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Little has been published in terms of dose-finding methodology in virol-
ogy. Aside from a few papers focusing on HIV, the considerable progress in
dose-finding methodology of the last 25 years has focused almost entirely on
oncology. While adverse reactions to cytotoxic drugs may be life threatening, for
anti-viral agents we anticipate something different: side effects that provoke the
cessation of treatment. This would correspond to treatment failure. On the other
hand, success would not be yes/no but would correspond to a range of responses,
from small, no more than say 20% reduction in viral load to the complete elim-
ination of the virus. Less than total success matters since this may allow the
patient to achieve immune-mediated clearance. The motivation for this article
is an upcoming dose-finding trial in chronic norovirus infection. We propose a
novel methodology whose goal is twofold: first, to identify the dose that provides
the most favorable distribution of treatment outcomes, and, second, to do this
in a way that maximizes the treatment benefit for the patients included in the
study.
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1 INTRODUCTION

This introduction has three subsections: the first provides a broad description of our goals, the second a summary of
the study motivating this current work, and, finally, a subsection making these goals more specific and anticipating the
section that follows on statistical methodology.

1.1 Background and motivation

Antiviral agents can fail to be of benefit to a patient in two different ways. The first is where the toxic side effects are
such that the patient is unable to take the full course of treatment, thereby not being in a position to experience treat-
ment benefit. The second type of failure is where the treatment is well tolerated but fails to achieve a meaningful clinical
or virological effect, for example, a lessening of symptoms, reduction in viral load, or complete elimination of the virus
(or, for some viruses, induction of viral latency). When viral load is the main focus, efficacy may be categorized into
three or possibly more outcomes, ranging from a small, insignificant reduction in viral load to a large reduction or total
elimination (or suppression) of the virus. Given a new candidate treatment, and some range of possible treatment levels,
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usually doses, we may assume that there exists some optimum dose level. As we increase the dose levels we anticipate
seeing both higher rates of toxicities as well as higher rates of viral load reduction. While we anticipate that increasing
the dose will result in a greater reduction in viral load, we are obliged to take into account that the percentage of patients
able to benefit will diminish with dose. This is due to dose limiting toxicity (DLT), in this setting the impossibility for
the patient to see through the full course of treatment. In virology, toxicities that would justify stopping the treatment
would include significant disturbance of liver function or kidney function, a marked decline in blood cell counts, intol-
erable neuro-psychiatric side effects, persistent or widespread rash, or intractable gastrointestinal upset. While most of
these toxicities are on a continuum, and may be tolerable or treated symptomatically, treatment would need to be stopped
once certain thresholds are met (for blood tests) or when the problems become intolerable/untreatable (for clinical
symptoms).

In the oncology setting the focus of dose-finding methodology has evolved from that of toxicity alone, to attempts
at incorporating efficacy measures via expansion cohorts.1,2 Other designs have taken as their starting point the aim to
model the joint relationships between dose, toxicity, and efficacy.3-5 In oncology, it is conceivable that a patient suffers
a very great degree of toxicity in exchange for treatment benefit and, for this reason, the joint distribution of efficacy
and toxicity is worthy of study. However in virology trials, the joint distribution is not a concern. Our focus is on the
conditional distribution of viral reduction given the absence of toxicity. Indeed, experiencing a DLT in a virology study
means that the patient loses the opportunity to benefit from the treatment. This is because it is of paramount importance
to complete the course of treatment to identify a lasting treatment effect in virology. The need to complete the course has
been demonstrated in chronic Hepatitis C for example, where a treatment of 6 or 8 weeks instead of 12 weeks increases
the risk of relapse markedly.6,7 This implies that, even though the viral load may (or may not) have reduced sufficiently
over 6 weeks, a sustained cure would not be achieved, equating to a lack of efficacy. In terms of toxicity, it is more likely to
be a risk early in treatment in virology. Nonetheless toxicity can also occur later as a cumulative dose-related issue (often
seen with antibiotics such as linezolid). However, regardless of the timing of DLT, the treatment needs to stop and any
potential efficacy is seriously compromised.

The best dose, M, should show an optimal compromise between the goals of minimizing toxicity and maximizing
viral load reduction. A successful trial will identify the level M at which we can achieve adequate viral load reductions
without side effects in too high a proportion of patients. This assumes that such a level exists. If no such level exists then
the aim is a different one, to be in a position to be able to state that the new treatment is ineffective, and once again using
as few patients as possible. And, in all cases, each included patient is treated in accordance with ethical principles in as
much as, given all the information available, the best candidate dose from the current set of available doses.

1.2 A dose-finding clinical trial in norovirus

The methodology that we propose was developed for an upcoming study for patients with primary or irreversible
secondary immunodeficiency and established chronic norovirus infection resulting in symptoms and/or malabsorption.

Chronic norovirus infection is a serious complication of immune deficiency states leading to considerable morbid-
ity, healthcare utilization, and death.8 Currently no proven treatment exists.9 The antiviral medication favipiravir is
licensed in Japan for novel or pandemic influenza and has also been used for Ebola virus disease. It has shown promise
in pre-clinical and early clinical usage in chronic norovirus infection. Pre-clinical data, especially in a mouse model, is
encouraging and suggests that this medication drives lethal mutagenesis and viral extinction.10,11 Favipiravir was used
in one patient chronically infected with norovirus. A positive clinical response was seen (marked reduction in diarrhoea
and increase in weight) as well as evidence of viral mutagenesis and shifts in dominant viral populations. This case report
was published in the medical literature.12 However, at the population level, the optimal dose is unknown for chronic
norovirus.

