lens, which is multiplied by the replayed 
patterns. At the image plane of lens L (d2 away from the lens L), a series of 
correlations betw een the inpu t pa ttern  and the stored patterns are 
perform ed by the integral lens L. N ow we prove this by m athem atical

exp(j2rck • r) (6.19)

M exp(j2rck*ri)A(x,y) = ^Oi*(x,y) (6.20)
i=l

where n is

(6.21)
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analysis. For simplicity suppose dj = d j = 2f. The reconstructed patterns are 
superim posed at the plane a distance 2f away from the hologram. If an 
inpu t pa ttern  g(x,y) is inserted  in this plane, then  the am plitude 
distribution just after lens L is

Ai(x,y) = ^ ° i* ( x/y )exp^^7lk r^ g (x,y)exp
i=l

-jjck(x2 + y 2) 
f

(6.22)

i— i

Input/O utput

PC-XT

Gain andSLM
Controller Normalisation

Fig. 6.8 Lensless Optical HOFNET System

Suppose 2f »  x, y, x',y, expand as

rt = 2f + -X‘ ~X) + (y ‘'~ y) (6.23)
4f

Then A1(x,y) can be written as
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where c = .exP(j4ftkf) . a constant 
2f

At the image plane, we have the Fresnel diffraction of the am plitude 
A ^ y )

A2(xo,yo)-cexP(̂ kf)X jf° i,(x.y)g(x.y)exp { ^ [(xi,- x)2+(yi'-y)2]}x

^ ( x 2 + y2) j e x p |^ [ ( x 0 -  x)2 + (y0 -  y)2] jdxdy

= c' S  J j  °i y )g(x- y ) e x p |^ [ ( x s ’+xQ )x + (y i ’ +yD )y] Jdxdy

(6.25)

w here

c,= c exp(j42kf)
) 2 \ f

^ ( X o 2 + y02) ] e x p [ ^ ( x '2 +y'2 )] (6.26)

So at the position xQ = -x { yQ = -y /, we have

a / \ k N ^ , k  k x ^ o f k  k , k kA2(x0,y 0) = c O i( - x 0/- y 0) * G ( -x 0, - y 0) ® 8 ^ - x 0 + - x i ^ Y o + ^ Y i

(6.27)

where Oj and G are the Fourier transforms of Oj and g respectively. So the 
intensity at position xQ = -x { yQ = -y-x * indicates the similarity between the 
input pattern and the stored pattern  located at position (x^yj) in the 
recording plate (see section 3.4). If the patterns stored in the hologram are 
real patterns, then equation (6.27) becomes

A2(x0,y 0) x0 = -x j' = j}o ,(x /y)g(x,y)dxdy 
yo=-yi'

(6.28)
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So this system can be used in the HOFNET implementation to detect the 
similarity of the input pattern and the stored pattern. In condition to the 
focused system, we may also use this system for the implementation of the 
HOFNET. The feedback loop is the sam e as the one described in the 
previous section.

6.4 Feedback System

In our system, the non-linearity increases as the num ber of iterations 
increases. This can alleviate the requirements for large dynamic ranges of 
devices used in the system [Owe87]. For a system with non-linearity of 
order 'n ', suppose the m axim um  correlation and m inim um  correlation 
are specified respectively as Cmax and Cn^n/ then the dynamic range of the 
device used in the system, m ust be at least

O therw ise, the m axim um  correlation will be clipped or the m inim um  
correlation will be undetectable. In our system , how ever, n is not a 
constant but increases gradually and we normalise the correlation peaks in 
each iteration, so the requirements of the dynamic ranges of devices will 
be softened. Suppose after the k -th iteration, the correlation peaks are 
C(i)(k), we normalise them according to the following formulae

f C i 10nlogjo —3=*■ (dB)
V  ^ m i n  JV  m i n  /

(6.29)

A Output

N /2 Threshold

N /2
—►
Correlation peak

Fig. 6.9 Threshold Function for Correlation Peaks
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C(i)0c> = C(i)<k)

1

M
£ c 2g )
i=l

x N (6.30)
(k)

where N is the total num ber of pixels of a pattern , and setting the 
threshold as (Fig. 6.9)

C(i)(k> = C’(i)(k) (C'(i)w >T)(k)

0 (C(i)(k)<T)
(6.31)

correlations 

C(i)(k*

correlations 

C(i)(k+1*

(a)

(c)

correlations

C(i)(ki
Normalised
Value
Threshold

positions

correlations 
(k+l)i 

C*(i) *

— Normalised 
Value

- • Threshold

positions

t •

positions
(b)

positions
(d)

Fig. 6.10 Normalisation of the Correlation Peaks

The transmittance of each subsector of the SLM is adjusted according to Eq. 
(6.31). The whole normalisation procedure is shown in Fig. 6.10.
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6.5 Experimental Results

Practically, it is difficult to realize uniform  diffraction efficiency. 
Originally, we used ordinary slide films w ith plastic substrate as input 
transparencies to record hologram s. The diffraction efficiencies were 
found to vary over a large range, from less than 4% to more than 14%. 
This was m uch larger than expected and far beyond the fluctuation range 
of errors allowed in the experiment. This phenom enon was found to be 
caused by a polarisation rotation effect caused by the birefringence of the 
plastic transparency substrate. W hen light passed through the slide films, 
the polarisation rotation angle varied across one pattern  and from one 
pattern to another. When such films were replaced by glass holographic 
plates, much better results were obtained as the birefringence of the glass is 
negligible. As the efficiency also depends on exposure time, emulsion 
evenness, the form of the pattern itself, processing procedures as well as 
the m odulation frequency, it is very difficult to keep them all exactly the 
same. In our prelim inary experiment, 14 different patterns were stored 
with a variation in diffraction efficiency from 13% to 15%. The holograms 
were arranged in a 4x4 array with a space between two adjacent holograms 
of about 5mm, which matched the subsector spacing of the spatial light 
m odulator (SLM). The diam eter of each hologram  circular spot was 
chosen random ly as 3mm. The variation of diffraction efficiencies is 
compensated by changing the transm ittance of the SLM subsectors. The 
m u ltip lica tion  of the efficiency of a hologram  elem ent by the 
transm ittance of the corresponding subsector is the same for all stored 
patterns before the system starts to iterate. Therefore if no input pattern is 
inserted in the correlation system, the outputs in the output plane are the 
same for all channels.

