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Abstract
Earthquake loss assessment procedures for individual buildings can be a useful
tool for various stakeholders, including building owners, insurers, and lenders.
However, it is often not possible to provide complete information for the required
inputs to these procedures because there is substantial cost and effort associated
with gathering necessary data. It is therefore important to understand how dif-
ferent inputs to these procedures (building information/ground shaking inten-
sity) impact the loss predictions. This can be done via sensitivity analyses. We
conduct variance-based sensitivity analyses for the FEMA P-58 methodology, a
building-specific seismic performance assessment procedure that is making its
way into seismic design and risk analysis practice. We determine how variations
in different input variables of the methodology affect predictions of building loss
ratio and reoccupancy time, and benchmark calculated sensitivities using the
HAZUS earthquake loss estimation methodology . We also quantify additional
uncertainty in consequence predictions caused by uncertainty in input variables.
We use an example site in downtown Los Angeles and consider a 7-story and a
14-story building. Of the six inputs considered in the analyses, building loss ratio
predictions are most sensitive to shaking intensity and building age, while reoc-
cupancy time predictions are most sensitive to shaking intensity and the type of
lateral system/building period. The largest additional uncertainties in building
loss ratio predictions are caused by the building’s lateral system or age (or both)
being unknown. The results of this study provide an enhanced understanding of
the interaction between inputs and consequence predictions of the P-58 method-
ology.

KEYWORDS
FEMA P-58 methodology, seismic loss predictions, sensitivity analysis, uncertainty quantifica-
tion

1 INTRODUCTION

The prediction of earthquake-induced loss is important for a number of different stakeholders including building owners,
emergency planners, the insurance and reinsurance industries, and local and national governments.1 For example,
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calculations of probable maximum loss (PML), which is the probable cost of repairing earthquake damage with a given
confidence of nonexceedance in a particular earthquake return period, are used to determine insurance premiums,
prepare disaster response plans, create land-use zoning policies, and develop building codes.2 Commercial lenders also
often use PML to help decide whether to underwrite a mortgage in seismically active regions; it is common for such
lenders to require the buyer to purchase earthquake insurance for a mortgage to be issued if the PML exceeds 20–30% of
the building’s replacement cost.3
These loss calculations can be conducted with crude and incomplete building information, however.4,5 For example,

in the catastrophe insurance industry, many insurers provide incomplete information on even basic characteristics, such
as location and occupancy type.6 In addition, there is often limited availability of data to fully characterize the events
of interest.7 It is therefore important to understand how uncertainties in inputs to seismic loss models for individual
buildings can affect the loss predictions,8 which can be useful for many applications, e.g., insuring supply-chain risk.
Several previous studies have investigated the sensitivity of building-specific seismic loss procedures to different model
inputs. Dyanati et al9 examined the impact of ground motion and structural response calculations on expected annual
dollar losses for a six-story braced frame building. Lamprou et al10 estimated the effect of uncertain parameters associated
with seismic hazard and component-level damage on expected life-cycle seismic repair costs for a four-story concrete
moment-frame building. Finally, Porter et al11 evaluated the relative contribution of various ground motion, building,
and economic parameters to overall seismic performance (i.e., repair cost) uncertainty for a 1960s high-rise nonductile
moment-frame building.
In this study, we conduct sensitivity analyses of the FEMA P-58 methodology, which is making its way into seismic

design and risk analysis practice. FEMA P-58 is a building-specific seismic performance assessment procedure,12 based
on the performance-based earthquake engineering philosophy.13 It combines ground motion hazard, structural response,
and component-level damage tomake predictions of loss induced by earthquake loading. Themethodology is probabilistic
in nature, employingMonte Carlo sampling at each stage in the analysis to capture uncertainties. Using a 7-story and a 14-
story building in downtown Los Angeles as case studies, we investigate how different input parameters affect various loss
predictions. We benchmark results of the sensitivity analyses using the HAZUS earthquake loss estimation methodology.
We also quantify additional uncertainties in losses that result due to uncertain model inputs.
Our analyses significantly differ from the calculations of the aforementioned previous studies for several reasons. First,

we examine the sensitivity of more fundamental input parameters, such as lateral system type and building age. Second,
we investigate how these parameters affect predictions of building downtime (i.e., reoccupancy time) aswell as repair costs
(i.e., building loss ratio). Although the physical dimensions of the building examined in Porter et al11 are roughly equivalent
to the 7-story building investigated in this study and the underlying seismic performance methodology examined is very
similar, the type of sensitivity analysis conducted here is fundamentally different. Porter et al carried out a deterministic
sensitivity analysis,14 which used tornado diagrams to demonstrate the effects of changing different input variables one-
at-a-time (OAT) to various discrete values, while keeping all others constant in a baseline model. We instead adopt a well-
established variance-based (probabilistic) approach,15 which accounts for the whole input space and measures sensitivity
for an uncertain input variable in terms of its contribution to the variance of the output. Variance-based sensitivity analysis
offers a more comprehensive understanding of the input–output interaction within a probabilistic seismic performance
evaluation than the deterministic approach used by Porter et al, which is discussed in more detail in a later section.
We primarily examine high-level input parameters (hyperparameters) in this study (i.e., building age, building occu-

pancy, lateral system, and ground shaking intensity), which provide basic information about the building and earthquake
loading. These parameters influence the values of detailed parameters used within the P-58 analysis. For example, the
building occupancy hyperparameter affects the types and quantities of nonstructural components populated in a P-58
building model, and the building age hyperparameter affects the vulnerability of the components. We focus mainly on the
hyperparameters, as we assume that they are the dominant source of uncertainty (rather than the conditional detailed
parameters) in most cases. However, we do consider some key detailed parameters that may have a significant impact on
the model output (i.e., building period, which is dependent on the lateral system, and nonstructural component quanti-
ties, which are dependent on the building occupancy). Note that the FEMA P-58 methodology is not explicitly designed
to handle uncertainty in many of the input variables investigated (i.e., lateral system, period, occupancy, age, and non-
structural component quantities). However, it is pertinent to treat these variables as uncertain in this case (and thus gain
a proper understanding of their importance in the calculations), given that the level of effort required to precisely refine
these inputs for the calculations can prove impractical for practitioners wishing to implement the methodology.16
This paper is structured as follows. In Section 2, we describe the variance-based sensitivity analysis procedure in the

context of the FEMA P-58methodology. In Section 3, we introduce the two case study buildings, and use them to calculate
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F IGURE 1 An overview of the FEMA P-58 methodology
Note. Model inputs (𝐗) consist of a description of the earthquake shaking intensity and building properties. Model outputs (𝑌) are consequence
predictions in the form of repair costs, repair times, and casualties.

the variance-based sensitivity of P-58 repair cost and repair time predictions to different input parameters. In Section 4, we
benchmark the Section 3 sensitivity analyses results using HAZUS. In Section 5, we describe the advantages of using the
variance-based sensitivity analysis procedure over the deterministic sensitivity analysis procedure used by Porter et al In
Section 6,we quantify the additional uncertainty in P-58 repair cost predictions that results fromdifferent input parameters
being unknown, using one of the case study buildings.

