
JSS Journal of Statistical Software
October 2020, Volume 95, Issue 14. doi: 10.18637/jss.v095.i14

survHE: Survival Analysis for Health Economic
Evaluation and Cost-Effectiveness Modeling

Gianluca Baio
University College London

Abstract

Survival analysis features heavily as an important part of health economic evaluation,
an increasingly important component of medical research. In this setting, it is important
to estimate the mean time to the survival endpoint using limited information (typically
from randomized trials) and thus it is useful to consider parametric survival models. In
this paper, we review the features of the R package survHE, specifically designed to wrap
several tools to perform survival analysis for economic evaluation. In particular, survHE
embeds both a standard, frequentist analysis (through the R package flexsurv) and a
Bayesian approach, based on Hamiltonian Monte Carlo (via the R package rstan) or inte-
grated nested Laplace approximation (with the R package INLA). Using this composite
approach, we obtain maximum flexibility and are able to pre-compile a wide range of
parametric models, with a view of simplifying the modelers’ work and allowing them to
move away from non-optimal work flows, including spreadsheets (e.g., Microsoft Excel).

Keywords: survival analysis, health economic evaluation, probabilistic sensitivity analysis, R.

1. Introduction
Broadly speaking, the objective of publicly funded health care systems – e.g., those in the
United Kingdom (UK), Canada, Australia and many other countries around the world –
is to maximize health gains across the general population, given finite monetary resources
and a limited budget. Bodies such as the National Institute for Health and Care Excellence
(NICE) in the UK provide guidance on decision-making on the basis of health technology
assessment (HTA) and cost-effectiveness analysis (NICE 2013). These cover a suite of an-
alytical approaches for combining costs and consequences of intervention(s) compared to a
control or status quo, the purpose of which is to aid decision-making associated with resource
allocation. To this aim, much of the recent research has been oriented towards building the
health economic evaluation on sound and advanced statistical decision-theoretic foundations,

https://doi.org/10.18637/jss.v095.i14

2 survHE: Survival Analysis for Health Economics in R

arguably making it a branch of applied statistics (Willan and Briggs 2006; Briggs, Sculpher,
and Claxton 2006).
Interventions that impact upon survival form a high proportion of the treatments appraised
by NICE (Latimer 2011). Interestingly, in order to quantify accurately the economic benefits
of a new intervention, it is necessary to estimate the mean survival time (rather than usual
summaries, such as the median time). Thus, it is necessary to extrapolate the observed
survival curve (which often only covers a limited time frame and is subject to high degree
of censoring) to a longer time horizon. Consequently, a parametric approach to the survival
analysis is usually followed and it is recommended by a highly influential NICE Decision
Support Unit (DSU) technical document (Latimer 2011).
In general terms, a Bayesian approach to statistical inference is particularly helpful in eco-
nomic evaluation, because it allows to fully characterize uncertainty in the model parameters.
This in turn is a fundamental component of the cost-effectiveness analysis, which are often
made by several potentially correlated “modules”, which may be informed by different and
diverse sources of evidence. For this reason, it is crucial to assess the impact of this uncer-
tainty on the decision-making process (Briggs et al. 2006; Baio and Dawid 2011; Baio 2012),
a process termed probabilistic sensitivity analysis (PSA).
In addition, the clinical evidence used to inform the survival analysis for HTA can be limited,
thus emphasizing the problem of uncertainty in the extrapolation of the survival curves. The
inclusion of prior information (e.g., to “anchor” cancer patients’ survival well below that of the
healthy population, or from evidence on drugs with similar therapeutic mechanisms), which is
instrumental to a Bayesian analysis, would again improve the model performance. However,
in addition to the need of specifying suitable prior distributions that are consistent with the
information available for the case at hand, Bayesian models for survival analysis fitted using
standard Markov chain Monte Carlo (MCMC) algorithms can be computationally intensive
and sometimes have problems with convergence. Moreover, existing Bayesian software, no-
tably BUGS (Lunn, Spiegelhalter, Thomas, and Best 2009) or JAGS (Plummer 2003), require
the full specification of the modeling assumptions, which often proves an insurmountable
barrier to implementation for inexperienced researchers/modelers.
Perhaps for this reason, frequentist methods to perform survival analysis with an emphasis
in economic evaluations represent the industry standard. In particular, survival analysis is
often embedded in health economic evaluations using a multi-step/multi-software approach.
Firstly, estimates from a survival model are obtained. These are sometimes obtained by
published clinical studies presenting point and interval estimates for the model parameters;
alternatively, survival models are fitted to (pseudo)individual level data (see Section 9.1).
This part is by necessity based on proper statistical software (e.g., Stata, StataCorp 2019;
SAS, SAS Institute Inc. 2013; or R, R Core Team 2020). Secondly, modelers produce a set
of simulations for the model parameters using tools such as Cholesky decomposition and
Monte Carlo (MC) procedures (Briggs et al. 2006). Finally, these are used to produce a large
number of survival curves, which are fed to the economic model (for example to determine
the benefits of a given intervention). The last two steps are typically performed using a
spreadsheet, almost invariably Microsoft Excel.
From both the scientific and the practical point of view, this process is less than ideal. Firstly,
in the MC simulations, potential correlation among the model parameters is only approxi-
mated and not fully accounted for, potentially introducing bias in the estimate for the survival

Journal of Statistical Software 3

curves and thus in the outcome of the decision-making process. A full Bayesian approach,
e.g., based on MCMC, would eliminate this issue because the inference would be produced
directly on the full joint distribution of the model parameters. While it is in theory pos-
sible to build a frequentist model by constructing a multivariate joint likelihood of all the
model parameters, this is in practice not very common. Incidentally, this exercise would be
likely to increase the theoretical and computational complexity, thus de facto eliminating the
classical objections to a Bayesian approach, in favor of a “simpler” one based on maximum
likelihood (ML).
The limitations of spreadsheets calculators such as Microsoft Excel, in terms of statistical
modeling (and particularly in survival analysis), are increasingly often recognized in the
health economics literature (Baio and Heath 2016; Williams, Lewsey, Briggs, and Mackay
2017; Krijkampet, Alarid-Escudero, Enns, Jalal, Hunink, and Pechlivanoglou 2018; Incerti,
Thom, Baio, and Jansen 2019). In fact, it is no accident that a number of R packages have
recently been developed to use in cost-effectiveness analysis, notably including among others
BCEA (Baio, Berardi, and Heath 2017), SAVI (Strong, Oakley, and Brennan 2014), heemod
(Filipović-Pierucci, Zarca, and Durand-Zaleski 2017), hesim (Incerti and Jansen 2020), EVSI
(Heath, Manolopoulou, and Baio 2017) and missingHE (Gabrio, Mason, and Baio 2019).
With this in mind, the objective of this work is to develop a suite of functions and tools for
the freely available statistical software R, specifically designed for the needs of modelers using
survival analysis results to build extensive models for health economic evaluation.

2. The R package survHE
survHE is an R package specifically designed to aid in the process of survival analysis for
health economic evaluation and cost-effectiveness analysis. In fact, survHE can be actually
considered as a wrapper for three other R packages; the first one, flexsurv (Jackson 2016), is in
turn a general-purpose tool for performing several types of survival analysis using maximum
likelihood estimates (MLEs). The second one, rstan (Carpenter et al. 2015), is a relatively
new R package that can be used to perform Bayesian analysis using Hamiltonian Monte
Carlo (HMC). This is a form of MCMC algorithm, which can be used to produce samples
from a joint posterior distribution of a set of model parameters and unobserved quantities.
Finally, the third one, INLA (Martins, Simpson, Lindgren, and Rue 2013), can be used to
perform fast Bayesian computations (on a limited set of survival models) using integrated
nested Laplace approximation (Rue, Martino, and Chopin 2009). In a sense, thus, survHE
is a very simple tool that specializes functions from other relevant packages and builds some
other specific commands to simplify and standardize the process of using survival data in
health economic evaluation.
Package survHE (Baio 2020) is available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=survHE and there is also a development version
maintained under GitHub (https://github.com/giabaio/survHE). The design for survHE
is modular; sets of function have specific objectives, which can be broadly categorized as
“Data preparation”, “Model fitting and assessment” and “PSA and extrapolation”, as shown
schematically in Figure 1. These are described in detail in the following sections.
Depending on the user’s instruction, survHE maps internally to different code, which calls
either flexsurv, rstan or INLA in the background to produce the relevant estimates. Once

https://CRAN.R-project.org/package=survHE
https://github.com/giabaio/survHE

4 survHE: Survival Analysis for Health Economics in R

fit.models

summaryprint

model.fit.plot plot

make.surv psa.plotwrite.surv

digitise

make.ipd

Data preparation

Model fitting & assessment

PSA & extrapolation

Figure 1: A schematic of the design for survHE. The rounded boxes represent the “modules”,
a set of functions used to perform a specific task. For example, the functions digitise
and make.ipd can be used to process digitized data from published papers and recreate an
individual patient dataset. This can in turn be fed to fit.models, which estimates the
parameters for a given survival model. The output of this function can be processed to assess
model fit, or produce relevant summaries and plots. In addition, it can be fed to the function
make.surv, which simulates the survival curves and effectively performs PSA. The output of
this process can be plotted using the function psa.plot, or exported to a spreadsheet via the
function write.surv.

these are obtained, the output is standardized and returned in a form that is comparable
across the inferential methods. In other words, for the set of models that are implemented
in survHE, practitioners can take full advantage of the modeling capabilities of the three
packages and analyze survival data under both a frequentist or a computationally efficient
Bayesian approach, using the same syntax. More importantly, survHE also includes specific
built-in functions to simplify and standardize the process of using survival data in health
economic evaluation.

2.1. Modeling framework

The general modeling framework considered in survHE can be described as follows. The
observed data are at least made by the pair (ti, di), for i = 1, . . . , n, where ti > 0 is the
observed time at which the event under study occurs and di (for “dummy” variable) is an
event indicator, taking value 1 if the event actually happens, or 0 when the ith individual is
“censored”. If di = 1, then ti is indeed observed; conversely, if di = 0, we do not know whether
the event actually occurs – it may in the future, but we just do not have this information.
Consequently, when di = 0, then the observed ti does not represent the true “survival time”.
Notice here that we consider for the sake of simplicity “right censoring”, which is the most
common for applications in health economics.
The observed data ti are modeled using a suitable probability distribution characterized by
a density f(ti | θ), as a function of a vector of relevant parameters θ. This can be linked to

Journal of Statistical Software 5

the survival function

S(t) = 1− F (t) = 1−
∫ t

0
f(u | θ)du,

indicating the probability of an individual surviving up to time t, as well as to the hazard func-
tion

h(t) = f(t)
S(t) ,

which quantifies the instantaneous risk of experiencing the event. In the presence of censoring,
the resulting log-likelihood function is modified to account for the possibility of partially
observed data (in correspondence with censoring) and is expressed as

logL(θ) =
n∑
i=1

[di log h(ti) + logS(ti)] . (1)

This basically models the risk of experiencing the event at any time point t, conditionally on
the fact that the ith unit has in fact survived up to that time point; if they have not, then
the probability of experiencing the event again is 0.
When formulating a parametric survival model, we need to specify the form of the probability
distribution assumed to describe the underlying uncertainty in the observed times. As men-
tioned above, it is good practice to test a set of (more or less) plausible parametric models for
the survival data. This is the procedure recommended by the NICE-DSU technical document
(Latimer 2011).
In general terms, we can specify the vector of relevant parameters as θ = (µ(x), α(x)). In this
notation, consistent with flexsurv, we consider: a vector of potential covariates x (e.g., age,
sex, trial arm, etc.); a location parameter µ(x), which indicates the mean or the scale of the
probability distribution; and a (set of) ancillary parameters α(x), which describe the shape
or variance of the distribution. While it is possible for both µ and α to explicitly depend on
the covariates x, usually the formulation is simplified to assume that these only affect directly
the location parameter.
In addition, since t > 0, we typically use a generalized linear formulation

g(µi) = β0 +
J∑
j=1

βjxij [+ . . .] (2)

to model the location parameter. The function g(·) is typically the logarithm; notice that here
we slightly abuse the notation and omit the dependence of µi on x. Generally speaking, (2)
can be extended to include additional terms – for instance, we may want to include random
effects to account for repeated measurements or clustering. We indicate this possibility using
the [+ . . .] notation and highlight the fact that this is rather straightforward in a Bayesian
context (particularly for INLA, but also for rstan).
The objective of the statistical analysis is the estimation of the parameters θ, which can
then be used to obtain estimates for all the relevant quantities (e.g., the survival function),
which are in turn used in the economic modeling, typically through a state-transition struc-
ture (Siebert et al. 2012). In a frequentist setting, the estimation procedure concerns some

6 survHE: Survival Analysis for Health Economics in R

relevant statistics, i.e., functions of the observed data and is performed via ML estimation.
Conversely, in a full Bayesian setting, the parameters are directly modeled using a prior
probability distribution, which is updated by the observed data into a posterior. It is this
posterior distribution that is the object of the inferential process. Thus, when using a Bayesian
framework, the model needs to be completed by specifying suitable prior distributions for the
parameters θ.
Assuming that the location parameter is specified using a linear predictor form, on the scale
determined by g(·) and as a function of J covariates, we can model β = (β0, β1, . . . , βJ) iid∼
Normal(µβ, σβ), where, in general, we use the notation σ to indicate a standard deviation.
Note that survHE expands any categorical covariates to a set of dummy variables: so if a
covariate has four categories, in line with R notation, survHE considers three binary indicators.
Thus the profile (0, 0, 0) indicates the first (reference) category, while the profiles (1, 0,
0), (0, 1, 0) and (0, 0, 1) indicate the second, third and fourth category, respectively.
In survHE, the number of covariates J depends on this full expansion of the design matrix.
In both its Bayesian versions, survHE assumes by default µβ = 0 and σβ = 5 for the models in
which the linear predictor is defined on the log scale and σβ = 100 for those in which the linear
predictor is defined on the natural scale and thus g(·) is the identity function. This amounts
to specifying a “minimally informative” prior on the regression coefficients that determine
the location parameter – in other words, we are not including strong prior information in
this aspect of our model. The observed data (and the censoring structure) will be mainly
driving the update to the posterior distribution. When genuine prior knowledge is present,
e.g., about the likely size of a treatment effect, it is possible to modify these priors to encode
the information in the model formulation.
Notice that, particularly in case where the sample size is small or censoring is large, even
these minimally informative priors generally contribute to stabilize the inference, by placing
most of the probability mass for the regression coefficients on a relatively small interval.
For instance, if β ∼ Normal(0, 5), we are then implying a negligible prior probability that
β > 10 (recall that in this case, β is on the log scale). If the data suggested that the effect
of a particular covariate is in fact large, the model would respond by updating the prior
distribution accordingly. However, because large effects are not very likely in the prior, the
model would respond in a “skeptical” way, thus counter-acting the potential bias implied by
taking at face value the signal from the limited amount of information present in the data.
As for the ancillary parameter, the choice of prior depends on the specification of the probabil-
ity distribution selected to model the observed data. Table 1 shows a summary of the models
directly implemented in survHE. In each, by default we specify minimally informative priors
on the relevant parameters; for example, in the Weibull model, we define α ∼ Gamma(a, b),
for given values of a, b.
All the models presented in Table 1 are available using MLE and HMC as inferential engines.
On the other hand, INLA currently only handles Exponential, Weibull, log-Normal and log-
Logistic models. The names presented in the rightmost column can be used when calling
survHE. We mostly follow the notation of flexsurv, but also allow for some specific differences
in the INLA notation: for example, the log-Logistic distribution can be referred to using
flexsurv (llogis), or INLA notation (loglogistic). survHE will internally map the different
strings of text and select the correct routine.
Notice also that, in line with flexsurv and INLA, survHE allows the two versions of the Weibull