The optical HOFNET system is designed so that the same input 
pattern appears in each of the channels. This is achieved by allowing the 
channels to in tersect at the in p u t p a tte rn  w hile m aintain ing  the 
individual identity  of each channel by angular m ultiplexing. Such an 
arrangem ent has the advantage that noise in the input pattern or the 
system noise is exactly transferred into each channel so no discrepancies 
betw een channels due to non-uniform  or noisy input devices such as 
SLM, can occur. After several iterations, the tim e-dependent noise will be 
averaged out. In our initial experiment, a single detector preceded by a
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pinhole was moved to detect the zero order correlations. The electronic 
detector ou tpu t was fed back via an IBM/XT com puter to control the 
intensity of the light incident on each hologram independently by means 
of the liquid crystal SLM. For initial system assessment three orthogonal 
training patterns (Fig. 6.11(a)) were stored. Optically it is difficult to deal 
w ith negative am plitudes so all of the data was m ade non-negative and 
the negative value -1 is replaced by zero. In the orthogonal pattern set, if 
the corresponding elements of two patterns are the same, their product is 
+1 (fully correlated), otherwise it is -1 (uncorrelated). The algorithm is

1x1=1, (-1) x (-1) = 1; 1 x (-1) = -1, (-1) x 1 = -1 

If, however, -1 is replaced by 0, then the above algorithm becomes

1 x 1 = 1 , 0 x 0  = 0; l x  0 = 0 ,0 x 1 = 0

N ow  if p roduct 1 still m eans fully correlated, and product 0 m eans 
uncorrelated, the correlation of two zeros (fully correlated) cannot be 
detected. In order to solve this problem, each 16 pixel (4x4) binary pattern 
was reproduced twice, side by side, one copy being made the negative of 
the other, so the number of pixels is doubled. So in Fig. 6.11(a), the lower 
part of each pattern is the negative of the upper part. The algorithm for the 
multiplication of two pixels of separate patterns is

l x l +0x0=1, 0x0+lxl=l, lx0+0xl=0, 0xl+lx0=0

where 1 and 0 represent on and off pixels respectively. Now the products 
indicate sim ilarity (if the two pixels are the same (black or white), the 
product is 1, otherwise it is 0). So the actual patterns consisted of 8x4 pixels. 
When one quarter of an input pattern was obscured, the net converged to 
the complete correct pattern in 2 iterations (Fig. 6.11(b)).

Later we increased the num ber of stored patterns to 14 different 
patterns, each with 32 pixels (so the actual patterns had 64 pixels). Fig. 12(a) 
is the patterns to be stored in the hologram and Fig. 12(b) is the patterns 
reconstructed from the hologram. Because the hologram is recorded in the 
silver halide plate and bleached to increase the diffraction efficiency, the
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noise is very high. Actually Fig. 12(b) is the patterns stored in the system. 
When an input is inserted into the net, the net could recognise the pattern 
in 2 or 3 iterations (Fig. 6.13). This inpu t pattern  is from  Fig. 12(a). 
A lthough it is a 'perfect' pattern, com pared to Fig. 12(b), which contains 
actual stored patterns, it is a distorted pattern. If we insert an input with 
about 1 /8  obscured into the net, the net could recognise the pattern and 
restore the hidden part in 3 or 4 iterations, depending on the injected 
pattern and the system alignment (Fig. 6.14).

As show n in Fig. 12(b), the reconstructed  pa tterns from  the 
hologram are seriously noise distorted. These original patterns in the high 
contrast slide films are copied to a holographic plate in order to avoid the 
birefringence. The contrast of the holographic plate, however, is not very 
high (for the Agfa plate, y is about 4) and also the imaging system used for 
copying is not in very high quality. These make the quality of the patterns 
in the holographic plate decrease: the contrast is low and the edges of the 
patterns are not sharp. W hen we store these patterns in a hologram, we 
use a silver halide plate to record the hologram  and in order to increase 
the diffraction efficiency, the plate is bleached to become a phase 
hologram , w hich increases the noise greatly  by  random  scattering. 
Therefore, if we copy the original patterns in the slide films to a very high 
contrast photographic plate and use phase recording m aterials, such as 
dichrom ated gelatin, we believe the quality of the patterns stored in the 
hologram can be increased greatly.

6.5 Conclusions

We have dem onstrated the use of two dim ensional arrays of Fourier 
Transform  hologram s in an optoelectronic im plem entation of a high 
order feedback net (HOFNET). The nonlinearity in this net is produced by 
means of feedback and not by optical m aterial non-linearities and so the 
net is not limited by the switching speed, non-uniformity or availability of 
large arrays of optoelectronic nonlinear neurons. The patterns used in the 
system are am plitude m odulated only, so the loss is quite high. If phase 
patterns or polarised encoded patterns are used, the loss will be reduced. 
Also the patterns are recorded in silver halide holographic plate and 
bleached to increase the diffraction efficiency, so the noise level is high. If 
we use photorefractive material or liquid crystal to record the hologram,
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the diffractive efficiency can be increased and the loss level will be 
reduced.