2 VARIANCE-BASED SENSITIVITY ANALYSES

We conduct variance-based sensitivity analyses in this study. For a given model of the form 𝑌 = 𝑔(𝐗), variance-based
methods are probabilistic sensitivity analyses that quantify the sensitivity of 𝑌 to𝐗 in terms of a reduction in the variance
of 𝑌.17 The function 𝑔(⋅) of interest in this study is the FEMA P-58 methodology.12 Model inputs (𝐗) consist of a building’s
properties (such as lateral system, occupancy type, and age) and the shaking intensity at the building for a given level
of earthquake loading. These inputs are used to generate Monte Carlo samples of the building’s response, which in turn
are input to component-level fragility functions to simulate damage. Finally, damage predictions are translated to con-
sequences (𝑌), in the form of repair costs, repair times, and casualties. An overview of the methodology is presented in
Figure 1.
The variance of 𝑌 across the whole input space (𝑉𝐗[𝑌]) can be decomposed as follows18:

𝑉𝐗[𝑌] =

𝑝∑
𝑖=1

𝑉𝑖 +
∑

1≤𝑖<𝑗≤𝑝

𝑉𝑖𝑗 +⋯+ 𝑉1…𝑝, (1)

where 𝑝 is the number of input parameters. 𝑉𝑖 measures the main effect of input parameter 𝑋𝑖 on 𝑌 and is defined as
follows19:

𝑉𝑖 = 𝑉𝑋𝑖 [𝐸𝐗∼𝑖 (𝑌|𝑋𝑖)], (2)

where 𝑉[⋅] denotes variance, 𝐸(⋅) denotes expectation, and 𝐗∼𝑖 includes all inputs but 𝑋𝑖 . In words, 𝑉𝑖 is the expected
reduction in variance that would be obtained if 𝑋𝑖 could be fixed. The inner expectation operator takes the mean of 𝑌
over all possible values of 𝐗∼𝑖 , for a fixed value of 𝑋𝑖 . The outer variance is then taken over all possible values of 𝑋𝑖 . The
sensitivity measure associated with 𝑉𝑖 is the first-order (main effect) sensitivity coefficient, defined as

𝑆𝑖 =
𝑉𝑋𝑖 [𝐸𝐗∼𝑖 (𝑌|𝑋𝑖)]

𝑉𝐗[𝑌]
. (3)

For example, an 𝑆𝑖 value of 0.2 implies that fixing the value of 𝑋𝑖 would reduce the variance of 𝑌 by 20% on average. 𝑉𝑖𝑗
measures the effect of the interaction between 𝑋𝑖 and 𝑋𝑗 on 𝑌, i.e., it is the portion of variance in 𝑌 due to 𝑋𝑖 and 𝑋𝑗 that
is not captured in the individual main effects of 𝑋𝑖 and 𝑋𝑗:

𝑉𝑖𝑗 = 𝑉𝑋𝑖𝑋𝑗 [𝐸𝐗∼𝑖𝑗 (𝑌|𝑋𝑖, 𝑋𝑗)] − 𝑉𝑋𝑖 [𝐸𝐗∼𝑖 (𝑌|𝑋𝑖)] − 𝑉𝑋𝑗 [𝐸𝐗∼𝑗 (𝑌|𝑋𝑗)]. (4)
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The total effect sensitivity index is another sensitivity measure that captures the effect of these (and higher order) interac-
tions, in addition to themain effects. It thereforemeasures the total contribution of all terms in the variance decomposition
that contain 𝑋𝑖 . It is defined as

𝑆𝑇𝑖 =
𝐸𝐗∼𝑖 (𝑉𝑋𝑖 [𝑌|𝐗∼𝑖])

𝑉𝐗[𝑌]
, (5)

where 𝐸𝐗∼𝑖 (𝑉𝑋𝑖 [𝑌|𝐗∼𝑖]) is the expected variance that would remain if all inputs but 𝑋𝑖 could be fixed, and 𝑉𝐗[𝑌] is as
defined in Equation (1). We use the first-order sensitivity coefficient (Equation 3) as the metric of sensitivity in this study.
The total effect sensitivity index (Equation 5) is used in the subsequent uncertainty quantification.
When inputs are correlated, they are grouped together as a multidimensional variable 𝐗𝑟.20 The first-order sensitivity

coefficient becomes

𝑆𝑟 =
𝑉𝐗𝑟 [𝐸𝐗∼𝑟 (𝑌|𝐗𝑟)]

𝑉𝐗[𝑌]
, (6)

and the total effect sensitivity index is

𝑆𝑇𝑟 =
𝐸𝐗∼𝑟 (𝑉𝐗𝑟 [𝑌|𝐗∼𝑟])

𝑉𝐗[𝑌]
. (7)

3 CASE STUDIES

We investigate the sensitivity of 𝑌 to 𝐗 for a 7-story and a 14-story building at an example site in downtown Los Ange-
les. The site is located at 34.0407◦N, 118.2468◦W. The 7-story building is 91 ft tall and 67,000 ft2, while the 14-story
building is 182 ft tall and 134,000 ft2. Both buildings are assumed to be square in plan. We use the SP3 software tool21
to run the FEMA P-58 analyses. The tool’s calculated replacement value ranges from $11,390,000 for a retail build-
ing to $37,185,000 for a healthcare building in the case of the 7-story building, and it ranges from $22,780,000 (retail)
to $74,370,000 (healthcare) for the 14-story building. We generate structural responses with the seismic response pre-
diction engine22 feature of the tool. This engine estimates responses based on observations from a large database of
nonlinear structural models. A full list of the inputs provided to the engine can be found in Supporting Information
Appendix A.

3.1 Input variables (𝐗)

The input variables (𝐗) investigated for the case study buildings are shaking intensity (𝑋1), lateral system (𝑋2), period (𝑋3),
occupancy (𝑋4), age (𝑋5), and nonstructural component quantities (𝑋6). (These variables are fully defined in subsequent
sections.) 𝑋2, 𝑋4, and 𝑋5 are discrete variables with 𝑏 possible values, which are assumed to follow a discrete uniform
distribution in our analyses, i.e.,

𝐹𝑋𝑖 (𝑥𝑖; 𝑏) =
⌊𝑥𝑖⌋
𝑏
, (8)

where𝑋𝑖 is the discrete variable of interest, ⌊𝑥𝑖⌋ is the greatest integer less than or equal to 𝑥𝑖 , and 𝐹𝑋𝑖 (𝑥𝑖; 𝑏) is the CDF for
𝑥𝑖 ∈ [1, 𝑏]. A uniform distribution is assumed for these variables, as it is the maximum entropy estimate. This approach
enables us to draw very general conclusions about the importance of these parameters in the seismic loss calculations.
However, it should be noted thatmaximum entropy is a conservative description of uncertainty, whichmay underestimate
the level of knowledge available on these variables in real-life situations. For example, a simple visual examination of a
building could significantly reduce its number of potential lateral systems and alter their relative probability. We there-
fore also provide additional sensitivity analyses results for cases where more specific information is known about these
variables (in Supporting Information Appendix B). All other input variables are continuous, and their corresponding
probability distributions are discussed in the following sections.
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TABLE 1 Inputs provided to OpenSHA for obtaining the hazard curves (note
that the use of more recent IMR and ERF parameters and/or inclusion of
background seismicity do not have a significant effect on the curves obtained)