The objective of the dose-finding trial will be to establish a tolerable and efficacious dose. A limited number of doses
will be considered, up to three. The primary efficacy endpoint will be the reduction of stool viral load. Patients will be
treated for 8 weeks in the absence of DLTs. Full elimination of the virus will be the best possible response, and the
minimum difference of interest will be an increase in the norovirus cycle threshold value in stool samples (inversely
related to viral load) of at least 7.5 units with favipiravir treatment, equivalent to 25% from the mean baseline level in
adults.
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1.3 Dose-finding trials in virology

Analogous to the objectives underlying the development of the continual reassessment method (CRM),13 we would like
to construct a design which aims to (1) keep to a minimum the number of patients treated at unacceptably high toxic
dose levels; (2) keep to a minimum the number of under-treated patients, that is, patients treated at dose levels producing
insufficient viral response; (3) respond quickly to errors in initial estimates, rapidly escalating in the absence of indication
of drug activity (viral load reduction) and rapidly de-escalating in the presence of unacceptably high levels of observed
toxicity; (4) come to an early closure; either success and a recommended level, or failure of the trial as a whole; and (5)
minimize the number of patients needed to complete the study (efficiency).

We do not expect to be able to construct a single design that would achieve all of the above objectives in any optimal
way. Instead we develop a class of designs that generally behave well. Designs that “behave well” are designs that broadly
meet the above five objectives. Extensive simulations, some of which are recorded here in Section 4, give support to the
contention that our proposed designs behave well. The following Sections 2 and 3 focus on the statistical ideas behind the
designs and how they can be implemented in practice.

There is an echo in the current work of the method introduced by O’Quigley et al for a specific dose-finding study
in HIV.14 Toxicity amounted essentially to an inability of the patient to maintain the treatment, which is not directly
comparable to the presence of serious adverse events as in oncology. In the HIV setting where potentially effective treat-
ments were already available it was possible to amalgamate toxicity with insufficient efficacy into a single category called
treatment failure. Indeed only a significant reduction in viral load was seen as a success. For the study here, and for the
majority of dose-finding studies in virology, we will not amalgamate these categories. Even if the anti-viral effect is weak
or medium, it should be considered to be an improvement on the absence of any effect due to toxicity. Indeed, any non-
trivial effect can have value and potentially allow the patient to achieve immune-mediated clearance. This means that,
contrary to HIV setting, we need to consider ordered categories of anti-viral effect rather than a yes/no outcome.

2 STATISTICAL FEATURES OF THE DESIGN

We have available a set of m fixed-order dose levels: d1, … dm. The probability of encountering toxicity at level di is
assumed to increase monotonically with dose. This monotonicity requirement is central to the CRM class of designs. We
may wish to assume some analogous property of monotonicity across the doses with regard to efficacy. One simple model
would be to suppose that, by focusing only on non-toxicities and dividing the efficacy outcomes into two categories of
viral load reduction, then the conditional probability of viral load reduction increases monotonically with dose. For more
than two categories, we may wish to summarize the distribution of outcomes by its average conditional upon no toxicity,
and assume that it is monotonic with dose. Whether or not we make this assumption, overall success, being the absence
of toxicity together with viral load reduction, is not necessarily monotonic.

Consider a trial in which j= 1, … n patients may be entered, n being the greatest number of patients that we are
prepared to treat in the study. The dose level for the jth patient, Xj can be viewed as random taking discrete values xj where
xj ∈ {d1, … dm}. Let Y j be a binary random variable (0, 1) where 1 denotes a toxic response. We define the true probability
of toxic response at Xj = xj by

R(xj) = Pr (Yj = 1|Xj = xj). (1)

Let V j be a categorical random variable with k response categories denoting the possible levels of viral load reduction
for the jth patient given that no toxicity was observed. Without loss of generality, we assume 3 different levels of viral
load reduction given no toxicity; between 0% and 20% (category 1), between 20% and 50% (category 2), and greater than
50% (category 3). Modifying these definitions or adding new intervals is conceptually straightforward. Given dose level
Xj = xj, we consider the conditional probability distribution of efficacy given no toxicity, Q(v|xj), over the three categories.
We write:

Q(v | xj) = Pr (Vj ≤ v | Xj = xj, Yj = 0) , v = 1, 2, 3. (2)

The expected value of the conditional efficacy distribution is given by:

E(Vj | xj,Yj = 0) =
3∑

v=1
v × {Q(v | xj) − Q(v − 1 | xj)} , j = 1, … ,n. (3)
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When Y j = 1 then treatment is incomplete because of toxicity and we assume that no efficacy can be observed. We
can then, in a formal way, extend the support of the distribution of V j to include the value 0, also noting that this condi-
tional distribution is degenerate, that is, Pr (V j = 0|Y j = 1)= 1. As a result, we have that E(V j|xj, Y j = 1)= 0. We now have
the conditional expectations for efficacy for when Y j = 0 and Y j = 1. Our decisions will be based on the unconditional
expectation of efficacy at each dose and this is simply:

E(Vj | xj) = R(xj) × E(Vj | xj,Yj = 1) + {1 − R(xj)} × E(Vj | xj,Yj = 0)
= {1 − R(xj)} × E(Vj | xj,Yj = 0). (4)

The unconditional expectation of efficacy is referred to as the center of mass (CM) of the distribution of V j. Note
that whereas E(V j|xj, Y j = 0) lies between 1 and 3, E(V j|xj) will lie between 0 and 3. Low values of E(V j|xj), close to zero
indicate high toxicity and/or effects that are too weak to be of clinical relevance. Values of E(V j|xj) close to 3 indicate
almost complete success without toxicity. In practice, we may not be so close to either zero or three and we will select the
most promising dose as the one that is closer to 3 than all of the others. It may not be close enough and, of course, that
is something that the clinical investigating team will need stipulate ahead of the trial. This can be informal since we are
not looking at a comparative trial. Our goal is to locate the best dose, M, and we will take this to be the dose

M = arg max i E(Vj | di) , i = 1, … ,m.

We estimate M sequentially and allocate patients to a dose level based on our current estimate of M. After a fixed number
of patients have been treated, we take the last estimated value of M to be our recommended dose for further study.

3 ADAPTIVE DOSE ALLOCATION

The most direct way to address the estimation of M is to obtain enough empirical observations at each level thereby
allowing us to determine, with sufficient precision, estimates of E(V j|di) , i= 1, … , m. The level 𝓁 that provides the
maximum of these corresponds to our current best estimate for M. In practice, the most direct way to achieve this would
be with random allocation between doses. At each observation or group of observations, estimates of R(di), Q(v|di), E(V |di)
can be updated and, finally, M̂ can be derived based on the empirical rates. We would anticipate these as being relatively
unstable early on in the study when few patients are treated. The main disadvantage of the random allocation approach is
that it requires the inclusion of many patients at levels that may be far from M, which is not in keeping with the objectives
of a well-behaving dose-finding algorithm.

3.1 Dynamic dose-finding algorithm

Instead of using randomization, we propose a dose-finding algorithm that does not depend on modeling to determine,
with sufficient precision, estimates of E(V j|di) , i= 1, … m. The purpose of the algorithm is to locate as efficiently as
possible the dose providing the highest CM. It is designed in such a way that it is both cautious and thorough.

The proposed dose-finding algorithm requires the definition of the maximum allowable threshold for toxicity, which
we denote as Rmax. This threshold represents the highest proportion of patients with a toxic reaction that can be allowed
during the course of the study for the disease-drug combination of interest. In practice we proceed in the following way.

3.1.1 First cohort of patients at the first dose level d1

The first cohort of patients is treated at the first (ie, lowest) dose level d1 and the observed toxicity rate is compared with
Rmax. As long as the observed rate is less than the threshold, then the next cohort of patients can be treated at the next
dose d2. If the rate is equal or larger than the threshold, d1 is repeated. The trial may be stopped early after the first few
cohorts of patients if the toxicity rate is estimated to be larger than the threshold with sufficient precision. The amount
of certainty required would be defined by the investigators prior to the start of the study.
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3.1.2 Cohorts of patients at subsequent dose levels

At d2 and higher, Rmax is used as a gatekeeper to determine the set of doses from which to choose for the next cohort:

1. if the observed toxicity rate is less than Rmax, dose escalation becomes an option. The set of potential doses for the
next cohort corresponds to all prior doses, the current dose and the next dose level up;

2. if the observed toxicity rate is larger than Rmax, the set of potential doses for the next cohort corresponds to all prior
doses (ie, all doses up to, but excluding, the current dose level);

3. if the observed toxicity rate is equal to Rmax, the set of potential doses corresponds to all prior doses and the current
dose.

Once the set of potential doses is determined, the dose for the following cohort is the one with the largest probability
of being the dose with the largest CM among the set of possible doses (see section below on estimation of the CM for
further details).

However, until there is experimentation on all doses, there is no observed data at the doses that have not yet been
tested. To allow the dose-finding algorithm to explore higher dose levels, a dose will be tested for the first time if the
observed toxicity rate of the dose level below it is less than Rmax. As the process unfolds, we update our running estimates
of the toxicity rates at the dose levels. In consequence it can easily occur that doses previously off limits as determined by
Rmax become once again available for experimentation. When this happens, we temporarily suspend allocation based on
the CM in favor of simple allocation to the newly available dose level. Once Rmax again limits the doses under consider-
ation or, if all doses have been tested, we revert to allocation based on the CM. For example, if at d4 the observed toxicity
rate is higher than Rmax, the next cohort of patients is allocated to the dose with the highest probability of being the one
with the largest CM among {d1, d2, d3}, which could be d3 for instance. The next cohort would then be treated at d3 and
if the observed toxicity rate (from all patients treated so far at d3) is less than Rmax, d4 would be retested. If the observed
rate at d4 (from all patients treated so far at d4) is now less than Rmax, the next cohort would be treated at d5. Section 4.1
provides an illustration of this process in a hypothetical dose-finding trial.