□
(a) Patterns Stored in the System

Input

ft* • -• '•?£

Output before iteration O utput after 2 iterations
(b) Pattern Recognition Procedure

Fig. 6.11 Experimental Result of Pattern Recognition (3 patterns stored)
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Fig. 6.12(a) Patterns to Be Stored in the System
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Fig. 6.12(b) Patterns Actually Stored in the System
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Input Pattern Actually Stored Pattern

Output Before Iteration Output After 3 Iterations

Fig. 6. 13 Pattern Recognition with Full Input Pattern

Input Pattern Actually Stored Pattern

Output Before Output After 
Iteration 1st Iteration

O utput After 
2nd Iteration

Output After 
3rd Iteration

Fig. 6.14 Pattern Recognition with Partial Input Pattern
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Chapter Seven

DESIGN OF HOFNET SYSTEM WITH 

OPTICAL PARALLEL FEEDBACK LOOP

In the above chapter, we described a HOFNET system using an electrically 
addressed spatial light m odulator in the feedback loop. In that system, the 
norm alisation of the correlation peaks is perform ed by a com puter. 
Therefore, it is not a completely optical system. Here we introduce two 
completely optical systems by using opto-electronic devices. In section 7.2, 
we first describe the devices that are used in the design of HOFNET 
systems: optically addressed spatial light m odulators (OASLM), self
electrooptic effect devices (SEEDs), especially D-SEED devices and optical 
fibre amplifiers (OFAs). Then an optical HOFNET system, in which gain is 
supplied by an OASLM and normalisation is performed by a SEED device 
is discussed in details in section 7.3. Section 7.4 describes another HOFNET 
system  using an optical fibre am plifier in the feedback loop, which 
performs both gain and normalisation. Summary is given at the end.

7.1 Optoelectronic Devices

7.1.1 Optically addressed spatial light m odulator (OASLM)

An OASLM uses either photoconductors or photocathodes as the charge- 
generation element and liquid crystals, electrooptic crystals or magneto- 
optic m aterials as its light-m odulating elem ents [Chi90; Sel89]. The 
fundam ental structure of an OASLM is shown in Fig. 7.1. It is composed of 
the pho toconductor (recently am orphous silicon or hydrogenated  
am orphous silicon are common), the m odulation m edium  (for example, 
nem atic or ferroelectric smectic liquid crystal) and the light blocking 
layer/m irror, which are sandwiched between two transparent conducting
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electrodes (indium  tin oxide or ITO). The light blocking layer acts to 
separate the read and write beams, reducing the effect of the read beam on 
the photoconductor. Inform ation is transferred from one beam  of light 
called the write light to another light beam called the read light. The read 
light may have different coherence, wavelength or divergence. As it can be 
seen in Fig. 7.1, the photoconductor, light blocking layer and liquid crystal 
are in series betw een the two electrodes. The resistance of the light 
blocking layer and liquid crystal are roughly constant. W hen a write light 
falls on the photoconductor, the resistance of the photoconductor changes, 
so the voltage falling on the liquid crystal will change inversely if the a.c. 
voltage across the two electrodes is kept constant. The response of the 
liquid crystal to an applied voltage is for the reorientation of the molecules 
to occur, consequently, changes the polarisation of the read light. So the 
polarisation of the read light also indicates the voltage change on the 
liquid crystal or on the photoconductor, therefore indicates the intensity 
change of the write light. If we put a polariser in front of the read light, the 
change of polarisation of the read light becomes the intensity modulation. 
So the read light is m odulated by the write light.

Alignment
ITO Layers Mirror

Glass
Glass

Writing
Light

Reading
Light

Liquid Crystal . Photo 
Conductor

Light Blocking 
Layer

Fig. 7.1 Fundmental Structure of an OASLM
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Most devices of this type reported to date use a rubbed polymer 
alignment for the liquid crystal which has the disadvantages of high levels 
of defects (leading to a low contrast ratio) a n d /o r  poor bistability. 
Crossland et al [Cro90] introduced a proprietary silicon oxide evaporated 
alignment to induce a quasi-bookstack geometry which gave a device with 
good bistability. Most OASLMs used in reflection em ploy light blocking 
layers to prevent the read light from washing out the image by reducing 
the conductivity of the photosensor. This, however, is unnecessary in a 
bistable device since it ceases to be photosensitive w hen the drive voltage 
is rem oved, bu t retains the stored information for interrogation. The read 
beam  is m odulated so that no read light falls on the device while the 
image is being written. Once an image has been written, a read beam of 
any reasonable intensity can be used w ithout degrading the stored image.

7.1.2 M ultiple quantum  well and D-SEED device

M ultiple quantum  well (MQW) structures consist of alternate thin layers 
of GaAs and AlGaAs or some other m aterials w ith different band gaps. 
One property  of the MQW structure is the existence of clearly-resolved 
exciton absorption peaks near the optical absorption edge at room 
tem perature. An MQW p-i-n diode layer structure is show n in Fig. 7.2 
[Mil84, 85]. W hen an reverse electric field is applied perpendicular to the 
quantum  well layers, the whole absorption edge moves to lower photo 
energies and the exdtons remain resolved to high fields. This effect in the 
MQW structures can be explained through a m echanism  called the 
Quantum-Confined Stark Effect (QCSE) [Mil85]. Because the QCSE gives a 
shift of a large absorption, m odulators can be made w ith only microns of 
materials. Such structures can also function as optical detectors at the same 
time as modulators. This sim ultaneous operation is the basis of the self
electrooptic device (SEED). The behaviour of the SEED depends greatly on 
the nature of the electric circuit and on the sign of the feedback. Here we 
discuss a D-SEED system which we will use in our HOFNET system  
design.
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GaAs

AlGaAs

MQW structure

AlGaAs

AlGaAs (Etch stop)

GaAs Buffer Layer & Substrate

Fig. 7.2 Multiple Quantum  Well Structure

The D-SEED system  is show n in Fig. 7.3, w here a photodiode 
detector is included in the circuit in series w ith the MQW p-i-n diode. 
W hen a light w ith in tensity  Ij falls on the detector, it produces a 
photocurren t ip, which is alm ost independent of reverse bias supply 
voltage and is linearly proportional to the am ount of light shining on it I1. 
If another laser beam I2 shines on the MQW p-i-n structure, the absorption 

in the MQW generates count-flowing current iMQW • W hen iMQw*s êss 
than iD, the action of the total current is to charge the capacitance of the 
MQW structure, the voltage across the MQW starts to rise, which in turn 
causes iMQWto rise. Conversely, if iMQWexceeds ip, the voltage starts to 
fall, which in turn makes the iMQW decrease. So in the end an equibrium 
will be reached when iD = iMQW« Because the absorbed power by the MQW 
is proportional to iMQW/ there is a linear relation between the light and 
the light I2. The output of the MQW p-i-n diode I3 can be written as

