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A naturalistic neuroimaging 
database for understanding the 
brain using ecological stimuli
Sarah Aliko   1,2 ✉, Jiawen Huang   2, Florin Gheorghiu2, Stefanie Meliss   2,3 & 
Jeremy I. Skipper2 ✉

Neuroimaging has advanced our understanding of human psychology using reductionist stimuli that 
often do not resemble information the brain naturally encounters. It has improved our understanding 
of the network organization of the brain mostly through analyses of ‘resting-state’ data for which the 
functions of networks cannot be verifiably labelled. We make a ‘Naturalistic Neuroimaging Database’ 
(NNDb v1.0) publically available to allow for a more complete understanding of the brain under more 
ecological conditions during which networks can be labelled. Eighty-six participants underwent 
behavioural testing and watched one of 10 full-length movies while functional magnetic resonance 
imaging was acquired. Resulting timeseries data are shown to be of high quality, with good signal-to-
noise ratio, few outliers and low movement. Data-driven functional analyses provide further evidence of 
data quality. They also demonstrate accurate timeseries/movie alignment and how movie annotations 
might be used to label networks. The NNDb can be used to answer questions previously unaddressed 
with standard neuroimaging approaches, progressing our knowledge of how the brain works in the real 
world.

Background & Summary
A primary goal of human neuroscience is to understand how the brain supports broad psychological and cog-
nitive functions that are engaged during everyday life. Progress towards achieving this goal over the last two 
decades has been made with tens of thousands of task- and resting-state based functional magnetic resonance 
imaging studies (henceforth, task-fMRI and resting-fMRI). While these studies have led to a number of impor-
tant discoveries, we review evidence suggesting that a better understanding of brain and behaviour might be 
achieved by also conducting studies with more ecologically valid stimuli and tasks (naturalistic-fMRI).

Task-fMRI.  For task-fMRI, general psychological processes are decomposed into discrete (though hypothet-
ical) component processes that can theoretically be associated with specific activity patterns. To ensure experi-
mental control and because of reliance on the subtractive method1, these components are studied with stimuli 
that often do not resemble things participants might naturally encounter and tasks they might actually perform 
in the real-world (a topic long debated)2–4. For example, language comprehension has been broken down into 
component processes like phonology and semantics. These individual subprocesses are largely localised in the 
brain using isolated auditory-only ‘speech’ sounds (like ‘ba’) in the case of phonology and single written words in 
the case of semantics5. Participants usually make a meta-linguistic judgement about these stimuli, with a corre-
sponding button response (e.g., a two-alternative forced choice indicating whether a sound is ‘ba’ or ‘pa’). This is 
not peculiar to the study of language comprehension. For example, neuroimaging studies of emotional processing 
usually use static pictures of faces making exaggerated emotional displays and require, e.g., a button press if the 
face is female6.

The result of relying on these ‘laboratory style’ stimuli and tasks is that our neurobiological understanding 
derived from task-fMRI may not be representative of how the brain processes information. This is perhaps 
one reason why fMRI test-retest reliability is so low7,8. Indeed, more ecologically valid stimuli like movies have 
higher reliability than resting- or task-fMRI. This is not only because they decrease head movement and improve 
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participant compliance9–11. Rather, naturalistic stimuli have higher test-retest reliability mostly because they are 
more representative of operations the brain normally performs and provide more constraints on processing12–17.

Resting-fMRI.  There has arguably been a significant increase in our understanding of the network organiza-
tion of the human brain because of the public availability of large resting-fMRI datasets, analysed with dynamic 
and other functional connectivity methods18,19. These include the INDI ‘1000 Functional Connectomes Project’20, 
‘Human Connectome Project’ (HCP)21 and UK Biobank22. Collectively, these datasets have more than 6,500 par-
ticipants sitting in a scanner ‘resting’. Resulting resting-state networks are said to represent the ‘intrinsic’ network 
architecture of the brain, i.e., networks that are present even in the absence of exogenous tasks. These networks 
are often claimed to be modular and to constrain the task-based architecture of the brain23.

As with task-fMRI, one might ask how representative resting-state networks are given that participants are 
anything but at rest. They are switching between trying to fixate a cross-hair, staying awake, visualising, trying not 
to think and thinking through inner speech23,24. Though some of these behaviors are ‘natural’, unlike task-fMRI, 
there is no verifiable way to label resulting regional or network activity patterns25,26. At best, reverse inference is 
used to give 5–10 gross labels, like the ‘auditory’ and ‘executive control’ networks27–29. Despite claims that these 
‘intrinsic’ networks constrain task-fMRI networks, it is increasingly suggested that this is not necessarily so23. 
The brain is less modular during task- compared to resting-fMRI30 and modularity decreases as tasks get more 
difficult31–33. Indeed, up to 76% of the connections between task- and resting-fMRI differ34. Furthermore, more 
ecological stimuli result in new sets of networks that are less modular and only partly constrained by resting 
networks35,36.

Naturalistic-fMRI.  Based on considerations like these, there is a growing consensus that taking a more 
ecological approach to neuroscience might increase our understanding of the relationship between the brain 
and behaviour5,37–46. This includes conducting more neuroimaging studies with ‘naturalistic’ stimuli. Similar to 
prior definitions25,47, ‘naturalistic’ might be defined on a continuum from short, static, simple, decontextualised, 
repeating, unisensory stimuli with low ecological validity (as described above) to long, dynamically changing, 
complex, contextualised, continuous, typically multisensory stimuli with high ecological validity. At the time 
of writing, there were at least 1648 (and growing49) publicly available fMRI datasets using ‘naturalistic’ stimuli 
more on the latter end of this continuum. However, there are no datasets with a large number of participants, 
long naturalistic stimuli and stimulus variability. Specifically, most datasets have a small number of participants 
(median = 23). However, 80 or more participants are preferred for detecting medium effect sizes and producing 
replicable task-fMRI results50–52. The naturalistic-fMRI datasets with larger numbers tend to use short (~10 min-
ute) audio or audiovisual clips. However, stimulation times of 90 minutes or more are preferred for reliability and 
individual analyses53–56.

Longer duration fMRI datasets using more naturalistic stimuli have a small number of participants and one 
stimulus (though see57). These include 11 people watching ‘Raiders of the Lost Ark’58 and 20 listening to an audio 
description of ‘Forrest Gump’ during fMRI. A subset of the latter returned to be scanned watching the movie 
dubbed in German (http://studyforrest.org)59,60. However, with only one movie, generalisability is limited. More 
movies would not only increase generalisability, they would increase the number of stimulus features and events 
in a variety of (jittered) contexts that might be annotated. These could then be used to label finer grained patterns 
of activity, e.g., making machine learning/decoding approaches more feasible61–63.

Indeed, there is no a priori reason participants need to watch the same movie (or listen to the same audio). 
Existing long datasets might use one stimulus because intersubject correlation is a commonly used method 
for analysing fMRI data from more naturalistic stimuli that are difficult to model64. Though this is a powerful 
‘model-free’ approach (for an overview, see65), it requires participants to watch the same movie. However, many, 
if not most, questions are stimulus-feature or event specific and independent of the movie being watched. Thus, 
‘model-free’ (more data-driven) methods like independent component analysis66, regional homogeneity67, hidden 
markov model68 and dynamic mode decomposition69 and more model-based analysis involving convolution/
deconvolution, can be done at the individual participant level with different movies. This would increase general-
isability and the possibility of more detailed analyses through more varied stimulus annotations.

NNDb.  To fill these gaps in publicly available data, we created a ‘Naturalistic Neuroimaging Database’ 
(NNDb) from 86 people who each did a battery of behavioral tests and watched a full-length movie during movie 
naturalistic-fMRI. We sought to reach a balance that promotes generalizability, allows a large variety of stimu-
lus features and events to be annotated and permits the use of intersubject correlation and the other analyses 
described above. To achieve this, our participants watched 10 different movies from 10 different genres. They 
had not previously seen the movies they watched because multiple viewings might change the functional net-
work architecture of the brain (though activity patterns may appear similar)70. We validate that the data is of a 
high quality and good temporal alignment, whilst providing an example of using annotations to label networks. 
Figure 1 and Online-only Table 1 provides an overview of the study and analyses used to make this assessment.

Data discovery is nearly unlimited with the NNDb as there are a vast number of annotations that can be made 
from the movies and approaches to analysis. This flexibility makes it usable across disciplines to address questions 
pertaining to how the brain processes information associated with more naturalistic stimuli. This includes more 
than replicating prior findings with more ecologically valid stimuli. That is, there are a number of broad open 
questions that the NNDb can be used to address for the first time, like the systematic study of how context is used 
by the brain5. Given the lack of robust neuroimaging biomarkers for mental illness71,72, the NNDb might also 
help increase the pace of clinically relevant discovery, e.g., by uncovering labelled network patterns that predict 
individual differences46.
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Methods
Participants.  Our goal for the NNDb v1.0 was to create an initial dataset with 84 participants watching 10 
full-length movies from 10 genres. Specifically, we set out to collect fMRI data from 18 people watching two mov-
ies and six people each watching eight additional movies. This was roughly based on sample size considerations 
reviewed above50–56, the desire for stimulus variability and methodological considerations. That is, we reasoned 
that 84 participants should be sufficient to power most analysis with a set of features across all movies. Two larger 
datasets would allow those who do not want to work across movies to do hypothesis testing and generalisation 
with a typical number of participants. Eight additional datasets would allow for analyses with greater stimulus 
variability and generalisability with what we considered a minimum number of participants per movie (e.g., to 
do intersubject type analyses). Nonetheless, this sample size is somewhat arbitrary as we cannot predict what 
analysis different groups might do. Furthermore, we plan to continue data collection, having more participants 
watch more movies.

