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INTRODUCTION
Despite the hype surrounding artificial intelligence (AI) in 
radiology, paediatric imaging has been neglected compared 
to other sub-specialties such as breast, oncology or neuroim-
aging.1 This may be partly due to a comparatively larger work-
load in adult medicine, conveniently providing large training 
datasets and thereby potentially greater opportunities to 
automate routine tasks (e.g., cancer screening applications). 
There are intrinsically challenging aspects surrounding the 
practice of paediatric radiology, such as the need for a more 
‘hands-on/ human’ approach in many cases (e.g., fluoros-
copy and ultrasound studies, keeping children calm during 
examinations), and greater heterogeneity in data due to wide 
variations of normal findings at different stages of childhood 
development. Nevertheless, AI could still prove helpful in 
enhancing children’s imaging services, particularly given the 
current radiology workforce shortages (only 38.5% of insti-
tutions in the UK have 24/7 access to a paediatric radiology 
opinion)2 and national economic hardships – potentially 
leading to a vicious cycle of fewer job and training opportu-
nities, with even further lack of access to specialist opinion.

In this article, we discuss a variety of possible ‘use cases’ in 
paediatric radiology where AI has either been implemented 

already or shown early-stage feasibility, while also taking 
inspiration from the adult literature to propose areas for future 
development. This review is broadly structured around the 
patient imaging pathway from ‘request to report’ (Figure 1), 
but also touches upon uses relating to clinical governance 
(e.g., training, audit). Basic terminologies and definitions used 
in AI, machine- and deep-learning techniques have already 
been described elsewhere,1,3–5 and will not be repeated here. 
Our primary aim is to demonstrate how a future, enhanced 
paediatric radiology service could operate, and to stimulate 
further discussion with avenues for research.

REFERRALS
Clinical decision support (CDS)
Unfortunately, despite numerous ‘best practice’ guidelines, 
it is estimated that 10–40% of all imaging procedures are 
performed with little or no patient benefit.6,7 Implementing 
an AI-enhanced CDS tool could allow for the rapid 
synthesis of all patient information held within electronic 
health records (EHR), matched against national referral 
guidelines, to provide clinicians the most appropriate 
next course of action (e.g., 2-year-old child with recur-
rent urinary tract infections would generate a suggestion 
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ABSTRACT:

Artificial intelligence (AI) has received widespread and growing interest in healthcare, as a method to save time, cost 
and improve efficiencies. The high-performance statistics and diagnostic accuracies reported by using AI algorithms 
(with respect to predefined reference standards), particularly from image pattern recognition studies, have resulted 
in extensive applications proposed for clinical radiology, especially for enhanced image interpretation. Whilst certain 
sub-speciality areas in radiology, such as those relating to cancer screening, have received wide-spread attention in the 
media and scientific community, children’s imaging has been hitherto neglected.
In this article, we discuss a variety of possible ‘use cases’ in paediatric radiology from a patient pathway perspective 
where AI has either been implemented or shown early-stage feasibility, while also taking inspiration from the adult liter-
ature to propose potential areas for future development. We aim to demonstrate how a ‘future, enhanced paediatric 
radiology service’ could operate and to stimulate further discussion with avenues for research.
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for a renal ultrasound referral within 6 weeks, rather than a CT 
abdomen).8,9

Information from the EHR could be pre-populated into the 
imaging request, ensuring the most relevant information was 
available for the radiologist. This is one of the most helpful stages 
at which AI could change patient healthcare, produce readily 
auditable results, and allow for more integrated and efficient 
service delivery models to be developed based on local popula-
tion data.

Where imaging referrals involve the use of ionising radiation, the 
CDS could automatically raise potential radiation risks, expected 
dosages and radiation safety information sheets for parents and 
patients, alleviating parental concerns. Details regarding patient 
preparation prior to a study could also be generated (e.g., fasting 
instructions). An AI-assisted CDS could potentially reduce over 
exposure from repeated (potentially unnecessary) imaging (e.g., 
repeated CT KUBs for renal stones) and could be used to cata-
logue a cumulative dose profile from the EHR.