I3 = 12-1*1! (7.1)

w here constant k depends on the electric circuit and the quantum  
efficiency of the photodiode detector and MQW structure. This idea was 
first proposed by Professor John M idwinter for image subtraction and later 
was found by our discussion to be useful for implementing normalization 
in the optical HOFNET system.
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II photodiode

C>[
P

1 MQW

+ n

Fig. 7.3 Schematic Diagram for the D-SEED Configuration

7.1.3 Optical fibre amplifier

Recently there is considerable interest in using rare earth doped fibres to 
amplify weak signals. In an erbium doped fibre amplifier (EDFA), the gain 
m ore than  35 dB at various w avelengths has been obtained [Lam89; 
Urq88]. Erbium doped silica fibres can be m ade to lase at an im portant 
telecom m unications w indow , and so the greatest interest has been at 
about 1500 to 1600 nm. Pum ping is possible for the pum p wavelengths: 
532, 800, 980, 1500 nm  etc. It might be thought of as an advantage to use 
semiconductor lasers at about 800 nm to pum p the fibre amplifier. But for 

Er+ doped fibre amplifiers, the excited-state absorption (ESA) of the pump 
light impedes severely the use of high power semiconductor laser [Lam89]. 
The ESA transitions have the effect of depleting the pum p light resulting 
in a reduction of pum ping efficiency and hence gain. The other pum p 
bands at 670 nm and 532 nm, although exhibiting reduced ESA, are also 
im peded by the large Stokes shift between pum p and signal wavelengths, 
which results in reduced efficiency. So the better pum p wavelengths are 
980 nm and 1490 nm. Gain efficiencies of 3.9 dB /m W  and 2.1 dB/m W  
have been demonstrated for 978 nm diode laser and 1493 nm F-centre laser 
pum ped EDFA. As an example, an experimental set up for a 978 nm diode
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laser pum ped amplifier is shown in Fig. 7.4 [Lam89].

Long-pass
Filter

Diode
Laser

Detector

Erbium-doped
FibreDichroic

Coupler

DFB
Detector or Camera

Fig. 7.4 Experimental Setup of Optical Fibre Amplifier

The output from the strained quantum  well diode pum p laser was 
launched into the wedge tipped fibre. The pum p light was m ultiplexed 
w ith the signal light from a DFB laser operating at 1535 nm  via a dichroic 
coupler and launched into the amplifier fibre. Usually for a fixed pum p 
power, the gain drops as the input signal increases. An example is shown 
in Fig. 7.5. Here a 20 mW pum p laser with wavelength 978 nm is used to 
pum p the signal with wavelength 1535 nm from the DFB laser. A gain as 
high as 40 dB can be obtained. The gain is usually reduced for longer pum p 
wavelengths and increasing the pum p pow er reduces the gain sensitivity 
to pum p wavelength and increases the gain [Lam89].
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Fig. 7.5 Gain vs Input Signal for Optical Fibre Amplifier

7.2 HOFNET Design by Using OASLM and D-SEED Devices

A HOFNET system  consists of tw o m ain subsystem s: one is called 
correlation system and the other feedback system. Correlation system is 
com posed of passive optical elem ents, such as lens, m irrors, which 
inevitably result in energy loss. Also the HOFNET is a non-linear system 
which requires norm alisation to the correlation peaks at each iteration in 
order to avoid saturation. So the feedback system m ust perform two tasks: 
supplying gain and doing normalisation. Fig. 7.6 is a real optical HOFNET 
system, where the gain is provided by the optically addressed spatial light 
m odulator (OASLM) and the normalisation is perform ed by the D-SEED 
device (system).

A parallel beam from a laser is m odulated by the m ultiple quantum  
well (MQW) m odulator and then falls on the OASLM via a polarised 
beam splitter. The reflected beam, which is m odulated by the feedback
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from the correlation output, reconstructs the hologram  H. At the back 
focal plane of lens Lj, the reconstructed patterns stored in the hologram 
are m ultiplied by the input pattern, so at the back focal plane of lens L2, we 
get the correlation output which is divided into two parts by another beam 
splitter: one is fed back by an imaging system to illuminate the OASLM as 
the w rite beam, the other is collected by a large photodiode detector to 
control the MQW modulator.

Laser

Expander

M QW M

SUBTRACTION

BSO-SLM
M l

I/OPBS

FEEDBACK M2M3

Fig. 7.6 Real Optical HOFNET System

N ow  we describe the operation of this system analytically to prove 
that the gain in the channel with the largest correlation is higher than that 
in the other channels. Suppose the collimated light after lens L3 has the 
intensity Iq, at the beginning no feedback signal is from the photodiode 
detector, so the transmitted intensity is still IQ (for simplicity the absorption 
and scattering are not considered). Before the iteration, we use IG to replay
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the hologram  H. At the correlation plane, we have the correlation outputs 
Ii (i = 1, 2,..., M), which indicate the similarity between the input pattern 
and the corresponding stored patterns. As passive elements are used in the 
system, we have

Io>Ii (7.2)

Suppose the beam splitter is half divided, then 0.5 Ij is fed back to control 
the OASLM, which we suppose has a gain of G. The other half of Ij are 
collected by the photodiode detector to control the MQW m odulator. Let 
the efficiency of the photodiode be r\, then after the first iteration, the light

after the m odulator becomes
M 'N-I M

Z i=l
, which is m odulated by the

signals from the feedback via the OASLM. Now the light to replay the 
hologram  becomes

i i=
1 m 'i

2 i=l
p  —Ii 

2 1
(7.3)

At the back focal plane of lens L2, we have

lP> = 1
l o - z - n s i i

2 1=1 )
G -Iili  

2 1 1
(7.4)

Similarly, after the second iteration, at the back focal plane of lens L2 we 
get

t (2) =  
i

1 i=i J  1
(7.5)

After n-th iteration, we have
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l o - i n z i P
2 i=l

1 M 'I

2 i=l
(7.6)

Suppose Ia > Ij (i *  a )

r(n)
a

j(n) 
i

e+1
j(n-l)
a

TnAa

tP+1 i

Ii
(7.7)

That is

T(n) T(n-1) 
a  ^ a  

T(n) T(n-1) 
i i

(7.8)

or

l(n)
j(n-l) ^ j(n-l)

r(n)
a (7.9)

Equation (7.8) means the ratio of the intensities betw een the maximum 
and the others at a certain time is always larger than that at the previous 
time. So the difference between the largest correlation and the others will 
become larger and larger. Another expression of Equation (7.9) says that 
the gain in the maximum correlation channel is always larger than the 
others.