To reach 84 individuals, we identified 120 possible recruits using participant pool management software 
(http://www.sona-systems.com/). These recruits were screened for MRI safety (e.g., no metal implants) and inclu-
sion criteria. The latter required that participants be right-handed, native English speakers, with no history of 
claustrophobia, psychiatric or neurological illness, not taking medication, without hearing impairment and with 
unimpaired or corrected vision. We also pseudo-randomly selected participants meeting these criteria to assure 
that they had not seen one of the 10 movies and so that the final sample was relatively gender balanced. Thus, of 
the 120 recruits, 91 met these contingencies, were enrolled and completed the study. We collected more than 84 
participants under the assumptions that some number would need to be excluded as data quality outliers. Indeed, 
two were excluded as they were determined to be left handed afterall, two because they asked to get out of the 
scanner multiple times and one who had low data quality. This left us with two additional participants than we 
had set out to collect.

The final sample consisted of 86 participants (42 females, range of age 18–58 years, M = 26.81, SD = 10.09 
years). These were pseudo-randomly assigned to a movie they had not previously seen, (usually) from a genre 
they reported to be less familiar with. Table 1 provides a summary of participant demographics by movie. At 
the conclusion of the study, participants were given £7.5 per hour for behavioural testing and £10 per hour for 
scanning to compensate for their time (receiving ~£40 in total). The study was approved by the ethics committee 
of University College London and participants provided written informed consent to take part in the study and 
share their anonymised data.

Fig. 1  Schematic overview of the naturalistic neuroimaging database procedures, preprocessing and data 
validation. Procedures (green) occurred over two sessions separated by about three weeks on average. Session 
one consisted primarily of a battery of behavioural tests to quantify individual differences. In session two, 
functional magnetic resonance imaging (MRI) was acquired while participants watched one of 10 full length 
movies followed by anatomical MRI (see Tables 1 and 2). After preprocessing the data (yellow), three primary 
data validation approaches were undertaken (orange). The fMRI data is shown to be relatively free of outliers, 
with good temporal signal-to-noise ratio (tSNR) and low numbers of outlier timepoints, head movement and 
independent component analysis (ICA) artifacts. Data quality was also verified using MRIQC software for 
extracting image quality metrics (orange, column 1; see Tables 4–6 and Fig. 2). Intersubject Correlation analyses 
provide evidence for functional data quality and the temporal synchronization between participants and movies 
using linear-mixed effects models with crossed random effects (MNE-CRE; orange, column 2; see Fig. 3). 
Automated word and face annotations were used to find associated independent component (IC) timecourses 
from ICA using general linear models (GLMs; orange, column 3; see Tables 3 and Fig. 4). In addition to further 
illustrating data quality and timing accuracy, this analysis shows how annotations might be used to label brain 
networks. See Online-only Table 1 for the location of all data and scripts/code associated with this manuscript.
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Procedures.  Participants meeting inclusion criteria were scheduled for two sessions on seperate days. During 
session one, participants gave informed consent and then completed the majority of the National Institute of 
Health (NIH) Toolbox. This provides demographic data and validated measures of sensory, motor, cognitive 
and emotional processing that might be used as individual difference measures73. We only excluded tests in the 
‘Sensation’ and ‘Motor’ domains that required physical implementation (e.g., scratch and sniff cards, a pegboard, 
endurance walking, etc.). Participants were provided with headphones and tests were administered in a sound 
shielded testing room on an iPad. At the end of session one, participants filled out a questionnaire on movie hab-
its, including information on preferred movie genres. The entire session typically took about one hour.

Functional and anatomical MRI and a final questionnaire were completed during a second session that was 
separated from the first by about 2–4 weeks (M = 20.36 days; SD = 23.20). Once in the scanning suite, participants 
reporting corrected vision were fitted with MRI-safe glasses. They chose earbud sizes for the noise-attenuating 
headphones that were comfortable. Next, participants were put in the head-coil with pillows under and on the 
sides of their head and under the knees for comfort and to reduce movement over the scanning session. Once in 
place, participants chose an optimal stimulus volume by determining a level that was loud but comfortable. Video 
presentation was adjusted for optimal viewing quality. Participants were given a bulb in their right hand and told 
to squeeze if something was wrong or they needed a break during the movie. They were instructed to not move as 
best as they could throughout scanning as movement would make the scans unusable.

Except in one case, fMRI movie scans were acquired first and with as few breaks as possible. During breaks, par-
ticipants were told that they could relax but not move. During scanning, participants were monitored by a camera 
over their left eye. If they appeared drowsy or seemed to move too much during the movie, the operator of the scan-
ner gave them a warning over the intercom by producing a beep or speaking to them. In some cases we stopped 
the scan to discuss with the participant. After the movie, participants had an anatomical scan and were told they 
could close their eyes if they wished. Following scanning, participants filled out other questionnaires, e.g., about 
their specific experience with content in the movie they watched. Finally, participants were paid and sent home.

Movie stimuli.  Table 2 provides an overview of the 10 movies participants watched during fMRI and infor-
mation on how to purchase these (so that they can be used to create new annotations). The movies were chosen 
to be from 10 different cinematic genres and to have an average score of >70% on publicly available metrics of 
success. These were the Internet Movie Database (IMDb; https://www.imdb.com/), Rotten Tomatoes (RT; https://
www.rottentomatoes.com/) and Metacritic (https://www.metacritic.com/).

All movies were purchased and stored as ‘.iso’ files. Relevant sections of the DVD (i.e., excluding menus and 
extra features) were directly concatenated to a mpg container using:

ffmpeg -i concat:VTS_01_1.VOB\|... VTS_01_8.VOB -c copy -f dvd movie_name.mpg

where ‘-c’ copies the codec and ‘-f ’ specifies the DVD format. This generally maintains the original DVD video 
size and quality, using all frames with no cropping or other transformations:

•	 Video (codec): MPEG-PS
•	 Audio (codec, sampling rate, bits per sample, channels): AC-3, 48.0 kHz, 16, 6

N Movie Age

% ≥Bachelor’s (%)
NIH Toolbox 
Examples

Female BAME Monolingual Participant Mother
Fluid 
Cog

Neg 
Affect

20 500 Days of Summer 27.70 50.00 30.00 85.00 75.00 60.00 58.11 51.25

18 Citizenfour 27.00 50.00 41.18 77.78 61.11 66.67 53.71 51.22

6 12 Years a Slave 27.17 50.00 66.67 50.00 50.00 50.00 31.00 50.83

6 Back to the Fuure 22.17 50.00 40.00 66.67 66.67 83.33 39.67 57.67

6 Little Miss Sunshine 35.67 33.33 66.67 66.67 50.00 16.67 45.67 52.33

6 The Prestige 34.17 50.00 0.00 100.00 83.33 33.33 76.00 51.67

6 Pulp Fiction 22.67 50.00 83.33 66.67 33.33 0.00 51.00 57.67

6 The Shawshank 
Redemption 22.17 50.00 100.00 50.00 50.00 83.33 68.00 50.00

6 Split 22.67 50.00 50.00 83.33 66.67 33.33 52.67 57.50

6 The Usual Suspects 23.17 50.00 66.67 83.33 100.00 33.33 55.33 54.50

86 wMean 26.73 48.84 48.62 75.58 65.12 51.16 54.01 52.79

wSD 3.99 4.27 24.62 13.48 15.99 23.49 10.47 2.67

Table 1.  Description of participants in the naturalistic neuroimaging database. All participants (N) were 
right-handed and native English speakers. Gender is expressed as percent female. Ethnic diversity is expressed 
as percent Black, Asian and Minority Ethnic (BAME). Educational attainment of both the participant and 
the participant’s mother is expressed as percent with a Bachelor’s degree or higher. Data roughly match 2011 
London, UK consensus data (https://data.london.gov.uk/census/). We include the Cognition Fluid Composite 
v1.1 (Fluid Cog) and Negative Affect Summary (18+)(Neg Affect) T-scores as example tests from the National 
Institute of Health (NIH) Toolbox battery. The bottom two rows are the means and standard deviations of row 
means weighted by number of participants (wMeans/wSD).
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•	 Resolution (pixels): 720 × 576 (except Citizenfour which was 720 × 480)
•	 Aspect Ratio: 16:09 (except The Usual Suspects and Pulp Fiction which were 2.40:1 4:3, respectively)
•	 Frame rate (fps): 25 (except Citizenfour which was 23.976)

The resulting files were presented to participants in full-screen mode through a mirror reversing LCD projec-
tor to a rear-projection screen measuring 22.5 cm × 42 cm with a field of view angle of 19.0°. This screen was posi-
tioned behind the head coil within the MRI bore and was viewed through a mirror above participants’ eyes. High 
quality audio was presented in stereo via a Yamaha amplifier through Sensimetrics S14 scanner noise-attenuating 
insert earphones (https://www.sens.com/products/model-s14/).

Movie pausing.  Movies were played with as few breaks as possible. This allows for the most natural, uninter-
rupted viewing experience and minimises the number of discontinuities in the hemodynamic response. It also 
results in good timing accuracy, needed for relating movie features and events to brain responses. It maintains 
timing by avoiding unknown and accumulated human and hardware processing delays associated with starting 
and stopping. To accomplish continuous play with the possibility of arbitrary stopping points, we created a script 
and hardware device to allow the operator to stop the scanner and pause the movie at any time and resume where 
the movie left off when the scanner was restarted. Unless participants signalled that they wanted a break, the mov-
ies were played in about 40–50 minute segments (because of a software limitation on the EPI sequence we used). 
These breaks were timed to occur during scenes without dialogue or relevant plot action.