Journal of Statistical Software 7

D
at
a
m
od

el
Lo

ca
tio

n
pa

ra
m
et
er

A
nc

ill
ar
y
pa

ra
m
et
er
∗

su
rv
H
E
na

m
e

t i
∼

Ex
po

ne
nt
ia
l(µ

i)
R
at
e:
µ
i

=
ex

p

  β 0
+

J ∑ j=
1
β
j
x
ij

 
−

ex
p,

ex
po

ne
nt

ia
l

t i
∼

W
ei
bu

ll(
µ
i,
α

)
Sc

al
e:
µ
i

=
ex

p

  β 0
+

J ∑ j=
1
β
j
x
ij

 
Sh

ap
e:
α
∼

G
am

m
a(

0.
1,

0.
1)

we
ib

ul
l,

we
i

we
ib

ul
lP

H,
wp

h

t i
∼

lo
gN

or
m
al

(µ
i,
α

)
lo
g-
m
ea
n:
µ
i

=
β

0
+

J ∑ j=
1
β
j
x
ij

lo
g-
sd
:
α
∼

U
ni
fo
rm

(0
,5

)
ln

or
m,

ln
o,

lo
gn

or
ma

l

t i
∼

lo
gL

og
ist

ic
(µ
i,
α

)
R
at
e:
µ
i

=
ex

p

  β 0
+

J ∑ j=
1
β
j
x
ij

 
Sh

ap
e:
α
∼

G
am

m
a(

0.
1,

0.
1)

ll
og

is
,

ll
o,

lo
gl

og
is

ti
c

t i
∼

G
am

m
a(
µ
i,
α

)
R
at
e:
µ
i

=
ex

p

  β 0
+

J ∑ j=
1
β
j
x
ij

 
Sh

ap
e:
α
∼

G
am

m
a(

0.
1,

0.
1)

ga
mm

a,
ga

m

t i
∼

G
om

pe
rt
z(
µ
i,
α

)
R
at
e:
µ
i

=
ex

p

  β 0
+

J ∑ j=
1
β
j
x
ij

 
Sh

ap
e:
α
∼

G
am

m
a(

0.
1,

0.
1)

go
mp

er
tz

,g
om

t i
∼

G
en

G
am

m
a(
µ
i,
α

)
Lo

ca
tio

n:
µ
i

=
β

0
+

J ∑ j=
1
β
j
x
ij

α
=

(σ
,q

)
Sc

al
e:
σ
∼

G
am

m
a(

0.
1,

0.
1)

Sh
ap

e:
q
∼

N
or
m
al

(0
,1

00
)

ge
ng

am
ma

,g
ga

t i
∼

G
en

F(
µ
i,
α

)
Lo

ca
tio

n:
µ
i

=
β

0
+

J ∑ j=
1
β
j
x
ij

α
=

(σ
,q
,p

)
Sc

al
e:
σ
∼

G
am

m
a(

0.
1,

0.
1)

Sh
ap

e(
1)
:

lo
g(
p
)∼

N
or
m
al

(0
,0
.5

)
Sh

ap
e(
2)
:
q
∼

N
or
m
al

(0
,2
.5

)

ge
nf

,g
ef

Ta
bl
e1

:T
he

di
st
rib

ut
io
ns

su
pp

or
te
d
by

su
rv
H
E.
∗ D

ist
rib

ut
io
ns

pr
es
en
te
d
fo
rt

he
an

ci
lla

ry
pa

ra
m
et
er
sa

re
th
ed

ef
au

lt
us
ed

by
su
rv
H
E.

8 survHE: Survival Analysis for Health Economics in R

model, i.e., using an accelerated time failure (AFT, weibull or wei) or a proportional hazard
(PH, weibullPH or wph) parameterization. When the interest is in estimating the effect of
some covariates on the survival time, these two versions yield of course different estimates.
However, in the case of health economic evaluation, the interest is really in producing an
estimate of the distribution of the survival curves. survHE internally maps the estimated
coefficients to the correct transformation so as to estimate S(t) correctly, irrespective of
the original parameterization. For example, when the AFT parameterization is used, then
S(t) = exp

(
−
(
t
µi

)α)
, while for the PH parameterization S(t) = exp (−µitα).

The “original” parameterization of the Generalized F and Generalized Gamma distributions
(respectively genf.orig and gengamma.orig) are currently available only when the estima-
tion is performed using MLE in flexsurv (this is mostly for backward compatibility).

2.2. Example
In the following, we use a running example to present the features of survHE. Suppose that
the user has a suitable dataset, perhaps obtained from a trial, in which data are recorded for
the time at which observations are made, an “event” indicator taking value 1 if the clinical
outcome of interest (e.g., progression to a cancerous state, or death) has actually occurred
at that time and 0 if the individual has been censored (e.g., we have not observed any event
at the end of follow up), as well as an arm indicator, specifying whether the individual to
whom the data refer belongs in the control or the active treatment arm of the trial. We also
have information about the individuals’ age, sex, socio-economic circumstances (as measured
by an “Index of Multiple Deprivation”, typically referred to as IMD; Noble, Wright, Smith,
and Dibben 2006) and ethnic background. Other variables may be observed, e.g., relevant
co-morbidity.
For the moment we consider the simple case in which the data are available in the R workspace
as a data-frame (say, data) that can be partially visualized using the following command:

R> rbind(head(data), tail(data))

to show the first 6 and the last 6 rows:

ID_patient time event arm sex age imd ethnic
1 0.03 0 0 1 34 1 4
2 0.03 0 0 0 29 4 2
3 0.92 0 0 0 30 4 5
4 1.48 0 0 0 31 5 1
5 1.64 0 0 0 27 4 1
6 1.64 0 0 0 37 5 4

362 13.97 1 1 1 36 4 1
363 14.56 1 1 0 26 3 4
364 14.56 1 1 1 23 2 2
365 14.85 1 1 0 31 3 3
366 16.07 1 1 1 36 3 1
367 18.16 1 1 0 44 4 5

The dataset consists of 367 individuals in total, grouped in two arms (here arm = 0 indicates
the controls and arm = 1 indicates the active treatment; sex = 0 or 1 indicates Male and

Journal of Statistical Software 9

Female, respectively; imd takes values 1, . . . , 5 to indicate increasing levels of small area
deprivation; and ethnic = 1, . . . , 5 groups various ethnic backgrounds, for instance in line
with census data).

2.3. Modeling survival data: To be or not to be (Bayesian) . . . ?

By relying on either flexsurv, INLA or rstan, survHE can fit models under the frequentist or
Bayesian framework.
As already discussed, a Bayesian approach can be beneficial to propagate the underlying
uncertainty in all the model parameters in a principled way. In the specific case of survival
analysis, this is often helpful because it allows the formal inclusion of external information,
e.g., in the form of data coming from population registries or, at the very least, expert
knowledge. This is not a major benefit when the underlying time-to-event data are mature
(e.g., the follow up and the underlying event rate of the study are such that most individuals
are fully observed – and censoring does not affect a large proportion of the subjects). However,
particularly with the recent development of immuno-therapies, the case where the observed
data do not even reach the median survival time is increasingly frequent. This is clearly a
major limitation, when the main objective is to extrapolate the survival curve way beyond
the observed follow up. As mentioned earlier, in such cases, it is fundamental to anchor the
extrapolation of the survival curves, using external information – for example by combining
the trial data with life-tables or registries to ensure that the extrapolation does not artificially
favor a given treatment. A Bayesian approach naturally lends itself to this aim, by allowing
the modeler to include genuine prior information, e.g., on the probability that the average
survival time does not exceed some set threshold (Benaglia, Jackson, and Sharples 2015;
Jackson et al. 2017; Guyot, Ades, Beasley, Lueza, Pignon, and Welton 2017).
On the other hand, in addition to the need of specifying suitable prior distributions that are
consistent with the information available for the case at hand, Bayesian models for survival
analysis fitted using MCMC can be computationally intensive and sometimes have problems
with convergence; perhaps for this reason, often practitioners use MLE-based routines to
obtain relevant estimates from the survival component of the wider economic model. These
are usually simple to obtain. In order to deal with PSA, flexsurv uses bootstrap (based on
multivariate Normal distributions), which may be a good approximation of the underlying
full joint posterior distribution of the survival parameters.
A good compromise between frequentist and fully Bayesian models is provided by INLA,
which is effectively an alternative method of performing Bayesian inference. By using a
specific (albeit rather general), clever model specification and an approximation algorithm,
INLA typically requires a computational time that is very close to that of MLE-based routines,
while also estimating an approximation to the full joint posterior distribution for the model
parameters. However, in general terms, it is a bit more complex to embed INLA within a more
complex model; in addition, currently, INLA can only fit a limited number of survival models.
For these reasons, we chose to design survHE around these three approaches: ideally, we
would build the whole economic model under a Bayesian framework and take full advantage
of the flexibility provided by MCMC estimation – this would be naturally obtained by using
rstan. Note that we choose rstan over other software such as OpenBUGS or JAGS; the reason
for this is that HMC often proves a superior mode of inference compared to Gibbs sampling
(the MCMC algorithm upon which OpenBUGS and JAGS are based). In particular, for the

10 survHE: Survival Analysis for Health Economics in R

specific set of models that we consider here, HMC proves faster and more reliable in terms of
convergence than Gibbs sampling. In addition, rstan models can be “pre-compiled” and thus
the computational time required is totally devoted to sampling from the relevant posterior
distributions, which makes a full Bayesian approach more competitive, in comparison to
MLE-based methods.
However, despite these very useful features of rstan, we acknowledge that at times Bayesian
survival models can still be challenging from the point of view of computation (especially
with large datasets and for particularly complex model structures). In these cases, INLA
is very helpful, for the range of distributions it supports and going forward, to expand the
modeling to flexible structures (e.g., including smooth random effects); similarly, particularly
in specific settings, some practitioners may want to use a standard approach to statistical
inference and MLEs.
The combined use of survHE and its “dependencies” allows all of these options in a unified
framework. More importantly, irrespective of the way in which the inference on the survival
model is performed, survHE has a set of built-in functions that can be used to produce a
standardized post-processing of the results, for their inclusion in the economic model and PSA.

3. MLE via flexsurv
survHE allows the user to define in R a vector of model names (in the format that flexsurv or
INLA can recognize). We could for instance decide that we want to consider the Exponential,
Weibull, Gamma, log-Normal, log-Logistic and Generalized Gamma models for our analysis.
We can do this in R by using the following commands.

R> mods <- c("exp", "weibull", "gamma", "lnorm", "llogis", "gengamma")

This syntax defines a vector of model names to be used by flexsurv in the fitting process.
These must adhere with survHE convention, as specified above and in Table 1.
At this point, we are almost ready to actually perform the survival analysis using the 6 models
specified above; before we can do this, however, we need to specify the model “formula”, for
example as the following.

R> formula <- Surv(time, event) ~ as.factor(arm)

This creates an object instructing R to analyze the data using a survival model in which the
only covariate is the treatment arm, interpreted as an R “factor” (i.e., a categorical variable).
Of course, it is possible to use an even less structured version of the linear predictor by simply
defining formula <- Surv(time, event) ~ 1, which would fit a model with no covariates
(i.e., intercept only). Other covariates can also be added to the formula.
The survHE function fit.models can be used to actually perform this analysis in batches,
e.g., by typing the command:

R> m1 <- fit.models(formula = formula, data = data, distr = mods)

The function fit.models takes as mandatory inputs the analysis formula, the name of the
dataset to be used and the type of distribution(s) to be fitted. Just like in this case, this may be
a vector, in which case fit.models will store all the different analyses in the resulting object.

Journal of Statistical Software 11

Executing the command above creates an object m1 of class ‘survHE’, in which the results of
the survival analyses are stored for each parametric model considered. The usual R command

R> names(m1)

returns the names of the several elements in the list.

[1] "models" "model.fitting" "method" "misc"

The object models is itself a list, in this case containing 6 elements (one for each of the
parametric models fitted). The command

R> names(m1$models)

returns the string of names used to label each, in this case

[1] "Exponential" "Weibull (AFT)" "Gamma" "log-Normal"
[5] "log-Logistic" "Gen. Gamma"

For example, the first model can be accessed using the standard R notation m1$models[[1]]
by position (i.e., using “double square brackets”), or alternatively by using its name and $
via m1$models$Exponential and can be inspected typing the commands

R> names(m1$models[[1]])

or

R> names(m1$models$Exponential)

which both output

[1] "call" "dlist" "aux" "ncovs"
[5] "ncoveffs" "mx" "basepars" "covpars"
[9] "AIC" "data" "datameans" "N"

[13] "events" "trisk" "concat.formula" "all.formulae"
[17] "dfns" "res" "res.t" "cov"
[21] "coefficients" "npars" "fixedpars" "optpars"
[25] "loglik" "logliki" "cl" "opt"

The quantities included in the model objects are the standard output from flexsurv. Typically,
the user does not need to access or manipulate them directly (that is the point of survHE!); in
fact, other survHE functions will use these to produce plots or further analyses. Users familiar
with R programming can however access them to post-process their results and customize even
further the output provided by survHE.
The other elements of the object m1 are:

• model.fitting: a list storing some suitable statistics that can be used to assess, well
. . .model fitting. These are the Akaike, Bayesian and deviance information criteria
(AIC, BIC and DIC, respectively). The former two can be estimated using both the
Bayesian and frequentist approach, while the latter is specific to Bayesian modeling.
Thus, in this case, the R call

12 survHE: Survival Analysis for Health Economics in R

R> m1$model.fitting

will return the following results

$aic
[1] 1274.576 1203.130 1203.504 1214.984 1208.494 1204.785

$bic
[1] 1282.387 1214.846 1215.220 1226.700 1220.211 1220.406

$dic
[1] NA NA NA NA NA NA

Note that because we are storing the results obtained from fitting 6 models in the same
object, the elements $aic, $bic and $dic are vectors. In general, the model associated
with a lower information criterion value tends to be associated with a better fit, as we
discuss in Section 6.4.