This process is repeated until the total sample size is reached. At the end of the dose-finding trial, a comparison
between doses is made and a ranking is derived, based on the probability of any given dose being the one with the
largest CM.

3.2 Estimation of the center of mass

Assuming three efficacy categories given no toxicity, and an additional category of no efficacy when there is a toxic reac-
tion, the unconditional distribution of efficacy V j has four possible categories. To estimate E(V j|di) , i= 1, … m, which
is the CM of V j, we exploit the Bayesian Dirichlet-Categorical model. In the Dirichlet-Categorical model, at dose di, the
distribution of V j|Pi follows a categorical distribution denoted as C(k,Pi), where Pi follows a Dirichlet distribution and
k= 4. Effectively Pi is the vector of event probabilities associated with the k= 4 categories of the distribution at dose di,
i= 1, … m.

We define the vector 𝛼 of hyperparameters for the Dirichlet distribution as a vector of length k= 4 of the form
𝛼 = (1, 1, 1, 1). This Dirichlet distribution is the generalization of the uniform distribution, where the sum of the proba-
bilities equals one. In other words, the Dirichlet distribution D(4, (1, 1, 1, 1)) is the prior distribution of Pi. Consequently,
the prior mean proportion in each category of V j at dose di is 25%. Given that the CM at dose di, defined in Equation (4), is
a weighted average of the value of the categories by their associated probabilities, its prior distribution can be calculated
by sampling from the D(4, (1, 1, 1, 1)), and it is shown in Figure 1.

The posterior distribution of Pi is a function of the prior distribution and the observed data. We denote by the vector vi
the observed number of occurrences in the k categories at di as vi = (v0i, v1i, … , v(k− 1)i). The posterior distribution of Pi is
Pi|𝛼, vi ∼ D(k, 𝛼 + vi) = D(k, 1 + v0i, 1 + v1i, … , 1 + v(k−1)i). By sampling from the posterior distribution of Pi, the posterior
distribution of the CM at dose di can be calculated as a linear combination of the probabilities and the associated values
of the categories.

Independent sampling from posterior distributions at all dose levels allows to calculate the probability that each dose
is the one with the largest CM, by recording which dose has the largest CM at each sampling iteration.
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3.3 Impact of the prior distribution on estimation of M

At dose di , i= 1, … , m, we associate a Dirichlet distribution D(k, 𝛼i) where 𝛼i = (𝛼1i, … , 𝛼ki) and Si =
∑k

j=1 𝛼ji. The
expected value of the proportion in each of the k categories at dose di is then E(Pki) = S−1

i 𝛼ki. We characterize the Bayesian
Dirichlet-Categorical model via its prior means, each at 25% so that E(Pki)= 1/4. The posterior distribution of Pi is a
function of the prior distribution and the observed data. Using the same notation as above, the vector vi denotes the
observed number of occurrences in the k categories at di as vi = (v0i, v1i, … , v(k− 1), i). The posterior distribution of Pi is
Pi|𝛼, vi ∼ D(k, 𝛼 + vi) = D(k, 1 + v0i, 1 + v1i, … , 1 + v(k−1),i). The posterior mean of Pi is a combination of the prior means
and the observed proportions. The vector of observed proportions is 𝜋i = V−1

i vji , j = 0, … , k − 1,where Vi =
∑k−1

j=0 vji. The
posterior mean of Pi, Pi|𝛼, vi, is given by

Si

n + Si
× E(Pi) +

n
n + Si

× 𝜋i,

where n is the total number of observations. This means that the posterior mean of Pi is a weighted average of the observed
proportions and the prior mean proportions, with weights based on the observed sample size and Si =

∑k
j=1 𝛼ji. Effectively

the total effective sample size is the sum of the observed sample size plus Si. For example, with a sample size of six patients
and 𝛼 = (1, 1, 1, 1), the observed proportions make a contribution of 60% to the posterior mean proportions. In designing
any study, we may wish to consider the impact of 𝛼i, at dose levels di , i= 1, … , m, on estimation early in the study.

4 SIMULATIONS

4.1 Illustration of a single hypothetical dose-finding trial

Consider a trial with three potential doses {d1, d2, d3}, 30 available patients and the cohort size is set at 6 patients. The
maximum allowable threshold for toxicity, Rmax, is set at 50%. Four response categories are of interest. The first category,
k= 0, corresponds to a toxic reaction to the treatment implying failure to observe any efficacy. k= 1 corresponds to no
toxicity but also no efficacy at all or too little for it to be of clinical relevance, k= 2 corresponds to a medium level of
efficacy, and k= 3 corresponds to high efficacy or complete viral load clearance.

The true conditional efficacy probabilities are provided in Table 1, as well as the CMs. In the Table, the conditional
efficacy probabilities are multiplied by (1− (toxicity rate)). This is because an efficacy response is observed only if a patient
does not experience a toxic reaction. For every dose level, the sum of the probabilities equals one. Based on the probabilities
in Table 1, a hypothetical trial is simulated.