This automation may reduce inappropriate referrals and help 
answer simple enquiries, leading to improved efficiencies for 
administrative staff, both prior to and at the point of attendance. 

At present, integrating referral guidelines (i.e., the RCR iRefer 
guidance)9 within a CDS software is already being piloted across 
several hospitals and GP surgeries in London, with planned 
studies to assess the clinical impact.10

These scenarios however represent a CDS following a ‘rules-
based system’–replicating a human following appropriate 
standard protocols (rather than ‘thinking for itself ’). A more 
advanced feature in future applications would use machine 
learning to integrate information from imaging reports, patient 
demographics, biochemical and blood markers for risk strat-
ification: to suggest probabilities of certain diagnoses or to 
predict patient outcomes.11 In one example of this, Hale et al12 
used a deep-learning neural network to predict the possibility 
of clinically relevant paediatric traumatic brain injuries, through 
combining clinical information and radiologist-interpreted CT 
head reports. The creation of this tool allowed for an evidence-
based automated risk stratification tool, encouraging early safe 
discharge for low-risk patients from the emergency department 
and reducing unnecessary hospital occupancy.

BOOKING
Resource allocation
AI-supported predictive modelling could help with resource 
allocation, particularly within NHS trusts which encompass 
a mixture of tertiary referral and district general hospitals. 
Expected numbers of outpatient clinics per day (and subsequent 
‘walk-in’ imaging referrals), type of local radiological expertise, 
staff rotas, and prior knowledge of cases requiring additional 
attention (e.g., children with complex developmental or learning 
difficulties), could help predict likelihood of delays, or flattening 
out of acute service variation over a normal working day.13 
This could result in routine, non-urgent cases being allocated 
appointments at alternative centres or during predicted ‘lulls’ 
in a service, avoiding unnecessary appointment delays, while 
ensuring complex and urgent cases are given specialist access 
and time.14

Imaging resources could also be better managed by integrating 
AI supported software for scheduling with the local PACS. For 
example, where interval MRI is recommended and protocolled 
by the radiologist, the software could use this information along 
with the DICOM metadata from baseline imaging to suggest 
which particular scanners the patient should be booked for (as 
opposed to booking them for the first available appointment). 
This would be particularly helpful where a department has 
several scanners from different vendors using different proto-
cols and could ensure that high-quality comparable images 
were acquired. It could avoid unnecessary repeated studies and 
improve a radiologist’s confidence in reporting subtle imaging 
changes at follow-up, which might otherwise be confused with 
artefact and potentially affect management decisions.

Safeguarding
Missed hospital appointments are not only costly to healthcare 
systems, but repeated missed appointments in children raise 
safeguarding issues. AI-supported predictive modelling within 
the EHR can identify habitual missed appointments,15,16 may 

Figure 1. Diagram depicting the patient pathway from hos-
pital admission to radiology report and follow-up, with sum-
mary of how artificial intelligence tools may enhance clinical 
practice and patient experience.
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even identify factors which predict the likelihood of missing 
the next appointment, and automatically highlight behaviours 
which could require further action, via hospital child protection 
or social services.

Patient waiting times
Delayed appointments pose a challenge for many parents who 
struggle to keep their young children entertained in the radiology 
waiting room prior to their study, particularly those with wider 
families to consider. An AI-supported notification system via a 
smartphone application that communicates with parents in real 
time, could provide them the option of bringing an appointment 
forward due to last minute cancellations or arriving slightly 
later if their appointment is delayed (without needing to spend 
extra time in the hospital). Where consent is provided, location 
tracking could allow administrative staff to check how far away 
a patient is from hospital prior to their appointment time, and 
reassign them a different time slot while reallocating their orig-
inal appointment to a ‘walk-in’ patient. This could help better 
manage the radiology workload across the working day and 
avoid parental frustration due to inefficiencies in service delivery.