• method: a string describing the method used to fit the model(s). In this case the code

R> m1$method

returns the output

[1] "mle"

• misc: a list containing some miscellanea – these are mainly used internally by the
other functions in survHE to do plots and tables or other calculations. Specifically, the
elements of this objects are

– time2run: the time used to run the model(s) (in seconds);
– formula: the R object containing the formula used to define the model(s);
– data: the data-frame containing the original data used to fit the model(s);
– model_name: a (vector of) abbreviation(s) associated with the model(s) fitted;
– km: the Kaplan-Meier estimate produced automatically by survHE (using the func-

tion npsurv from the R package rms; Harrell Jr 2020).

4. Bayesian analysis via INLA

4.1. Integrated nested Laplace approximation
Integrated nested Laplace approximation (INLA; Rue et al. 2009) can be used to perform
direct numerical calculation of posterior densities in a wide sub-class of Bayesian hierarchical
models (called latent Gaussian models, LGMs), avoiding time-consuming Markov chain Monte
Carlo simulations. The INLA implementation covers models of the form

yi | φ,ψ ∼ p(yi | φ,ψ),
φ | ψ ∼ Normal

(
0,Q−1(ψ)

)
,

ψ ∼ p(ψ),

Journal of Statistical Software 13

where yi is the observed variable, φ is a set of main parameters (which may and often has a
very large dimension) and ψ is a set of “hyperparameters”, so that the full set of parameters
is θ = (φ,ψ). The main restrictions of the INLA formulation are the fact that the number of
hyperparameters needs to be small (for computational convenience) and the form of the prior
imposed on φ. This is a multivariate Normal distribution where the precision (i.e., inverse
variance) matrix Q−1(ψ) depends on the hyperparameters and exploits conditional indepen-
dences across the parameters. This general structure is called a Gaussian Markov random
field (GMRF; Rue and Held 2005).
The basic principle is to approximate the posterior density for φ and ψ using a series of
nested Normal approximations. The algorithm uses numerical optimization to find the mode
of the posterior, while the marginal posterior distributions are computed using numerical
integration over the hyperparameters. INLA is a very fast method of inference and can be
applied to many models that can be written in the form of LGMs – for example generalized
linear models (including structured components, such as simple random effects, as well as
spatial or temporal effects).
On the other hand, not all models can be easily framed within the LGM formulation. In
addition, INLA’s estimates are, by definition, approximations to the full joint posterior dis-
tribution of the model parameters. Thus, there is a trade-off between the computational
complexity and the accuracy of the estimation. In many general cases, INLA produces a
good compromise by allowing a good level of accuracy (often comparable with simulation
methods such as MCMC that, if run for long enough, are guaranteed to give the “exact”
value) and running time, often in the same order as standard ML algorithms.

4.2. Using survHE to fit models with INLA
When fitting models using a Bayesian approach via INLA, survHE allows the user to select
a vector of distributions; as mentioned above, currently, INLA and its R implementation
allow four survival models: Exponential, Weibull, log-Normal and log-Logistic. The user can
specify a vector distr <- c("exp", "weibull", "lognormal", "loglogistic"), or select
only a subset of those models, or maybe run the fit.models command separately for each
of them. If a distribution is specified that is not allowed in INLA, then survHE will fall back
on the MLE specification and use flexsurv instead.
One important distinction is in the way in which flexsurv and INLA handle the names of the
distributions to be fitted and the formula specifying the model. As for the latter, the correct
notation is the following: "exponential", "weibull", "lognormal" and "loglogistic" –
these do not directly match the flexsurv notation. As mentioned above, to avoid issues,
survHE recodes internally the names given to the distributions. Thus, if the user specifies
the additional option method = "inla" in the call to fit.models, then the string "exp"
(which would be accepted by flexsurv) will be recoded to "exponential", which is required
by INLA. Similarly if a distribution that is accepted by flexsurv is given by the user in INLA
terminology but the method is either unspecified or specifically set to "mle" in the call to
fit.models, then survHE will recode the name of the distribution in flexsurv terms.
With regards to the model formula, INLA requires that this is specified using the notation

formula <- inla.surv(time, event) ~ ...

where time and event are the variables in which the times and the event indicator are stored

14 survHE: Survival Analysis for Health Economics in R

and ... is a suitable form for the combination of covariates to be used. Again, survHE tries
to simplify the modeler’s life by fixing the code provided for the formula, depending on the
value specified for the option method. So if method = "inla" but the formula is specified
using the flexsurv terminology, survHE will recode this to make it acceptable to INLA.
A suitable call to fit.models using INLA is the following.

m2 <- fit.models(formula = formula, data = data, distr = distr,
method = "inla", ...)

where distr is a vector of strings containing names from the four models available in INLA
and ... indicates optional arguments. In particular, when method is set to "inla", it is
possible to add the following arguments.

• dz: defines the step length for the grid search over the hyperparameters space (default
= 0.1). As mentioned above, INLA estimates the value of the hyperparameters in the
model (e.g., the shape of a Weibull distribution), using a grid search. The finer this
grid, the more accurate (but more computationally expensive!) the resulting estimates
for all the parameters, e.g., for both the shape and scale of the Weibull distribution.

• diff.logdens: defines the difference in the log-density for the hyperparameters to
stop the numerical integration used to obtain the marginal posterior distributions (de-
fault = 5). Again, this is related to how the hyperparameters are estimated in the first
stage of the nested algorithm. Decreasing this difference is likely to increase the compu-
tational time, since the estimation of the hyperparameters will become more accurate.

• control.fixed: defines the default for the prior distributions, unless specified by the
user. By default, INLA assumes that “fixed effects” associated with covariates are
modeled using a Normal with mean 0 and variance 1000, while the overall intercept is
modeled using a Normal with 0 mean and even smaller precision. survHE overrules this
and sets the precision of the covariates in the linear predictor to 1/52 = 0.04 – this is
consistent with the default setting used when HMC is selected as the inferential engine.

• control.family: a list of options controlling the model for the observed data. If
distr.inla is a vector, containing all or a subset of the models supported by INLA,
this can be provided as a named list of options; for example:

R> m2 <- fit.models(formula = formula, data = data, distr = distr.inla,
+ method = "inla", control.family = list(weibull = list(prior =
+ "gamma", param = c(.1, .1)), lognormal = list(initial = 0.1)))

would instruct INLA to assume a Gamma(0.1, 0.1) prior distribution for the shape
parameter of the Weibull model and to use an initial value of 0.1 for the approxima-
tion routine of the log-Normal model. Notice that the names of the elements of the
control.family list must adhere with the survHE notation shown in the right-most
column of Table 1.

Using INLA advanced controls is very powerful and allows much versatility in fitting the
models. However, some knowledge and understanding of the INLA syntax and philosophy is
required. Guidance is provided in the INLA help functions as well as, for example, in Rue

Journal of Statistical Software 15

et al. (2009); Blangiardo, Cameletti, Baio, and Rue (2013); Blangiardo and Cameletti (2015)
and Wang, Ryan, and Faraway (2018).
Back to the running example, we may fit the models in INLA using the following code.

R> m2 <- fit.models(formula, data, c("exp", "weibull", "llogis", "lnorm"),
+ method = "inla", control.family = list(exponential = list(),
+ weibull = list(prior = "gamma", param = c(.1, .1)),
+ loglogistic = list(), lognormal = list(initial = 1)))

Note that it may be necessary to fiddle with the control.family option to successfully fit
some of these models. This highlights the fact that, because the process of economic evalua-
tion is embedded within a fundamentally statistical analysis, the modeler needs a thorough
understanding of the underlying statistical tools – perhaps even more so when using a Bayesian
approach, but, it is our strong belief, under any modeling circumstances.

5. Bayesian analysis via HMC

5.1. Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC; Radford 2011; Gelman, Carlin, Stern, Dunson, Vehtari,
and Rubin 2013; Kruschke 2015; Betancourt 2012) is one of the algorithms belonging to the
general class of MCMC methods. In a nutshell, HMC is based on the physical concept of
Hamiltonian dynamics, which can be used to model the idealized situation of a frictionless
particle sliding over a surface of varying slope. Basically, the movements of the particle
depend on: (i) the potential energy, a function of its current location l, which is proportional
to the height of the surface at the current position; and (ii) the kinetic energy, a function of
its momentum m, depending on the mass of the particle. The way in which these movements
happen can be described by a set of ordinary differential equations: this means that if we are
able to compute the derivatives of these two functions and given a set of initial conditions
specifying the starting location l0 and momentum m0, at time t0, then we can predict the
location and momentum of the particle at any point in time, by simulating these dynamics
for a given duration.
Leaving aside all the technical difficulties, the basic intuition behind HMC is the following: the
surface of interest is the unnormalized posterior log-density for the parameters in the model

log p̃(θ | t) = log p(θ) + log p(t | θ). (3)

In general, we are not in a position of knowing the target distribution log p̃(θ | t) exactly
and in closed form1. Moreover, even if we were, this would only be proportional to the
actual posterior density for the parameters (because the expression above is computed without
rescaling by the marginal log-density for the observed data t; for this reason, we use the
notation p̃).
However, both log-densities on the right-hand side of (3) are known because they are part of
the model specification. If we can compute the derivatives of log p̃(θ | t), given initial values

1In fact, the relevant target surface in HMC is described by − log p̃(θ | t), but this is just a technical detail.
The general argument still holds.

16 survHE: Survival Analysis for Health Economics in R

for the location of the parameters θ and their momentum, we can simulate Hamiltonian
dynamics. As it turns out, this is extremely efficient at exploring the (negative) posterior log-
density, by proposing a move to a new position that is determined by letting the “particle”
slide over the density.
This means that if the current position is far away from the portion of the parametric space
where most of the probability mass lies, the potential energy is large and thus the “particle”
will have higher speed when sliding over a very steep surface. More specifically, unlike simpler
(and far less efficient methods) such as the Metropolis algorithm, the proposed moves will not
necessarily be characterized by symmetrical distributions and will tend to be pulled towards
the mode of the joint posterior distribution more quickly.
Especially for models where the size of θ is very large, in comparison to other MCMC algo-
rithms such as Gibbs sampling, HMC often proves to be very efficient in computational terms.
This is mainly due to the fact that it updates the joint distribution of all the model param-
eters at once, instead of sequentially looping through each conditional distribution for one
parameter given the observed data and all the other parameters. In addition, in comparison
to other acceptance-rejection methods (e.g., the simpler Metropolis-Hastings), HMC is capa-
ble of adapting the proposal to non-symmetrical distributions, which translates to a faster
rate of convergence to the target posterior, as well as faster decay in autocorrelation. These
properties mean that Bayesian inference can be performed on models of arbitrary complexity
(thus extending the limitations of INLA), at a reduced computational time and improved
convergence, with respect to Gibbs samplers.
In practice, HMC can be very complex, because in addition to the specific computation of
possibly complex derivatives, it requires fine tuning of several parameters. However, rstan
provides a very clever system in which most of the adaptation is automatic. The user can
still specify some of the basic inputs (and at times this is crucial to improve, or even reach
convergence to the target posterior distributions), but rstan is a very general system to
perform HMC estimation on a very wide range of models.

5.2. Using survHE to fit models with HMC

Much of the work performed by rstan consists in determining a set of derivatives from the
model structure, that are used to apply the Hamiltonian dynamics and explore the parametric
space in an efficient way. This requires a preparatory step, which rstan does by compiling
the model in C++ (via R). This step can be quite lengthy, but interestingly it is possible
to pre-compile a model – if all that changes is the data (but not the structure and the
distributional assumptions), then the pre-compiled model can be used directly, thus saving
substantial computation time.
This is another attractive feature of rstan, because it means that survHE can pre-compile all
the standard models presented in Table 1. Thus, it is possible to estimate them by using a
command such as the following.

R> m3 <- fit.models(formula, data, distr = mods, method = "hmc")

In this case, survHE will perform the following steps:

1. Format the original data contained in the R object data in a way that can be used
by rstan;

Journal of Statistical Software 17

alpha scale

beta[1] beta[2]

1000 1250 1500 1750 2000 1000 1250 1500 1750 2000

1000 1250 1500 1750 2000 1000 1250 1500 1750 2000

0.2

0.4

0.6

9

10

11

12

2.2

2.3

2.4

2.5

1.6

1.8

2.0

chain

1

2

(a) Traceplots.

alpha scale

beta[1] beta[2]

0 10 20 0 10 20

0 10 20 0 10 20

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Lag

A
vg

.
au

to
co

rr
el

at
io

n

(b) Autocorrelation plots.

Figure 2: Checking model convergence using the rstan built-in facilities, for example through
inspection of the traceplots or the autocorrelation plot.

2. Select a pre-compiled model code, depending on the distributional assumptions;

3. Call rstan in the background to sample from the posterior distribution of the model pa-
rameters.

As with any MCMC estimation, it is important to thoroughly assess convergence – we return
to this point in Section 6.1. The package rstan contains specialized functions to visualize the
model output and assess convergence. For example the commands2

R> rstan::traceplot(m3$models[[2]])
R> rstan::stan_ac(m3$models[[2]])

would produce respectively a graph with the “traceplots” for the relevant variables, as shown
in Figure 2(a) and an autocorrelation plot, shown in Figure 2(b). In this case, we can
be confident that convergence is satisfactorily reached for all the variables monitored, since
the traceplots show good mixing in the two chains; autocorrelation does not seem a major
problem either, as the level of dependence in consecutive iterations wanes down relatively
quickly. Additional model checking tools are also available in the package shinystan (Stan
Development Team 2016), an add-on to rstan, which creates a web-app that the user can
access locally through the default web browser. Ultimately, we reiterate that it is the utmost
responsibility of the modeler to ensure that the procedure has reached convergence and the
output can be used safely.
There are several additional options that can be used when the inferential method is specified
to "hmc", which we describe in the following.

2In order to use the functions in the package rstan, the user needs to either load the full package using the
R command library("rstan"), or to prefix their name with the code rstan:: to make them available in the
current workspace.

18 survHE: Survival Analysis for Health Economics in R

• chains: the number of chains to run in the HMC (default = 2);

• iter: the total number of iterations (default = 2000);

• warmup: the number of “warm up” iterations (default = iter/2). The warm up is
the adaptive phase in which the basic inputs of the HMC procedure are tuned. rstan
does that automatically and once this stage is completed, the procedure is ready to
immediately sample from the posterior distributions of interest;

• thin: the number of thinning (default = 1). For example, setting thinning to some
value h, consists in selecting for inference every one in h simulations from the posteriors
and can sometimes reduce the level of autocorrelation (for an equally large number of
iterations used for the final estimation);

• control: a list specifying rstan-related options, e.g., control = list(adapt_delta =
0.85), which can be used to tune more finely the acceptance rate in the HMC procedure
(the closer this rate is to the upper limit of 1, the less likely there are to be numerically
unstable simulations);

• seed: the random seed (to make the analysis replicable);

• pars: a string vector with the names of the relevant parameters. By default, survHE
selects the location and ancillary parameters, as well as the coefficients associated with
the covariates included in the model;

• include: a logical indicator (if set to FALSE, then the parameters specified in pars are
not saved);

• priors: a list (of lists) specifying the values for the parameters of the prior distributions
in the models (see the example below);

• cores: the number of CPU (cores) used to run the sampling procedure using rstan
(default = 1);

• save.stan: a logical indicator (default = FALSE). If TRUE, then saves the model text
file(s) to the user’s working directory. These can be used as templates to modify the
basic model structure.