The above discussion only proves that the system  will always
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converge into the maximum correlation, while all the other correlation 
ou tpu ts w ill eventually  drop  below  the threshold. But we have not 
discussed how the system converge into the correlation output. Does the 
convergence occurs sm oothly or w ith  oscillation? As an example, we 
consider a HOFNET system w ith four channels (M = 4). Let the quantum  
efficiency of the SEED device be 50% (t| = 50%) and at the beginning IQ = 1, 
the correlation outputs before iteration, as an example are 0.80, 0.85, 0.90, 
0.95 respectively (because passive elem ents are used in the correlation 
system, Ij m ust be less than y .  So output intensity of a channel after w-th 

iteration, l[n) can be written as according to Eq. (7.6)

I<n) =
i i - -  s  i^n 

4 j = i J
(7 .1 0 )

We draw  two sets of curves w ith different gain G as 4 and 7 respectively 
(Fig. 7.7 and Fig. 7.8). From the curves w e can see w hen G = 4, the 
correlation  o u tp u ts  change sm oothly. W hen G = 7, how ever, the 
correlation outputs change w ith oscillations, although the maximum can 
be selected eventually. Now we discuss the condition that the system can 
converge smoothly.

If the gain supplied by the OASLM is large enough to compensate 
for the loss in the correlation system, the system can always select the 
maximum output and suppress the others. W e suppose after n = N 0 , only 
the maximum remains to iterate, so equation (7.10) becomes

l(n) = f l - I l ( . n_1 )"l®l(n_1)l. (n>No) (7.11)
i I  4 J )  2 1 i

or

As intensity m ust be more than zero. From Eq. (7.11) we have Ij(n) <  4 ,  

while from Eq. (7.12) we know the maximum of Ij(n) is 0.5G Ij,  therefore we 
have
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Fig. 7.7 Convergence Procedure with Gain G=4
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G  <  8 / L (7.13)

Fig. 7.9 is the curve of equation (7.12) with I^-D  as the x-axis, and the 
maximum value of Ij<n) is G Ij/2 . Similarly after one more iteration, we 
have

Draw equation (7.14) in Fig. 7.10, with 1̂ + 1) as the x-axis. Apparently, if the 
system is stable, there must be

j jn  + l) =  j (n )  =  j jn - l )  ( 7  1 5 )

and superimpose them together, we will see:

(1) If Glj /2  is very large, then the two curves have three intersection 
points, A, B, C, but only point B satisfies the equation (7.15) (Fig. 7.11);

(2) If Glj /  2 decreases gradually until only one intersection point B exists 
with equation (7.14) satisfied (Fig. 7.12);

(3) If G lj /2 is very small, however, the intersection point B corresponds to 
minus intensity, which has no physical meaning (Fig.7.13).

Therefore, from the above discussion, there m ust exist a range of GI} /2, 
within which, the two curves have only one point in the first area. From 
the mathematical analysis (see Appendix), we could find that if

Only one positive point exists, that means the system converges gradually 
(stably). So the gain range is

T (n  + 1) __  ^ . T ____/ o  T ( n ) \ 2  ^  t

i 2 1 '  1 '  8
(7.14)

1 < Glj /2  < 3 (7.16)

(7.17)
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Fig. 7.10 Relation of Two Consequent Correlation Outputs
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Fig. 7.13 Relation of Three Consequent Correlation Outputs 

with Small Gain
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If, for example, the I{ are between 0.6 and 1.0, then if the gain G is between
3.2 and 6, the system will converge stably. That is why when G = 4, the 
system converges smoothly, while when G = 7 (less than 8, see Eq. (7.13)), 
the system converges oscillatedly (Fig. 7.8).

7.3 HOFNET Design by Using Optical Fibre Amplifier

Research on rare earth doped fibre am plifiers has recently received 
growing attention in the technical literature. The whole HOFNET system 
with rare earth doped fibre amplifier in the feedback loop is shown in 
Fig. 7.14. The fibre is transversely coupled to the pum p so that the output 
signal from the correlation system experiences an amplification. In order 
to compensate for the loss in the correlation, the fibre amplifier m ust have 
at least a gain which is large enough to compensate for loss. But if the gain 
is constant, as the loss in the correlation system varies at different times, 
all the correlation peaks will be amplified to be saturated or diminished if 
the gain is not enough. Thus the maximum correlation cannot be selected. 
But the optical fibre .am plifier has a gain which depends on the input 
signal. If the signal is weak, the gain is usually large, as the input signal 
increases, the gain will drop gradually as shown in Fig. 7.5. This feature 
can be used in our HOFNET system  to supp ly  both  gain and 
normalisation. Now we discuss how this feature works in our system.

Now we prove that after a certain number of iterations, the signal in 
one channel which corresponds to the largest correlation will increase, 
while the signals in all the other channels will decay. Suppose we couple 
all the correlation peaks into an optical fibre amplifier in some encoding 
m ethod, such as wavelength coding or m ode coding. In order to explain 
more clearly, we suppose only two correlation peaks to be coupled into the 
amplifier and we specify them respectively as A a n d  A2 and A1>A2. At the 
beginning the total intensity is

Ii = A, + A2 (7.18)
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Laser

Correlation System
Decoder Encoder

I / O

Feedback Loop
Beam Splitter

Doped Fibre Coupler

Pump Laser

Fig.7.14 HOFNET System with Optical Fibre Amplifier

N ow  I;! is coupled into the amplifier and amplified to be g ( ^  ) ( A]+A2),
w here g ( Ia ) is the gain at the input intensity of Ij. Then the amplified 
signal is decoupled and fed back to start the second iteration. At the 
correlation plane, we have