Specifically, a Linux BASH script opened and paused movies using ‘MPlayer’ (http://www.mplayerhq.hu/). 
The script then went into a state of waiting for a TTL (transistor-transistor logic) pulse from the scanner, indi-
cating that scanning had begun. Pulses were received through a USB port connected to an Arduino Nano built 
to read and pass TTL pulses from the scanner to the script. When the scan was started and the first TTL pulse 
was received, eight seconds were allowed to elapse before the movie began to play. These timepoints allowed for 
the scanner to reach a state of equilibrium and were later discarded. If the scanner was subsequently paused, e.g., 
because the participant requested a break, the movie pausing BASH script stopped the movie within 100 ms. This 
known delay occurred because the script monitors for TTL pulses every 50 ms. If a pulse was not registered, the 
script required that the next pulse also did not arrive before pausing to assure pulses had stopped. When the scan 
was restarted, eight seconds were again allowed to pass before the movie was unpaused.

Whenever a movie was paused after it had been playing, the whole brain volume being collected was dropped, 
causing up to one second of the movie to be lost from the fMRI timeseries. There were two versions of the script. 
In the first, the movie picked up where it left off when it had been paused (v1; N = 29 or 33.72% of participants). 
The second version rewound the movie to account for the time lost from the dropped volume. To calculate this, 
the script used three output files that it generated when running: a MPlayer output file, current time file and final 
output file.

The role of the MPlayer output file was to enable the script to read the current time position in the movie. 
Every time the BASH script checked for a new TTL pulse (i.e. every 50ms), it would also send a command to 
MPlayer to get the time position in the movie (using the pausing_keep_force and get_time_pos commands for 
MPlayer in slave mode). As MPlayer received commands through a temporary /tmp/doo file, the script had to 
pipe the stdout output to the MPlayer output file for it to then be able to read the value itself. MPlayer only gave 
the time position up to one decimal. A line inside MPlayer output would look like:

ANS_TIME_POSITION=1.6

Movie Genre Year Length (s)

Scores (%) DVD Version

IMDB Meta RT ASIN EAN

500 Days of Summer Romance 2009 5470 77 76 85 B002KKBMSW 5039036043359

Citizenfour Documentary 2014 6804 81 88 96 B00YP65NEI 5050968002313

12 Years a Slave Historical 2013 7715 81 96 96 B00HR23CCM 5030305517229

Back to the Future Sci-fi 1985 6674 85 86 96 B000BVK82I 5050582401288

Little Miss Sunshine Comedy 2006 5900 78 80 91 B000JU9OJ4 5039036029667

The Prestige Thriller 2006 7515 85 66 76 B000K7LQS8 7321902106472

Pulp Fiction Action 1994 8882 89 94 94 B004UGAMY4 5060223762043

The Shawshank 
Redemption Drama 1994 8181 93 80 91 B001CWLFKE 5037115299635

Split Horror 2016 6739 73 62 76 B071J24232 5902115603099

The Usual Suspects Crime 1995 6102 86 84 95 B0010YXNGI 5039036033497

Table 2.  Description of the movies used in the naturalistic neuroimaging database. Ten full length movies 
were chosen from 10 genres. These were required to have been successful, defined as an average Internet Movie 
Database (IMDb), Metacritic (Meta) and Rotten Tomatoes (RT) score greater than 70%. IMDb scores were 
converted to percentages for this calculation. Movie lengths are given in seconds (s), also equivalent to the 
number of whole brain volumes collected when participants watched these movies during functional magnetic 
resonance imaging. The DVD version of the movies used in the database can be purchased with their unique 
Amazon Standard Identification Number (ASIN) or International/European Article Number (EAN).
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The script would then read the last line of the MPlayer output file and write a new line in the current time file. 
Every line consisted of the newly acquired time position in the movie and a timestamp formed by the Linux epoch 
time (the number of seconds from 00:00:00 UTC on 1 January 1970) and the milliseconds elapsed since the end 
of the previous second. A line inside the current time file would look like:

1572708345 209 ANS_TIME_POSITION=1.6

If paused, the movie was then rewound by that amount by passing a command to Mplayer through ‘slave’ 
mode. When the scanner was restarted, the movie began within 100 ms of the first TTL pulse (again, because 
it had to receive at least two pulses). Because of a coding error, version two (v2.1) of the script occasionally fast 
forwarded when it should have rewound. This affected N = 13 or 15.12% of participants. Because fast forwarding 
could not be greater than one second and the error affected only 47.44% of the runs for those 13 participants (with 
the other 52.56% being correctly rewound), data timing quality was not compromised more than the first version 
of the script on average. After fixing this error, the movies rewound correctly whenever the scanner was stopped 
for the remaining participants for the remainder of the study (v2.2; N = 44 or 51.16% of participants).

Specifically, whenever the movie was paused or started, the script would write to the final output, which would 
typically contain the following lines:

1567528264 953 start
1567531380 437 pause 1
1567531465 886 rewind −0.592 start
1567534037 162 pause 2
1567534091 303 rewind −0.384 start
1567535208 234 ended

The above example is taken from v2.2 of the script, which included rewind values. To calculate the rewind 
times, the script would read the last start and pause lines of the final output file:

1567528264 953 start
1567531380 437 pause 1

Because our TR=1s, we started counting the number of total TRs registered from the timestamp of the 
start value in final output. For example, above we would consider 3116 TRs elapsed from 1567528264 953 until 
1567531380 953 (1567531380–1567528264). However, as the script stopped the movie at 1567531380 437 only 
3115 TRs were registered, meaning that the registered data only went up to 1567531379 953. So, the number 
of milliseconds of the movie playing without any brain data being acquired would be the difference between 
1567531379 953 and 1567531380 437, which would be 437 + 1000 - 953 + 108 = 592. The 108 value was added to 
account for the fact that it would actually take 108 ms from the moment the script registers the start of a new TR 
and when the play command is given to MPlayer.

The reason behind the coding error in the second version of the script was a minus sign needed when the 
milliseconds in the pause time were greater than the milliseconds in the start time. The following example is from 
a correct working version of the script:

1561977334 281 start
1561980159 470 pause 1
1561980228 411 rewind −0.297 start

There would be 2825 TRs registered between 1561977334 281 and 1561980159 281, leaving 470 - 281 = 189 
milliseconds lost. The rewind time would be 189 + 108 = 297ms, with a command being sent with a minus sign in 
front (a lack of a minus sign would fast forward by that amount of ms). To distinguish between the two cases an if 
statement was used. However, in the second version of the script the minus sign was accidentally omitted in one 
of the branches of the script, resulting in the error described.

Because output files from all versions of the script recorded system and movie timing to calculate start, 
stop and rewind times, all (including system) delays were tracked and are, therefore, known quantities that can 
be accounted for in preprocessing to assure that fMRI timeseries and movies are temporally well aligned (see 
‘Timing correction’ below).

Movie annotations.  Words and faces were annotated in the movies using fully automated approaches. These 
were then used to demonstrate data and timing quality while also illustrating a method for network labelling. For 
words, we extracted the audio track as a ‘.wav’ and the subtitle track as a ‘.txt’ file from each movie ‘.iso’ file. The.
wav file was input into the ‘Amazon Transcribe’, a machine learning based speech-to-text transcription tool from 
Amazon Web Services (AWS; https://aws.amazon.com/transcribe/). The resulting transcripts contained on and 
offset timings for individual words, although not all words are transcribed or accurately transcribed. In contrast, 
movie subtitles do not have accurate on and offset times for individual words though most words are accurately 
transcribed. Therefore, to estimate the on and offset times of the words not transcribed, a script was written that 
first uses dynamic time warping (DTW74) to align word onsets from the speech-to-text transcript to correspond-
ing subtitle words in each individual subtitle page, starting 0.5 seconds before and ending 0.5 seconds after the 
page to account for possible subtitle inaccuracies. In order to improve matches between subtitles and transcripts, 
punctuation was removed and words stemmed (e.g., ‘kittens’ becomes ‘kitten’). Subtitle words that matched or 
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that were similar to the transcriptions during the DTW procedure inherited the timing of the transcriptions, and 
were returned to their original unstemmed form. Non-identical words were assigned the word’s transcription 
timing that had maximum Jaro similarity (given Jaro similarity >0.60) with that subtitle word. Finally, if multiple 
words in the subtitles aligned with a single transcript word (e.g., ‘is’,‘a’, ‘story’ in the subtitles and ‘story’ in the 
transcription), we gave the timing of the transcribed word to the matched subtitle or most similar word if the Jaro 
similarity was >0.60.

Remaining subtitle words not temporally labeled were then estimated, with different degrees of accuracy. 
Continuous and partial word estimations inherited their on and offset times from matching/similar transcription 
words in the subtitle page. ‘Continuous’ words use the on and offset times from adjacent words directly, making 
them the most accurate, e.g., the offset is assigned from the onset of the next matched/similar word. ‘Partial’ esti-
mation occured where there was more than one word between matched/similar words. In those cases the length 
of each word was approximated, making it less accurate. ‘Full’ estimation was the least accurate, occurring when 
there were no matching/similar words transcribed, and the onsets and lengths of the words were estimated from 
the onset and offset of the subtitle page. For partial and full estimations, word length was determined by counting 
the number of letters in each word and dividing up the bounding time proportionally. For example, if there were 
two words with 10 and five letters, they got 66.67% and 33.33% of the time, respectively. This procedure might 
occasionally result in unreasonably long word length estimations. For instance, perhaps because of a long dra-
matic pause between words, two four letter words in a 10 second window would each be estimated as being five 
seconds long. In such cases, we used a word truncation algorithm. Specifically, we truncated estimated words <10 
letters and more than 2.5 standard deviations from the mean word length in conversational speech (i.e., >1000 
ms) to the mean (i.e., 600 ms, based on75). As it is common for words more than 10 letters to be longer than 1 sec-
ond when spoken, estimated word lengths for words with >10 letters and <two seconds were kept. Estimations 
>two seconds were truncated to 1000 ms. Finally, at the end of these steps, the script did some post-processing. 
We reordered words based on onset times, removing words with the same timings. If words overlapped, we 
shifted the start time of the word to the end time of previous words. For numbers (e.g. 32) not correctly identified 
in the transcription, we changed to the spelled form (‘thirty two’) and re-ran the script.