Parameter Value
Intensity measure relationship USGS combined (2004)
Gaussian truncation No
Component Average horizontal
Standard deviation type Total
𝑉𝑆30 [m/s] 259
Earthquake rupture forecast (ERF) USGS/CGS 2002 adjusted California
Fault model Frankel’s
Rupture offset [km] 10
Background seismicity Exclude

F IGURE 2 Fifty-year hazard curves at the case study site for spectral accelerationwith 5% critical damping [𝑆𝑎(𝑇)], at the (A) short periods
and (B) long periods provided in OpenSHA

3.1.1 Shaking intensity

Peak ground acceleration (𝑃𝐺𝐴) and spectral acceleration with 5% critical damping at the building’s first-mode period
[𝑆𝑎(𝑇1)] are used to represent shaking intensity. Shaking intensity measures the severity of earthquake loading on the
building, and therefore affects the building’s response. It is taken from 50-year hazard curves at the site of interest, obtained
in OpenSHA23 using the inputs in Table 1. A 50-year duration is used because many authors assume a 50-year useful life
of new construction.24 The hazard curves are shown in Figure 2, at the periods provided in OpenSHA. We use shaking
intensities with probabilities of exceedance between 5% and 95%. It is important to note that inclusion of exceedance prob-
abilities further in the tails may modify the outcome of the sensitivity calculations. However, such values are neglected in
this study due to the very rare occurrence of the corresponding shaking intensity. Exceedance values within this range are
assumed to be uniformly distributed in our analyses (i.e., themaximumentropy estimate).We linearly interpolate between
periods and acceleration values to obtain appropriate values of 𝑆𝑎 for a given building period, using results obtained for
available 𝑆𝑎(𝑇) periods.
Let 𝑋1 represent shaking intensity probability of exceedance. The cumulative distribution function (CDF) for 𝑋1 can

be expressed as follows:

𝐹𝑋1(𝑥1) =
𝑥1 − 𝑎1
𝑏1 − 𝑎1

, (9)

where 𝐹(⋅) denotes the CDF. 𝑎1 = 0.05 and 𝑏1 = 0.95 in this case.
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TABLE 2 Median building periods (�̂�) assumed for each lateral system and both building sizes

�̂� (s)
Lateral system 7-Story building 14-Story building
Concrete moment frame (perimeter) 1.03 1.91
Concrete moment frame (space) 1.03 1.91
Concrete shear wall 0.73 1.23
Steel eccentrically braced frame 1.11 1.86
Steel concentrically braced frame 1.11 1.86
Steel moment frame (perimeter) 1.36 2.36
Steel moment frame (space) 1.36 2.36
Steel moment frame and concrete shear wall 0.84 1.40

3.1.2 Lateral system

This variable affects the type of structural components populated in each buildingmodel, as well as the building’s response
to a given level of ground shaking.We examine eight lateral systems in our analyses: (1) perimeter concretemoment frame,
(2) space concretemoment frame, (3) concrete shearwall, (4) perimeter steelmoment frame, (5) space steelmoment frame,
(6) steel eccentrically braced frame, (7) steel concentrically braced frame, and (8) steel moment frame and concrete shear
wall. We use these lateral systems as they can be modeled in the seismic response prediction engine and estimates of their
associated periods can be obtained from the HAZUS methodology.25 The distribution of lateral system (𝑋2) is given by
Equation (8) for 𝑏 = 8.

3.1.3 Period

This variable affects the building’s response to a given level of ground shaking. Themedian building period in seconds (�̂�)
is taken as the estimate obtained fromHAZUS for the given lateral system and number of stories (see Table 2). We assume
that period follows a lognormal distribution, which is consistent with the literature.26–28 We assume that the logarithmic
standard deviation of the period (𝛽) is constant across all lateral systems and the two building heights studied. It is taken
as 0.29, which is the square root of the average of the logarithmic variances of period (0.232, 0.2092, 0.3912) provided in
Gilles et al28 for steel moment resisting frame, reinforced concrete moment resisting frame, and reinforced concrete shear
wall, respectively.
The CDF for building period (𝑋3) can be expressed as follows:

𝐹𝑋3(𝑥3) = Φ

(
ln (𝑥3∕�̂�)

𝛽

)
, (10)

where 𝑥3 > 4 is set to 4, to correspond with the maximum period for which the site’s 50-year hazard curve is provided in
OpenSHA (though 𝑥3 > 4 values are rare). 𝐹(⋅) is the lognormal CDF, and Φ(⋅) is the standard normal CDF. Note that 𝑋3
is dependent on 𝑋2, so the sensitivities of the two input variables are measured together according to Equations (6) and
(7). The two input variables will collectively be referred to as “lateral system” in our analyses.

3.1.4 Occupancy

This variable affects the types and quantities of nonstructural components populated in each buildingmodel. We examine
9 of the 10 occupancy types included in P-58 in our analyses: (1) office, (2) elementary school, (3) middle school, (4) high
school, (5) healthcare, (6) hospitality, (7) research, (8) retail, and (9) multiunit residential. The warehouse occupancy type
is not considered because we are looking at 7- and 14-story buildings. The distribution of occupancy (𝑋4) is given by
Equation (8) for 𝑏 = 9.
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3.1.5 Age

This variable affects the vulnerability of components populated in each building model. We investigate four differ-
ent building design eras (ages) in this study: pre-1941, 1941–1976, 1976–1994, and post-1994. The boundaries of each
era are chosen to coincide with years in which significant changes occurred to U.S. seismic design codes. Note that
many nonstructural components used in the SP3 software correspond to a specific seismic design category (SDC), a
concept that was only introduced in more recent seismic design codes.29 SDC D is the correct design category for
the two case studies, given the site location. We use nonstructural components with other values of SDC for pre-
1994 buildings, to account for the less stringent seismic design provisions in effect at those times. Each SDC has
an associated range of short period spectral acceleration (𝑆𝐷𝑆) values, which are used to calculate the capacity of
anchored nonstructural components. We use the middle value of the corresponding range for pre-1994 buildings, and
the site-specific value calculated according to 2008 USGS hazard maps30 (assuming site class D) for post-1994 build-
ings. Note that for pre-1976 buildings, mechanical components are assumed to be unanchored, and the 𝑆𝐷𝑆 value is
only used to calculate the out-of-plane capacity of cladding. Full details of our assumptions for each building age are as
follows:

1. Pre-1941: We assume that the building code is the 1935 uniform building code (UBC).31 We use SDC A components and
set 𝑆𝐷𝑆 = 0.17𝑔. We assume that mechanical components are not anchored, elevators were those typically installed in
California prior to 1976, stairs do not have seismic joints, and pendant lighting is nonseismic.

2. 1941–1976: We assume that the building code is the 1955 UBC.32 We use SDC B components and set 𝑆𝐷𝑆 = 0.33𝑔. We
assume that mechanical components are not anchored, elevators were those typically installed in California prior to
1976, stairs do not have seismic joints, and pendant lighting is nonseismic.

3. 1976–1994: We assume that the building code is the 1976 UBC.33 We use SDC C components (SDCD for healthcare) and
set 𝑆𝐷𝑆 = 0.50𝑔 (𝑆𝐷𝑆 = 1.56𝑔 for healthcare nonstructural components). We assume that mechanical components are
vibration isolated (hard anchored for healthcare), stairs have seismic joints, elevators were those typically installed in
California post-1976, and pendant lighting is seismically rated.