The first cohort of six patients, treated at d1, experienced the following: 1 patient had a toxic reaction, four patients
did not experience toxicity but did not benefit, and one patient reached a high level of efficacy. Based on these results,
the Dirichlet prior of the probabilities associated with d1 was updated in order to calculate the posterior distribution of
its CM, which is plotted in Figure 2A.
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T A B L E 1 Probabilities of toxicities, efficacy and center of mass (CM) of a hypothetical trial with three dose
levels

k = 0 k = 1 k = 2 k = 3

(toxicity) (no/little efficacy) (medium efficacy) (high efficacy) CM

d1 0.10 (1-0.10)*0.70 (1-0.10)*0.20 (1-0.10)*0.10 1.26

d2 0.20 (1-0.20)*0.40 (1-0.20)*0.30 (1-0.20)*0.30 1.52

d3 0.30 (1-0.30)*0.10 (1-0.30)*0.20 (1-0.30)*0.70 1.82
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F I G U R E 2 Posterior distributions of CMs in hypothetical trial [Color figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 3 Posterior probabilities of having the largest center of mass (CM) in the hypothetical trial

The observed rate of toxicity was 1/6, which is less than 50% (Rmax). Consequently, the second cohort of patient was
treated at the second dose level d2. The following results were observed: one patient experienced toxicity, two patients did
not benefit from the treatment, and three patients reached complete viral load clearance. The posterior distributions of
the CMs after the first two cohorts is shown in Figure 2B.

The observed toxicity rate at d2 was below Rmax, and the trial escalated to d3 with the following observations: two
patients experienced toxicity, one reached a medium level of efficacy, and three patients reached a high level of efficacy.
The posterior distributions of the CMs at this stage is shown in Figure 2C. The probability that each dose was the dose
with the largest CM was calculated, and is shown in Figure 3A.

The next allocation was at the dose level with the highest probability of having the largest CM, given that the observed
toxicity rate at d3 was under the threshold. In this instance, d3 was repeated for the fourth cohort with the following
outcomes: three patients experienced toxicity, one patient reached a medium level of efficacy, and two patients reached a
high level of efficacy. Figure 2D shows the posterior distributions of the CMs at this stage of the trial.

Given that the total number of patients with toxicity at d3 was 5 (two patients from the third cohort and three patients
from the fourth cohort experienced toxicity), the observed toxicity rate was less than 50%. Consequently the set of potential
doses for the next cohort was still equal to {d1, d2, d3}. The fifth and last cohorts were allocated to the dose with the
highest estimated probability of having the largest CM, which was d2 with 56% probability. The results were: two patients
experienced toxicity, three patients did not reach an efficacy level of clinical significance and one patient reached a high
efficacy level. The posterior distributions at the end of the trial are shown in Figure 2E.

At the end of the trial with 30 patients in five cohorts of six patients, d3 had the highest probability of being the one
with the largest CM at 52%, as shown in Figure 3B. Overall six patients were treated at d1, 12 patients at d2, and 12 at d3.

4.2 Simulations of six different scenarios

The following simulations are based on a trial with three potential doses {d1, d2, d3} and a sample size of 30 patients.
Cohorts of 6 patients are used for the simulations. For every scenario, Rmax is set at 50%.

We consider six different scenarios, which are quantified in Table 2. Each scenario was simulated 10 000 times. In
scenario 1, all doses are acceptable as far as the toxicity rate is concerned, and d3 is the most efficacious dose. In scenario
2, toxicity rates are higher than in scenario 1, but still under Rmax and d3 has the largest CM. In scenario 3, although



DEHBI et al. 9

T A B L E 2 Probabilities of toxicities, efficacy and center of mass (CM) for six different scenarios