To obtain machine learning based face annotations, we used the AWS ‘Amazon Rekognition’ application pro-
gramming interface (API) (https://aws.amazon.com/rekognition/). To do this, the original ‘.mpg’ video files were 
first converted to ‘.mp4’ to have a H264 codec compatible with Amazon’s Rekognition guidelines. A script called 
the face recognition API without any special configuration or modification and the output was a ‘.json’ file. This 
contained timestamps every 200 ms, if a face was present, other details about the face (e.g. predicted age range, 
gender, position on screen and whether the mouth was open) and confidence levels.

Acquisition.  Functional and anatomical images were acquired on a 1.5 T Siemens MAGNETOM Avanto 
with a 32 channel head coil (Siemens Healthcare, Erlangen, Germany). We used multiband EPI76,77 (TR = 1 s, 
TE = 54.8 ms, flip angle of 75°, 40 interleaved slices, resolution = 3.2 mm isotropic), with 4x multiband factor 
and no in-plane acceleration; to reduce cross-slice aliasing78, the ‘leak block’ option was enabled79. Slices were 
manually obliqued to include the entire brain. A slice or at most a few slices of the most inferior aspect of the 
cerebellum were occasionally missed in individuals with large heads (see ‘Cerebellar Coverage’ below). This EPI 
sequence had a software limitation of one hour of consecutive scanning, meaning each movie had at least one 
break. From 5,470 to 8,882 volumes were collected per participant depending on which movie was watched 
(Table 2). A 10 min high-resolution T1-weighted MPRAGE anatomical MRI scan followed the functional scans 
(TR = 2.73 s, TE = 3.57 ms, 176 sagittal slices, resolution = 1.0 mm)3.

Preprocessing.  MRI data files were converted from IMA to NIfTI format and preprocessed to demonstrate 
data quality using mostly the AFNI software suite80. Individual AFNI programs are indicated parenthetically in 
subsequent descriptions.

Anatomical.  The anatomical/structural MRI scan was corrected for image intensity non-uniformity (‘3dUn-
iformize’) and deskulled using ROBEX81 in all cases except for one participant where ‘3dSkullStrip’ performed 
better. The resulting anatomical image was nonlinearly aligned (using ‘auto_warp.py’) to the MNI N27 template 
brain, an average of 27 anatomical scans from a single participant (‘Colin’)82. The anatomical scan was inflated and 
registered with Freesurfer software using ‘recon-all’ and default parameters (version 6.0, http://www.freesurfer.
net)83,84. Resulting automated anatomical parcellations were used to calculate the extent of cerebellar coverage 
and to create white matter and ventricle (i.e., cerebral spinal fluid containing) regions of interest that could be 
used as noise regressors84. These regions were resampled into functional dimensions and eroded to assure they 
did not impinge on grey matter voxels. Finally, anatomical images were ‘defaced’ for anonymity (https://github.
com/poldracklab/pydeface).

Functional.  The fMRI timeseries were corrected for slice-timing differences (‘3dTshift’) and despiked 
(‘3dDespike’). Next, volume registration was done by aligning each timepoint to the mean functional image of 
the centre timeseries (‘3dvolreg’). For 23 (or 26.74%) of participants, localiser scans were redone because, e.g., 
the participant moved during a break and the top slice of the brain was lost. For these participants, we resam-
pled all functional grids to have the same x/y/z extent (‘3dresample’) and manually nudged runs to be closer 
together (to aid in volume registration). For all participants, we then aligned the functional data to the anatom-
ical images (‘align_epi_anat.py’). Occasionally, the volume registration and/or this step failed as determined by 
manual inspection of all data. In those instances we either performed the same procedure as for the re-localised 
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participants (N = 5 or 5.81%) or reran the ‘align_epi_anat.py’ script, allowing for greater maximal movement 
(N = 6 or 6.98%). Finally, the volume-registered and anatomically-aligned functional data were (nonlinearly) 
aligned to the MNI template brain (‘3dNwarpApply’).

Next, we cleaned the timeseries, resulting in what we henceforth refer to as the ‘detrended timeseries’ for each 
run. Specifically, we first spatially smoothed all timeseries to achieve a level of 6mm full-width half maximum, 
regardless of the smoothness it had on input (‘3dBlurToFWHM’85). These were then normalised to have a sum of 
squares of one and detrended (‘3dTproject’) with a set of commonly used regressors86: These were (1) Legendre 
polynomials whose degree varied with run lengths (following a formula of [number of timepoints * TR]/150); (2) 
Six demeaned motion regressors from the volume registration; (3) A demeaned white matter activity regressor 
from the averaged timeseries in white matter regions; and (4) A demeaned cerebrospinal fluid regressor from the 
averaged timeseries activity in ventricular regions.

Cerebellar coverage.  We quantified the extent of cerebellar coverage in each individual. This was done by extract-
ing the cerebellum from the Freesurfer parcellation (‘3dROIMaker’ and ‘3dcalc’) and resampling it to functional 
dimensions (‘3dresample’). We made a brain only mask from all runs (‘3dAutomask’ and ‘3dmask_tool’) and inter-
sected it with the cerebellum. We then fit a box to each of the resulting two images (‘3dAutobox’) and calculated 
the difference in the number of slices in the z-direction.

Timing correction.  To use stimulus annotations, timing correction was done to account for delays caused by the 
movie pausing script to assure that fMRI timeseries and movies are well aligned. Specifically, this script intro-
duced a known 100 ms delay that was cumulative for each break in the movie. Furthermore, depending on the 
versions of the script, there was also a possible additional (cumulative) delay from not rewinding (v1) or occa-
sionally mistakenly fastforwarding (v2.1). These delays were calculated from script output files created for this 
purpose. Furthermore, the script output files allowed us to quantify potentially variable soft and hardware delays 
and account for these as well. In particular, every voxel of the detrended timeseries was shifted back in time using 
interpolation to account for all delays, in the same manner as in slice timing correction but over all voxels uni-
formly (‘3dTshift’).

Specifically, in v1 of the script, if the movie stopped at, e.g., 1000.850 and the last full TR was lost, it means 
that 850 ms of the movie was watched but is missing from the timeseries. To account for the missing information, 
we added a TR to the timeseries being collected before the scanner was stopped and interpolated the next run 
backwards in time the amount not covered by this TR. The added TR was created by retrieving the last timepoint 
of the run in which the movie was stopped and the first timepoint of the run after the movie was stopped and 
averaging these. Thus, for the 850 ms of movie watched but dropped, there was 150 ms too much time added to 
the movie by adding a TR (because our TR = 1 second). Thus, we shifted the next run back this amount so that the 
timeseries is theoretically continuous again (though this is never really possible). If there was another run (i.e., 
three or more), the same logic applied except that the extra 150 ms needed to be accounted for. So, if the next run 
stopped at 2000.900, we shifted run three back (1000-900) + 150 ms = 250 ms.

These calculations are complicated by the fact that each scanner stop always creates a 100 ms delay and a 
known standard deviation, because of the way the MPlayer script works (see ‘Movie Pausing’). For this reason, 
every run is time shifted backward this extra amount. So in the example, if this delay was 100 ms, run three in the 
prior example would be shifted back 350 ms. Version 2.2 of the script is simpler: an additional TR is not added 
and the only time shifting corresponds to the time lost whenever the scanner was stopped from monitoring for 
the TTL pulse. For example, if there are three runs and 100 ms was lost each run, the final run would be time 
shifted back 300 ms. That is, the cumulative delay is the only time shifting done. In the v2.1 script, the timing 
correction was carried out as in the prior paragraph to account for a coding error when it occurred or as in v2.2 
when it did not.

ICA artifact removal.  Spatial independent component analysis (ICA) is a powerful tool for detecting and remov-
ing artifacts that substantially improves signal-to-noise ratio in movie naturalistic-fMRI data87. First, we concat-
enated all detrended timeseries after timing correction. As in the HCP, we did spatial ICA on this timeseries 
with 250 dimensions using ‘melodic’ (version 3.14) from FSL88. Next, we labelled and removed artifacts from 
timeseries, following an existing guide for manual classification89. One of three trained authors went through all 
250 components and associated timecourses, labelling the components as ‘good’, ‘maybe’, or ‘artifact’. As described 
in Griffanti et al.89, there are a typical set of ‘artifact’ components with identifiable topologies that can be cate-
gorised as ‘motion’, ‘veins’, ‘arteries’, ‘cerebrospinal fluid pulsation’, ‘fluctuations in subependymal and transmed-
ullary veins’ (i.e., ‘white matter’), ‘susceptibility artefacts’, ‘multi-band acceleration’ and ‘MRI-related’ artefacts. 
Our strategy was to preserve signal by not removing components classified as ‘maybe’. On a subset of 50 datasets 
(58.14% of the data), a second author classified all components to check for consistency. The authors discussed 
discrepancies and modified labels as warranted. It was expected that, similar to prior studies, about 70–90% of 
the 250 components would be classified as artifacts89. Once done, we regressed the ICA artifact component time-
cources out of the detrended and concatenated timeseries (‘3dTproject’).