In practice, the user should not need to fiddle much with these optional arguments – cer-
tainly not without a clear understanding of the underlying modeling assumptions and the
implications of any change to the default structure. Perhaps the default number of chains or
iterations may be increased; or may be specific numeric values for the parameters of the prior
distributions could be defined.
For instance, the default prior for the linear predictor coefficients is β = (β0, . . . , βJ) ∼
Normal(µβ,σβIJ+1), where: µβ and σβ are vectors of size (J + 1); and IJ+1 is the (J + 1)×
(J + 1) identity matrix (see Table 2). Suppose the user wanted to select a smaller standard
deviation for the Generalized Gamma model; this can be done using the following command
– the list containing the custom values for the priors needs to be named, using the survHE
terminology highlighted in Table 1.3

3It is worth mentioning that, unlike OpenBUGS or JAGS (which use the mean and precision), rstan pa-
rameterizes the Normal distribution in terms of the mean and the standard deviation.

Journal of Statistical Software 19

R> m4 <- fit.models(formula, data, distr = "gengamma", method = "hmc",
+ priors = list(gengamma = list(sigma_beta = rep(5, 2))))

Note that we need to specify the values for the standard deviation for all the J = 2 covariates
(the intercept and the treatment arm) and so in this case we define sigma_beta = rep(5,
2), i.e., a vector of two elements, each equal to 5. Of course, there is nothing special about
the value 5 and we could also select different values for the intercept and the treatment arm,
e.g., sigma_beta = rep(10, 2).
It is also possible to specify multiple values to modify the priors, for example

R> priors <- list(exp = list(sigma_beta = rep(4, 2)),
+ wei = list(mu_beta = rep(2, 2)))
R> m4 <- fit.models(formula, data, distr = mods, method = "hmc",
+ priors = priors)

would instruct survHE that the user wants to set: (a) the value for the standard deviation of
the parameters β to 4, in the first model to be considered (Exponential); and (b) the value
for the mean of the parameters β to 2, for the second model (Weibull).
Because the number of models in mods is 6, then survHE will complete the list priors by
adding 4 more empty lists and survHE will use the default values for the remaining models.
Consequently, it is important that the user specifies the required values in the correct order.
For instance, if we wanted to specify σ ∼ Gamma(2, 4) for the Generalized Gamma model
(the sixth in the list mods), we would need to make sure that this information is contained in
the sixth element of the list priors. This could be done by using the following code

R> priors <- vector("list", 6)
R> names(priors) <- mods
R> priors[[6]] <- list(a_sigma = 2, b_sigma = 4)

which creates 5 empty lists to be associated with the first five models and the required list
of values for the sixth one. Note that we still need to provide names for the elements of the
list prior, so that survHE can figure out which element should be used for a given model
among those specified in the call to fit.models. Even more succinctly, the same goal can be
achieved by typing the following code

R> priors <- replicate(5, list())
R> priors[[6]] <- list(a_sigma = 2, b_sigma = 4)
R> names(priors) <- mods

– although we note that, in general terms, when it is necessary to specify complex options
(such as the definition of the priors), it is perhaps a better idea to use one single distribution
in the call to fit.models.
Then we can run survHE with the same command as before.

R> m4 <- fit.models(formula, data, distr = mods, method = "hmc",
+ priors = priors)

20 survHE: Survival Analysis for Health Economics in R
M
odel

Location
param

eters
A
ncillary

param
eters

N
aturalparam

eters
Exponential

β
∼

N
orm

al(µ
β
,σ

β
I
J+

1)
—

R
ate

=
exp(β

0)
µ
β
=

mu_beta
=

rep(0,
J

+
1)

—
σ
β
=

sigma_beta
=

rep(5,
J

+
1)

—
W
eibull

β
∼

N
orm

al(µ
β
,σ

β
I
J+

1)
α
∼

G
am

m
a(a

,b)
Shape

=
α

µ
β
=

mu_beta
=

rep(0,
J

+
1)

a
=

a_alpha
=

0.1
Scale

=
exp(β

0)
σ
β
=

sigma_beta
=

rep(5,
J

+
1)

b
=

b_alpha
=

0.1
log-N

orm
al

β
∼

N
orm

al(µ
β
,σ

β
I
J+

1)
α
∼

U
niform

(a
,b)

M
ean

=
β

0
µ
β
=

mu_beta
=

rep(0,
J

+
1)

a
=

a_alpha
=

0
Std.dev.=

α
σ
β
=

sigma_beta
=

rep(100,
J

+
1)

b
=

b_alpha
=

5
log-Logistic

β
∼

N
orm

al(µ
β
,σ

β
I
J+

1)
α
∼

G
am

m
a(a

,b)
Shape

=
α

µ
β
=

mu_beta
=

rep(0,
J

+
1)

a
=

a_alpha
=

0.1
R
ate

=
exp(β

0)
σ
β
=

sigma_beta
=

rep(5,
J

+
1)

b
=

b_alpha
=

0.1
G
am

m
a

β
∼

N
orm

al(µ
β
,σ

β
I
J+

1)
α
∼

G
am

m
a(a

,b)
Shape

=
α

µ
β
=

mu_beta
=

rep(0,
J

+
1)

a
=

a_alpha
=

0.1
R
ate

=
exp(β

0)
σ
β
=

sigma_beta
=

rep(5,
J

+
1)

b
=

b_alpha
=

0.1
G
om

pertz
β
∼

N
orm

al(µ
β
,σ

β
I
J+

1)
α
∼

G
am

m
a(a

,b)
Shape

=
α

µ
β
=

mu_beta=rep(0,J
+

1)
a
=

a_alpha
=

0.1
R
ate

=
exp(β

0)
σ
β
=

sigma_beta=rep(5,J
+

1)
b
=

b_alpha
=

0.1
G
en.G

am
m
a

β
∼

N
orm

al(µ
β
,σ

β
I
J+

1)
σ
∼

G
am

m
a(a

1 ,b1)
Location

=
β

0
µ
β
=

mu_beta
=

rep(0,
J

+
1)

q
∼

N
orm

al(a
2 ,b2)

Scale
=
σ

σ
β
=

sigma_beta
=

rep(100,
J

+
1)

a
1
=

a_sigma
=

0.1,
b1

=
b_sigma

=
0.1

Shape
=
q

a
2
=

mu_Q
=

0,
b2

=
sigma_Q

=
100

G
en.F

β
∼

N
orm

al(µ
β
,σ

β
I
J+

1)
σ
∼

G
am

m
a(a

1 ,b1)
Location

=
β

0
µ
β

=
mu_beta

=
rep(0,

J
+

1)
log(p)∼

N
orm

al(a
2 ,b2)

Scale
=
σ

σ
β

=
sigma_beta

=
rep(100,

J
+

1)
q
∼

N
orm

al(a
2 ,b2)

Shape
(1)

=
q

a
1
=

a_sigma
=

0.1,
b1

=
b_sigma

=
0.1

Shape
(2)

=
p

a
2
=

mu_P
=

0,
b2

=
sigma_P

=
0.5

a
3
=

mu_Q
=

0,
b3

=
sigma_Q

=
2.5

Table
2:

A
sum

m
ary

ofthe
default

assum
ptions

used
for

the
m
odels

defined
by

survH
E
using

rstan.

Journal of Statistical Software 21

Table 2 shows a summary of the distributional assumptions used to define the default priors
in the models implemented by survHE using rstan, together with the names assigned to the
parameters of these distributions. For instance, if we wanted to specify a Normal(1, 4) prior
for the ancillary parameter of the Gompertz model (the fourth in the vector mods), we would
need to specify the following command.

R> priors <- replicate(6, list())
R> names(priors) <- mods
R> priors[[4]] <- list(mu_alpha = 1, sigma_alpha = 4)

The use of informative priors is one of the examples in which external information can be
included in the model, to stabilize the inference and complement the limited evidence provided
by the data – although, again, it is the responsibility of the modeler to understand the
specification and the implications of these assumptions into the model.
If the option save.stan is set to TRUE, then survHE will also save the model code as a text
file (with the extension .stan) in the current directory. The data list formatted in a way that
rstan can use is also automatically stored in the element $misc$data.stan inside the output
of fit.models. The user can then modify the model structure starting from this template –
for example it is possible to change the distributional assumptions and use, e.g., a Uniform
prior for the scale σ of a Generalized F model. This will require a new compilation and, at
present, the new model has to be run using rstan commands directly. Again, this illustrates
the process of adapting relatively standard models to more complex situations, in which there
is the need to bring external information to bear, although this may mean that the user needs
to have a more thorough understanding of the underlying statistical problem.

6. Summarizing the results from survHE
Objects of class ‘survHE’ (such as m1, m2, m3 and m4 above) have associated methods such as
print, summary and plot that can be used to summarize and visually inspect the results of
the models analyzed. We describe them in the following.

6.1. Tabular form

When the models have been estimated, we usually want to summarize the estimates using a
tabular format. survHE has a specialized function print that can do this, e.g., by typing

R> print(m1)

which returns the following table.

Model fit for the Exponential model, obtained using Flexsurvreg
(Maximum Likelihood Estimate). Running time: 0.025 seconds

mean se L95% U95%
rate 0.0824203 0.00828355 0.0676839 0.100365
as.factor(arm)1 -0.4656075 0.15427131 -0.7679738 -0.163241

22 survHE: Survival Analysis for Health Economics in R

Model fitting summaries
Akaike Information Criterion (AIC)....: 1274.576
Bayesian Information Criterion (BIC)..: 1282.387

In this case, the object m1 contains many models; but unless the user specifies which one
to print, survHE will assume that the first one should be used. If, for example, we wanted
to visualize the estimates for the log-Logistic model (the fifth element of the string vector
distr), then we would need to type

R> print(m1, mod = 5)

which would return the following output.

Model fit for the log-Logistic model, obtained using Flexsurvreg
(Maximum Likelihood Estimate). Running time: 0.024 seconds

mean se L95% U95%
shape 2.233748 0.1406365 1.974434 2.52712
scale 8.160865 0.5264208 7.191658 9.26069
as.factor(arm)1 0.348356 0.0943506 0.163432 0.53328

Model fitting summaries
Akaike Information Criterion (AIC)....: 1208.494
Bayesian Information Criterion (BIC)..: 1220.211

In both cases, survHE standardizes the format of the output, so that the results are reported
for the “basic” parameters (e.g., rate, shape or scale) as well as the covariate effects. Notice
that the “basic” parameters are always reported on the natural scale, while the covariate
effects are in the scale defined by the linear predictor (as presented in Table 1). Thus, in the
cases presented above, the value of the coefficient as.factor(arm)1 represents the impact of
the treatment arm on the log scale, because both for the Exponential and the log-Logistic the
location parameter is modeled using a log link – and thus in Table 1 we write µi = exp(. . .).
The print method for ‘survHE’ objects has an additional option, which allows the user to
visualize the summary of the model results in the original notation used by the relevant
package used to perform the estimation. Thus, in this case typing

R> print(m1, mod = 6, original = TRUE, digits = 3)

would show the results for the Generalized Gamma model (the sixth in the string vector mods)
using the original flexsurv formatting and using only 3 significant decimal places.

Call:
flexsurv::flexsurvreg(formula = formula, data = data, dist = distr)

Estimates:
data mean est L95% U95% se exp(est) L95% U95%

mu NA 2.2918 2.1357 2.4479 0.0796 NA NA NA

Journal of Statistical Software 23

sigma NA 0.5871 0.4613 0.7471 0.0722 NA NA NA
Q NA 0.8507 0.3620 1.3394 0.2493 NA NA NA
as.factor(arm)1 0.4850 0.3463 0.1743 0.5183 0.0878 1.4138 1.1904 1.6792

N = 367, Events: 172, Censored: 195
Total time at risk: 2612.07
Log-likelihood = -598.3923, df = 4
AIC = 1204.785

The same principles apply to ‘survHE’ objects storing models fitted using either INLA or
rstan. For instance the command

R> print(m3, 6)

returns the output

Model fit for the Generalised Gamma model, obtained using Stan
(Bayesian inference via Hamiltonian Monte Carlo). Running time:
23.449 seconds

mean se L95% U95%
mu 2.296495 0.0835967 2.123717 2.455760
sigma 0.596774 0.0712512 0.462840 0.743653
Q 0.851923 0.2520732 0.364672 1.363819
as.factor(arm)1 0.347634 0.0875420 0.176135 0.525895

Model fitting summaries
Akaike Information Criterion (AIC)....: 7103.724
Bayesian Information Criterion (BIC)..: 7123.250
Deviance Information Criterion (DIC)..: 7612.510

For HMC models, even more importantly, when using the option original = TRUE we are
able to look at helpful convergence statistics, which should be used to assess whether the
MCMC procedure has been successful in exploring the relevant posterior distributions. For
example, we could use the code

R> print(m3, mod = 2, original = TRUE, digits = 6)

which returns the following output.

Inference for Stan model: WeibullAF.
2 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=2000.

mean se_mean sd 2.5% 25% 50%
beta[1] 2.324760 0.001587 0.056368 2.219097 2.286221 2.323779
beta[2] 0.349667 0.002620 0.088872 0.178268 0.288323 0.349394
alpha 1.803243 0.002924 0.108722 1.601334 1.728505 1.801598

24 survHE: Survival Analysis for Health Economics in R

scale 10.240529 0.016460 0.580670 9.199025 9.837695 10.214201
lp__ -600.292784 0.039113 1.207529 -603.491904 -600.890441 -599.972663

75% 97.5% n_eff Rhat
beta[1] 2.360766 2.439654 1261 1.002989
beta[2] 0.406506 0.522045 1151 1.000595
alpha 1.873171 2.019929 1383 1.000788
scale 10.599070 11.469076 1245 1.003169
lp__ -599.406559 -598.904339 953 1.000773

Samples were drawn using NUTS(diag_e) at Tue Sep 29 20:28:54 2020.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

The table displays the original output from rstan. Here, the coefficient beta[1] is the inter-
cept (log scale), while the coefficient beta[2] is the effect of the only covariate included in
the model. The estimates are reported as the mean, Monte Carlo error (se_mean), standard
deviation, an approximate 95% credible interval and then the effective sample size n_eff and
the potential scale reduction (PSR) Rhat.
The effective sample size gives an indication of the underlying autocorrelation in the MCMC
samples – values close to the total number of iterations, or at any rate not too low, indicate a
low level of autocorrelation (which is what we want). The PSR is an analysis-of-variance-type
of statistics, indicating for each variables whether convergence is reached. If the procedure
is ran on more than one parallel chain, then Rhat is computed as a function of the ratio of
the variance within to the variance between chains – if this is close to 1 and definitely less
than 1.1, convergence can be satisfactorily declared. If not, it may be necessary for example
to increase the number of iterations.
A further optional inputs to the print methods is digits (default = 6), which determines
the number of digits printed in the table.