Another way to enhance the patient experience could include 
the use of a ‘Chatbot’ (also known as an Artificial Conversational 
Entity) via a smartphone application.17 These programmes use 
both natural language processing (NLP) and deep learning to 
assess human queries to generate a verbal or text-based response. 
Where a patient is unsure of how to prepare for a radiolog-
ical study, what to expect, or why their examination is being 
performed, a chatbot could provide these answers in an easy to 
understand, and age appropriate way. Currently one UK-based 
children’s hospital is already developing such a tool18 to assist 
patient queries; however, a few Chatbots already exist in health-
care and have been shown to be helpful for monitoring mental 
health.19,20

IMAGE ACQUISITION & POST-PROCESSING
Decreasing imaging acquisition time, radiation dosage and 
improving image quality (through reduction of noise and 
motion/metal artefacts) have all been major areas of research in 
MRI and CT technology since their invention. While hardware 
solutions have previously been enhanced to improve scanning 
efficiencies (e.g., increasing numbers of detectors for multi-
detector CT scanners), AI-supported deep-learning tools are 
now being used to reduce scanning times21 and in some cases 
the need for intravenous contrast.22

MRI scanning & image quality
In paediatric imaging, reduced MRI scanning times would not 
only allow for more studies to be performed per day, but also 
contribute to reduced motion artefacts by a less co-operative 
child23 and could reduce the need for general anaesthesia and its 
associated risks.24 A variety of AI-assisted techniques are being 
assessed,25,26 but have predominantly included training a neural 
network to learn relationships between zero-filled k-space data 
and those of fully sampled k-space data for a particular study 
type; thereby allowing for interpolation of missing data in future 
unseen studies (e.g., in adult brain imaging)21,27 ; and also by 

using neural networks to remove aliasing from under-sampled 
real-time MR data to enhance image reconstruction times (e.g., 
used in MRI reconstruction of congenital heart diseases in 
children).28 In this technique, deep learning artefact suppres-
sion reconstructions were reportedly over five times faster 
than conventional (compressed sensing) image reconstruction 
methods. Nevertheless, these reconstructions can sometimes 
introduce blurring or remove findings that would not have 
been present on the original ‘ground truth’ images, highlighting 
the importance that such tools to be rigorously tested prior to 
routine clinical implementation.

Post-processing techniques can also help improve MRI quality. 
In one study, the removal of ‘ghost’ artefact from diffusion tensor 
imaging of paediatric spinal cord MRIs was achieved through a 
multi-stage process of computer-aided detection, segmentation, 
feature extraction, texture analysis and subsequent subtraction, 
with an accuracy of 84% in separating true cord from artefact.29

CT image quality & radiation reduction
AI-based tools for reducing CT radiation dose while main-
taining image quality can also be achieved by reconstructing 
high-quality images from reduced amounts of raw data. This has 
been made possible by showing an AI model different examples 
of normal and abnormal pathology at low and standard radiation 
dosages, then assessing the model’s ability to produce extrapo-
lated ‘standard dose’ images when provided with only noisy, low-
dose images from ‘unseen’ cases.30 Alternatively teaching an AI 
model the typical appearances of low-dose CT artefacts and then 
subtracting these from other low-does CT images could enhance 
image quality without increasing radiation dose.31,32

In paediatric imaging, MacDougall et al33 successfully demon-
strated a 31% reduction in image noise after training a neural 
network to create iterative reconstructed CT images from the 
filtered back projection data of low-dose abdominal CTs, with 
radiologists reportedly preferring the AI-reconstructed images 
(than the iterative reconstructed images). AI algorithms could 
therefore potentially be used in non-specialist centres to reduce 
doses but still achieve diagnostic imaging in children, and in 
specialist centres to reduce CT doses even further. Few other 
studies have yet been published on this topic for children specif-
ically, although it is likely to play a larger role in future imaging 
processing research.