Analyses.  We used the preprocessed, detrended and concatenated timeseries with ICA-based artifacts 
removed (henceforth ‘fully detrended timeseries’) for several analyses meant to validate data quality. These 
included calculating the temporal signal-to-noise (tSNR) ratio as one of a set of metrics and a composite measure 
to assess data quality at the timeseries level (Overall Data Quality). We also did two whole-brain functional anal-
yses using two previously established data-driven methods. One was intersubject correlation (ISC) analysis and 
the other involved labelling functional networks with annotations (Network labelling). These serve to show data 
quality similar to past work and provide evidence for timing accuracy between fMRI timeseries for participants 
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and movies. The latter is crucial as movie breaks varied across participants, resulting in a small amount of tempo-
ral interpolation and psychological discontinuity across runs.

Temporal signal-to-noise ratio.  We calculated tSNR both before and after minimal preprocessing to demonstrate 
data quality. We also calculated tSNR after extensive preprocessing to show how it might improve after timeseries 
cleaning and artifact removal (though it will generally increase with increasing signal removal). Temporal SNR 
can be defined as the mean signal divided by the standard deviation of the signal over voxel timeseries90. Though 
multiband acceleration greater than one improves sensitivity over multiband one78, average multiband four tSNR 
tends to be between 40–60, lower than unaccelerated sequences78,88. A movie naturalistic-fMRI dataset showed 
that manual ICA-based artifact rejection increased tSNR around 50 units, though this was not multiband data87. 
HCP multiband four tSNR increased by 30 after ICA cleanup of resting-state data88. Thus, we would expect to 
see a similar baseline level and improvement after ICA artifact removal. It is worth noting that unlike most other 
datasets, we have over 1.5 hours of data per participant, likely sufficient at those tSNR values for detecting effects 
sizes of 1% or less91.

We first calculated tSNR (‘3dTstat’) on three timeseries: 1) A minimally preprocessed timeseries that was cor-
rected for slice timing, despiked, volume-registered and aligned to the anatomical image, timing-corrected and 
concatenated; 2) The same timeseries but blurred with a 6 mm FWHM (‘3dBlurToFWHM’); and 3) A fully pre-
processed timeseries, detrended using white matter, ventricular, motion and ICA artifact timecourse regressors 
(‘3dTproject’). We then calculated mean tSNR for all three timeseries using a mask that included grey matter, with 
most white matter and ventricle voxels removed. We calculated effect sizes at a voxel level using:
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where M and SD are the mean and standard deviation of the tSNR in a voxel for the more (subscript one) minus 
the less preprocessed timeseries (subscript two). Thus, a positive Cohen’s d represents larger tSNR for more pre-
processed timeseries.

Overall data quality.  Timeseries data quality were globally assessed using 10 measures and a composite of these: 
1) To quantify timeseries timepoints outliers, we labelled voxels that were far from the median absolute devia-
tion (‘3dToutcount’). Whole timepoints were defined as outliers if more than 10% of voxels were outliers by this 
definition; 2–8) We used seven parameters to quantify motion. These included the maximum average motion 
for each run from the demeaned motion regressors and the largest change in displacement between two suc-
cessive timepoints (Delta); 9) The mean tSNR from the minimally preprocessed timeseries; and 10) The total 
number of ‘artifact’ ICA components. We then used the ‘multicon’ package in R (https://www.r-project.org/) to 
z-transform these 10 items and create a composite data quality score for each participant. We defined outlying 
participants as anyone whose composite score was more than three standard deviations from the mean. In addi-
tion to these measures, we also ran MRIQC (version 0.15.2; https://github.com/poldracklab/mriqc)92, a tool for 
automated extraction of no-reference image quality metrics. MRIQC results might allow for a more systematic 
comparison of our data with other datasets given its increasing use (e.g., using https://github.com/elizabethbeard/
mriqception).

Intersubject correlation.  In addition to illustrating data quality similar to prior results, ISC demonstrates syn-
chrony of fMRI timeseries between our participants. This would presumably not occur unless the movies were 
accurately aligned after timing correction. We compared the ISCs of participants watching the same movie to 
those watching different movies because a fundamental assumption of ISC is that synchrony is stimulus driven. 
Thus, we expected correlation values to be significantly greater for the same movie compared to different movies, 
with values similar to past ISC results from a large number of participants. For example, in a task-fMRI study with 
130 participants, the maximum ISC is 0.2793.

Because movies had different lengths, we first truncated the fully detrended timeseries to be the length of the 
movie with the shortest duration (i.e., ‘500 Days of Summer’; 5470 s/TRs or about 1 hour and 31 minutes). We 
then computed pairwise Pearson’s correlations between the timeseries in each voxel for all pairs of participants for 
all movies (‘3dTcorrelate’). This resulted in (1/2 * 86 * (86-1)) = 3655 pairwise correlation maps. These are com-
posed of (1/2 * 20 * (20-1)) + (1/2 * 18 * (18-1)) + ((1/2 * 6 * (6-1)) * 8) = 463 maps from participants watching 
the same movie. The remaining (3655 - 463) = 3192 maps are from participants watching different movies.

For the group analysis, we first converted Pearson’s r values to be normally distributed as z-scores using the 
Fisher z-transformation. Then, to compare ISC maps from people watching the same or different movies, we 
used voxel-wise linear mixed effects models with crossed random effects (‘3dISC’). This approach accounts for 
the interrelatedness of the pairwise ISC maps and can handle unequal sample sizes94. The resulting map was 
Bonferroni-corrected for multiple comparisons using t = 6.04 corresponding to a voxel-wise p-value of 0.01 
divided by the number of tests done in each voxel, i.e., p < 0.01/(4 * 64,542) = 0.00000004. We combined this 
with an arbitrary cluster size threshold of 20 voxels. To demonstrate reliability, we also repeated this analysis after 
splitting the data into groups of participants watching two different sets of five movies. We compared the resulting 
spatial patterns of activity using two standard approaches, correlation and eta2,95 (‘3ddot’).

Network labelling.  Besides demonstrating data and timing quality, here we also illustrate a fairly straightforward 
method for using annotations to label networks with a method similar to one used in existing naturalistic-fMRI 
studies. This combines model-free ICA to find networks and a model-based approach to label those networks96,97. 
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In particular, we derive networks in each participant with ICA using ‘melodic’ run on the fully detrended time-
series (and, again, limited to 250 dimensions). We then convolve annotated word, no word, face and no face 
onsets and durations with a canonical hemodynamic response function (‘3dDeconvolve’). The resulting ideal 
waveforms are regressed against the 250 independent component timescourses using general linear model 
(GLMs) followed by pairwise contrasts between words and no words and faces and no faces (using FSL’s ‘fsl_glm’). 
A Bonferroni-corrected threshold was set at p = 0.01 at the single voxel level divided by 250 components and 
eight statistical tests (not all of which are discussed here), i.e., 0.01/(250 * 8) = p < 0.000005. We combined this 
with an arbitrary cluster size threshold of 20 voxels at the component level. If there was more than one resulting 
component at this threshold and cluster size, we summed those components.

For group analysis, we did one sample t-tests for GLM results of words vs no words, no words vs words, face vs 
no faces and no faces vs faces (‘3dttest++’). To correct for multiple comparisons, we again used a Bonferroni cor-
rection of 0.01 at the single voxel level divided by approximately 85,000 voxels and four tests, i.e., 0.01/(85,000 * 4),  
rounding to p < 0.00000001. We again combined this with an arbitrary cluster size threshold of 20 voxels. To 
illustrate the precise anatomical correspondence of our results with prior data, we overlay fMRI term-based 
meta-analysis from Neurosynth98 (Retrieved May 2020) for ‘language’ (https://neurosynth.org/analyses/terms/
language/; from 1101 studies) and the ‘fusiform face’ area (https://neurosynth.org/analyses/terms/fusiform%20
face/; from 143 studies; FFA). We further illustrate anatomical correspondence by showing the mean peaks of the 
putative (left and right) FFA, derived by averaging peaks from a meta-analysis of 49 studies (converted to MNI 
x/y/x coordinates = 39/−53/−22 and −40/−54/−23; see Table 1 in99).

Data Records
Information and anatomical data that could be used to identify participants has been removed from all records. 
Resulting files are available from the OpenNeuro platform for sharing fMRI (and other neuroimaging) data at 
https://doi.org/10.18112/openneuro.ds002837.v1.1.1 (dataset accession number ds002837)100. A README file 
there provides a description of the available content. The code/scripts used for this manuscript are available on 
GitHub (https://github.com/lab-lab/nndb; Online-only Table 1). Additional material will also be made available 
on the NNDb website (http://www.naturalistic-neuroimaging-database.org).

Participant responses.  Location nih_demographics.csv, nih_data.csv and nih_scores.csv
File format comma-separated value
Participants’ responses to demographic questions and the NIH Toolbox in comma-separated value (CSV) 

files. Data is structured as one line per participant with all questions and test items as columns.

Anatomical MRI.  Location sub-<ID>/anat/sub-<ID>_T1w.nii.gz
File format NIfTI, gzip-compressed
Sequence protocol sub-<ID>/anat/sub-<ID>_T1w.json
The defaced raw high-resolution anatomical images are available as a 3D image file, stored as sub-<ID>_T1w.

nii.gz.
The N27 MNI template aligned anatomical image and the anatomical mask with white matter and ventricles 

removed are also available as derivatives/sub<ID>/anat/sub-<ID>_T1w_MNIalignment.nii.gz and derivatives/
sub<ID>/anat/sub-<ID>_T1w_mask.nii.gz respectively

Functional MRI.  Location sub-<ID>/func/sub-<ID>_task-[movie]_run-0[1–6]_bold.nii.gz
Task-Name [movie] 500daysofsummer, citizenfour, theusualsuspects, pulpfiction, theshawshankredemption, 

theprestige, backtothefuture, split, littlemisssunshine, 12yearsaslave
File format NIfTI, gzip-compressed
Sequence protocol sub-<ID>/func/sub-<ID>_task-[movie]_run-0[1–6]_bold.json
The fMRI data are available as individual timeseries files, stored as sub-<ID>_task-[movie]_run-0[1–6]_

bold.nii.gz. The fully detrended timeseries is also available as derivatives/sub-<ID>_task-[movie]_bold_pre-
processedICA.nii.gz.