k=0 k=1 k=2 k=3

(toxicity) (no/little efficacy) (medium efficacy) (high efficacy) CM

Scenario 1

d1 0.10 (1-0.10)*0.80 (1-0.10)*0.10 (1-0.10)*0.10 1.17

d2 0.20 (1-0.20)*0.40 (1-0.20)*0.30 (1-0.20)*0.30 1.52

d3 0.30 (1-0.30)*0.10 (1-0.30)*0.10 (1-0.30)*0.80 1.89

Scenario 2

d1 0.15 (1-0.15)*0.75 (1-0.15)*0.20 (1-0.15)*0.05 1.10

d2 0.30 (1-0.30)*0.60 (1-0.30)*0.30 (1-0.30)*0.10 1.05

d3 0.45 (1-0.45)*0.05 (1-0.45)*0.20 (1-0.45)*0.75 1.48

Scenario 3

d1 0.20 (1-0.20)*0.70 (1-0.20)*0.20 (1-0.20)*0.10 1.12

d2 0.40 (1-0.40)*0.10 (1-0.40)*0.30 (1-0.40)*0.60 1.50

d3 0.70 (1-0.70)*0.10 (1-0.70)*0.10 (1-0.70)*0.80 0.81

Scenario 4

d1 0.30 (1-0.30)*0.80 (1-0.30)*0.10 (1-0.30)*0.10 0.91

d2 0.65 (1-0.65)*0.40 (1-0.65)*0.30 (1-0.65)*0.30 0.67

d3 0.80 (1-0.80)*0.10 (1-0.80)*0.10 (1-0.80)*0.80 0.54

Scenario 5

d1 0.55 (1-0.55)*0.80 (1-0.55)*0.10 (1-0.55)*0.10 0.59

d2 0.75 (1-0.75)*0.40 (1-0.75)*0.30 (1-0.75)*0.30 0.48

d3 0.90 (1-0.90)*0.10 (1-0.90)*0.10 (1-0.90)*0.80 0.27

Scenario 6

d1 0.05 (1-0.05)*0.80 (1-0.05)*0.10 (1-0.05)*0.10 1.24

d2 0.06 (1-0.06)*0.95 (1-0.06)*0.03 (1-0.06)*0.02 1.01

d3 0.07 (1-0.07)*0.98 (1-0.07)*0.02 (1-0.07)*0.01 0.96

d3 is the most efficacious when there is no toxicity, the true toxicity rate at d3 is greater than Rmax. In this scenario, d2
is the dose with the largest CM. In scenario 4, the toxicity rate of d2 and d3 is greater than Rmax, and d1 has the largest
CM. Scenario 5 is one where all doses have unacceptably high toxicity rates. In scenario 6, the toxicity rates are very low
(under 10%) and d1 has the largest CM.

The results of the simulations are reported in Table 3. In all scenarios, the dose with the largest CM was selected more
than 60% of the time. In each scenario, more patients were treated at the dose with the largest CM than at the other two
doses. Importantly, in scenario 5 where even the toxicity rate of d1 is greater than Rmax, the algorithm recommended
d1 81% of the time. However, in practice, the trial may not have reached its full sample size of 30 patients. As noted in
Section 3.1, a trial may be stopped early after the first few cohorts of patients if the toxicity rate is estimated to be larger
than the threshold with sufficient precision, which is trial-specific.

We investigated the influence of the sample size on the performance of the design for the first three scenarios. In
Table 4, we report the percentage of simulations that identified the dose with the largest CM for sample sizes of 24, 30,
36, 42, and 48 patients in cohorts of six patients.

The performance of the dose-finding design increases with sample size. However, the incremental gain in performance
declines progressively. Doubling the sample size, from 24 to 48 patients, increased this chance by less than 10 percentage
points in all three scenarios. Increasing the sample size from 42 to 48 patients increased the chance to identify the dose
with the largest CM by 1 percentage point, in all three scenarios. The proportion of patients receiving the dose with the
largest CM also increases with sample size.
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Scenario d1 d2 d3

1 % recommendation for dose 0.03 0.22 0.75

% of patients receiving dose 0.21 0.29 0.50

2 % recommendation for dose 0.22 0.15 0.63

% of patients receiving dose 0.24 0.33 0.43

3 % recommendation for dose 0.20 0.72 0.08

% of patients receiving dose 0.28 0.49 0.23

4 % recommendation for dose 0.62 0.19 0.19

% of patients receiving dose 0.45 0.37 0.18

5 % recommendation for dose 0.81 0.15 0.04

% of patients receiving dose 0.82 0.13 0.05

6 % recommendation for dose 0.71 0.17 0.12

% of patients receiving dose 0.48 0.28 0.24

T A B L E 3 Recommendation and in-trial
allocation for the six scenarios

T A B L E 4 Recommendations for the dose with the largest center of mass (CM) and in-trial allocation for the
first three scenarios and different sample sizes

Scenario n = 24 n = 30 n = 36 n = 42 n = 48

1 % recommendation for d3 0.72 0.75 0.78 0.79 0.80

% patients receiving d3 0.43 0.50 0.54 0.58 0.60

2 % recommendation for d2 0.60 0.63 0.64 0.65 0.67

% patients receiving d2 0.36 0.43 0.46 0.48 0.50

3 % recommendation for d2 0.69 0.72 0.75 0.77 0.78

% patients receiving d2 0.43 0.49 0.53 0.57 0.59

Scenario cohort = 3 cohort = 5 cohort = 6

1 % recommendation for d3 0.68 0.72 0.75

% patients receiving d3 0.54 0.50 0.50

2 % recommendation for d2 0.60 0.62 0.63

% patients receiving d2 0.47 0.43 0.43

3 % recommendation for d2 0.69 0.70 0.72

% patients receiving d2 0.55 0.52 0.49

T A B L E 5 Recommendations
for the dose with the largest CM
and in-trial allocation for the first
three scenarios with a fixed sample
size of 30 and different cohort sizes

The effect of the cohort size, for a fixed sample size of 30 patients, was also investigated. In Table 5, we report the
operating characteristics of the design for cohort sizes of 3, 5, and 6 patients.