4. Post-1994: We assume that the building code is ASCE 7-10.34 We use SDC D components and set 𝑆𝐷𝑆 = 1.56𝑔. We
assume that mechanical components are hard anchored, stairs have seismic joints, elevators were those typically
installed in California post-1976, and pendant lighting is seismically rated.

The distribution of age (𝑋5) is given by Equation (8) for 𝑏 = 4.

3.1.6 Nonstructural component quantities

This parameter affects the quantities of nonstructural components populated in each building model, given the value of
the occupancy variable (𝑋4). We include it in our analyses because nonstructural components are the primary source
of earthquake-induced loss in most buildings,35 and their quantity may have a notable impact on the model outputs.
We assume that the quantities follow the lognormal distributions for each component provided in the P-58 Normative
Quantity Estimation Tool.36 The parameters of the lognormal distributions depend on the value of 𝑋4. We assume that
quantities of the same component are identical on different floors, and that there is perfect correlation between quantities
of all nonstructural components, which implies that the percentile of the sampled quantity is identical for all nonstructural
components in a given P-58 Monte Carlo sample.
Let 𝑋6 denote nonstructural component quantity percentile. We assume that 𝑋6 follows a uniform distribution in our

analysis, therefore the CDF of 𝑋6 is

𝐹𝑋6(𝑥6) =
𝑥6 − 𝑎6
𝑏6 − 𝑎6

, (11)

where 𝐹(⋅) denotes the CDF. 𝑎6 = 0 and 𝑏6 = 100 in this case. The corresponding quantity of a given nonstructural com-
ponent is then obtained using the appropriate lognormal distribution parameters as follows:
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𝑞 = 𝐺−1
( 𝑥6
100

)
= ln(�̂�) + 𝛽𝑞Φ

−1
( 𝑥6
100

)
, (12)

where 𝑞 is the quantity of the nonstructural component of interest,𝐺−1(⋅) is the inverse CDF of the lognormal distribution,
Φ−1(⋅) is the inverse standard normal CDF, �̂� is the median quantity of the component and 𝛽𝑞 is the logarithmic standard
deviation of the quantity. �̂� and 𝛽𝑞 are obtained directly from the P-58 Normative Quantity Estimation Tool, for the given
value of 𝑋4.
Note that the procedure is slightly different for cladding and glazing because the combined quantity of these two com-

ponents must cover the exterior building area. We assume that 𝑥6% of the exterior building area is covered in cladding,
and the rest is covered in glazing.

3.2 Output variables (𝒀)

The output variables (𝑌) investigated for the case study buildings are building loss ratio (𝑌𝐿𝑅) and reoccupancy time (𝑌𝑅𝑇).

3.2.1 Building loss ratio

This is the total repair cost of the building as a fraction of the replacement value. It is computed as follows:

𝑌
(𝑗)
𝐿𝑅 = 𝐿𝑅

(𝑗) =

∑𝑚

𝑖
𝑅𝐶

(𝑗)

𝑖

𝑅𝑒𝑝𝑙𝐶
, (13)

where 𝐿𝑅(𝑗) is the building loss ratio for the 𝑗th Monte Carlo sample, 𝑅𝐶(𝑗)
𝑖

is the repair cost of the 𝑖th component in the
building for the 𝑗th Monte Carlo sample, 𝑅𝑒𝑝𝑙𝐶 is the replacement cost of the building, and 𝑚 is the total number of
components in the building. Note that the replacement value of the building for a given building area varies as a function
of the occupancy input variable.

3.2.2 Reoccupancy time

Reoccupancy time is computed using the REDi rating system,37 which was developed to aid stakeholders in resilience-
based design. Reoccupancy time (𝑅𝑇) is defined in REDi as the time when the building is deemed safe enough to be used
for shelter, and is the first recovery state of a building after an earthquake. It is a combination of delays due to impeding
factors (𝐼𝐹) and the time required to repair heavily damaged structural and nonstructural components that pose a life-
safety risk (𝑅𝑒𝑝𝑇), i.e.,

𝑌
(𝑗)
𝑅𝑇 = 𝑅𝑇

(𝑗) = 𝐼𝐹(𝑗) + 𝑅𝑒𝑝𝑇(𝑗) (14)

for the 𝑗th Monte Carlo sample. Impeding factors are circumstances that prevent the initiation of building repairs:
postearthquake inspection, engineering mobilization and review/redesign, financing, contractor mobilization and bid-
ding, permitting, and procurement of components with long lead-time. Both impeding factors and component repairs
are organized into logical sequences.37 Worker allocations for component repairs are summarized in Table 3. These are
obtained from Almufti and Willford37 using Tables 6 and 7 as well as the equation on page 84 of the document.

3.3 Calculating sensitivity indices

We generate 2000 Monte Carlo samples of each of the six inputs, according to the corresponding probability distributions
summarized in Equations (8)–(12). We use a Latin hypercube sampling (LHS) design, which has been shown to produce
more efficient sensitivity estimates than simple random sampling.38 The 2000 × 6 Monte Carlo samples are used to
construct matrix 𝐀, termed as the “sampling matrix”:
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TABLE 3 Worker allocations for component repairs

7-Story building 14-Story building
Workers per repair sequence
Structure 0.002 Workers/ft2

Interior 0.001 Workers/ft2

Exterior 0.001 Workers/ft2

Mechanical 3 Workers/damaged component
Electrical 3 Workers/damaged component
Elevator 2 Workers/damaged component
Stairs 2 Workers/damaged component
Maximum workers
Interior 27 30
Exterior 27 30
Mechanical 18
Electrical 18
Elevator 12
Stairs 12
On site 27 44

𝐀 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑥
(1)
1

𝑥
(1)
2

… 𝑥
(1)
6

𝑥
(2)
1

𝑥
(2)
2

… 𝑥
(2)
6

⋮ ⋮ ⋱ ⋮

𝑥
(2000)
1

𝑥
(2000)
2

… 𝑥
(2000)
6

⎤⎥⎥⎥⎥⎥⎥⎦
. (15)

Note that 𝑥1, 𝑥2, … , 𝑥6 are as defined in Sections 3.1.1–3.1.6. We generate a further 2000 Monte Carlo samples of each
of the input variables using LHS, independent of matrix 𝐀. These Monte Carlo samples are used to construct matrix 𝐁,
termed as the “resampling matrix”:

𝐁 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑥
(2001)
1

𝑥
(2001)
2

… 𝑥
(2001)
6

𝑥
(2002)
1

𝑥
(2002)
2

… 𝑥
(2002)
6

⋮ ⋮ ⋱ ⋮

𝑥
(4000)
1

𝑥
(4000)
2

… 𝑥
(4000)
6

⎤⎥⎥⎥⎥⎥⎥⎦
. (16)

We construct the third sampling matrix 𝐂𝑖 by substituting the 𝑖th column of matrix 𝐀 for the 𝑖th column of matrix 𝐁:

𝐂𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑥
(2001)
1

… 𝑥
(1)
𝑖

… 𝑥
(2001)
6

𝑥
(2002)
1

… 𝑥
(2)
𝑖

… 𝑥
(2002)
6

⋮ ⋱ ⋮ ⋱ ⋮

𝑥
(4000)
1

… 𝑥
(2000)
𝑖

… 𝑥
(4000)
6

⎤⎥⎥⎥⎥⎥⎥⎦
. (17)

We then construct the final sampling matrix𝐃𝑖 by substituting the 𝑖th column of matrix 𝐁 for the 𝑖th column of matrix𝐀:

𝐃𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑥
(1)
1

… 𝑥
(2001)
𝑖

… 𝑥
(1)
6

𝑥
(2)
1

… 𝑥
(2002)
𝑖

… 𝑥
(2)
6

⋮ ⋱ ⋮ ⋱ ⋮

𝑥
(2000)
1

… 𝑥
(4000)
𝑖

… 𝑥
(2000)
6

⎤⎥⎥⎥⎥⎥⎥⎦
. (18)
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F IGURE 3 First-order sensitivity coefficients of input variables examined for (A) building loss ratio and (B) reoccupancy time

As lateral system (𝑋2) and building period (𝑋3) are correlated inputs in our study, there is only one set of input matrices
generated for both variables. The corresponding 𝐂𝑟 matrix is obtained by substituting both the second and third columns
of matrix 𝐀 for the second and third columns of matrix 𝐁. The corresponding 𝐃𝑟 matrix is obtainedanalogously.
𝐀, 𝐁, 𝐂𝑖 , and 𝐃𝑖 are each used in a separate FEMA P-58 analysis, and each row of the given input matrix provides the

values of the input variables for one P-58 Monte Carlo simulation. The output variables obtained using each input matrix
(𝑌𝐴, 𝑌𝐵, 𝑌𝐶𝑖 , and 𝑌𝐷𝑖 ) are then used to estimate the sensitivity indices presented in Section 2. The first-order sensitivity
coefficient (defined in Equation 3) is estimated as19

𝑆𝑖 =
(1∕2𝑁)(

∑𝑁

𝑗=1
𝑌
(𝑗)

𝐴
𝑌
(𝑗)

𝐶𝑖
+
∑𝑁

𝑗=1
𝑌
(𝑗)
𝐵 𝑌

(𝑗)
𝐷𝑖
) − 𝑓2

0

(1∕2𝑁)
∑𝑁

𝑗=1
[(𝑌

(𝑗)

𝐴
)2 + (𝑌

(𝑗)
𝐵 )

2] − 𝑓2
0

(19)

and the total effect sensitivity index (defined in Equation 5) is estimated as19

𝑆𝑇𝑖 = 1 −
(1∕2𝑁)(

∑𝑁

𝑗=1
𝑌
(𝑗)
𝐵 𝑌

(𝑗)

𝐶𝑖
+
∑𝑁

𝑗=1
𝑌
(𝑗)

𝐴
𝑌
(𝑗)
𝐷𝑖
) − 𝑓2

0

(1∕2𝑁)
∑𝑁

𝑗=1
[(𝑌

(𝑗)

𝐴
)2 + (𝑌

(𝑗)
𝐵 )

2] − 𝑓2
0

, (20)

where 𝑓2
0
=

1

2𝑁

∑𝑁

𝑗=1
(𝑌

(𝑗)

𝐴
𝑌
(𝑗)
𝐵 + 𝑌

(𝑗)

𝐶𝑖
𝑌
(𝑗)
𝐷𝑖
) from Yun et al39 These estimates are derived using the well-known identity

𝑉[𝑍] = 𝐸(𝑍2) − 𝐸2(𝑍).

3.4 Sensitivity analyses results

Values of 𝑆𝑖 are presented in Figure 3 for both case study buildings and both FEMA P-58 consequence predictions of inter-
est. A total of 10,000 bootstrap samples were used to account for uncertainty in 𝑆𝑖 per Archer et al,40 with the confidence
bounds taken as the 2.5th and 97.5th percentiles of the bootstrapped samples. Results of the sensitivity analyses are very
similar for both buildings, indicating that the height of the building does not significantly affect the sensitivities of the loss
predictions. It can be seen that shaking intensity and age are the most important input variables for predicting building
loss ratio, while shaking intensity and lateral system are most important for predicting reoccupancy time. It is interesting
to note that reoccupancy time is significantly less sensitive to age than building loss ratio. This may be explained by the
fact that there is generally larger uncertainty in damage-to-loss functions for repair time than repair cost (and therefore
a reduced relative contribution of the age input variable to the overall variance of the output). In addition, mean repair
cost differences tend to be significantly larger than mean repair time differences across different damage states of a given
component.
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The values of 𝑆𝑖 obtained may seem counterintuitively low, but they make sense if we consider the composition of
𝑉𝐗[𝑌] (i.e., the denominator of 𝑆𝑖) in Equation (3). This variable accounts for variance across the whole input space,
including that of many input variables not being explicitly examined in this study (e.g., engineering demand parameters
conditioned on the chosen hyperparameters, damage conditioned on the engineering demand parameters, etc.), as well
as the combined effect of uncertain variables. 𝑆𝑖 values on the order of 0.1 or 0.2 should therefore be considered notable.
Supporting Information Appendix B contains additional sensitivity analyses results for the 7-story case study building,

when different levels of information are known about lateral system and occupancy. It can be seen that the conclusions
of the sensitivity analyses can change, depending on the information known. For example, the sensitivity of building
loss ratio to lateral system is significantly lower if the building is known to be made of concrete (Figure 10 in Supporting
Information Appendix B).

4 BENCHMARKING SENSITIVITY ANALYSIS RESULTS USING HAZUS

We conduct further variance-based sensitivity analyses using the HAZUS earthquake loss estimation methodology25 for
the same case study buildings, to investigate if the impacts of different input variables on the outputs are similar to those
observed with P-58. The input matrix 𝐗 for HAZUS consists of shaking intensity (in the form of 𝑃𝐺𝐴), lateral system,
age, and occupancy. These inputs are used to compute structural and nonstructural loss ratios, via building-level fragility
functions. Note that we use equivalent PGA fragility functions in this study, which are outlined in Section 5.4.4 of.25 The
model output 𝑌 is an aggregation of the structural and nonstructural loss ratios. This is equivalent to the building loss
ratio output of the FEMA P-58 methodology.
The lateral system, occupancy, and age input variables used for FEMA P-58 need to be adjusted for use in HAZUS.