Motion and outlier estimates.  Location derivatives/sub-<ID>/motion/sub-<ID>_task-[movie]_run0 
[1-6]_bold_[estimates]0.1D

Motion [estimates] motion, maxdisp_delt, wm, ventricle and outliers
File format plain text
Motion estimates are from the registration procedure in the AFNI program ‘3dvolreg’ and outliers were 

estimated using ‘3dToutcount’, These are provided in space-delimited text files where the estimates represent 1) 
motion: degree of roll, pitch and yaw and displacement in the superior (dS), left (dL) and posterior (dP) directions 
in mm; 2) maxdisp_delt: maximum displacement (delta) between any two consecutive timepoints; 3) wm: mean 
activity in the white matter; 4) ventricle: mean activity in the ventricles and 5) outliers: individual timepoint out-
liers at 10% levels.

ICA artifact labels.  Location derivatives/sub<ID>/func/sub-<ID>_task-[movie]_bold_ICAartifacts.1D
File format plain text
ICA components labeled as artifacts used to correct ICA timeseries as proved are provided as space delimited 

text where the columns are artifactual timecources.

MRIQC.  Location derivatives/mriqc
File format plain text/html/json
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This contains a large collection of image quality metrics. A complete description of these can be found at 
https://mriqc.readthedocs.io/en/stable/measures.html.

Annotations.  Location stimuli/task-[movie]_[annot]-annotation.1D
Annotation [annot] word, face
File format plain text
Word, no word and face and no face onsets and durations are provided in four space-delimited text files. In the 

word annotation file, columns represent: 1) Words; 2) Word onset in seconds and milliseconds; 3) Word offset in 
seconds and milliseconds. In the face annotation file, columns represent: 1) Face onset in seconds and millisec-
onds and 2) Duration of face presence in seconds and milliseconds.

Technical Validation
Stimuli.  System timing.  The movies were played in the original DVD audio and video quality. This relative 
lack of compression results in low latencies when starting and stopping the movies. System delays were calculated 
from the timing output of the movie-pausing script. Averaged over all runs and participants, this delay was 19.73 
ms (SD = 7.57). This is perhaps not more than the expected latency on a standard Linux kernel101. However, 
because this delay was measured, it can be accounted for in the timeseries through temporal interpolation as 
described.

Annotations.  Words and faces were annotated in the movies so that they could be used to show data quality and 
timing accuracy while also illustrating a fairly straightforward method to label brain networks. To be used for this 
purpose, the overall quality of the annotations themselves needs to be demonstrated. For words, Table 3 provides 
a breakdown that reflects relative word on and offset accuracy for individual movies. Machine learning-based 
speech-to-text word transcriptions are assumed to have the highest temporal accuracy. An average of 75.75% of 
subtitle words had matching or similarity-matched word transcriptions. This was after hand transcribing over 
2000 missing word times for ‘Little Miss Sunshine’ to bring accuracy up to 72.48% in order to correct for poor 
transcription accuracy (~45%, possibly due to overlapping dialogue in the movie). Speech-to-text transcription 
left an average of 24.25% of the subtitle words to get estimated word lengths. Of these, an average of 20.30% were 
made up of the ‘continuous’ and ‘partial’ estimations, considered relatively accurate because they rely on accu-
rately transcribed matched/similar words to make estimations. Only 3.95% of the subtitle words on average were 
fully estimated. These have the least accurate word timings because their length had to be estimated entirely from 
the subtitles page start and end times. Finally, to increase accuracy we truncated the 2.52% of words that were 
unreasonably long. In summary, it might be argued that about (75.75% Matched/Similar + 20.30% Continuous/
Partial) = ~95% of words have relatively accurate millisecond level onset times. Given that there are >10,000 
words on average per movie, a ~5% rate for less accurate word timing is likely acceptable.

Movie

Words

Faces

On and Offsets (%)

Truncated NMatched/Similar

Estimated

Continuous Partial Full >95% (%) Time (%)

500 Days of Summer 65.46 4.57 21.84 8.12 4.13 8,286.00 93.15 80.83

Citizenfour 80.68 3.82 14.62 0.88 1.32 13,936.00 93.04 70.79

12 Years a Slave 67.41 6.06 19.66 6.86 3.64 7,984.00 88.48 77.54

Back to the Future 72.52 4.40 17.32 5.77 2.35 8,634.00 89.85 71.21

Little Miss Sunshine 72.48 3.18 22.47 1.87 3.12 8,555.00 87.96 79.17

The Prestige 77.22 4.69 15.19 2.89 2.39 10,954.00 88.84 77.09

Pulp Fiction 73.14 4.13 18.35 4.38 2.77 16,155.00 88.88 79.63

The Shawshank Redemption 81.62 4.92 10.86 2.60 2.12 11,779.00 85.30 78.55

Split 82.21 4.34 8.58 4.88 2.09 7,032.00 96.27 70.13

The Usual Suspects 84.80 3.36 10.61 1.23 1.27 9,913.00 94.94 74.12

Mean 75.75 4.35 15.95 3.95 2.52 10,322.80 90.67 75.91

SD 6.57 0.82 4.83 2.46 0.92 2,909.40 3.49 4.01

Table 3.  Movie word and face annotation information. The on and offsets of words were obtained from 
machine learning-based speech-to-text transcriptions. Dynamic time warping was used to align these to 
subtitles. If words in a subtitle page ‘Matched’ or were ‘Similar’ to words in the transcript, it received the 
transcript timing. Otherwise it was estimated. ‘Continuous’ estimations are single subtitle words inheriting 
the start and end time from the end of the prior and start of the next transcribed word. ‘Partial’ estimations are 
similar but involve two or more missing words between transcribed words. ‘Full’ estimations occured when 
no words were transcribed and words were estimated from the start and end time of the subtitle page. When 
word lengths were unreasonable, they were ‘Truncated’. This procedure resulted in an average number (‘N’) 
of >10,000 words per movie. The on and offsets of faces were also obtained from a machine learning-based 
approach. The final two columns are the average percentage of face labels with >95% confidence and the 
percent of time faces were on screen.
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For face labels, histograms for all movies were used to examine the distribution of confidence levels. Across all 
movies, the average percentage of face labels with a confidence value greater than 0.95 was 90.67%, motivating us 
to use all the labelled faces in further analysis (Table 3). We also qualitatively compared results with the movies 
and they appeared to confirm that confidence levels were accurate.

Anatomical MRI.  Table 4 provides a list of anatomical and fMRI irregularities. Anatomical image segmen-
tation and cortical surface reconstruction with Freesurfer finished without error for all participants. Surfaces 
were individually inspected and no manual corrections were needed, suggesting anatomical images were of good 
quality.

Functional MRI.  Cerebellar coverage.  Overall, most of the cerebellum was scanned for all participants. 
Specifically, 68.60% of participants were missing zero slices (34.88%) or one slice (33.72%) of the cerebellum. 
The mean number of missing cerebellar slices across all participants was 1.19 (or 3.19 mm; SD = 1.22 slices; 
Maximum = 5 slices).

Movie pausing.  To maintain alignment between the movies and fMRI timeseries, movies were played with as 
few breaks as possible. In 93.94% of cases, the experimenter paused the scans every 41.54 minutes on average 
(SD = 10.47). Only ten participants initiated pauses in 16 runs or 6.06% of all runs (Table 4). Thus, there was a rel-
atively low number of runs (M = 3.07; SD = 0.98) despite that movies were up to two hours and 28 minutes long.

The timing for one dataset needed additional corrected due to technical issues with the Arduino device wires 
on the day of the scan (Table 4). The Arduino mistakenly stopped transmitting the TTL pulse, likely because of 
a loose wire, registered by the BASH script as pauses when the scan was still ongoing. Thus, instead of the two 
actual pauses, eight were recorded, meaning six of the alleged pauses did not occur. The false pauses added eight 
seconds to the timing output file as the scan was still ongoing, increasing the apparent total length of the movie by 
48 seconds, and therefore increasing scan time as a consequence. In order to correct for this error, eight TRs were 
removed from the timeseries whenever a false pause was detected, for a total of 48 TRs removed.

Temporal signal-to-noise ratio.  Mean tSNR for timeseries averaged over grey matter voxels was comparable to 
prior multiband four studies reviewed earlier. Furthermore, there were comparable increases in tSNR after pre-
processing (Table 5). Cohen’s d at the individual voxel level shows regions of the brain for which tSNR increased 
after full preprocessing (Fig. 2). This includes most medial and posterior aspects of the brain, with less tSNR 
increase in the frontal lobe.