Contrast usage
Deep learning techniques have been reported to help produce 
high-quality post-contrast MRI images in cases where only a 
fraction of the usual dose of gadolinium-based contrast agent has 
been administered.22 In one adult’s brain MRI study (including 
healthy volunteers and patients with gliomas), a deep learning 
architecture was able to generate ‘virtual contrast’ MRI images 
from unenhanced MRI sequences with a structural similarity 
index of 0.872 ( ± 0.031). Although the radiologist raters scored 
the virtual contrast images highly in terms of image quality, 
the virtual contrast maps were noted to be more blurry and 
less nodular-like for ring enhancement around brain tumours 
than the ground truth contrast-enhanced images.34 Future 
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adaptations of this technique in MRI studies for children, and 
potentially also for multiphase CT studies, could help reduce the 
contrast dosage (and potential renal damage) as well as radia-
tion burden but again, careful assessment of any potential clin-
ical impact from misdiagnosis of underlying pathology (due to 
differences in their appearances on reconstructed images) should 
be undertaken prior to routine usage.

QUANTITATIVE ANALYSIS & PROGNOSTICATION
Quantification
Computer supported software (e.g., BoneXpertTM, Figure  2) 
and several other recently developed algorithms35,36 are already 
widely used in paediatric imaging for the automated segmenta-
tion and subsequent calculation of bone age from hand radio-
graphs,37 rather than the traditional and time-consuming manual 
Greulich-Pyle or Tanner-Whitehouse assessments.

Quantification of imaged volumes has been successfully demon-
strated in areas of paediatric imaging such as in the volume 
measurements of pneumothoraces on chest CT38 and in the 
segmentation of brain tissue and cerebrospinal fluid (CSF) for 
determining degree of hydrocephalus on infant brain CTs.39 These 
measurements could be used to provide rapid objective param-
eters for treatment decisions embedded within future radiology 
reports, for example by hyperlinking approved measurements 
into interactive reports. Future automated image quantification 
may include assessment of paediatric tumour burden across 
different cross-sectional studies,11 measurements of leg lengths 
on limb radiographs post-orthopaedic intervention,40 or even 
scoliosis angles from spine radiographs (as demonstrated in one 
study with adult imaging).41

Predictive modelling
Radiogenomic studies in adults with the aid of AI techniques 
have been commonly used to prognosticate clinical outcomes 
and to determine optimal treatment regimes.42–44 At present, 
several pipelines and registries are being created for similar work 
in children. For example, Weiss et al45 have created a multicentre 
clinical and imaging dataset to develop machine-learning frame-
works for the detection and outcome prediction in neonatal 
hypoxic ischaemic encephalopathy. Similarly in paediatric 
oncology, the recently established multi-centre ‘PRIMAGE’ 
project aims to phenotype, provide appropriate treatment 
decisions and prognosticate disease outcomes for two types of 
paediatric cancers – neuroblastoma and diffuse intrinsic pontine 
glioma (DIPG).46 Further multi-site data-mining and predic-
tive modelling could facilitate prognoses for other paediatric 
tumour types (e.g., Wilms tumour) or patient outcomes derived 
from pattern identification across non-oncological serial images 
(e.g., determining the likely neurological outcome in children 
with post-haemorrhagic hydrocephalus or after vein of Galen 
embolisation).

Perhaps most exciting, AI-enabled predictive modelling 
could potentially determine the likelihood of a disorder from 
happening, even before significant clinical signs are apparent. 
For example, Chen et al47 were able to identify neuroimaging 
biomarkers from brain MRIs in children who could distinguish 
those with autistic spectrum disorder from healthy controls. 
When testing this algorithm in four different datasets across 
different institutions, they reported an area under the curve 
(AUC) of >0.75. AI assisted tools such as these could aid early 
identification of certain diseases, or in patients who may be diffi-
cult to examine or acquire a history from.