A summary of the necessary adjustments is provided in Table 4. Mid-rise HAZUS fragility functions are used for the 7-
story building, and high-rise fragility functions are used for the 14-story building. The nonstructural component quantities
input variable is not used because it is not considered in the HAZUS methodology. HAZUS analyses are also conducted
using 2000Monte Carlo simulations of the input variables. To be consistent with the FEMA P-58 methodology, we deviate
slightly from25 and sample damage states from the building fragility functions for each Monte Carlo simulation, instead
of using mean damage states. The building loss ratio is then calculated based on the sampled damage state.
Figure 4 compares the 𝑆𝑖 values obtained using FEMAP-58 andHAZUS for building loss ratio. It is clear that the general

trend in 𝑆𝑖 across the different input variables is approximately the same for the two procedures, and similar values of 𝑆𝑖
are obtained using both procedures in most cases. There is a notable difference in the 7-story building 𝑆𝑖 value for lateral
system, but this is not unexpected given that the number of potential values of lateral system is eight in FEMA P-58 and
only five in HAZUS (see Table 4).
Figure 5 compares P-58 and HAZUS building loss ratio predictions for the 14-story building, as a function of each input

variable examined. Note that shaking intensity is expressed in terms of 𝑃𝐺𝐴, the shaking intensity input of the HAZUS
methodology. All input variables except that plotted on the x-axis are kept constant for each plot. Constant values of each
input variable are 𝑃𝐺𝐴 (and 𝑆𝑎(𝑇1) for FEMA P-58) with 50% probability of exceedance for shaking intensity, 1976–1994
(moderate code) for age, concrete shearwall for lateral system, office for occupancy, andmedian nonstructural component
quantities (only for FEMA P-58). It can be seen that the trend in building loss ratio across 𝑃𝐺𝐴 is almost identical for both
methodologies, which makes sense given the similar values of 𝑆𝑖 obtained for shaking intensity using both methods. The
range inmean building loss ratio values obtained across the different values of lateral system, age, and occupancy is larger
for P-58 than HAZUS, which is consistent with the difference in 𝑆𝑖 values observed for these variables.

5 ADVANTAGES OF VARIANCE-BASED SENSITIVITY ANALYSES

For probabilistic methodologies such as P-58, the variance-based approach adopted in this work has a number of benefits
over the OAT deterministic analyses used in a similar previous study by Porter et al,11 such that it provides better
insight into the interactions between the inputs and outputs of the procedure. For example, variance-based sensitivity
analyses implicitly handle possible correlations in the input variables of interest. Correlations cannot be considered
in OAT analyses41 because this would require the simultaneous movement of more than one input variable.42 This
makes it difficult to identify appropriate sets of input variable values to use in deterministic analyses,43 and may result
in substantial biases.44 The whole input space is accounted for in variance-based sensitivity analyses, whereas only a
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TABLE 4 Assumed mapping from FEMA P-58 lateral system, occupancy, and age input variables to
corresponding HAZUS classes

FEMA P-58 HAZUS
Lateral system
Concrete moment frame (perimeter) Concrete moment frame (C1)
Concrete moment frame (space) Concrete moment frame (C1)
Concrete shear wall Concrete shear wall (C2)
Steel eccentrically braced frame Steel braced frame (S2)
Steel concentrically braced frame Steel braced frame (S2)
Steel moment frame (perimeter) Steel moment frame (S1)
Steel moment frame (space) Steel moment frame (S1)
Steel moment frame and concrete shear wall Steel frame, concrete shear walls (S4)
Occupancy
Office Professional/technical/business services (COM4)
Elementary school Schools/libraries (EDU1)
Middle school Schools/libraries (EDU1)
High school Schools/libraries (EDU1)
Healthcare Hospital (COM6)
Hospitality Temporary lodging (RES4)
Research Colleges/universities (EDU2)
Residential Multi family dwelling (RES3)
Retail Retail trade (COM1)
Age
Pre-1941 Pre-code
1941–1976 Low code
1976–1994 Moderate code
Post-1994 High code

F IGURE 4 Benchmarking P-58 sensitivity indices against those of HAZUS for (A) the 7-story building and (B) the 14-story building

small proportion of this space is explored in OAT deterministic analyses45; although this makes the latter approach more
computationally efficient, the associated range in values of the output may be too narrow.17
Here, we illustrate some of the limitations of OAT deterministic sensitivity analyses that do not arise in variance-based

sensitivity analyses, using data examined in this study.We conduct anOATdeterministic sensitivity analysis for the 7-story
building. The baselinemodel is a concrete shear wall elementary school of 1976–1994 design, withmedian building period,
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F IGURE 5 Comparison of P-58 andHAZUS building loss ratio predictions as a function of (A) shaking intensity (𝑃𝐺𝐴), (B) lateral system,
(C) age, and (D) occupancy
Note. Each symbol on a plot represents the prediction for one simulation of the P-58 or HAZUS methodology. P-58 building loss ratios greater
than 1 indicate simulations in which the building collapsed, and account for the cost of demolition as well as building replacement. Simulations
having identical values of HAZUS building loss ratio are offset vertically in all plots, and horizontally in (B)–(D), to aid visualization. The mean
building loss ratio is a rolling average of predictions over 0.1𝑔-wide bins of PGA in (A), and the mean of each value of the input variable in
(B)–(D).

median nonstructural component quantities, and subjected to shaking intensity with 50% probability of exceedance. The
extreme values of the three continuous variables are the 5th and 95th percentiles. We investigate the sensitivity of the
building loss ratio to each input variable.
Figure 6A shows that the building loss ratio can appear more or less sensitive to nonstructural component quantities in

the OAT deterministic sensitivity analysis, depending on the extreme values examined for the input parameter. The issue
of choosing appropriate extreme values does not arise with variance-based sensitivity analysis because the whole input
space is accounted for.
Figure 6B demonstrates that the OAT deterministic sensitivity analysis cannot handle correlation of the lateral sys-

tem and period input variables. The importance of the lateral system variable changes, depending on the percentile of
period used. Variance-based sensitivity analysis implicitly captures the correlation between lateral system and period, by
sampling from the joint probability distribution of the input variables. Figure 6A,B demonstrates that variations in input
parameter assumptions can create differences in the overall trend of the results for OAT deterministic sensitivity analysis,
which may lead to misinformed decision-making on the prioritization of additional input data gathering.
Figure 6C highlights a further limitation of OAT deterministic sensitivity analysis. Let 𝑋∗

3
denote an alternative version

of the occupancy input variable, which follows a discrete uniform distribution with only four possible values: elementary
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F IGURE 6 Deterministic sensitivity analysis results for the baseline model and (A) nonstructural component quantities with different
extreme value percentiles (provided in parentheses); (B) lateral system, for different percentiles of period (T); (C) occupancy, when 𝑋∗3 is used
instead of 𝑋3. (D) variance-based sensitivity analyses results when 𝑋3 and 𝑋∗3 are used for occupancy

school, healthcare, hospitality, and residential. The building loss ratio output obtained using 𝐗 with 𝑋∗
3
substituted for

𝑋3 has the same mean and standard deviation as that obtained using the original 𝐗. This is captured in variance-based
sensitivity analyses, which produce almost identical first-order sensitivity coefficients when either 𝑋3 or 𝑋∗3 is used in 𝐗
(Figure 6D). However in OAT deterministic sensitivity analyses, the magnitude of the swing in occupancy is larger if all
nine values are considered than if only the four values of 𝑋∗

3
are considered. This incorrectly suggests that building loss

ratio is less sensitive to the four values of 𝑋∗
3
than the nine values of 𝑋3.