6.2. Visual interpretation

Once an object of the class ‘survHE’ has been created using the command fit.models, it is
possible to visualize the resulting survival curve(s) by simply using the plot method. survHE
uses ggplot2 (Wickham 2016) as the graphical engine. This means that the graphs produced
by survHE are highly customizable. However, survHE simplifies the modeler’s work as most
of the code needed to produce the graphs is already implemented in the plot method.
For example, the command

R> plot(m1, add.km = TRUE)

displays the graph shown in Figure 3(a). The option add.kM = TRUE instructs survHE to add
a Kaplan-Meier estimate to the plot (in this case, one for each treatment arm is produced as
the grey areas undelying the colored curves).
The plot method allows to display the output from different models. For example, we may
be interested in comparing the survival curves from some of the models obtained using either
MLE or HMC. We could do this by using the following command.

Journal of Statistical Software 25

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Time

S
ur

vi
va

l

Models

Exponential
Weibull (AFT)
Gamma
log−Normal
log−Logistic
Gen. Gamma

Profile

as.factor(arm)1=0
as.factor(arm)1=1

(a) Survival curves for the models fitted in the ob-
ject m1.

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Time

S
ur

vi
va

l

Models

Weibull (MLE)
Gamma (MLE)
Weibull (HMC)
Gamma (HMC)

Profile

Control
Treatment

(b) Survival curves for some of the models fitted in
the objects m1 and m3.

Figure 3: Graphs produced by the plot method in survHE.

R> plot(m1, m3, mods = c(2, 3, 8, 9), colour = c("blue", "green", "red",
+ "yellow"), lab.model = c("Weibull (MLE)", "Gamma (MLE)",
+ "Weibull (HMC)", "Gamma (HMC)"), lab.profile = c("Control","Treatment"),
+ add.km = TRUE)

This command instructs survHE to stack together the objects m1 and m3, which basically
produces a single ‘survHE’ object containing 12 models (6 from m1 and 6 from m3). The
option mods = c(2, 3, 8, 9) selects the models in positions 2, 3, 8 and 9 (i.e., the second
and third from m1 and then the second and third from m3). The option colour can be used
to select the colors with which to plot each curve on the graph. The options lab.model and
lab.profile can be used to customize the graph legends. The former specifies the labels
to be associated with the several models plotted, while the latter customizes the “profile” of
covariates depicted. The resulting graph is shown in Figure 3(b).4

Notice that, in this particular instance, the differences in the frequentist and Bayesian analysis
are not striking. This is due to the fact that we have considered relatively vague priors in
combination with mature data (notice that the Kaplan-Meier estimates are fairly close to 0
for both arms, indicating that, in this study, most individuals have experienced the events and
the number of censored subjects is not large). This means that the observed data are in fact
driving the overall inferential process, thus limiting the impact of the priors and consequently
the differences between the MLE and the Bayesian analysis. We note again however that,
particularly when data are not mature and are subject to a large amount of censoring, the
inclusion of genuine prior information does contribute more substantially to the final inference.
The full list of the options for the method plot in survHE is given below.

4Alternatively, the user can name the survHE objects in the plot call, for example using a command
such as plot(MLE = m1, HMC = m3, mods = c(2, 3, 8, 9)). This would automatically create labels for the
models by combining the name of the object and the name of the distribution used, e.g., MLE:Weibull (AFT),
MLE:Gamma, HMC:Weibull (AFT) and HMC:Gamma.

26 survHE: Survival Analysis for Health Economics in R

• add.km: a logical variable. If TRUE (the default value), then also add the Kaplan-Meier
estimates of the data to the plot;

• newdata: a list (of lists) providing the values for the relevant covariates to stratify the
survival curves. If NULL, then survHE will use the mean value for all the covariates if at
least one is a continuous variable, or the full combination of the categorical covariates,
in line with flexsurv;

• xlab: a string with the label for the x-axis (default = "Time");

• ylab: a string with the label for the y-axis (default = "Survival");

• lab.profile: a (vector of) string(s) indicating the labels associated with the strata
defining the different survival curves to plot. This defaults to the value used by the
Kaplan Meier estimate given in fit.models;

• t: a vector specifying the time horizon over which the survival curves should be com-
puted and plotted. It defaults to the observed time range in the data, but for instance,
the user can specify the extrapolation to time t = 60 using the code plot(m1, t =
seq(0,60)). The range of the input t determines also the x axis limits in the plot;

• colors: a vector of characters defining the colours in which to plot the different survival
curves;

• annotate: a logical indicator (defaults to FALSE), describing whether survHE should
also add text to highlight the observed vs extrapolated data in the survival curves;

• legend.position: a vector of proportions to place the legend. Default to c(.75,.9),
which means 75% across the x-axis and 90% across the y-axis;

• legend.title: suitable instructions to format the title of the legend. This defaults
to element_text(size = 15, face = "bold"). Thus, for example, the command
plot(m1, legend.title = element_text(size = 20)) would increase the font size
for the title of the legends (i.e., the strings “Models” and “Profile”) up to 20 points.
Further customization is possible, but requires knowledge of ggplot2;

• legend.text: suitable instructions to format the text of the legend; It defaults to
element_text(colour = "black", size = 14, face = "plain"), but again can be
further customized using ggplot2 commands;

• nsim: if this input is set to a value greater than 1, then survHE will automatically
construct simulations for the entire distribution of the underlying survival curves (see
Section 7 for more details). By default, survHE sets this to 1 and only plots the average
of the distribution for the survival curves.

Most of these options are actually trivial; perhaps only newdata deserves a more detailed
explanation. survHE follows the philosophy of flexsurv to construct the survival curves. Con-
sequently, when the model contains categorical covariates, a single survival curve is estimated
for each combination of their modalities. Consider for example the following command.

Journal of Statistical Software 27

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Time

S
ur

vi
va

l

Model

Exponential

Profile

as.factor(arm)1=0,as.factor(sex)1=1
as.factor(arm)1=0,as.factor(sex)1=0
as.factor(arm)1=1,as.factor(sex)1=1
as.factor(arm)1=1,as.factor(sex)1=0

(a) Survival curves for the Exponential model fit-
ted using MLE and controlling for sex and treatment
arm.

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Time

S
ur

vi
va

l

Model

Exponential

Profile

as.factor(arm)1=0,age=32.46
as.factor(arm)1=1,age=32.46

(b) Survival curves for specific values of the covari-
ates, as selected in the list newdata.

Figure 4: Graphs produced by the plot method in survHE when using different combination
of the covariate values.

R> m5 <- fit.models(Surv(time, event) ~ as.factor(arm) +
+ as.factor(sex), data = data, distr = "exp")

This estimates the survival times via MLE using an Exponential model and controlling for
the effect of the treatment arm and the individuals’ sex. The estimates are as follows.

Model fit for the Exponential model, obtained using Flexsurvreg
(Maximum Likelihood Estimate). Running time: 0.016 seconds

mean se L95% U95%
rate 0.0843425 0.0102787 0.066422 0.107098
as.factor(arm)1 -0.4658255 0.1542727 -0.768194 -0.163457
as.factor(sex)1 -0.0505827 0.1533420 -0.351127 0.249962

Model fitting summaries
Akaike Information Criterion (AIC)....: 1276.467
Bayesian Information Criterion (BIC)..: 1288.183

As shown in Figure 4(a), this simple model already becomes complex to visualize, because
there are 4 strata identified by the two covariates, each of which is binary. Things become
even more complicated if we mix a continuous and a categorical covariate, e.g., treatment and
age. Thus, it may be helpful then to plot the results using a different strategy. For example
we can define a list in which we specify the value for the covariates that we want to use to
compute the survival curves, e.g.,

R> m5 <- fit.models(Surv(time, event) ~ as.factor(arm) + age,
+ data = data, distr = "exp")

28 survHE: Survival Analysis for Health Economics in R

R> newdata <- list(list(arm = 0, age = mean(data$age)),
+ list(arm = 1, age = mean(data$age)))

which would create two “profiles” by varying the treatment arm and keeping the value for
sex to the observed average in the data. The resulting plot can be obtained using the follow-
ing code.

R> plot(m5, newdata = newdata)

which produces the graph in Figure 4(b). When the option newdata is used, it is probably
best to plot a single model in a graph – even if the ‘survHE’ object contains many (just like
m1, m2 or m3), the option mods can be used to select only one of them, as shown above. When
selecting the “profile” to be specified in the list newdata, the user needs to specify a value
for all the covariates that appear in the model formula, although the order in which they are
entered is not important.
As all survHE graphs are ggplot2 objects, they can also be manipulated using ggplot2 func-
tions and commands. So for instance, the user can save a survHE plot to a named object and
then add ggplot2 customization, such as in the following example

R> p <- plot(m1)
R> p + theme_classic()

which would draw the graph in a template similar to the one used by base R. Again, knowledge
of ggplot2 is required in order to take full advantage of its functionalities – but we reiterate
here that survHE also takes care of many of the basic needs of the modelers.

6.3. Estimation of the mean survival time
As mentioned earlier, in a health economic evaluation it is of interest to estimate the mean
survival time – this is the quantity that is relevant to determine for example the effectiveness
of a given intervention. For some of the parametric models described above, the mean survival
time can be computed analytically. For example, for a Weibull model, this is

E[T] =
∫ ∞

0
tf(t | θ)dt =

∫ ∞
0

S(t)dt = µΓ
(

1 + 1
α

)
,

where µ is the scale, α is the shape and Γ(·) is the Gamma function.
More generally, it is possible to approximate this quantity using the “trapezium rule” over a
large enough time horizon as

E[T] ≈ 1
2
∑
t∈T

τ [S(t+ τ)− S(t)] ,

where T = {0, (t+ τ), (t+ 2τ), . . . , (t+Kτ)} is a discrete set of (K + 1) time points and τ
is an arbitrarily small increment. Notice that in order to approximate the mean sufficiently
well, it is important to extend the range T long enough so that all the survival curves actually
fade out to 0. Also, the smaller the increment τ , the more trapezoids are fitted under the
survival curve and thus the better the approximation. In practice, there is a trade-off between
the level of approximation and the computational time required for the calculation.
survHE automatically performs this calculation by means of the method summary; so for
example, the R code

Journal of Statistical Software 29

R> summary(m1)

produces the following output.

Estimated average survival time distribution*
mean sd 2.5% median 97.5%

as.factor(arm)=0 9.929582 0.6185205 8.778254 9.90262 11.11727
as.factor(arm)=1 12.753808 0.6510119 11.390461 12.79599 13.94223

*Computed over the range: [0.030-20.920] using 1000 simulations.
NB: Check that the survival curves tend to 0 over this range!

Because the user has not specified a time range over which to compute the mean survival,
survHE assumes the observed range of times (in this case [0.03–20.92]). As is obvious from
Figure 3, in this range the survival curves have not reached 0 and thus the estimated mean
survival is certainly biased downwardly. To correct this, it is sufficient to use the code

R> summary(m1, t = seq(0, 60))

which instructs survHE to compute the means over a range of times between 0 and 60, with
default unit increments. The resulting values are substantially different.

Estimated average survival time distribution*
mean sd 2.5% median 97.5%

as.factor(arm)=0 12.15368 1.157162 9.991659 12.11087 14.47000
as.factor(arm)=1 18.39585 1.811342 15.098328 18.37225 21.95334

*Computed over the range: [0-60] using 1000 simulations.
NB: Check that the survival curves tend to 0 over this range!

Incidentally, for the Exponential model, the analytic average values are computed as 1/Rate,
which equal

exp(β0)−1 = exp (log(0.0824))−1 = 12.133

and
exp(β0 + β1)−1 = exp (log(0.0824)− 0.4656)−1 = 19.328,

for the control and the treatment arm, respectively (with β0 the intercept and β1 the treatment
effect as estimated in m1). The estimate produced by the summary command can be improved
by selecting a longer time horizon and/or a lower value for the increment τ , e.g., t = seq(0,
100, 0.1). It is also possible to increase the number of simulations used to characterized
uncertainty in the underlying parameters (and hence survival curves – we return to this point
in Section 7). The default value of 1000 can be modified by specifying the optional argument
nsim to a different value. Similarly, it is possible to specify a specific “profile”, in terms of the
covariates included in the model by using the optional argument newdata. So for example,
the command

R> summary(m1, t = seq(0, 60), newdata = list(list(arm = 1)))

30 survHE: Survival Analysis for Health Economics in R

produces an estimate of the distribution of the mean survival time for the treated. Finally,
the user can also include a vector labs in the call to summary, which contains a suitable
number of text strings that can be used to label the values in the resulting table, for example
labs = c("Controls", "Treated").

6.4. Model assessment

Health economics guidelines suggest that the assessment of the models is done by comple-
menting the visual inspection with some more formal testing. The suggested way is through
the use of a specific information criterion (IC), such as Akaike IC (AIC) or the Bayesian IC
(BIC). These statistics are based on the model deviance −2 logL(θ) and a penalty function,
which typically depends on the number of parameters and the complexity of the model – the
rationale being that models that are too complex tend to “overfit” the data; this means that
they may do very well at estimating the data at hand, but usually have poor predictive ability
of other data.
An additional IC specific to Bayesian models is the deviance IC (DIC), proposed by Spiegel-
halter, Best, Carlin, and Van Der Linde (2002)5. survHE then computes an estimate of AIC
and BIC for any inference engine and also an estimate of the DIC for models fitted in either
INLA or rstan6.
The results of model fit can be visually inspected using the survHE function model.fit.plot
as in the examples below.

R> model.fit.plot(m1)
R> model.fit.plot(m1, type = "bic")
R> model.fit.plot(MLE = m1, HMC = m3, stacked = TRUE,
+ mods = c(1, 2, 3, 7, 8, 9), name_legend = "Inferential method")
R> model.fit.plot(MLE = m1, HMC = m3, stacked = TRUE,
+ mods = c(1, 2, 3, 7, 8, 9), type = "dic")

In panel (c) of Figure 5, we specify that the bar plots should be “stacked”, which means
that models using the same distribution from different objects are grouped together. The
objects can be named (as for the main plot function), which automatically creates a label to
associate with the colors with which the bars are plotted. If nothing is specified, then survHE
uses the generic labels Object1, . . . , ObjectN (assuming there are N survHE objects to be
plotted). The option name_legend specifies the title of the legend. If nothing is specified,
then survHE uses the default label survHE object.
In panel (d) of Figure 5 for some of the models the bar is not plotted: this is because for
model m1 the DIC cannot be computed, as it is fitted using MLE.

5In fact, for Bayesian models obtained via HMC, survHE also computes the DIC using the slightly different
definition suggested by Gelman et al. (2013); the two versions of the DIC may differ in the presence of extreme
asymmetry or multi-modality in the posterior distributions. The alternative estimates for the DIC are stored
in the element $model.fitting$dic2 of a ‘survHE’ object, but are only present if the inferential method is
set to "hmc".

6Notice that rstan does not provide measures of model fit based on information criteria. There are several
arguments to prefer other methods to assess the performance of a statistical model, for example the posterior
predictive check, as discussed in Gelman et al. (2013). However, because NICE guidelines suggest using AIC
and BIC (and, by extension, DIC), survHE computes the relevant model fit statistics and reports them using
the print method and the model.fit.plot function.