I2 =  g ( I i ) ( V + A 22) (7 .1 9 )

The output after the fibre amplifier becomes

g ( I i ) g ( I2 ) ( A 12+ A 22) (7.20)

Similarly, after the n-th iteration, the output becomes

g ( I l ) g < I 2 ) . . . g ( I n > ( A 1*4-A2n) (7.21)
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Suppose after n-th iteration, the system will be stable (such an n always 
exists), then the gain obtained from the fibre amplifier would compensate 
for the loss in the correlation system and the ou tpu t becomes constant. 
Therefore, we have

gOj)—g(In)(Ai + A") = g(I1)...g(In)g(In+1)(A[1+1 + A§+1) (7.22)

In other words,

A? + A§=g(In+1) ( A r I + A3+I) (7.23)

Now if we can prove that Ajg(In+1) > l  and A2g(In+i ) < l ,  that means the 
signal in the channel corresponding to the larger correlation will get 
amplified while the others will decay, then we can say this system works. 
We rearrange equation (7.23) as

AF _ g(In+l)A2 ~ I (7 24)
a 2 l-g (In + l)Al

or

a " ! t _ g(In+l)(A2 — A])
A5 1 — g(In+l)A,

In the left hand of equation (7.25) and according to our supposition 
Ai > A2/ Ihe num erator in the right hand of this equation is negative, so 
the denominator must be negative, that is

g(In+i)Aj > 1 (7.26)

Similarly, it is not difficult to have

g(In+l)A2 < l (7-27)

The above two equations mean that the signal in the larger correlation 
channel will be magnified (Eq. (7.26)) and the signal in the sm aller
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correlation channel will decay (Eq. (7.27)). So the fibre amplifier can select 
the maximum correlation.

7.4 Sum m ary

From  the above discussion, we know  tha t the im plem entation of 
HOFNET requires two subsystems: correlation sub-system and feedback 
sub-system. The correlation subsystem is usually perform ed by the well- 
know  im age processing system  -- 4-f system  by using holographic 
technique [Col71]. The feedback system, however, should provide both 
gain to com pensate for the loss in the correlation  system  and 
norm alisation to select the maximum correlation ou tpu t (Fig. 7.15). In 
section 7.2, we use OASLM to provide gain and D-SEED system to provide 
norm alisation. In section 7.4, however, the optical fibre amplifier with 
nonlinear response provides both gain and norm alisation, m aking the 
system more compact. Actually, all the systems with such characteristics 
can be used for such a task, e.g., the phase-conjugate mirror.

H O F N E T  SY ST E M

Correlation
Sub-system

Feedback
Sub-system

Correlation Gain Normalisation

4-f system; 
incoherent system

EDFA;
OASLM & D-SEED devices; 

Phase conjugate mirror

Fig. 7.15 HOFNET Neural Network System
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Chapter Eight

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

In this thesis, we have discussed in detail the algorithm  of the HOFNET, 
and optical implementation of the HOFNET system w ith serial electronic 
feedback via a computer. In chapter seven, we also designed two novel 
optical HOFNET systems w ith an optical parallel feedback loop. In this 
thesis, I mainly discovered the following ideas:

(a) We place the input pattern  in the m iddle of the system  and it is 
correlated in each iteration, making the system more tolerant of input 
and system time-dependent noises. This is confirmed by the computer 
simulations (chapter five);

(b) The high order of the neural network (HOFNET) is implemented by a 
feedback loop. T herefore, n e ith er a very  large  n um ber of 
interconnections nor nonlinear optoelectronic devices w ith  large 
dynamic ranges are required in the system;

(c) The patterns are stored in the hologram  array  in the spatial 
m ultiplexing way, so the variation of diffraction efficiency for all 
holograms is greatly reduced (theoretically no variation at all).

(d) A binary spatial light modulator is used to sim ulate grey levels in the 
implementation of the HOFNET system. It is used to control the light 
falling on the hologram array.

From the above discussions, we sum m arise the advantages of the 
optical HOFNET system over conventional neural netw ork systems as
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follows:

(i) During the pattern  learning or recording procedure, all the patterns 
are recorded in the same way, that is the angles betw een the object 
beam s and the reference beam rem ain unchanged. This results in 
uniformity of diffraction efficiency of the holograms, as the efficiency 
is the function of the angle between the object and the reference.

(ii) The input pattern  is in the m iddle of the correlation system  and is 
m ultiplied in each iteration. So this is a true feedback system. If the 
input pattern or the system contains tim e-dependent noise, the noise 
will be averaged out.

(iii) In conventional correlation system s, it is necessary to align the 
spectrum  of the inpu t pattern w ith  the spectra recorded in the 
hologram, but the spectrum of a pattern usually occupies a very small 
area and the intensity distribution of spectra of different patterns looks 
sim ilar, consisting of a large zero-order and w eak side-lobes. 
Moreover, the correlation intensity is very sensitive to the alignment, 
so it is very difficult to obtain an accurate correlation peak. In our 
system however, only pattern alignm ent is required, which is easier 
than spectrum alignment in most cases.

(iv) There is no cross-coupling between holograms, as the holograms are 
separated from each other in the recording plate. Therefore the 
memory capacity or the number of holograms can be increased, at least 
in theory, by increasing the size of the recording plate, although the 
size is limited by optical components, i.e. the f-number of lenses.

The disadvantage of the HOFNET is that the correlation system is space 
variant. The position of the input pattern is fixed, unlike the conventional 
correlation system in which the input pattern  can be translated in the 
input plane. This problem  can be partly  solved by using the Circular 
Harmonic Component (CHC) filters and Mellin transform [Ars89].

The maximum number of patterns that can be stored in the system 
depends on the recording materials, the relative aperture of the Fourier

-135-



Chapter Eight Conclusions and Future Work

transform  lens, the aberration of the lens, and the type of light source 
(Gaussian beam in most cases). Furthermore, the num ber is also limited 
by the type of patterns stored in the system (orthogonal or real patterns), 
the m inim um  detectable signal, which a detector can pick up from noise. 
Therefore, although, theoretically, we can store 2N patterns, the actual 
num ber is m uch below this limit. According to a sim ple calculation, 
storing a few thousand patterns seems not difficult in our system.