6 UNCERTAINTY QUANTIFICATION

The purpose of this section is to estimate the additional uncertainty in a P-58 model output that results when different
model inputs are unknown. We then use the quantified uncertainty to estimate the adapted distribution of the model
output for the unknown model inputs. It is important to note that results in this section are only obtained for the 14-
story case study building, and may not be directly applicable to other building models. However, the general uncertainty
quantification methodology presented is sufficiently flexible for application to any other case.
Let 𝑌𝑘 = 𝑌|𝐗 denote a P-58 model output for a set of known (fixed) model inputs in 𝐗. Figure 7 shows different 𝑌𝑘

(i.e., building loss ratio) of the 14-story case study building, for fixed values of shaking intensity, occupancy, age, and
nonstructural component quantities (collectively denoted as 𝐗∼2), and each possible fixed value of lateral system (𝑋2).
Let 𝑌𝑢 = 𝑌|𝐗∼𝑚 denote the adapted model output for the unknownmodel inputs 𝐗𝑚. 𝑌𝑢 is demonstrated in Figure 7 for
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F IGURE 7 Empirical cumulative distribution functions (CDFs) of 𝑌𝑘 for all possible fixed values of lateral system (𝑋2) and fixed 𝐗∼2.
Also shown is the empirical CDF of 𝑌𝑢 for unknown 𝑋2 and fixed 𝐗∼2.

the fixed input variables 𝐗∼2 and unknown 𝑋2. Note that we only consider the building loss ratio model output in this
section, and we assume that shaking intensity will always be known.
We can quantify the expected increase in uncertainty of 𝑌𝑘 due to a given unknown model input 𝑋𝑖 using a variance

amplification metric (𝑉𝐴), defined as follows:

𝑉𝐴 = 𝐸𝐗∼𝑖 (𝑉𝑋𝑖 [𝑌|𝐗∼𝑖]) − 𝑉[𝑌𝑘] = 𝑆𝑇𝑖 × 𝑉𝐗[𝑌] − 𝑉[𝑌𝑘] = 𝐸(𝑉[𝑌𝑢]) − 𝑉[𝑌𝑘], (21)

where 𝐸𝐗∼𝑖 (𝑉𝑋𝑖 [𝑌|𝐗∼𝑖]) is the expected variance if all but 𝑋𝑖 is fixed (from Equation 5), 𝑉[𝑌𝑘] is the variance of 𝑌𝑘, 𝑆𝑇𝑖 is
the total effect sensitivity index defined in Equation (5), 𝑉𝐗[𝑌] is the variance of the model output across the whole input
space, and 𝐸(𝑉[𝑌𝑢]) is the expected variance of 𝑌𝑢 = 𝑌|𝐗∼𝑖 . A challenge with this formulation of 𝑉𝐴 is its dependence
on 𝑌𝑘, as this makes it specific to the corresponding set of fixed model inputs in 𝐗. We propose an adapted version of the
metric, ̂𝑉𝐴, that can be used to quantify the variance amplification for any 𝑌𝑘. It is defined as follows:

𝑉𝐴 = 𝑆Ti × 𝑉𝐗 [𝑌] − 𝑉
(
𝑌∗
𝑘

)
= 𝐸 (𝑉 [𝑌𝑢]) − 𝑉

[
𝑌∗
𝑘

]
, (22)

where 𝑆𝑇𝑖 and 𝑉𝐗[𝑌] are as defined in Equation (21), and 𝑉[𝑌∗𝑘] is the variance of 𝑌
∗
𝑘
. 𝑌∗

𝑘
is a specified instance of 𝑌𝑘 that

depends on 𝑋𝑖 . We find 𝑌∗𝑘 for unknown 𝑋𝑖 using the following steps:

1. We set all known variables except shaking intensity (𝑋1) to their median values (�̃�∼1,𝑖). The median values of input
variables are those that produce �̃�𝑘 ≈ �̃�𝐗 for shaking intensity with 50% probability of exceedance. (⋅̃) is the median,
𝑌𝐗 is the model output considering the whole input space, and 𝑌𝑘 is as defined in Equation (21).

2. We use �̃�∼1,𝑖 with randomly sampled values of 𝑋𝑖 to produce 𝑌𝑢 for shaking intensity at different points on the hazard
curve. We investigate 10–90% probability of exceedance values for shaking intensity in intervals of 5%.

3. We find 𝑌𝑢 for which 𝑉[𝑌𝑢] ≈ 𝐸(𝑉[𝑌𝑢]) = 𝑆𝑇𝑖 × 𝑉𝐗[𝑌]. 𝑌∗𝑘 = 𝑌𝑘 for this value of shaking intensity, �̃�∼1,𝑖 , and 𝑋𝑖 set
to its median value.

Table 5 provides values of �̂�𝐴 and the corresponding standard deviation (
√
�̂�𝐴), for each unknown input variable. Note

that the shaking intensity for 𝑌∗
𝑘
is the 25% probability of exceedance value in all cases. �̂�𝐴 is largest for age, and there is

no variance amplification for either unknown occupancy or nonstructural component quantities. These observations are
in line with the results of the sensitivity analyses in Section 3.4.
For a given set of input variables𝐗∼𝑖 with fixed values and unknown input variable 𝑋𝑖 , we define �̂�𝑘 = 𝑌𝑘 for the fixed

values of 𝐗∼𝑖 and 𝑋𝑖 set to its median value. We can use �̂�𝐴 to predict the standard deviation of 𝑌𝑢 (�̂�
𝐴𝑚𝑝
𝑌𝑢

), using the
following equation:
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TABLE 5 Uncertainty quantification for unknown input variables

Unknown input variable Median value 𝑺𝑻𝒊 �̂�𝑨
√
�̂�𝑨

Lateral system Steel moment frame and concrete shear wall 0.38 0.001 0.04
Occupancy Office 0.32 0 0
Age 1976–1994 0.50 0.004 0.07
Nonstructural quantities 50th percentile 0.33 0 0

�̂�
𝐴𝑚𝑝
𝑌𝑢

=

√
�̂�𝐴 + 𝑉[�̂�𝑘]. (23)

We estimate 𝑌𝑢 with a lognormal distribution, assuming that the mean of 𝑌𝑢 (𝑌𝑢) is equivalent to that of the corre-
sponding �̂�𝑘, and the standard deviation of 𝑌𝑢 is �̂�

𝐴𝑚𝑝
𝑌𝑢

. Let �̂�𝐴𝑚𝑝𝑢 denote our estimate of 𝑌𝑢. The parameters of ln �̂�
𝐴𝑚𝑝
𝑢

are calculated as follows:

𝜇
ln �̂�

𝐴𝑚𝑝
𝑢

= ln

(
�̄�2𝑢∕

√
�̂�
𝐴𝑚𝑝 2
𝑌𝑢

+ �̄�2𝑢

)
(24)

𝜎
ln �̂�

𝐴𝑚𝑝
𝑢

=

√
ln (�̂�

𝐴𝑚𝑝 2
𝑌𝑢

∕�̄�2𝑢 + 1). (25)

Figure 8 shows CDFs of �̂�𝐴𝑚𝑝𝑢 for each unknown 𝑋𝑖 and shaking intensity with 10% probability of exceedance. 𝐗∼1,𝑖
are fixed at their median values (�̃�∼1,𝑖). The CDFs of �̂�

𝐴𝑚𝑝
𝑢 are compared to empirical CDFs of observed 𝑌𝑢. Also shown

are 𝑌𝑘 for each possible value of unknown 𝑋𝑖 (only 1st, 50th, and 99th percentile values are shown for nonstructural
component quantities) and �̃�∼1,𝑖 . �̂�

𝐴𝑚𝑝
𝑢 appears to align well with the observed 𝑌𝑢, for each unknown 𝑋𝑖 . Equivalent

figures for other values of shaking intensity (50%, 20%, and 6% probabilities of exceedance) can be found in Supporting
Information Appendix C. �̂�𝐴𝑚𝑝𝑢 appears to align well with the observed 𝑌𝑢, for each unknown 𝑋𝑖 at each of these levels
of shaking intensity.

