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ABSTRACT
We introduce the skew-spectrum statistic for weak lensing convergence κ maps and test it against state-of-the-art high-resolution
all-sky numerical simulations. We perform the analysis as a function of source redshift and smoothing angular scale for individual
tomographic bins. We also analyse the cross-correlation between different tomographic bins. We compare the numerical results
to fitting-functions used to model the bispectrum of the underlying density field as a function of redshift and scale. We derive
a closed form expression for the skew-spectrum for gravity-induced secondary non-Gaussianity. We also compute the skew-
spectrum for the projected κ inferred from cosmic microwave background (CMB) studies. As opposed to the low redshift case,
we find the post-Born corrections to be important in the modelling of the skew-spectrum for such studies. We show how the
presence of a mask and noise can be incorporated in the estimation of a skew-spectrum.

Key words: Cosmology – Weak Lensing – Methods: analytical, statistical, numerical.

1 IN T RO D U C T I O N

Recently completed cosmic microwave background (CMB) experi-
ments such as the Planck Surveyor1 (Planck Collaboration XVI 2014;
Planck Collaboration VI 2018), have helped establishing a standard
model of cosmology, with the baseline cosmological parameters now
known with an unprecedented accuracy. However, many fundamental
questions in cosmology remain open. These include the nature of
dark matter and dark energy, a possible modification of General
Relativity on cosmological scales (Clifton et al. 2012; Joyce et al.
2014) and the nature of neutrinos mass hierarchy (Lesgourgues &
Pastor 2006). Next generation of large-scale surveys will provide
a massive amount of high-precision data carrying complementary
information that can help answer at least some of these questions.
Indeed, observational programs of many ongoing as well as future
surveys including the surveys e.g. Euclid2 (Laureijs et al 2006),
CFHTLS,3 PAN-STARRS,4 Dark Energy Surveys5 (Allam et al.
2016), WiggleZ6 (Drinkwater et al. 2010), Rubin Observatory,7

(Tyson et al. 2003), BOSS8 (Eisenstein et al. 2011), KIDS (Kuijken
et al. 2015), Roman Space Telescope (National Research Council
2010), lists weak lensing as their main science driver. From the early
days of detection weak lensing (see e.g. Munshi et al. 2008 for a
review) studies have now reached a level of maturity. Surveys such as

� E-mail: d.munshi@ucl.ac.uk
1http://sci.esa.int/planck/
2http://sci.esa.int/euclid/
3http://www.cfht.hawai.edu/Sciences/CFHLS
4http://pan-starrs.ifa.hawai.edu/
5https://www.darkenergysurvey.org/
6http://wigglez.swin.edu.au/
7http://www.lsst.org/llst/home.shtml
8http://www.sdss3.org/surveys/boss.php

Euclid will constrain the cosmological parameters with sub-per cent
accuracy and answer many of the most challenging questions that
cosmology is facing today.

Weak lensing at smaller angular scales probes scales that are in
the highly non-linear regime and contains a wealth of cosmological
information. This gravity-induced non-linearity (Bernardeau et al.
2002) introduces mode-coupling that is responsible for the resulting
departure from Gaussianity (Bartolo et al. 2004). Higher order
statistics beyond power spectrum estimation is typically used in
exploitation of the information content of weak lensing maps.
An accurate modelling of higher order statistics is important for
modelling the covariance of the lower order estimators as well as to
break cosmological parameter degeneracy. Early studies of higher
order statistics concentrated on cumulants (Bernardeau 1994a, b) in
real-space (Bernardeau, Mellier & van Waerbeke 2002; Bernardeau,
van Waerbeke & Mellier 2003). Future surveys such as Euclid
will have a near all-sky coverage and thus enable quantifying
higher order statistics in the harmonic domain where measure-
ments of individual modes will be less correlated (Amendola et al.
2013).

Most theoretical modelling in the highly non-linear regime were
based on perturbative calculations or its extensions (Bernardeau et al.
2002), variants of the halo models (Cooray et al. 2002), effective field
theory (EFT; Baumann 2012), or fitting-functions that are calibrated
from simulations (Scoccimarro & Frieman 1999; Gil-Marin et al.
2012). Many different estimators are currently available for analysing
departures from Gaussianity, including morphological estimators
(Munshi et al. 2012), position-dependent power spectra (Munshi
et al. 2020b), line-correlations (Eggemeier & Smith 2017), extreme
value statistics (Harrison & Coles 2011). peak-statistics (Kacprzak
et al. 2016; Shan et al. 2018), void statistics (Krause et al. 2013), and
probability distribution functions (Codis et al. 2016; Uhlemann et al.
2016; Valageas 2016; Gruen et al. 2018).
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The measurements of angular correlations have the benefit of
simplicity especially while the survey geometry (mask) is compli-
cated (Munshi & Jain 2001, 2000; Munshi 2000). However, such
measurements are highly correlated. In contrast, the measurements
in the harmonic domain are less correlated and contain independent
information especially when the sky coverage is high. One of the
motivation of this study is to develop analytical predictions for one
such proxy statistics to the bispectrum called skew-spectrum (Cooray
2001; Munshi & Heavens 2010) and test them against state-of-art
numerical simulations. We will borrow the concepts developed for
constructing skew-spectrum for the study of non-Gaussianity in the
context of cosmic microwave background (CMB) observations by
WMAP9 (Smidt et al. 2010; Calabrese et al. 2010) and Planck (Planck
Collaboration XIII 2016a, b) satellites. However our aim here is also
to include gravity-induced secondary non-Gaussianity. The skew-
spectrum is the lowest order member in the family of higher order
spectra (Munshi et al. 2011a,b). They can also be used to reconstruct
morphological estimators, e.g. Minkowski Functionals, in an order
by order manner in the presence of complicated survey topology
(Munshi et al. 2012). Recently the skew-spectrum statistics was used
to study the possibility of probing galaxy clustering using data from
the forthcoming generation of wide-field galaxy surveys (Schmittfull,
Baldauf & Seljak 2015; Dai, Verde & Xia 2019; Dizgah et al. 2020).