4.3 Comparison of the dose-finding algorithm with a randomized approach

A competing experimental design might simply randomize patients to the available levels without making any use of the
accumulating information on the relationship between these levels and CM in order to guide dose allocation. As far as final
recommendation is concerned, such a design ought work reasonably well, but would have the disadvantage of increasing
the probability of patients being exposed to potentially unsafe doses. Equally, we may anticipate finding too many patients
who have been exposed to levels that are insufficiently effective. It is, nonetheless, instructive, via simulations to compare
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T A B L E 6 Comparison between dose-finding algorithm and randomization in terms of recommendation for the dose with the largest
center of mass (CM) and in-trial allocation for the first three scenarios with three different sample sizes

n= 24 n= 30 n= 36

Scenario
Dose-
finding

Randomi-
sation

Dose-
finding

Randomi-
zation

Dose-
finding

Randomi-
zation

1 % recommendations for d3 0.72 0.71 0.75 0.73 0.78 0.76

% of patients receiving d3 0.43 0.33 0.50 0.33 0.54 0.33

2 % recommendations for d2 0.60 0.67 0.63 0.70 0.64 0.73

% of patients receiving d2 0.36 0.33 0.43 0.33 0.46 0.33

3 % recommendations for d2 0.69 0.69 0.72 0.72 0.75 0.75

% of patients receiving d2 0.43 0.33 0.49 0.33 0.53 0.33

the proposed dose-finding algorithm with a randomized design in terms of performance (ie, proportion of studies that
correctly recommend the dose with the largest CM). This exercise was done purely for statistical comparison purposes
since, in practice, we would not advocate a randomization strategy that deliberately makes no use of information on the
possible relationship between dose level and outcomes during the course of the study.

Three sample sizes were used for this comparison: 24, 30, and 36 patients. In the case of randomization, a third
of the patients are randomly allocated to each of the three doses {d1, d2, d3}. For the algorithmic approach developed
in Sections 2 and 3, cohorts of six patients were used. Table 6 reports the results. In scenarios 1 and 3, the perfor-
mance of the randomized design was very similar to that of the algorithmic design. In scenario 2, the randomized
design selected the best dose slightly more frequently than the dose-finding design. For example, where the algorith-
mic design selected the best dose in 64% of the simulations with six cohorts of six patients, a randomized approach with
12 patients per dose recommended the best dose in 73% of the simulations. However, the algorithmic design allocated
46% of the patients on average to the best dose, while the randomized approach allocated only a third of the patients to
that dose.

5 DISCUSSION

The simulations show that the performance of the proposed dose-finding methodology is very encouraging in a range of
realistic scenarios. The optimal dose was selected in more than 60% of the simulations. Considering the dose with the
largest center of mass and the second best dose, the algorithm recommended one of these two doses more than 75% of
the time.

Increased precision and more effective allocation may result from a greater degree of parameterization in our proposed
class of design. Dose-finding in virology, given the nature of the anticipated potential adverse reactions, will differ from
oncology in that there is not such a great need to appeal to models to help the investigators keep a strict control on these
adverse events. It would seem sufficient to work with empirical estimates and to simply ensure that, as in the current study,
we can keep the adverse events (corresponding to the inability to complete and obtain any benefit from the treatment)
to below some level. For the particular study of interest that motivated this publication, that of combating the norovirus,
the investigators felt that in the search for as much efficacy as possible, any amount of adverse events lower than 50%
would be acceptable. This helped guide our initial dose escalation strategy. In virology, efficacy is our driving concern and,
here, introducing some parametric structure into the algorithm may potentially increase precision and more effective
allocation. Efficiency gains could follow but, as always, these would be contingent upon a satisfactory fit and this would
necessarily form a part of the approach.

We assessed the effect on the operating characteristics of the sample size as well as of the cohort size. Doubling the
size from 24 patients to 48 patients increased the percentage of simulations that recommended the best dose, but by
less than 10 percentage points across the range of scenarios. It also increased the percentage of patients allocated to the
best dose. Changing the cohort size from six patients to five or three patients decreased the recommendation percentage
of the best dose, but only by a small amount of 7 percentage points. Simultaneously this increased the percentage of
patients allocated to the best dose. Consequently when designing a study, there is a need to consider the appropriate



12 DEHBI et al.

balance between cohort size and operating characteristics on the one hand, and other logistical considerations on the
other hand. Indeed a smaller cohort size may render the trial more adaptive to unfolding results as well as potential
external changes.

The simulations showed that the performance was close, as far as the accuracy of dose-finding recommendations
is concerned, to that of a randomized approach in two of the three scenarios that we considered, and was marginally
less good in one scenario. This is due to the adaptive nature of the dose-finding approach. The allocation of patients
during the study depends on previous observations. While the estimates of toxicity and efficacy may be unstable at
the beginning of the study, these may converge quickly if the doses have markedly different toxicity and efficacy pro-
files. In comparison the fixed nature of the randomized approach prevents the progressive convergence towards the
region where the best dose lies. From the patient’s perspective, this is a significant improvement as the patient has
a much higher chance than in the randomized design to be allocated to an optimal dose, or at least a dose near the
optimal region.

We anticipate that monotonicity, both in terms of efficacy and toxicity with respect to the doses, will apply in the
majority of circumstances. If, among a set of doses, there exists an optimal dose M that provides the best balance between
toxicity and efficacy that can be identified, then we assume that doses higher than M will show too high an increased rate
of toxicity to compensate for any gains in viral load reduction whereas, for doses lower than M, despite anticipated lower
rates of toxicity, the rate of viral load reduction may not be sufficient. Nonetheless, we have simulated one scenario where
monotonicity was not respected. In this scenario with three doses, the second dose was less toxic and more efficacious
than the third dose. It was found that the second dose was selected in approximately 70% of the simulations. Our sixth
scenario is also one where monotonicity was not respected efficacy-wise.