Journal of Statistical Software 31

1274.58

1203.13

1203.5

1214.98

1208.49

1204.78

Exponential

Gamma

Gen. Gamma

log−Logistic

log−Normal

Weibull (AFT)

1200 1220 1240 1260 1280
AIC

Model comparison based on AIC

(a) Model fit for m1 using the AIC (the default statis-
tic).

1282.39

1214.85

1215.22

1226.7

1220.21

1220.41

Exponential

Gamma

Gen. Gamma

log−Logistic

log−Normal

Weibull (AFT)

1225 1250 1275
BIC

Model comparison based on BIC

(b) Model fit for m1 using the BIC.

1274.58

1203.13

1203.5

1276.58

1205.15

1205.52

Exponential

Gamma

Weibull (AFT)

1200 1220 1240 1260 1280
AIC

Inferential method MLE HMC

Model comparison based on AIC

(c) Stacked model fit plots for selected models in m1
and m3, using the AIC.

1274.81

1203.09

1203.39

Exponential

Gamma

Weibull (AFT)

1200 1220 1240 1260 1280
DIC

survHE object MLE HMC

Model comparison based on DIC

(d) Model fit for selected models in m1 and m3, using
the DIC.

Figure 5: Example of plots to assess model fit for ‘survHE’ objects.

There are many optional arguments to the model.fit.plot function:

• type: a string specifying the statistic to be used (possible values are "aic", "bic"
or "dic");

• scale: if scale = "absolute" (default), then plot the absolute value of the relevant
IC. If scale = "relative" then plot a rescaled version taking the percentage increase
in the *IC in comparison with the best-fitting model;

• colour: specifies a vector of strings to assign colors to the bars. In fact, the user can
use the code col or color interchangeably;

• stacked: a logical indicator, defining whether the bars should be stacked and grouped

32 survHE: Survival Analysis for Health Economics in R

by ‘survHE’ objects (default = FALSE);

• name_legend: a string defining the title of the legend that is added to the bar plot when
stacked is set to TRUE;

• main: a string specifying the title of the plot;

• models: a (vector of) string(s), specifying the label to associate with the models being
plotted.

As a final note, we stress here that while model fitting statistics are useful to rank the
plausibility of the distributional assumptions tested, they cannot inform the quality of the
extrapolation of the survival curves. This is because any IC is based on the observed data
and quantifies how well a specific model fits to them. Thus, there is no measure as to how a
model performs on data that are as yet unobserved, based on such criteria. For this reason, it
is recommended that plausibility of the extrapolation is judged using a combination of visual
inspection, formal testing and the effectively unavoidable inclusion of external information
and clinical opinions – again suggesting the usefulness of the Bayesian approach.

7. Probabilistic sensitivity analysis
Unlike standard epidemiological analysis where the objective is often to estimate the effect of
some relevant covariates on the survival time, in health economic evaluation the goal is rather
to produce an estimate of the entire survival curve over a long period of time (or at any rate,
a longer period than the observed follow up). This estimate is then used to populate the
economic model, e.g., by obtaining estimates of the transition probabilities between states in
a Markov model or, perhaps even more commonly, in a partitioned survival analysis (Woods,
Sideris, Palmer, Latimer, and Soares 2017). More importantly, we need to quantify the impact
of uncertainty in the model parameters on the decision-making process and thus we typically
repeat this exercise for a large number of times, upon varying the value of the parameters
that determine the survival curves. In a fully Bayesian approach this uncertainty is induced
by the full joint posterior distribution of the parameters.
survHE is designed to perform this task directly in R, through the function make.surv. A
typical call is as follows

R> psa <- make.surv(fit = m3, nsim = 1000, t = seq(.1, 63))

which generates an object psa containing, among other things, nsim = 1000 simulations for
the survival curves. In the above case, m3 contains in fact 6 different models (upon varying the
distributional assumptions), but because the user has not specified a value for the input mod
(in this case a number between 1 and 6), make.surv uses the first one, i.e., the Exponential,
by default. Adding the option mod = 6 to the call to make.surv would consider the sixth
model (Generalized Gamma) instead.
The resulting output psa can be accessed directly by the user. The command

R> names(psa)

shows that it comprises several elements

Journal of Statistical Software 33

[1] "S" "sim" "nsim" "mat" "des.mat" "times"

each of which can be accessed using either the “dollar” or the “double bracket” notation in R
e.g., psa$S or psa[[3]]. A brief description of each of these elements is given in the following.

• S: a list – for each simulated value of the parameters, a list with the survival curves
associated with the configuration of the covariates;

• sim: simulated values for the main parameters (e.g., scale, shape, rate, mean, sd) for
each configuration of the covariates;

• nsim: the number of simulations saved;

• mat: a list – for each configuration of covariates a matrix with nsim rows and as many
columns as time points with the survival curves (to be read row-wise);

• des.mat: a design matrix with the combination of the covariates used (each represents
an element in the lists S and mat).

• times: the vector of times used in the computation. By default, this is the set of times
in the data passed as argument to fit.models, but the user can specify a different set
of times.

The reason why make.surv creates so many outputs is mainly for internal convenience. In
fact, this is a central function in how survHE works and it is called internally by other utility
functions (e.g., plot and print). By and large, the user does not need to manipulate the
output directly.
The list of inputs for the make.surv function is as follows.

• fit: the result of the call to the fit.models function, containing the model fitting (and
other relevant information), e.g., m3 from above;

• mod: the index of the model. The default value is 1, but the user can choose which
model to visualize, if the call to fit.models has a vector argument for the input distr;

• t: the vector of times to be used to create the survival curves. By default, survHE uses
the times observed in the original data, but the user can specify a longer follow up (this
is actually a useful feature for the purpose of performing a health economic evaluation
and PSA);

• newdata: a list (of lists), specifying the values of the covariates at which the computation
is performed. For example list(list(arm = 0), list(arm = 1)) will create two
survival curves, one obtained by setting the covariate arm to the value 0 and the other
by setting it to the value 1. In line with flexsurv notation, the user needs to either
specify the value for all the covariates or for none (in which case, newdata is set to
NULL, which is the default). If some value is specified and at least one of the covariates
is continuous, then a single survival curve will be computed in correspondence of the
average values of all the covariates (including the factors, which in this case are expanded
into indicators);

34 survHE: Survival Analysis for Health Economics in R

• nsim: the number of simulations from the distribution of the survival curves. The
default is at nsim = 1, in which case the point estimate for the relevant distributional
parameters is used and the resulting “average” survival curve computed.

To visualize the results of the PSA, survHE has a specialized function called psa.plot, which
can be used, for example as follows.

R> psa.plot(psa)

This command produces the graph in Figure 6(a). The graph shows the average survival curve
and 95% interval estimates around them. If the method is set to "mle", then the intervals are
obtained by multivariate Normal bootstrap, while for the Bayesian models they are obtained
using samples from the relevant posterior distributions.
The user can specify the labels for the x- and y-axis (respectively by including the additional
arguments xlab = "..." and ylab = "..."). In addition, if no color specification is given
by the user, e.g., in the form col = c("blue", "red"), then survHE will randomly choose
a coloring scheme. Finally, the parameter alpha (default at 0.1) determines the transparency
of the curves; values for alpha close to 0 imply greater transparency, while values closer to 1
create a solid plot (with no transparency). A fully customized call to psa.plot is as follows
and produces the graph in Figure 6(b).

R> psa.plot(psa, xlab = "Extrapolated time",
+ ylab = "Estimation of the survival curves",
+ alpha = 0.2, col = c("dark grey", "black"),
+ main = "PSA to survival curves", cex.txt = .95)

A similar graph can also be obtained directly using the plot method. For example, the
command plot(m3, mods = 1, nsim = 1000, t = seq(0.1, 63) produces a graph with
the average estimates for the survival curves and 95% intervals obtained using either bootstrap
or the posterior distributions, depending on the method selected. This graph is shown in
Figure 6(c).

7.1. Exporting the results to Microsoft Excel

Once the PSA samples are available for the survival curves, it may be easy to continue
building the economic model using R. In fact, this is the strategy that we advocate (Baio and
Heath 2016). However, we acknowledge that practitioners use Microsoft Excel to produce
the economic assessment. Thus, survHE has a specialized function, called write.surv, that
allows the user to export the simulations for the survival curves to a .xls(x) file7, so that
they can be easily used when constructing a Markov model or a partitioned survival analysis
in Microsoft Excel.
As mentioned above, the user can actually manipulate the output of the call to make.surv
independently and so in a way bypass write.surv entirely. However, survHE tries to simplify
the work process and can be used as follows.

7We recommend using the xlsx extension, because xls has a restriction to 256 columns, which may not
suffice if the object being exported is the output of a call to make.surv with the number of simulations nsim
set to a value larger than 256 (normally, a value of 1000 or greater is used in real cases).

Journal of Statistical Software 35

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Time

S
ur

vi
va

l

Profile

as.factor(arm)1=0
as.factor(arm)1=1

(a) Default graph produced by psa.plot.

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Extrapolated time

E
st

im
at

io
n

of
 th

e
su

rv
iv

al
 c

ur
ve

s

Profile

as.factor(arm)1=0
as.factor(arm)1=1

PSA to survival curves

(b) Fully customized graph produced by psa.plot.

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Time

S
ur

vi
va

l

Model

Exponential

Profile

as.factor(arm)1=0
as.factor(arm)1=1

(c) PSA plot obtained directly using the main plot
method in survHE.

Figure 6: Probabilistic sensitivity analysis for the survival curves.

R> write.surv(psa, file = "temp.xlsx")

which produces the following output in R

1000 simulation(s) for the survival curve written to file: 'temp.xlsx'
Profile(s):

as.factor(arm)1=0
as.factor(arm)1=1

and creates a file containing the relevant simulations. The R output clarifies that the resulting
file contains two spreadsheets: the first one is for the survival curves considering the treatment
arm set to 0 (e.g., controls), while the second one is for the intervention arm (set to 1).
Different model specifications would create a different number of matrices (with nsim rows
and as many time points for columns) depending on the covariate combinations.

36 survHE: Survival Analysis for Health Economics in R

8. Advanced models
While the models presented in Table 1 are likely to produce at least one “good” candidate in
most situations, it is possible that more complex model structures may be needed to accom-
modate a particular dataset or analysis. The main advantage of using these more complicated
models is that they are able to define hazard functions that can better approximate the lifetime
risk of the specific population under study, potentially including competing causes or exter-
nal knowledge that can be used to anchor the survival probabilities below a certain threshold
(e.g., the healthy population or a subset of the population affected by similar diseases or
treated with drugs with similar action).
In particular, we focus here on two “flexible” models: the first one (which is already imple-
mented in flexsurv) is based on cubic splines, while the second is an extension of the standard
Weibull model.

8.1. Royston-Parmar splines

Splines are numeric functions typically defined as a collection of local polynomials; the main
idea is to partition the x-axis into a set of intervals defined by “knots” and then within each
interval use a different polynomial function to approximate the underlying “true” function on
the y-axis. This construction provides great flexibility and effectively an arbitrary number of
parameters, depending on how many knots (and hence on the density with which the x-axis
is partitioned) are selected.
In the context of survival analysis, splines can be used to model flexibly (a suitable transfor-
mation of) one of the basic functions, e.g., the survival or the hazard (Royston and Lambert
2011). An increasingly popular model is the one developed by Royston and Parmar (2002).
Basically, this defines a probability distribution to model the observed and censored times as
a function of an “augmented” set of parameters θ = (β,γ) and covariates (X,B). Here, β
are the coefficients associated with the observed covariates X, exactly as in (2). In addition,
for each individual (and, hence, observed time) in the dataset, we consider a set of (M + 2)
“basis” function Bi = (Bi0, Bi1, . . . , BiM), where

Bim = (log ti − km)3
+ − λm(log ti − kmin)3

+ − (1− λm)(log ti − kmax)3
+, λm = kmax − km

kmax − kmin

and (log ti − a)+ := max {0, (log ti − a)}. The vector of knots is defined as kmin = 0 < k1 <
. . . < kmax =∞; typically, the M “internal” knots are set up in terms of the quantiles of the
observed distribution of the times. For example, if we setM = 3, survHE would automatically
consider the three quartiles (q1, q2, q3), representing the 25%-, 50%- and 75%-percentiles of
the observed times distribution.
The Royston-Parmar (RP) model defines a modified linear predictor

ηi =
M+2∑
m=0

γmBim

+
J∑
j=0

βjXij

 ,
which is used to model directly log (− logS(ti)) = logH (ti) = ηi (notice that we use the
[+ . . .] notation here to highlight the fact that the model may not include any covariate X

Journal of Statistical Software 37

and thus only rely on the splines structure)8.
Given this set up, it is possible to prove that

log h(ti) = − log ti + log η′i + ηi (4)

and

logS(ti) = − exp(ηi), (5)

with η′i = ∑M+2
m=1 γmB

′
im – the first derivatives B′im are easy to compute, recalling that ∂x3

∂x =
3x2. Substituting (4) and (5) into (1), we can completely characterize the resulting likelihood.
The RP model is directly available in flexsurv and is also implemented under a pre-compiled
HMC-based Bayesian framework in survHE. The two versions can be obtained via a special-
ized call to fit.models.

R> formula <- Surv(time, event) ~ as.factor(arm)
R> m6 <- fit.models(formula = formula, data = data, distr = "rps", k = 2)
R> m7 <- fit.models(formula = formula, data = data, distr = "rps", k = 2,
+ method = "hmc")

survHE accepts the string "rps" to indicate the “Royston-Parmar splines” distribution and
also requires the input k to specify the number M of internal knots to be used (if this is not
provided by the user, survHE assumes that k = 0, which reduces the RP model to a Weibull
PH formulation). The formula is used to specify the “fixed” component of ηi, i.e., the set of
covariates in X. In this case, we use only the treatment arm.
All the usual methods are available for the resulting ‘survHE’ objects m6 and m7. For example
the commands

R> print(m6)
R> print(m7)

return the summary tables

Model fit for the Royston & Parmar splines model, obtained using
Flexsurvreg (Maximum Likelihood Estimate). Running time: 0.129 seconds

mean se L95% U95%
gamma0 -4.652836 0.474704 -5.583239 -3.722433
gamma1 2.523687 0.565148 1.416017 3.631357
gamma2 0.387949 0.331049 -0.260894 1.036792
gamma3 -0.419667 0.398441 -1.200596 0.361262
as.factor(arm)1 -0.615885 0.155792 -0.921232 -0.310538

8In fact, there are three different versions of the RP model; the one presented here is the “proportional
hazard”, which can be seen as an extension to the basic Weibull PH model. The other two versions extend
the log-Logistic model by setting log (1/S(t)− 1) = ηi (“proportional odds”) and the log-Normal model using
Φ−1 (S(t)) = ηi (“probit model”). Currently, all are implemented in flexsurv, while only the PH model is
implemented in survHE using HMC.