Overall data quality.  We assessed overall fMRI timeseries data quality using 10 measures and a composite of 
these. Table 6 shows the means per run across participants for eight of these measures. With the exception of run 
three, the number of outlying timepoints was under 1% per run on average. Maximum motion, as measured by 
six motion regressors, was low, under a degree and millimeter on average. The greatest maximal displacement was 

BIDS ID Movie

Irregularity

Hardware/Scanning Participant

1 500 Days of Summer Anatomical scan first Paused to adjust volume

14 500 Days of Summer 30 channel headcoil

16 500 Days of Summer Given glasses at first break Paused once b/c drowsy

21 Citizenfour Paused once b/c drowsy

24 Citizenfour Anatomical different day

25 Citizenfour Appeared drowsy

28 Citizenfour Paused b/c fell asleep once

33 Citizenfour Appeared drowsy

35 Citizenfour Appeared drowsy

37 Citizenfour Paused once b/c drowsy

38 Citizenfour Paused once b/c drowsy

47 Pulp Fiction Paused to adjust earphones

51 The Shawshank Redemption Wrong EPI sequence (2.8 s)

55 The Shawshank Redemption Paused to clean glasses

59 The Prestige Paused once b/c drowsy

63 Back to the Future Appeared drowsy

65 Back to the Future Paused to adjust volume

73 Split Arduino issue/extra pauses

80 Little Miss Sunshine Paused once b/c drowsy

Table 4.  Data acquisition irregularities that might have impacted data quality. Most irregularities centred 
around participant drowsiness. We monitored participants through a camera and occasionally gave them 
warnings if they appeared drowsy to us. In a few cases we paused the scan to let participants compose 
themselves and to make sure they would remain alert throughout the rest of the scan.
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Break N (%)
Time 
(%)

Outliers 
(%)

Maximum Motion (° or mm)

Roll Pitch Yaw I/S L/R A/P Delta
Interp 
(-ms)

1 100.00 40.34 0.19 0.51 1.01 0.54 1.04 0.40 0.60 0.82 123.97

2 100.00 34.28 0.18 0.47 0.91 0.55 0.84 0.38 0.52 0.83 422.23

3 69.77 17.81 1.59 0.45 0.99 0.46 0.81 0.34 0.53 0.85 675.70

4 26.74 6.15 0.15 0.48 0.92 0.54 0.95 0.44 0.56 0.94 747.96

5 6.98 0.91 0.04 0.36 0.57 0.35 0.46 0.20 0.42 0.64 1,171.83

6 3.49 0.50 0.00 0.29 0.38 0.25 0.33 0.18 0.16 0.28 1,168.33

wMean 0.43 0.48 0.96 0.53 0.92 0.38 0.55 0.83 377.68

wSD 0.47 0.03 0.06 0.04 0.10 0.03 0.04 0.05 214.00

Table 6.  Descriptive statistics for outlying timepoints, motion and timing measures of data quality averaged 
over movie runs. ‘N’ the percentage of 86 participants having up to six breaks during any given movie. ‘Time’ is 
the average percentage of the whole movie for the run preceding each break. ‘Outliers’ is the mean percentage 
of timepoints with greater than 10% outliers in each run. Motion includes the mean maximum deflection in 
the inferior/superior (‘I/S’), left/right (‘L/R’) and anterior/posterior (‘A/P’) directions and the mean maximum 
change between any two timepoints (‘Delta’) in millimeters (mm; see main text for Frame Displacement). 
‘Interp’ is the amount timeseries were interpolated back in time in milliseconds (-ms) in each run on average 
to account for known delays. The bottom two rows are the weighted means (wMean) and standard deviations 
(wSD) of rows weighted by the Time column.

Fig. 2  Voxel-wise temporal signal-to-noise ratio analysis demonstrating increases in data quality with 
preprocessing. Temporal SNR was calculated in each voxel using mostly unprocessed and fully preprocessed 
functional magnetic resonance imaging (fMRI) timeseries data from 86 participants. Full preprocessing 
included blurring and detrending using motion, white matter, cerebral spinal fluid and independent component 
analysis (ICA) based artifact regressors. Cohen’s d effect sizes were calculated in each voxel as the mean 
differences between fully preprocessed and minimally preprocessed fMRI timeseries tSNR, divided by the 
pooled standard deviation. See Table 5 for tSNR values averaged across grey matter voxels.

Measure

tSNR

Mean Maximum ICA 
artifacts 
(%)Min Pre Blur Pre Full Pre Min Pre Blur Pre Full Pre

Min 11.85 12.20 13.37 91.33 110.33 185.85 56.40

Mean 39.43 44.55 63.82 161.19 201.20 319.18 71.71

SD 10.17 12.73 20.79 29.15 40.16 50.58 7.47

Max 60.10 68.99 98.03 218.09 310.91 431.79 87.20

Table 5.  Descriptive statistics of temporal signal-to-noise ratio and independent component analysis based 
measures of data quality across movies. The temporal signal-to-noise ratio (tSNR) was calculated in mostly grey 
matter for minimally preprocessed (‘Min Pre’), blurred (‘Blur Pre’) and fully detrended and preprocessed (‘Full 
Pre’) functional magnetic resonance imaging timeseries data (see also Fig. 2). The final column is the percent of 
manually-labelled independent component analysis (ICA) artifacts out of 250 dimensions.
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pitch (0.96°) and movement in the inferior/superior direction (0.92 mm). This is perhaps what might be expected 
for supine participants whose heads are firmly held in the left/right directions. Maximum delta was similarly 
under one millimeter. These parameters did not increase more in later compared to earlier runs. If anything, 
maximal movement decreased over the scanning session.

The two other measures of overall data quality are given in Table 5, showing that tSNR (discussed in the prior 
section) and the number of ICA artifacts were reasonably high and low, respectively. On a subset of 50 datasets, 
there was a 96.22% agreement (SD = 2.20) between authors with regard to ICA artifact classification. Percentages 
of ICA artifacts are similar to those found in prior studies reviewed earlier. Finally, we created a composite meas-
ure from these 10 metrics to detect outliers (reverse coding tSNR). These measures had a high internal consist-
ency with Cronbach’s alpha = 0.94. Using this measure, only one participant was considered an outlier. This is the 
participant mentioned in the Methods/Participants that was excluded from the database. Taken together, these 
measures indicate that NNDb timeseries data are of high overall quality.

Results from MRIQC were largely consistent with the above, demonstrating that the data is of high quality, 
similar to or better than other datasets using this tool102–105 (see also https://github.com/elizabethbeard/mriq-
ception). To give two examples: Mean tSNR was 38.43 (SD = 7.540), nearly identical to our own calculation. 
Framewise Displacement (FD) is an increasingly standard method for calculating instantaneous head-motion106. 
The mean FD was 0.138 mm (SD = 0.06) and there were 34.52 (SD = 74.72) timepoints above a 0.50 mm thresh-
old on average (of 6998.20 timepoints or 0.49% of the data on average). Our mean FD compares favorably to 
0.12107, 0.13108, 0.15109, 0.18110 and 0.24 mm111 in other studies with typically developing participants watching 
videos or movies during fMRI.

Intersubject correlation.  ISC was undertaken to show functional fMRI data quality and timing accuracy 
by demonstrating synchronization between participants and movies. There was significantly higher ISC at a 
Bonferroni-corrected threshold in large portions of auditory and visual cortices (precisely following sulci and 
gyri) when participants watched the same movies compared to different movies (Fig. 3, top). Similar to prior 
work, the maximum correlation was r = 0.28. To examine reliability, we split the movies into two groups of par-
ticipants that watched different sets of five movies. The results were largely spatially indistinguishable from each 
other (r = 0.96; eta2 = 0.98) or from results with all movies (with r/eta2 of 0.991/0.995 and 0.988/0.994). Even 
when the data was thresholded at a t-value of 10, an arbitrary value chosen because even extremely high p-values 
resulted in whole-brain ISC, the results were spatially similar (r = 0.82; eta2 = 0.91; Fig. 3, bottom). These results 

Fig. 3  Results of intersubject correlation (ISC) demonstrating data quality and timing synchrony between 
participants and movies. ISC is a data-driven approach that starts with calculating the pairwise correlations 
between all voxels in each pair of participants. We used a linear mixed effects with crossed random effects 
(LME-CRE) model to contrast participants watching the same versus different movies (top). Equally-spaced 
slices were chosen to be representative of results across the whole brain. To demonstrate reliability, we split the 
data in half, with each having five different movies. The same LME-CRE model was run on each half and the 
results are presented at an arbitrary threshold to more easily view similarities and differences (bottom row). 
Slices were chosen to make differences more salient. The colour bar represents correlation values (r) in all 
panels. All results are presented at a p-value corrected for multiple comparisons using a Bonferroni correction 
and an arbitrary minimum cluster size threshold of 20 voxels.
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demonstrate high data quality through robust activity patterns, spatial precision and timing accuracy through 
participant synchrony with movies.