In the future, such models could be used to predict neurolog-
ical deficits and timings of developmental milestones in children 
with delayed myelination on brain imaging, and thus identify 
those who require greatest clinical support. This would enable 
better planning for speech and language therapy and schooling 
requirements for the child as they grow, with patient-specific 
expected growth and development trajectories.

IMAGE INTERPRETATION
Detecting and classifying abnormalities
Several studies encompassing detection and classification algo-
rithms (either alone or in combination) for medical images in 
adults (e.g., dermatology photographs, radiographs and retinal 
scans) have shown equivocal or superior performance compared 
to trained healthcare professionals.48 In paediatric radiology, few 
large-scale multicentre studies have been published, however 
early work has demonstrated feasibility in the detection of a wide 
spectrum of diseases, including paediatric pneumonia,49–52 elbow 
effusions,53 developmental dysplasia of the hip,54 wrist fractures 
on radiography55 (Figure  3) as well as interval changes in bone 
marrow signal on MRI in children with chronic non-bacterial oste-
itis (CNO).56 Zheng et al57 developed a feature extraction algorithm 
which performed automated classification of congenital abnormal-
ities of the kidney and urinary tract on paediatric ultrasound, with 
a sensitivity of over 80%.

Figure 2. An example of how artificial intelligence software 
(i.e., BoneXpertTM v.3.0.3) is already being used in some radi-
ology departments for the rapid, automated assessment of 
bone age. (a) A plain radiograph of the left hand in a male 
child with short stature aged 5 years and 7 months old. (b) 
After assessment by the BoneXpertTM software, a duplicate 
image is produced with an image overlay (white text and out-
lines), providing details in the bottom right of the image for 
the bone age according to Greulich and Pyle (5 years 1 month) 
and estimated standard deviation (−0.17). Additional details 
are also provided for estimated bone age according to Tanner 
Whitehouse 3 (TW3: 5.2 years) and a bone health index (BHI).
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In neuro-oncology,58 a more advanced classification system gave 
86% accuracy in distinguishing between medulloblastoma, ependy-
moma and astrocytomas on 3T MR spectroscopy. There is now also 
evidence that subgroups of medulloblastomas can be differentiated 
using a combination of texture analysis, clinical biomarkers and 
imaging characteristics, potentially negating tissue biopsies in the 
future, to better stratify treatments.59

Further applications which are already performed in adults and 
could have benefited in children’s imaging include identifying 
inappropriate positioning of support lines such as nasogastric tube, 
umbilical arterial or venous catheters, and central lines,60 detecting 
osteoporotic vertebral fractures on spine CT61 and pulmonary 
nodule detection on chest imaging.62

REPORTING
Workflow prioritisation
Workflow prioritisation with AI tools to facilitate urgent radiology 
reporting have been explored in the adult literature, predominantly 
for urgent findings on chest radiography63 and CT heads.64,65 These 
ensure images most likely to have a significant abnormalities are 
flagged up on the reporting worklist and reported by radiologists 
first. Although publications specifically on the topic of report prior-
itisation have not been widely described in children, the previously 
reported image detection and classification tools could be incorpo-
rated into a reporting framework to help streamline workflow, and 
flag up potential findings on studies.

Image labelling
Most imaging studies are currently assigned an examination label 
(i.e., US abdomen) based on the referral booking request, manually 
at time of scanning, or a generic label without detail of the study 
(e.g., ‘External Imaging’). Automated identification and labelling of 
images imported into PACS by modality and body part coverage 

could have many benefits. Firstly, this would ensure appropriate 
hanging protocols for the studies would be assigned for reporting66; 
secondly, it could help assign the correct study to the appropriate 
reporting list (e.g., ultrasound knee versus CT chest) and a combi-
nation of imaging appearances and report findings could generate 
more accurate coding for billing purposes (trialled in adult and 
veterinary clinical records) for future research/audit purposes.67

Yi P et al68 have shown that it is possible to successfully use AI to 
automatically label paediatric musculoskeletal radiographs into 
their respective body parts (e.g., pelvis, shoulder, elbow etc) from 
a relatively small training dataset (250 radiographs, with 50 radio-
graphs in each body part category) with perfect accuracy. This 
methodology could be adapted for labelling other imaging modali-
ties, such as chest radiographs69 and MRIs,70 but could also be used 
for internal audit to help quickly determine whether all sequences 
from a particular MRI protocol had been performed and sent to 
PACS prior to reporting.