38 survHE: Survival Analysis for Health Economics in R

Model fitting summaries
Akaike Information Criterion (AIC)....: 1205.235
Bayesian Information Criterion (BIC)..: 1224.761

and

Model fit for the Royston & Parmar splines model, obtained using Stan
(Bayesian inference via Hamiltonian Monte Carlo). Running time:
55.507 seconds

mean se L95% U95%
gamma0 -4.656390 0.463923 -5.605131 -3.810731
gamma1 2.502764 0.545411 1.505152 3.619227
gamma2 0.366841 0.321249 -0.235608 1.032577
gamma3 -0.394103 0.387038 -1.175527 0.330248
as.factor(arm)1 -0.621653 0.152526 -0.907300 -0.335945

Model fitting summaries
Akaike Information Criterion (AIC)....: 1205.624
Bayesian Information Criterion (BIC)..: 1225.150
Deviance Information Criterion (DIC)..: 1259.027

The Bayesian version of the RP model is much more computationally intensive, although
HMC does a very good job and keeps the time to generally acceptable levels; also, it helps
in this case to take advantage of the multi-processing capability of rstan: adding the option
cores = 2 reduces the time from 57.851 to 32.777 seconds, for 2 chains of 2000 iterations each.
In this case, there is very good agreement in the point and interval estimates for the two
versions of the model, but in general the MLE may underestimate the underlying level of
correlation among the γ coefficients in particular.

8.2. Poly-Weibull

In a nutshell, the Poly-Weibull model (Berger and Sun 1993; Demiris, Lunn, and Sharples
2015) extends the basic set up of a Weibull survival model by accounting for the possibility
that in fact the observed times are the result of a mixed data generating process, depending on
several independent Weibull components. For example, we may consider that the occurrence
of the event under study depends on M independent causes and that we are willing to model
each using a suitable Weibull distribution. In line with (1), the resulting density is

f(ti | θ) = h(ti)diS(ti)

=
[
M∑
m=1

αmµimt
αm−1
i

]di [
exp

(
−

M∑
m=1

µimt
αm
i

)]
,

where θ = (θ1, . . . ,θM) and θm = (αm, µim) are the shape and scale for the mth component
of the mixture.
survHE implements this density as an add-on model to be estimated using HMC and rstan
(i.e., there is only a Bayesian version for this model). While it is in principle possible to model

Journal of Statistical Software 39

both the shape and the scale as functions of a set of covariates, survHE considers the simpler
version where only the location parameter is allowed to depend on X. It is fairly easy to
modify this structure and implement a version of the rstan model in which also αm depends
on the covariates.
Practically, survHE has a specific function to run the Poly-Weibull model. A typical call is
as in the following.

R> formula.pw <- list(Surv(time, event) ~ 1,
+ Surv(time, event) ~ as.factor(arm))
R> m8 <- poly.weibull(formula.pw, data, cores = 4)

The main difference with respect to the standard call to fit.models is that the formula input
now needs to be made by a list of objects of class ‘formula’. This is because we need to specify
a formula for each of the components that we want to fit to the mixture model identified by
the Poly-Weibull distribution. For instance, in the above example, the object formula.pw is
a list with two elements. This instructs R to assume a model with M = 2 components and
the following specification for the linear predictors

µi1 = exp (β01) and µi2 = exp (β02 + β12Armi) .

By default, survHE places minimally informative priors on the parameters βm by using βm iid∼
Normal(0, 10); the values for the mean (mu_beta) and the standard deviation (sigma_beta)
can be modified using the option prior, as shown earlier. In addition, we need to impose an
identifiability constraint on the shape parameters α = (α1, . . . , αM) so that they are ordered
(i.e., α1 < . . . < αM) – see Demiris et al. (2015) for a discussion of this issue. The components
of the vector α are then given a vague prior over their entire domain.
As is often the case for mixture models, convergence to the posterior distributions may be
a crucial issue. This is essentially due to the fact that it may be very difficult (or even
impossible) for the model to distinguish two or more of the components. For example, the
above call to poly.weibull returns the following warning

Warning: There were 7 divergent transitions after warmup. See
http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
to find out why this is a problem and how to eliminate them.

Warning: Examine the pairs() plot to diagnose sampling problems

Warning: The largest R-hat is 1.12, indicating chains have not mixed.
Running the chains for more iterations may help. See
http://mc-stan.org/misc/warnings.html#r-hat

Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior
means and medians may be unreliable.
Running the chains for more iterations may help. See
http://mc-stan.org/misc/warnings.html#bulk-ess

Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior

40 survHE: Survival Analysis for Health Economics in R

variances and tail quantiles may be unreliable.
Running the chains for more iterations may help. See
http://mc-stan.org/misc/warnings.html#tail-ess

indicating that the HMC algorithm has failed to fully explore the posterior density of the pa-
rameters. Possible solutions are to either include more information in the priors (e.g., by
reducing the range of variation of the coefficients in the βm), or to increase the value of the
acceptance rate (see Section 5.2). For example, the command

R> m9 <- poly.weibull(formula.pw, data, cores = 4, control = list(
+ adapt_delta = .95, stepsize = .005, max_treedepth = 100), iter = 4000)

modifies the standard rstan settings to have a denser discrete approximation of the continuous
Hamiltonian dynamics9. This increases the running time from 79.608 to 225.776 seconds, but
successfully estimates the posterior distributions. The results can be analyzed by using the
print method.

R> print(m9)

Model fit for the Poly-Weibull model, obtained using Stan
(Bayesian inference via Hamiltonian Monte Carlo). Running time:
240.589 seconds

mean se L95% U95%
shape_1 1.38546 0.518854 0.132859 1.939147
shape_2 2.03571 0.318739 1.652758 2.868474
(Intercept)_1 -7.59853 4.929838 -21.473366 -4.076481
(Intercept)_2 -5.24629 1.140821 -7.920003 -3.852474
as.factor(arm)1_2 -4.87825 5.614111 -19.243445 -0.385614

Model fitting summaries
Akaike Information Criterion (AIC)....: 1216.545
Bayesian Information Criterion (BIC)..: 1236.071
Deviance Information Criterion (DIC)..: 1195.041

The resulting table identifies the parameters of each component by using a suffix “_m”, so for
instance (Intercept)_1 is the intercept for the first component.
Notice that in this particular case, using a more complex model does not seem to improve
things substantially: for example, the DIC for the simpler Weibull model we fitted in the

9In brief, a single iteration of HMC proceeds to update the value of the parameters for max_treedepth
steps before deciding whether to accept or reject the current value. Each step is scaled by a factor stepsize,
which determines the level of the discrete approximation to the underlying continuous Hamiltonian dynamics.
Thus, increasing the target acceptance rate adapt_delta effectively forces smaller step sizes, meaning that the
algorithm will be in principle more thorough in visiting the posterior density (at the expense of computational
time). Similarly, increasing max_treedepth means that the algorithm will take more samples within each step,
thus potentially being more accurate. In practice, it is important to strike a balance and avoid too fine a
discretization of the Hamiltonian dynamics, while guaranteeing sufficient coverage of the posterior density.
More technical details can be found in Hoffman and Gelman (2014) and Carpenter et al. (2015).

Journal of Statistical Software 41

second element of the object m3 is 1203.152 (cfr. Figure 5c) – essentially the same as for the
Poly-Weibull model, indicating that a simpler version is perhaps to be preferred to this spec-
ification of the more complex one. This is consistent with the potential issues in convergence
and identifiability, which again indicate perhaps that the Poly-Weibull model may not be
appropriate for this particular set of data.

9. Other tools

9.1. Digitizing Kaplan-Meier curves from published studies

Often, the individual level data from, e.g., a clinical trial measuring the survival times are
not directly available for the health economic evaluation. Perhaps for one of the treatments
being considered, the sponsor of the trial is able to make the data available, but this could
only cover one of the relevant interventions/drugs. To overcome this limitation, usually
modelers try and use systematic reviews of the available literature to gather information on
the possible comparators.
One clever way of doing this is by “digitizing” Kaplan-Meier data available from published
papers. This is done by using specific software (e.g., DigitizeIt; Bormann 2013); the user needs
to click on several points on the survival curves and the values are digitized and exported
to some output files, describing the input survival times from graph reading and reported
number of individuals at risk at several time points in the follow up.
Once these two files are available, survHE takes them as input and following the algorithm
developed by Guyot, Ades, Ouwens, and Welton (2012), which can be used to map from
the digitized curves back to the unobserved Kaplan-Meier data by numerical approximation.
Assuming that the DigitizeIt outcome is saved in the two files survival.txt and nrisk.txt
in the current working directory, a typical survHE call to perform this task is the following.

R> surv_inp <- "survival.txt"
R> nrisk_inp <- "nrisk.txt"
R> km_out <- "KMdata.txt"
R> ipd_out <- "IPDdata.txt"
R> digitise(surv_inp = surv_inp, nrisk_inp = nrisk_inp, km_output = km_out,
+ ipd_output = ipd_out)

The above code first defines the input and output files and then uses the survHE command
digitise to reconstruct the original Kaplan-Meier curves and save their values, as well as a
fictional dataset, which closely resembles the one that has generated the published survival
curves. digitise also writes to the R terminal the following text.

Kaplan Meier data written to file: KMdata.txt
IPD data written to file: IPDdata.txt

These can be then used as input data to fit the survival models and then perform the PSA.
The final feature worth mentioning is that often we will be in a position of creating several
individual level datasets to mimic data originally used to produce Kaplan-Meier estimates for
the survival curves, e.g., for many different treatments, or for the same treatment observed in

42 survHE: Survival Analysis for Health Economics in R

several papers. survHE has another specialized function that can be used to stack the different
files with the individual level data into a single dataset. This function is called make.ipd and
it takes as inputs: a list of all the names of the individual level data files created as output
of digitise; the index of the file associated with the control arm (by default, this is the
first file) and the control arm will be coded as 0; and a vector of labels for the column of
the resulting data matrix. These should match the arguments to the formula specified for
the function fit.models and should be 3 elements (each representing the time variable, the
event variable and the treatment arm). Using the output of the digitization process shown
above, a call to this function would look like the following.

R> data <- make.ipd("IPDdata.txt", ctr = 1, var.labs = c("time", "event",
+ "arm"))

This generates a R ‘data.frame’, which can then be fed to the fit.models function. Nat-
urally, make.ipd assumes that there are no other covariates in addition to the treatment
arm, because it is unlikely that digitized data are recorded for different strata, or values of
additional variables.
Note also that we can use a collection of digitized data and stack them to create a single
dataset made by several pseudo-data obtained in this way. For instance, if we had available
three digitized datasets, say IPD1.txt, IPD2.txt and IPD3.txt, we could create a single
dataset using a command similar to the following.

R> ipd_files <- list("IPD1.txt", "IPD2.txt", "IPD3.txt")
R> data <- make.ipd(ipd_files, ctr = 1, var.labs = c("time", "event", "arm"))

This generates a R ‘data.frame’, which can then be fed to the fit.models function. Nat-
urally, make.ipd assumes that there are no other covariates in addition to the treatment
arm, because it is unlikely that digitized data are recorded for different strata, or values of
additional variables.

10. Limitations and current/future developments of survHE
In this paper we have presented a comprehensive tutorial into how survHE can help modelers
in developing survival analyses, with the specific aim of conducting a health economic evalu-
ation. The main aim of survHE is to provide a suite of standardized commands, allowing the
user to perform the analysis both within a frequentist (via flexsurv) and a Bayesian approach
(through INLA or rstan). One of the main potential advantages to using survHE is that
much of the “entry cost” in using a Bayesian model may be reduced by how survHE guides
the user in forming the model, using commands that are extremely similar to those applied
to frequentist analyses. We note, however, that this is and should not be a substitute for a
thorough understanding of the theory and assumptions underpinning either of these methods.
The current version of survHE is robust, comprehensive and fully tested and it already allows
for a wide range of model specifications. However, there are other venues that we wish
to explore.
At present, the main limitations of survHE are related to improvements to the range of mod-
els that can be fitted within a Bayesian approach. For example, we are currently working

Journal of Statistical Software 43

to expand the range of INLA survival models to cover all the parametric distributions de-
scribed in Table 1. Even more importantly, some of the advanced tools such as RPS models
are particularly suitable to an INLA implementation. We expect to develop all versions of
RPS within INLA, which will allow modelers to use them under a Bayesian approach and
in a computationally efficient manner. At the same time, we also plan to expand the cur-
rent HMC implementation to include other versions of the RPS model, as well as different
forms of censoring (including left and interval). We will also explore the functionality of al-
ternative Bayesian approximation inferential methods, e.g., “variational Bayes” (Kucukelbir,
Ranganath, Gelman, and Blei 2015), which are already implemented in rstan.
In terms of rstan, it is interesting to note the recent surge of interest for survival modeling,
within the HMC community, which has also been stimulated by our work with survHE, as
evidenced by the discussion in the rstan forum10. Related to this, we aim at also expanding
the Poly-Weibull model by implementing a version that allows the inclusion of covariates
on the ancillary parameters as well as on the location. This effort is also part of a wider
plan to bring into survHE more models based on mixtures, e.g., in the form of cure models
(Amico and Van Keilegom 2018). This may result in an efficient way of accounting for the
underlying complexity of the data generating process, as well as extrapolating the survival
curves, potentially including external data.
As a general principle, we see the development of survHE as continuously ongoing – in fact
this is the reason why we have established the GitHub repository; our aim is to expand the
community of users and continuously liaise with them, so as to implement more and more
models to keep the package up-to-date with the latest methodological developments.

Acknowledgments
The author wishes to thank Peter Konings, William Browne, Geoff Holmes and Andrea Be-
rardi for providing comments or help in writing part of the original code in survHE. I would
also like to thank two anonymous reviewers for their helpful comments and suggestions. This
work has been partially supported by a research grant sponsored at University College London
by Mapi ICON, a consultancy company working in the area of health economic evaluation.

References

Amico M, Van Keilegom I (2018). “Cure Models in Survival Analysis.” An-
nual Review of Statistics and Its Application, 5(1), 311–342. doi:10.1146/
annurev-statistics-031017-100101.

Baio G (2012). Bayesian Methods in Health Economics. 1st edition. Chapman & Hall/CRC,
Boca Raton.

Baio G (2020). survHE: Survival Analysis in Health Economic Evaluation. R package version
1.1.1, URL https://CRAN.R-project.org/package=survHE.

Baio G, Berardi A, Heath A (2017). Bayesian Cost-Effectiveness Analysis with the R Package
BCEA. 1st edition. Springer-Verlag, New York, NY. doi:10.1007/978-3-319-55718-2.

10See https://discourse.mc-stan.org/t/survival-models-in-rstanarm/3998.

https://doi.org/10.1146/annurev-statistics-031017-100101
https://doi.org/10.1146/annurev-statistics-031017-100101
https://CRAN.R-project.org/package=survHE
https://doi.org/10.1007/978-3-319-55718-2
https://discourse.mc-stan.org/t/survival-models-in-rstanarm/3998

44 survHE: Survival Analysis for Health Economics in R

Baio G, Dawid P (2011). “Probabilistic Sensitivity Analysis in Health Economics.” Statistical
Methods in Medical Research, 24(6), 615–634. doi:10.1177/0962280211419832.