Network labelling.  ICA and regression with a canonical response function were used to demonstrate data 
quality, timing accuracy and an approach to network labelling. There were M = 11.43 (SD = 4.31) word > no 
word, M = 13.52 (SD = 7.21) no word > word, M = 8.71 SD = 8.09, face > no face and M = 8.44 (SD = 7.84) no 
face > face networks per participant, each significant at a stringent Bonferroni-corrected threshold. For words 
(compared to no words), these networks variously consisted of activity in the superior temporal plane, posterior 

Fig. 4  Results of combined independent component analysis (ICA) and model-based analysis demonstrating 
data quality, timing accuracy and an approach to network labelling. First, networks were found at the individual 
participant level using ICA, a multivariate data-driven approach. Word and face annotations from movies 
were then convolved with a standard hemodynamic response function and used in general linear models to 
find associated IC timecourses. The dendrogram (top) shows 13 of 20 significant networks from an example 
participant that were more associated with words > no words (‘Language’; red lines) and faces > no faces 
(‘Faces’; blue lines), clustered to show IC timecourse similarity. Slices are centred around the centre of mass 
of the largest cluster in each network. Two branches (dotted lines) were excluded for visibility. These had an 
additional five language and two face networks. For group analysis, spatial components corresponding to 
significant IC timecourses for each participant were summed and entered into t-tests. The middle panel shows 
that word > no word networks (‘Language’; reds) overlap a ‘language’ meta-analysis (black outline) more than 
no word > word networks (‘No Language’; blues). Slices are centred around the centres of mass of the two largest 
clusters, in the left and right superior temporal plane. The bottom panel shows that face > no face networks 
(‘Faces’; reds) produced greater activity than no face > face networks (‘No Faces’; blues) in the same areas as a 
‘fusiform face’ area (FFA) meta-analysis (white outline). Slices are centred near the average x/y/z coordinates of 
the putative left and right FFA (indicated with black asterisks). The colour bar represents z-scores in all panels. 
All individual and group level results were Bonferroni corrected for multiple comparisons and presented with 
an arbitrary minimum cluster size of 20 voxels.
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inferior frontal gyrus and motor regions as might be expected during language processing112. For faces (compared 
to no faces), activity was in the posterior superior temporal sulcus and fusiform gyrus among other regions that 
might be expected during face processing. An example from a single participant is shown in Fig. 4 (top), using 
hierarchical clustering (with Ward’s method) to order all significant word > no word and face > no face networks 
in terms of the Euclidean distance between IC timecources to show network similarity. By this approach language 
and face networks mostly cluster separately.

Group t-tests across participants showed significant patterns of activity consistent with the sum of networks 
from individual participants, again using a Bonferroni corrected threshold. In particular, word and face net-
works resembled meta-analyses of language (Fig. 4, middle, black outline) and face processing (Fig. 4, bottom, 
white outline). The face networks included the putative fusiform face area(s) (Fig. 4, bottom, black asterisks), 
with immediately adjacent regions more involved in processing times in the movie when faces are not visible. 
Overall, both individual and group results demonstrate high data quality by being robust and showing anatomical 
precision. Furthermore, such strong relationships between stimulus annotations and idealised timeseries again 
indicate that timing accuracy is high.

Usage Notes
We think that the NNDb has the potential to help revolutionise our understanding of the complex network 
organization of the human brain as it functions in the real-world. However, there are several limitations and usage 
bottlenecks, including annotations and analyses that we now discuss to help others use the NNDb to make new 
discoveries. We conclude by briefly discussing the future expansion of the NNDb.

Limitations.  First, with respect to data acquisition, the study was conducted at 1.5 T. Had it been conducted 
at 3 T, SNR would theoretically double. However, in practice SNR is only about 25% better and susceptibility 
artefacts are worse at 3 T113. That said, future versions of the database will also include 3 T movie data. Second, 
because of pausing during acquisition and associated (but known) delays, the fMRI timeseries require temporal 
interpolation to align to the movies. Thus, anyone using the dataset and not using derivatives, will need to make 
these corrections. We provide the times and an implementation of this in the AFNI environment (see Online-only 
Table 1 for the location of the code).

With regard to stimuli, it should be acknowledged that neither the fMRI setting nor movies themselves are 
necessarily ‘natural’ or realistic114,115, though they are certainly more ‘naturalistic’ on the continuum defined in 
the ‘Naturalistic fMRI’ section. In addition to the obvious fact that participants are in a magnet, there is continual 
rhythmic noise. We did not use noise cancelling headphones though the inserts were noise attenuating and we 
further insulated the participants from noise (and movement) with pillows covering their ears. All participants 
said that they heard the movies well.

There are a few other general issues with using movie stimuli. First, we cannot publicly release the stimuli 
themselves because of copyright restrictions. As such, we have provided links so that researchers can purchase the 
same version of the movies (e.g., to make annotations, discussed next). Second, movies are long. Though this does 
not seem to adversely affect motion, it could be problematic for some (e.g., clinical) populations in future work. 
Furthermore, for clinical ‘biomarker’ purposes71,72, long movies might be too expensive even if patients could sit 
still for 1.5 hours or more. However, there is no a priori reason that models cannot be trained on (e.g., network 
based representations of) NNDb data but tested on shorter purpose built subsets of movies.

Finally, there are a few limitations with regard to the participants and functional network analysis we did. 
First, the 10 participants asking for breaks might have a different pattern of activity before breaks. However, if it is 
assumed that this lasts for 20 seconds, it means that only 0.06% of the data were affected. This is unlikely to have 
a big impact on the results. Indeed, we censored timepoints during that time in five participants and it made no 
discernible difference to results. Second, movies obviously vary on a number of high (e.g., direction style) and low 
level properties (e.g., brightness). Having 10 different films means that words/faces appeared in a high variety of 
contexts, likely meaning the results are less confounded with these properties. Nonetheless, we did not control 
them (beyond including ‘Movie’ as a factor in the ISC models) because they were not yet annotated. These ‘con-
trols’ and other annotations will need to be made but, as we next discuss, this is a potential bottleneck to usage.

Annotation bottleneck.  In many usage cases, annotations will likely be necessary for testing hypotheses 
with the NNDb. This involves not only coding a stimulus feature of interest but also a suitable range of controls 
at a finer level of detail than used to label ‘language’ and ‘face’ networks herein. For example, if one were inter-
ested in the neurobiological mechanisms of how observed face movements are used by the brain during speech 
perception116,117, one might want to annotate a large range of features. These might include speech with more or 
less environmental noise when the face is visible (as audiovisual speech improves speech in noise). There might 
need to be annotated auditory-only controls matched for auditory/semantic features and visible scene complexity. 
There may need to be face-only controls or audiovisual controls with faces in profile, etc. If done manually, movie 
annotations at this level of detail will be very time consuming. Though this might prove necessary for testing 
some hypotheses, we suggest automated approaches and a brain-driven approach that might be used to speed up 
the annotation process.

Automated approaches to annotation can make use of a large number of existing text-based descriptions of 
movies to provide time-locked features. These include, (1) Detailed descriptions in scripts that can be aligned to 
movie times from subtitles118; (2) Detailed verbal descriptions from descriptive video services that make movies 
accessible to millions of visually impaired and blind individuals119; (3) Video clips from movies available on social 
websites like YouTube that can be matched to movie times by visual scene matching to include user comments as 
features120. For example, one two-minute clip from Gravity on YouTube currently contains over 3,800 comments 
that can be text-mined for features; and (4) There are many emerging automated machine learning approaches for 
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labelling features, e.g., the YouTube8M which has a vocabulary consisting of 4716 features (e.g., ‘cat’, ‘book’, ‘egg’, 
etc)121 or human action video datasets122. ‘Pliers’ is a tool that uses approaches like these to automatically extract 
features (https://github.com/tyarkoni/pliers)123. It is implemented in ‘NeuroScout’ (https://neuroscout.org/), a 
framework for providing and using these features to advance analysis of publicly available naturalistic datasets, 
with plans to host the NNDb.

Brain-driven annotations potentially decrease the need to annotate everything in movies. That is, the brain 
data itself can be used to identify movie timecodes for acquiring more detailed annotations. This allows users 
of the NNDb to focus on times when networks of interest are processing information, reducing the amount of 
movie that needs to be annotated. For example, ICA can be used to derive networks and associated independent 
component timecourses (as shown in Fig. 4, top). Users of the NNDb can annotate only what happens when the 
response is rising (or at peaks) in these timecourses in components that represent networks of interest (thus, 
being able to determine what the 11 individual participant networks grossly labelled as ‘Language’ are doing in 
Fig. 4). This can be done manually, with the aforementioned automated approaches or in a crowdsourced manner. 
For example, one could submit the videos from the at rise times in IC timecourses associated with Fig. 4 (top) 
containing the amygdala and have thousands of people quickly label observed emotional characteristics. Prior 
neuroscience research has successfully made use of crowdsourcing, e.g., using Zooniverse for things like quality 
control of image registration (https://www.zooniverse.org/projects/simexp/brain-match)124.

Analysis bottleneck.  Another potential bottleneck is analysis. There are arguably no standardised approaches 
for analysing complex and high dimensional fMRI data from long naturalistic stimuli like movies (though a few 
approaches are becoming increasingly common64,125,126). The computer science community has learned that an 
effective way to foster research on a topic is by running machine learning competitions on fixed datasets. These 
competitions allow unambiguous comparison of solutions to a problem and allow small improvements to be clearly 
noted and published. For example, the annual ‘ImageNet Large Scale Visual Recognition Challenge’ (ILSVRC) 
resulted in algorithms that outperform humans far more quickly than expected127. Machine learning approaches 
are becoming an increasingly common way to analyze fMRI data, with a growing number of examples applied to 
naturalistic movie stimuli126,128. We suggest that, to generate innovation in analysis, that competitions similar to 
the ILSVRC could be run using the NNDb to crowdsource the development of new machine learning (and other) 
approaches for fMRI data from movies. Indeed, such approaches are already being used to understand, e.g., how 
the visual system processes everyday objects (http://algonauts.csail.mit.edu/challenge.html).

Future of the NNDb.  We plan to make more fMRI data from the current and additional movies avail-
able as it is acquired, at the same (1.5 T) and higher field strengths (3 T), in typically developing and clinical 
groups. We hope that we will be able to amass the collective effort of our lab and other groups and platforms (like 
NeuroScout) to collate annotated stimulus features to be able to ask more and more specific questions of the data. 
Similarly, we hope a collective effort in analyses approaches applied to the NNDb (e.g., through machine learning 
competitions) will lead to advances in understanding how the brain works. We will make additional data, annota-
tions and improvements to older annotations and code for analyses available in regular updates.

Code availability
Scripts used in this manuscript are available at https://github.com/lab-lab/nndb (Online-only Table 1). Additional 
information can be found at http://naturalistic-neuroimaging-database.org/.
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