COMMUNICATION OF RESULTS & MANAGEMENT
Significant findings
Although automated emails and non-clinician-led ‘significant find-
ings’ pathways exist in many radiology services, prioritisation alert 
systems would improve this. Paediatricians could then prioritise 
clinical management and findings above a certain level of urgency 
could be automatically assigned to the next multidisciplinary team 
meeting simply by adding the term “add to MDT” on the radiology 
report.

Enhanced reports
Misunderstandings or a lack of clarity in key findings may be 
encountered by clinical colleagues when presented with a lengthy 
radiology report. An AI tool could help to distil radiology reports 
down to their most important findings. An example of one such 
algorithm was reported by Gálvez et al71 where a natural language 
processing (NLP) tool was able to identify the presence of a deep 
vein thrombosis (DVT) in children from free text ultrasound 
reports and generate a clinical alert. In adults, work has been devel-
oped to categorise chest CT findings into those of ‘normal/insig-
nificant’ versus ‘significant’ findings, with further sub-classification 
of whether the findings were stable, worsening or improved from 
previous reports.72 In order to prioritise treatment and follow-up 
of patients at a higher risk of stroke, Mowery et al73 devised a NLP 
model to filter and highlight ultrasound reports with significant 
carotid artery stenosis.

In paediatric imaging, NLP software could also be developed to 
highlight specific important findings in reports (e.g., misplaced 
lines or tubes) or those that raise safe-guarding issues (e.g., metaph-
yseal corner fractures). Categorisation of worsening appearances 
on oncological imaging studies could also trigger referrals for 
further MDT discussion and incorporate tumour dimensions 
across previous studies to visualise trends in the disease process. 
This would be enhanced and aided by the routine usage of multi-
media reporting with embedded report hyperlinks to prior key 
images, aiding the AI algorithm to search for the same tumour 
in the follow-up examination,74 or readily verify like-for-like 
measurements.

Figure 3. Fracture detection using artificial intelligence on 
plain frontal wrist radiographs. These examples are from dif-
ferent patients, all with fracture of the distal radius with and 
without additional ulnar fractures which have been assessed 
by a deep-learning neural network (the ‘Faster R-convolu-
tional neural network’) trained to detect and localise fractures. 
Green boxes denote the location of the suspected abnormal-
ities, with percentages provided to reflect the confidence 
score by the network for a fracture located within the marked 
box. Reproduced with permission from Thian YL et al. Radiol-
ogy: Artificial Intelligence. 2019;1(1):e180001 55
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Where a differential diagnosis exists for rare or unfamiliar diseases, 
or a follow-up guideline is not readily established–the integration 
of advanced data-mining software linked to the internet could 
help rapidly ‘read’ in real-time millions of manuscripts to suggest 
the most current expert opinions on the topic.75 This type of soft-
ware is already gaining some popularity for use in universities and 
academia to help with literature searching,76 but the most relevant 
results generated from the software could be integrated into a clin-
ical radiological report for radiologist and clinician education and 
information.