Baio G, Heath A (2016). “When Simple Becomes Complicated: Why Excel Should Lose
Its Place at the Top Table.” Global & Regional Health Technology Assessment. doi:
10.5301/grhta.5000247.

Benaglia T, Jackson CH, Sharples LD (2015). “Survival Extrapolation in the Presence of
Cause Specific Hazards.” Statistics in Medicine, 34(5), 796–811. doi:10.1002/sim.6375.

Berger J, Sun D (1993). “Bayesian Analysis for the Poly-Weibull Distribution.” Journal of
the American Statistical Association, 88(424), 1412–1418. doi:10.1080/01621459.1993.
10476426.

Betancourt M (2012). “Cruising the Simplex: Hamiltonian Monte Carlo and the Dirichlet
Distribution.” AIP Conference Proceedings, 1443(1), 157–164. doi:10.1063/1.3703631.

Blangiardo M, Cameletti M (2015). Spatial and Spatio-Temporal Bayesian Models with R-
INLA. 1st edition. John Wiley & Sons, Chichester. doi:10.1002/9781118950203.

Blangiardo M, Cameletti M, Baio G, Rue H (2013). “Spatial and Spatio-Temporal Models
with R-INLA.” Spatial and Spatio-temporal Epidemiology, 4, 33–49. doi:10.1016/j.sste.
2012.12.001.

Bormann I (2013). DigitizeIt 2.4. Braunschweig, Germany. URL https://www.digitizeit.
de/.

Briggs A, Sculpher M, Claxton K (2006). Decision Modelling for Health Economic Evaluation.
1st edition. Oxford University Press, Oxford.

Carpenter B, Gelman A, Hoffman M, Lee D, Goodrich B, Betancourt M, Brubaker MA, Guo
J, Li P, A R (2015). “Stan: A Probabilistic Programming Language.” Journal of Statistical
Software, 76(1), 1–32. doi:10.18637/jss.v076.i01.

Demiris N, Lunn D, Sharples L (2015). “Survival Extrapolation Using the Poly-Weibull
Model.” Statistical Methods in Medical Research, 24(2), 287–301. doi:10.1177/
0962280211419645.

Filipović-Pierucci A, Zarca K, Durand-Zaleski I (2017). “Markov Models for Health Economic
Evaluation: The R Package heemod.” arXiv:1702.03252 [stat.AP], URL https://arxiv.
org/abs/1702.03252.

Gabrio A, Mason A, Baio G (2019). “A Full Bayesian Model to Handle Structural Ones and
Missingness in Economic Evaluations from Individual-Level Data.” Statistics in Medicine,
38(8), 1399–1420. doi:10.1002/sim.8045.

Gelman A, Carlin J, Stern H, Dunson D, Vehtari A, Rubin D (2013). Bayesian Data Analysis.
3rd edition. Chapman & Hall/CRC, Boca Raton. doi:10.1201/b16018.

Guyot P, Ades AE, Beasley M, Lueza B, Pignon JP, Welton NJ (2017). “Extrapolation of
Survival Curves from Cancer Trials Using External Information.” Medical Decision Making,
37(4), 353–366. doi:10.1177/0272989x16670604.

https://doi.org/10.1177/0962280211419832
https://doi.org/10.5301/grhta.5000247
https://doi.org/10.5301/grhta.5000247
https://doi.org/10.1002/sim.6375
https://doi.org/10.1080/01621459.1993.10476426
https://doi.org/10.1080/01621459.1993.10476426
https://doi.org/10.1063/1.3703631
https://doi.org/10.1002/9781118950203
https://doi.org/10.1016/j.sste.2012.12.001
https://doi.org/10.1016/j.sste.2012.12.001
https://www.digitizeit.de/
https://www.digitizeit.de/
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1177/0962280211419645
https://doi.org/10.1177/0962280211419645
https://arxiv.org/abs/1702.03252
https://arxiv.org/abs/1702.03252
https://doi.org/10.1002/sim.8045
https://doi.org/10.1201/b16018
https://doi.org/10.1177/0272989x16670604

Journal of Statistical Software 45

Guyot P, Ades AE, Ouwens MJ, Welton NJ (2012). “Enhanced Secondary Analysis of Survival
Data: Reconstructing the Data from Published Kaplan-Meier Survival Curves.” BMC
Medical Research Methodology, 12, 9. doi:10.1186/1471-2288-12-9.

Harrell Jr FE (2020). rms: Regression Modeling Strategies. R package version 6.0-1, URL
https://CRAN.R-project.org/package=rms.

Heath A, Manolopoulou I, Baio G (2017). “Efficient Monte Carlo Estimation of the Expected
Value of Sample Information Using Moment Matching.” Medical Decision Making, 38(2),
163–173. doi:10.1177/0272989x17738515.

Hoffman M, Gelman A (2014). “The No-U-Turn Sampler: Adaptively Setting Path Lengths
in Hamiltonian Monte Carlo.” Journal of Machine Learning Research, 15(1), 1593–1623.

Incerti D, Jansen JP (2020). hesim: Health-Economic Simulation Modeling and Decision
Analysis. R package version 0.3.1, URL https://CRAN.R-project.org/package=hesim.

Incerti D, Thom H, Baio G, Jansen J (2019). “R You Still Using Excel? Why We Need
Modern Software Tools for Health Technology Assessment.” Value in Health, 22(5), 575–
579. doi:10.1016/j.jval.2019.01.003.

Jackson C (2016). “flexsurv: A Platform for Parametric Survival Modelling in R.” Journal of
Statistical Software, 70(8), 1–33. doi:10.18637/jss.v070.i08.

Jackson C, Stevens J, Ren S, Latimer N, Bojke L, Manca A, Sharples L (2017). “Extrapolating
Survival from Randomized Trials Using External Data: A Review of Methods.” Medical
Decision Making, 37, 377–390. doi:10.1177/0272989x16639900.

Krijkampet E, Alarid-Escudero F, Enns E, Jalal H, Hunink M, Pechlivanoglou P (2018).
“Microsimulation Modeling for Health Decision Sciences Using R: A Tutorial.” Medical
Decision Making, 38(3), 400–422. doi:10.1177/0272989x18754513.

Kruschke J (2015). Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan. 2nd
edition. Academic Press.

Kucukelbir A, Ranganath R, Gelman A, Blei D (2015). “Automatic Variational Inference in
Stan.” arXiv:1506.03431 [stat.ML], URL http://arxiv.org/abs/1506.03431.

Latimer N (2011). “NICE DSU Technical Support Document 14.” Techni-
cal report, National Institute for Health and Care Excellence, Decision Sup-
port Unit. URL http://nicedsu.org.uk/wp-content/uploads/2016/03/
NICE-DSU-TSD-Survival-analysis.updated-March-2013.v2.pdf.

Lunn D, Spiegelhalter D, Thomas A, Best N (2009). “The BUGS Project: Evolution, Critique
and Future Directions.” Statistics in Medicine, 28(25), 3049–3067. doi:10.1002/sim.3680.

Martins T, Simpson D, Lindgren F, Rue H (2013). “Bayesian Computing with INLA: New
Features.” Computational Statistics & Data Analysis, 67, 68–83. doi:10.1016/j.csda.
2013.04.014.

NICE (2013). “Guide to the Methods of Technology Appraisal 2013.” Technical report,
National Institute for Health and Care Excellence. URL https://www.nice.org.uk/
process/pmg9/chapter/foreword.

https://doi.org/10.1186/1471-2288-12-9
https://CRAN.R-project.org/package=rms
https://doi.org/10.1177/0272989x17738515
https://CRAN.R-project.org/package=hesim
https://doi.org/10.1016/j.jval.2019.01.003
https://doi.org/10.18637/jss.v070.i08
https://doi.org/10.1177/0272989x16639900
https://doi.org/10.1177/0272989x18754513
http://arxiv.org/abs/1506.03431
http://nicedsu.org.uk/wp-content/uploads/2016/03/NICE-DSU-TSD-Survival-analysis.updated-March-2013.v2.pdf
http://nicedsu.org.uk/wp-content/uploads/2016/03/NICE-DSU-TSD-Survival-analysis.updated-March-2013.v2.pdf
https://doi.org/10.1002/sim.3680
https://doi.org/10.1016/j.csda.2013.04.014
https://doi.org/10.1016/j.csda.2013.04.014
https://www.nice.org.uk/process/pmg9/chapter/foreword
https://www.nice.org.uk/process/pmg9/chapter/foreword

46 survHE: Survival Analysis for Health Economics in R

Noble M, Wright G, Smith G, Dibben C (2006). “Measuring Multiple Deprivation at the
Small-Area Level.” Environment and Planning A, 38(1), 169–185.

Plummer M (2003). “JAGS: A Program for Analysis of Bayesian Graphical Models Us-
ing Gibbs Sampling.” In K Hornik, F Leisch, A Zeileis (eds.), Proceedings of the 3rd
International Workshop on Distributed Statistical Computing (DSC 2003). Technische
Universität Wien, Vienna, Austria. URL https://www.R-project.org/conferences/
DSC-2003/Proceedings/Plummer.pdf.

Stan Development Team (2016). “shinystan: Interactive Visual and Numerical Diagnostics
and Posterior Analysis for Bayesian Models.” URL http://mc-stan.org/.

Radford N (2011). “MCMC Using Hamiltonian Dynamics.” In S Brooks, A Gelman, G Jones,
XL Meng (eds.), Handbook of Markov Chain Monte Carlo. Chapman & Hall/CRC, Boca
Raton.

R Core Team (2020). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Royston P, Lambert P (2011). Flexible Parametric Survival Analysis Using Stata: Beyond
the Cox Model. 1st edition. Stata Press.

Royston P, Parmar M (2002). “Flexible Parametric Proportional-Hazards and Proportional
Odds Models for Censored Survival Data, with Application to Prognostic Modelling and
Estimation of Treatment Effects.” Statistics in Medicine, 21(1), 2175–2197. doi:10.1002/
sim.1203.

Rue H, Held L (2005). Gaussian Markov Random Fields: Theory and Applications. 1st
edition. Chapman & Hall/CRC, Boca Raton.

Rue H, Martino S, Chopin N (2009). “Approximate Bayesian Inference for Latent Gaussian
Models Using Integrated Nested Laplace Approximations.” Journal of the Royal Statistical
Society B, 71(2), 319–392. doi:10.1111/j.1467-9868.2008.00700.x.

SAS Institute Inc (2013). The SAS System, Version 9.4. SAS Institute Inc., Cary. URL
http://www.sas.com/.

Siebert U, Alagoz O, Bayoumi AM, Jahn B, Owens DK, Cohen DJ, Kuntz KM (2012).
“State-Transition Modeling: A Report of the ISPOR-SMDM Modeling Good Research
Practices Task Force-3.” Medical Decision Making, 32(5), 690–700. doi:10.1177/
0272989x12455463.

Spiegelhalter D, Best N, Carlin B, Van Der Linde A (2002). “Bayesian Measures of Model
Complexity and Fit.” Journal of the Royal Statistical Society B, 64(4), 583–639. doi:
10.1111/1467-9868.00353.

StataCorp (2019). Stata Statistical Software: Release 16. StataCorp LLC, College Station.
URL http://www.stata.com/.

Strong M, Oakley J, Brennan A (2014). “Estimating Multi-Parameter Partial Expected
Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample: A Non-
Parametric Regression Approach.” Medical Decision Making, 34(3), 311–326. doi:10.
1177/0272989x13505910.

https://www.R-project.org/conferences/DSC-2003/Proceedings/Plummer.pdf
https://www.R-project.org/conferences/DSC-2003/Proceedings/Plummer.pdf
http://mc-stan.org/
https://www.R-project.org/
https://doi.org/10.1002/sim.1203
https://doi.org/10.1002/sim.1203
https://doi.org/10.1111/j.1467-9868.2008.00700.x
http://www.sas.com/
https://doi.org/10.1177/0272989x12455463
https://doi.org/10.1177/0272989x12455463
https://doi.org/10.1111/1467-9868.00353
https://doi.org/10.1111/1467-9868.00353
http://www.stata.com/
https://doi.org/10.1177/0272989x13505910
https://doi.org/10.1177/0272989x13505910

Journal of Statistical Software 47

Wang X, Ryan Y, Faraway J (2018). Bayesian Regression Modeling with INLA. 1st edition.
Chapman and Hall/CRC.

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.
doi:10.1007/978-0-387-98141-3.

Willan A, Briggs A (2006). The Statistical Analysis of Cost-Effectiveness Data. 1st edition.
John Wiley & Sons, Chichester. doi:10.1002/0470856289.

Williams C, Lewsey J, Briggs A, Mackay D (2017). “Estimation of Survival Probabilities
for Use in Cost-Effectiveness Analysis: a Comparison of a Multi-State Modelling Survival
Analysis Approach with Partitioned Survival and Markov Decision-Analytic Modelling.”
Medical Decision Making, 37(4), 427–439. doi:10.1177/0272989x16670617.

Woods B, Sideris E, Palmer S, Latimer N, Soares M (2017). “NICE DSU Technical Sup-
port Document 19.” Technical report, National Institute for Health and Care Excellence,
Decision Support Unit. URL http://nicedsu.org.uk/wp-content/uploads/2017/06/
Partitioned-Survival-Analysis-final-report.pdf.

Affiliation:
Gianluca Baio
Department of Statistical Science
University College London
Gower Street, London, WC1E 6BT, United Kingdom
E-mail: g.baio@ucl.ac.uk
URL: http://www.statistica.it/gianluca

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
October 2020, Volume 95, Issue 14 Submitted: 2017-07-08
doi:10.18637/jss.v095.i14 Accepted: 2020-04-20

https://doi.org/10.1007/978-0-387-98141-3
https://doi.org/10.1002/0470856289
https://doi.org/10.1177/0272989x16670617
http://nicedsu.org.uk/wp-content/uploads/2017/06/Partitioned-Survival-Analysis-final-report.pdf
http://nicedsu.org.uk/wp-content/uploads/2017/06/Partitioned-Survival-Analysis-final-report.pdf
mailto:g.baio@ucl.ac.uk
http://www.statistica.it/gianluca
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v095.i14

	Introduction
	The R package survHE
	Modeling framework
	Example
	Modeling survival data: To be or not to be (Bayesian) ...?

	MLE via flexsurv
	Bayesian analysis via INLA
	Integrated nested Laplace approximation
	Using survHE to fit models with INLA

	Bayesian analysis via HMC
	Hamiltonian Monte Carlo
	Using survHE to fit models with HMC

	Summarizing the results from survHE
	Tabular form
	Visual interpretation
	Estimation of the mean survival time
	Model assessment

	Probabilistic sensitivity analysis
	Exporting the results to Microsoft Excel

	Advanced models
	Royston-Parmar splines
	Poly-Weibull

	Other tools
	Digitizing Kaplan-Meier curves from published studies

	Limitations and current/future developments of survHE