8.2 Future Work

Although we have done some research on the HOFNET system, it is just 
the beginning of deep research into the system and the application, and 
the experimental results are very preliminary. As far as we see, we can do 
at least the following work or im provem ent on our present HOFNET 
system.

(a) Increase of diffraction efficiency and reduction of noise: As you might 
notice, our experimental results are very noisy. This is because the 
recording m aterial is silver halide and hologram s are bleached to 
increase the diffraction efficiency, which is still low compared to other 
phase recording materials, such as dichromated gelatin. The bleaching 
of holograms increases the noise level caused by grain scattering and 
possibly the grating distortion. So a better recording material should be 
used. Dichromated gelatin or photo-polym er is a good candidate for 
such use, because holograms recorded in these materials are phase- 
typed, that means the holograms are in the form of refractive index 
m odulation  a n d /o r  thickness m odulation , changing the phase 
according to intensity. In these materials, the diffraction efficiency can 
be high (theoretically 100%) and the noise level is very low [Smo90]. 
Further research on recording m aterial m ight go to real-tim e 
recording -- photorefractive material or liquid crystal [Web91, Tao91], 
where real-time updating is possible. As in our system, the holograms 
are separated from each other, updating one does not affect the others. 
So it is very useful for adaptive neural systems. Another possible 
solution to the reduction of noise is to use specially polarised light to 
make and reconstruct holograms.
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(b) Implementation of the HOFNET systems designed in chapter seven: 
Chapter seven described only the theoretical design and we simplify 
perform ances of optoelectronic devices. Some details which m ight 
affect implementation of the system have not been considered fully, 
such as gain fluctuation, amplification saturation etc.

(c) Flexibility of the system: The present system  is size, ro tation and 
position dependent, w hich greatly lim its its practical use. Such 
problems exist in most of the signal processing systems, especially in 
the application for pattern  recognition. A lthough there are some 
m ethods to cope w ith  these problem s, they are still in a very 
preliminary stage and there is a lot to do [Ars89, Mic89]. Selviah also 
proposed a method that all the possible sizes, rotations and positions 
of a pattern are stored in a volume hologram.

(d) Increase of the number of stored patterns: In our HOFNET system, we 
only stored 16 patterns for dem onstration. A ctually m uch more 
patterns can be stored in the system. Recently 500 hologram s have 
been stored in a 1cm x 1cm x 1cm photorefractive material. After 
simple calculation, it seems not difficult to store 10000 patterns, each 
with 10000 pixels in volume holograms [Sol90].

At the moment the optical HOFNET system is at the demonstration 
level. In the future, we hope a compact practical HOFNET system could be 
m anufactured. W hen an input pattern  w ith noise is inserted into the 
device, a perfect pattern appears at the output plane in a very short time 
(less than a millisecond).
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APPENDIX

I. FOURIER TRANSFORMATION

1. Definition

By definition, the Fourier transform  of a function f(x,y) is an integral 
operation:

F(p,v)=  J Jf(x,y)exp[-i27i(jix + vy)]dxdy (II)

The inverse Fourier transform is defined as

f(x,y) = J JF(p,v)exp[i27i(px + vy)]dpdv (12)

These relationships can be expressed more briefly w ith the aid of the 
Fourier transform operators F.T., F.T.'1

F(n,v) = F.T. (f(x,y)}
f(x,y) = F.T."1 {F (p,v)} (13)

The function F(p,v) is known as the Fourier transform  of the function 
f(x,y), while the function f(x,y) is called the inverse Fourier transform of 
the function F(p,v). The difference between the direct and inverse Fourier 
transform s lies in the different signs of the exponential functions in Eqs 
(II) and (12). The difference between F.T. and F.T.'1 is very often ignored in 
the optical Fourier transform by a lens.
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2. Properties of the Fourier Transform

(a) Linearity

If F1(|j.,v) and F2(p,v) are the Fourier transforms of the functions and
f2(x,y), respectively and aa and a2 are arbitrary complex constants, the 
linear relation can be w ritten as

f(x,y) = a1f1(x/y) + a2f2(x,y)
F(|i,v) = a1F1(|i,v) + a2F2(p,v)

F(p,v) = F.T.{f(x,y)} (14)

This p roperty  plays a very im portan t role in coherent optics and 
holography.

(b) Symmetry

Suppose the Fourier transform of the function f*(x,y) is G(|i,v), then 

G(|i,v) = F*(-p,-v) (15)

If f(x,y) is a real function, i.e. f(x,y) = f*(x,y), we have

F*(-|i,-v) = F(p,v) (16)

(c) Shift Theorem

If f(x,y) is shifted by (xQ ,yQ), then

F.T.{ f(x-xc, y-yQ) } = exp[ -i27i(|ix0+vy0) ] F.T.{ f(x,y)} (17)

That means a shift of the function f(x,y) results in only the phase change of 
the Fourier transform and does not alter its modulus.

(d) Frequency Shift
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If F(ji,v) is shifted by (|i0,v0), then

FCp-n^v-Vo) = F.T.{ f(x,y) exp[ 27i(|iGx+voy) ] } (18)

3 Convolution and Correlation

The convolution of the two functions fjfoy) and f2(x,y) is defined as

+»+00
f(x,y)= J Jf1(a ,p )4 (x -a /y-p )d adp  (19)

—  O O

It can be denoted by the operational symbol <8>

f(x,y) = f1(x,y)® f2(x,y) (110)

The correlation of the two functions fa(x,y) and f2(x,y) is defined as

+ 0 0  + 0 0

fi2(X/y)= J Jf1(a/p)f2(x + a /y +  P)dadp (111)

Similarly, it can be denoted by the operational symbol *

fi2(x,y) = fi(x,y)*f2(x,y) (112)

H ere it should be noted that w hereas the convolution operation is 
comm utative relative to the interchange of the function fj(x, y) and f2(x, 
y), the correlation does not have the same property. Actually

fj2(x,y) = f2i(“ x/~y) (H3)

and the relation between correlation and convolution is

f1(x,y)*f2(x,y) = f1(x ,y )® ^ (-x /-y )  (114)