CLINICAL GOVERNANCE
Aside from direct patient care, clinical governance activities could 
be enhanced using AI-supported methods. For example, using NLP 
to mine information from the EHR, radiology reports and DICOM 
metadata could result in faster search and potentially larger data-
sets for audit and research projects,77 finding interesting cases for a 
teaching library (potentially with digital pathology correlation, and 
information of patient outcomes), as well as providing direct feed-
back for trainees on their reporting skills.78

For example, instead of an AI tool being used as a ‘first read’ for 
certain studies, trainees could go through a case list (e.g., neonatal 
chest radiographs from intensive care) determining their own 
differential diagnoses, and then check to see if the highest prob-
ability assigned to a list of differential diagnoses by the AI tool 
matches their own impressions.79 In a proof of principle study by 
Hedgé J,80 this technique has shown early success when training lay 
subjects (with no medical qualifications) to detect certain cancers 
on mammograms. The AI algorithm could further help education 
by displaying the commonest errors made by trainees next to the 
correct diagnosis, without senior input.

Alternatively, where a differential diagnosis is uncertain for an 
unusual imaging pattern (e.g., honeycombing on a chest CT), 
it would be possible to mark the region of interest on the image 
and run a ‘reverse image search’ through the entire PACS system 
looking for other studies with confirmed diagnoses in patients with 
similar imaging patterns (one AI company has already developed 
such a tool for adult chest CT findings (contextflow SEARCH81)). 
This could help trainees learn descriptive terminology and avoid 
manually retrieving inappropriate examples from pictorial reviews 
or textbooks.

CHALLENGES AND PITFALLS
This article has highlighted several areas where AI could improve 
clinical paediatric radiology practice, and taken together, the multi-
tude of research studies suggest an optimistic, exciting and positive 
future. Nevertheless, readers should remain cautious of the dangers 
that expedited implementation of AI tools could bring. While 
many of these are generic and affect all aspects of healthcare (i.e., 
data security, legal, ethical and implementation considerations, 
standardisation of clinical terminologies),82–85 there are two areas 
of caution specific to paediatric imaging: the temptation to apply 
AI software designed for adults to children unmodified, and the 
potential lack of acceptability amongst parents and carers.

The first area of caution relates to the dangers of improper 
external validation of algorithms in children, and ignorance 

amongst healthcare professionals regarding the intended usage 
of the AI tool. In one study,86 two different automated soft-
ware for vertebral fracture detection designed for adults were 
applied to paediatric spine radiographs. The overall sensitivity 
and specificity dropped significantly to between 26–36% and 
95–98%, respectively (compared to 98 and 99% for adults). The 
low sensitivity means a high false-negative rate, which is largely 
useless as a screening tool. It is unclear whether entirely new 
paediatric datasets would be needed to train such an AI algo-
rithm, or whether adaptations of the existing “adult” algorithms 
can give the desired end result.

A national archive (imaging biobank) of multicentric paediatric 
cases may help objectively and independently assess the perfor-
mance of novel AI tools intended to be used within the NHS for 
paediatric use. However, even this may not provide sufficient reas-
surance given the lack of a ‘one size fits all’ solution–individual 
hospitals may need mechanisms in place to audit errors and poten-
tial improvements for AI solutions according to their local range of 
cases and local demographics.

The second issue relates to patient and carer acceptability of AI 
solutions. While Goldberg et al87 found that the public were 
overwhelmingly positive on the transformative impact of AI in 
radiology, there was still an underlying mistrust for autonomous 
computer systems. Interestingly, parental and children’s views have 
yet to be specifically addressed and may be at odds with what the 
general adult public perceive as acceptable for themselves. Engage-
ment with end-service users (e.g., paediatricians, patients, carers) 
is, therefore, vital during any change to services, with acceptability 
likely to be linked with more ‘explainable’ AI tools,88 better famil-
iarity and evidence-based improved patient outcomes.

CONCLUSION
The current climate represents an opportunity for early adopters 
to better determine how AI solutions could, and should, be used 
to enhance the workflow of paediatric radiology–potentially 
providing a more individualised patient and referrer-centred 
approach. Several aspects of the patient pathway, experience and 
clinical governance could be enhanced to provide time and cost-
saving improvements. Paediatric radiologists are well placed and 
should maintain a central role in determining how these AI tools 
are evaluated, implemented and embedded to provide better and 
safer clinical healthcare.
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