The sixth scenario of our simulations reflects a situation where the recommended dose may be safe but of little
value as far as efficacy is concerned. In such a situation, in practice the Data Safety and Monitoring Board (DSMB) may
decide, based on the totality of the evidence, that the dose-finding trial should be stopped early for lack of benefit. The
role of the DSMB is also critical in cases where even the first dose level (or other dose levels) may be too toxic. We
recommend that trialists specify in advance the statistical trigger(s) that may terminate the study early due to toxicity
concerns.

The proposed dose-finding methodology exploits the Bayesian Dirichlet-Categorical model to estimate the center of
mass of the distribution of responses. It is important to note that this means that the total effective sample size is the sum
of the observed sample size plus the sum of the prior parameters of the Dirichlet distribution. It is possible to follow the
dynamic dose-finding algorithm described in Section 3.1 purely on the observed proportions of patients in the different
response categories. However, the introduction of the Bayesian prior allows the quantification, and visual representation,
of the uncertainty about the distribution of responses and its center of mass.

There are few publications in virology on the important topic of dose-finding methodology. In the study of O’Quigley
et al,14 efficacy was dichotomized into a yes/no variable representing sufficient viral load reduction. In the method
described by Mason et al,15 a CRM approach was employed but instead of looking at DLTs, inefficacy, defined as a
binary variable, was the main endpoint. To our knowledge, our approach is the first to allow efficacy to be repre-
sented differently in the context of early phase dose-finding trials in virology. Given the specificities of virology, in
which grades of efficacy are expected, this development provides a more accurate representation of the clinical reality.
As previously stated, even medium levels of efficacy may allow immune-mediated clearance, or form the basis for the
introduction of additional complementary treatment. At the end of any given dose-finding trial, there remains uncer-
tainty in the selection of the best dose. In our simulated hypothetical trial described in Section 4, the dose that was
recommended at the end of the trial had a 52% chance of being the dose with the largest center of mass. It may be
advisable to complement a dose-finding trial in virology with a randomized comparison of the doses that are ranked
first, second, and perhaps even third, at the end of the dose-finding study. In the hypothetical trial, by selecting the sec-
ond and third doses for a randomized comparison, the probability that one of these doses is the one with the largest
CM is 84%. In other words, we can see the dose-finding trial as an elimination exercise prior to randomization. Doses
that show themselves to be poor candidates for clinical application would not enter the second phase of experimen-
tation. The calculation of the required sample size for this second phase is currently a matter of ongoing research
in our group. Dehbi and Hackshaw16 have published on sample size calculation for binary endpoints in selection tri-
als. This method may be extended to categorical endpoints. Alternatively the randomized phase may be based on a
binary endpoint, possibly the proportion of patients that reach a satisfactory reduction in viral load that ensures a
lasting effect.
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5.1 More aggressive viruses including SARS-CoV-2

The methods described here apply generally to dose-finding in virology. The more aggressive viruses associated with sig-
nificant mortality would come under that heading. At the same time, further improvements to the accuracy and overall
performance of the dose-finding design can be found by incorporating any new known specificities into the design struc-
ture. We mention here some of the features of more aggressive viruses that might better guide our construction of a
dose-finding algorithm.

1. Urgency. A more deadly, highly contagious, virus raises the issue of urgency. We may be facing a major public health
crisis for which the usual clinical trials paradigm—Phase I, Phase II, and then Phase III—simply fails. It is too slow
and, therefore, not fit for purpose. Recent developments from dose finding in oncology, in particular the inclusion
of expansion cohorts blurs to some degree the distinction between the early phase and the later phase trials.1,2 The
inclusion of randomization to the early phase trial allows us to greatly accelerate the development process, to learn as
we proceed, treating as best we can those patients in the trial while obtaining ever greater precision on our estimates
of the most effective dose to be used in practice.

2. Endpoints. The usual endpoints are toxicity and efficacy. Already, toxicity is defined differently in virology than in
oncology and we may again need consider the definition for more aggressive viruses. The next bullet point is also
important in that the definition of toxicity may not be the same across a whole population. As far as efficacy measures
are concerned, for norovirus, we have worked with some simple groupings. These groupings describe the degree of
reduction in viral load. For large studies that may be called for in the context of a serious public health issue, these
groupings could be refined. The impact of new definitions on the ability of the design to accurately identify the most
effective dose would need to be studied.

3. Patient heterogeneity. The more aggressive and deadly viruses are likely to behave differently with respect to different
patient groups. Those at greatest risk may well be very much in the minority. Potentially such a group would have
the most to gain by effective treatment. As a result the high risk group is likely to have a different toxicity threshold
than the low risk group: there being more at stake they are likely to be willing to accept a higher degree of side effects.
We might refer to this as heterogeneity in the toxicity threshold. But we may also need consider heterogeneity in the
criteria by which we judge efficacy since, for example, a younger patient population may respond well by a relatively
modest reduction in viral load but that such a reduction, in a high risk group, may be inadequate. Carrying out separate
studies in the different risk groups is always an option. However, when possible, bridging between related studies can
provide considerable gains in efficiency. Several examples from oncology could be a useful starting point.
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