So for real patterns, it is easy to com m ute betw een correlation and 
convolution.
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4 Relation between Correlation/Convolution and Fourier Transform 

Suppose Fi(|i,v) = F.T.{^(x/y)} (i=l, 2), then we have

F,(h, v)F2(h, v) = F.T.{f,(x,y)® f2(x,y)} (115)

F,(n, v)Fj'(tl, v) = F .T .^ fo y ^ f^ x .y )}  (116)

From Eq. (116), we can deduce the famous Parseval Equation

+ 0 0  + 0 0  + 0 0  + 0 0

J J f1(x,y)f*(x,y)dxdy = J jF 1(u,v)F2(p,v)d|idv (117)

If f1(x,y)=f2(x,y), then we have

+ 00+00 + 00+00

JJK<* ,y)fdxdy= J J|F,(n,v)fdndv (H8)

This means energy conservation.

II INTERSECTING POINTS OF TWO HYPERBOLIC CURVES

The two hyperbolic curves are draw n in Fig. A1 and their m athematical 
forms are:

y = K(—x2+ 4 x) (III)
x = K(—y2+4y) (112)

where K is a param eter which decides how m any intersecting points there 
are of the two curves, except for the origin of coordinates, as shown in Fig. 
A l.
Insert equation (III) into equation (112), we have

x = k [-K (-x2 + 4x) + 4 ]k (-x2 + 4x) (113)
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Fig. A1 Two Intersecting Hyperbolic Curves

Rearrange it as

x3 - 8 x 2 + f l6  + —l x -  — + -L- = 0 (114)
V K J K K3

As can be seen from  Fig. (A l), there alw ays exists a solution (an 
intersecting point) where x = y , excluding the origin where x=y=0 (point B 
in Fig. (Al)). We can get this solution very easily by setting

y B = x b = k ( - x b + 4 x b) 
4 K -1

X n  =
K (115)

We rewrite equation (114) as 

4 K -1x -
K

j(x2 + ax + b) = 0 (116)
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w here a, b are param eters, w hich are decided by com paring it w ith 
equation (114). Expanding equation (116) and write it in the same format as 
equation (114), we have

(117)x + a -  4 + — 
K

\ (  a > r
x2 + b - 4 a  + — x + b

J I k J V
- - 4  =0  
K

Compare equations (117) and (114), we have

a — 4 H—  — —8 
K

'  1 1 |
- 4 —7 —16

) ,K 2 J (118)

So we have

a = K

b = — 
K

4 + — 
K (119)

If we w ant only one intersection point except the origin (others are not 
stable), then equation

x2 + ax + b = 0 (DIO)

should have no real solutions, which results in 

a2 -  4b < 0 

that is

(1111)

^4 + —T ——f 4 + — |< 0
k ;  k v  k

Therefore, K m ust satisfy
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K < — (1112)
4

Furtherm ore , we know the so lu tion  (coordinates of the po in t B) 
corresponds to the intensity (see chapter 7), so the solution xB m ust be 
more than zero, that is

« r l > o
K

K > — (1113)
4

Combine (1112) and (III3) we have

i < K < -  (1114)
4 4

Com pare equation (III) with equation (7.20) in the real system in chapter 7, 
we have

1 Glj 3
—  < — L <  —
4 8 4
2  6 — < G <  —

li (1115)

This is the requirem ent that gain m ust satisfy. If the gain is too 
small (G<2/Ii), then the loss is more than gain, so the energy will decay 
and vanish eventually. If the gain is too large (G>6/Ii), however, there will 
be three intersecting points excluding the origin, the system will not 
stabilise bu t vibrate.

-158-



PUBLICATIONS

1. H. Facanha, D. R. Selviah, K. Steptoe and Z. Q. Mao, "Design of Fresnel 
hologram s for optical interconnection of VLSI", 2nd International 
Conference on Holographic Systems, Com ponents and Applications, 
Bath, U.K., Sept. 1989, IEE Proc. 311, pp213-217;

2. D. R. Selviah, Z. Q. Mao and J. E. M idwinter, "Optoelectronic high 
order feedback neural net", Electronics Letters. 26,11,1990, ppl954-1955;

3. Z. Q. Mao, D. R. Selviah, S. Q. Tao and J. E. M idwinter, "Optical 
im plem entation of high order neural netw ork (HOFNET)", presented 
at the FOCUS-ESPRIT Conference, London, U.K., January 1991;

4. Z. Q. Mao, D. R. Selviah, S. Q. Tao and J. E. Midwinter, "Holographic 
high order associative memory system", 3rd International Conference 
on Holographic Systems, Com ponents and Applications, Edinburgh, 
U.K., Sept. 1991, IEE Proc. 342, ppl32-136;

5. D. R. Selviah, Z. Q. Mao and J. E. Midwinter, "An Optoelectronic High 
O rder Feedback NET (HOFNET) w ith variable non-linearity", 2nd 
In te rn a tio n a l C onference on Ar t i f ic ial  N e u r a l  N e t wo rks ,  
Bournemouth, U.K., Nov. 1991, IEE Proc. 349, pp59-63;

6. D. R. Selviah, Z. Q. Mao and J. E. Midwinter, "Optical neural network 
w ith optoelectronic feedback", presented at the IOP Conference on 
Optoelectronic Devices and Systems, 3rd December 1991;

7. Z. Q. Mao, D. R. Selviah and J. E. Midwinter, "Optical high order neural 
network (HOFNET) based on parallel correlators", to be subm itted to 
Applied Optics;

8. Z. Q. Mao, D. R. Selviah and J. E. M idw inter, "Design of optical 
HOFNET by using image subtraction system for norm alisation", the 
IOP Conference on Optoelectronic Neural Networks, Oxford, U.K., June 
1992;

9. Z. Q. Mao, D. R. Selviah and J. E. Midwinter, "Optical high order neural 
netw ork  (HOFNET) and its application to pa ttern  recognition", 
subm itted to the International Artificial Neural Networks, Brighton, 
U.K., Sept. 1992.

-159-