6.1 Uncertainty quantification for pairs of unknown input variables

The uncertainty quantification method can also be used when pairs of input variables are unknown. �̂�𝐴 is still calculated
using Equation (22), except that 𝑆𝑇𝑖 becomes 𝑆𝑇𝑖𝑗 , defined as follows:

𝑆𝑇𝑖𝑗 =
𝐸𝐗∼𝑖𝑗 (𝑉𝑋𝑖𝑋𝑗 [𝑌|𝐗∼𝑖𝑗])

𝑉𝐗[𝑌]
, (26)

where 𝐸𝐗∼𝑖𝑗 (𝑉𝑋𝑖𝑋𝑗 [𝑌|𝐗∼𝑖𝑗]) is the expected variance if all but 𝑋𝑖 and 𝑋𝑗 are fixed. 𝑆𝑇𝑖𝑗 is estimated using the equations of
Section 3.3, where 𝐂𝑖 and 𝐃𝑖 become 𝐂𝑖𝑗 and 𝐃𝑖𝑗 , respectively. These matrices are obtained by substituting both 𝑖th and
𝑗th columns in 𝐀 and 𝐁, in accordance with methods in Homma and Saltelli46 and Saltelli47 for considering the variance
due to multiple input variables. Table 6 provides values of �̂�𝐴 and the corresponding standard deviation, for each pair of
unknown input variables. Note that the shaking intensity for 𝑌∗

𝑘
is the 25% probability of exceedance value in all cases.

The largest value of �̂�𝐴 is obtained for unknown lateral system and age. This makes sense, given that these two variables
also produce the largest value of �̂�𝐴 for one unknown input variable. Similarly, the smallest value of �̂�𝐴 is obtained for
unknown occupancy and nonstructural component quantities, the two variables that produce the smallest values of �̂�𝐴
for one unknown variable.
Figure 9 shows CDFs of �̂�𝐴𝑚𝑝𝑢 for each pair of unknown 𝐗𝑖,𝑗 and shaking intensity with 10% probability of exceedance.

𝐗∼1,𝑖,𝑗 are fixed at their median values (�̃�∼1,𝑖,𝑗). The CDFs of �̂�
𝐴𝑚𝑝
𝑢 are compared to empirical CDFs of observed 𝑌𝑢. Also

shown are 𝑌𝑘 for each possible combination of unknown 𝐗𝑖,𝑗 (only the 1st, 50th, and 99th percentile values are shown
for nonstructural component quantities) and �̃�∼1,𝑖,𝑗 . �̂�

𝐴𝑚𝑝
𝑢 appears to align well with the observed 𝑌𝑢, for each unknown

𝐗𝑖,𝑗 . Equivalent figures for other values of shaking intensity (50%, 20%, and 6% probabilities of exceedance) can be found
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F IGURE 8 Comparison of �̂�𝐴𝑚𝑝𝑢 and observed 𝑌𝑢 when unknown 𝑋𝑖 is (A) lateral system, (B) occupancy, (C) age, and (D) nonstructural
component quantities, for shaking intensity with 10% probability of exceedance. 𝐗∼1,𝑖 are fixed at their median values (�̃�∼1,𝑖). Also shown are
𝑌𝑘 for each possible fixed value of 𝑋𝑖 (only the 1st, 50th, and 99th percentile values are shown for nonstructural component quantities), with
�̃�∼1,𝑖 .

TABLE 6 Uncertainty quantification for pairs of unknown input variables

Unknown input variables 𝑺𝑻𝒊𝒋 �̂�𝑨
√
�̂�𝑨

Lateral system and occupancy 0.46 0.003 0.06
Lateral system and age 0.64 0.008 0.09
Lateral system and nonstructural quantities 0.48 0.004 0.07
Occupancy and age 0.61 0.008 0.09
Occupancy and nonstructural quantities 0.44 0.003 0.06
Age and nonstructural quantities 0.60 0.007 0.09

in Supporting Information Appendix C. �̂�𝐴𝑚𝑝𝑢 appears to align well with the observed 𝑌𝑢, for each unknown 𝐗𝑖,𝑗 at each
of these levels of shaking intensity.

7 CONCLUSIONS

We have conducted variance-based sensitivity analyses and subsequent uncertainty quantification for loss (i.e., building
loss ratio and reoccupancy time) predictions of the FEMAP-58 seismic performance assessment procedure, using a 7-story
and a 14-story building at an example site in downtown Los Angeles as case studies. These analyses are important, as
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F IGURE 9 Comparison of �̂�𝐴𝑚𝑝𝑢 and observed 𝑌𝑢 when unknown 𝐗𝑖,𝑗 are (A) lateral system and occupancy, (B) lateral system and age,
(C) lateral system and nonstructural component quantities, (D) occupancy and age, (E) occupancy and nonstructural component quantities,
and (F) age and nonstructural component quantities, for shaking intensity with 10% probability of exceedance
𝐗∼1,𝑖,𝑗 are fixed at their median values (�̃�∼1,𝑖,𝑗). Also shown are 𝑌𝑘 for each possible fixed combination of 𝐗𝑖,𝑗 (only the 1st, 50th, and 99th
percentiles are included for nonstructural component quantities), with �̃�∼1,𝑖,𝑗
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seismic loss predictions are useful for many different stakeholders but are often calculated using imperfect input infor-
mation. The popular variance-based approach adopted in this work offers better insight into the importance of variables
within a probabilistic seismic performance evaluation than OAT deterministic sensitivity analysis used in a previous sim-
ilar study.
Results of the sensitivity analyses are very similar for both buildings, indicating that the height of the building does not

significantly affect the sensitivities of the loss predictions, at least for the considered cases. Of the six inputs considered in
the analyses, building loss ratio predictions are most sensitive to shaking intensity and building age, while reoccupancy
time predictions are most sensitive to shaking intensity and lateral system. Calculated sensitivities for building loss ratio
were benchmarked using the HAZUS methodology, and a similar trend in sensitivity is observed for the HAZUS loss
assessment results. Conclusions of the sensitivity analyses can change however, depending on the level of information
known about each input variable. For example, the sensitivity of building loss ratio to lateral systemdecreases significantly
if the building is known to be made of concrete.
Finally, we quantified the predicted additional uncertainty in building loss ratio that results from different inputs being

unknown. We found that the largest predicted additional uncertainties in the output were caused by the building’s lateral
system or age (or both) being unknown. The predicted additional uncertainties were used to estimate an adapted building
loss ratio distribution for the unknown model inputs. The adapted building loss ratio distributions align well with the
corresponding observed empirical distributions, for all levels of shaking intensity examined.
It is noteworthy that the findings of this study relate to one or two hypothetical buildings, thus the general trends

observed in output prediction sensitivity and uncertainty quantification should be verified for additional cases. This work
nevertheless provides an important enhanced understanding of the interaction between inputs and consequence predic-
tions of the P-58 methodology.
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