In this paper, we show that the skew-spectrum statistics can be
used to analyse the weak lensing maps that will be available from the
future stage-IV experiments such as Euclid or the Rubin Observatory.
We also show how the suboptimal skew-spectrum can be used
to probe the gravity-induced non-Gaussianity of the reconstructed
convergence maps from CMB observations. We will present the
skew-spectrum by cross-correlating different tomographic bins as
well as the CMB convergence maps and the low redshift weak
lensing convergence maps. In this context, we will emphasize the
importance of the post-Born corrections in theoretical modelling of
the bispectrum. Finally, we will consider many modified theories
of gravity and use second-order perturbation theory to model the
theoretical skew-spectrum at large smoothing angular scales to
provide an example of important science goals that can be achieved
using the skew-spectrum statistics.

This paper is organized as follows. In Section 2, we briefly review
the modelling of the density bispectrum. In Section 3, we introduce
our notations and briefly summarize the results of projected weak
lensing convergence or κ bispectrum. The Section 4 is devoted to the
discussion of the simulations we use in our study. In Section 5, we
present the estimator we use. The results are discussed in Section 6
and conclusion and future prospects are presented in Section 7.

2 MOD ELLIN G O F THE DENSITY
BISPECTRU M

We discuss relevant aspects of the tree-level perturbation theory in
this section. We also discuss extensions based on fitting-function,
which we use to compute the bispectrum and eventually the skew-
spectrum.

2.1 Tree-level perturbative calculations

In the weakly non-linear regime with density contrast (δ ≤ 1), the
gravitational clustering can be described by the Eulerian perturbation
theory (Munshi et al. 2008). However, the treatment eventually

9https://map.gsfc.nasa.gov/

breaks down when δ becomes non-linear (δ ≥ 1). Expanding δ in a
Fourier series, and assuming δ ≤ 1, for the pertubative series to be
convergent, we get

δ(k) = δ(1)(k) + δ(2)(k) + δ(3)(k) + . . . ; (1a)

δ(2)(k) =
∫

d3k1

2π

∫
d3k2

2π
δD(k1 + k2 − k)F2(k1, k2)δ(1)(k1)

× δ(1)(k2); (1b)

F2(k1, k2) = 5

7
+ 1

2

(
k1

k2
+ k2

k1

)(
k1 · k2

k1k2

)
+ 2

7

(
k1 · k2

k1k2

)2

.

(1c)

The linearized solution for δ will be denoted by δ(1)(k); higher order
terms δ(2), δ(3), ··· will denote the second- and third-order corrections
to the linear solution. The 3D wave vectors are denoted as k, k1,
k2, and their magnitudes as k = |k| and ki = |ki|. More details
of our Fourier convention will be introduced in Section 3.2. Our
Eulerian formalism is based on a perfect-fluid approach. This is valid
at large scales (i.e. before shell crossing). We will be taking the fitting-
function approach in the non-perturbative regime. in recent years
many new methods have been developed to tackle the gravitational
instability in the non-linear regime including EFT methods (see e.g.
Munshi & Regan 2012 and references therein).

2.2 Phenomenological fitting-functions

Beyond the quasi-linear regime non-perturbative tools become neces-
sary. One such approach was developed in Scoccimarro & Frieman
(1999) who proposed the so-called Hyper Extended Perturbation
Theory (HEPT) in the highly non-linear regime and a fitting-function
that connects it with the tree-level perturbative calculation. The fitting
function which interpolates these two regime is calibrated using
numerical simulations. Over the years similar but more accurate
fitting formula were developed by other authors (Gil-Marin et al.
2012), which essentially generalize the kernel F2 defined in equation
(1c) by introducing scale-dependent coefficients a(ni, ki), b(nj, kj),
and c(nj, kj):

F2(ki , kj ) = 5

7
a(ni, ki)a(nj , kj ) + 1

2

(
ki · kj

kikj

) (
ki

kj

+ kj

ki

)

× b(ni, ki)b(nj , kj )

+ 2

7

(
ki · kj

kikj

)2

c(ni, ki) c(nj , kj ). (2)

Here ne is the effective spectral slope associated with the linear power
spectra ne = d ln P

δ
(k)/d ln k, q is the ratio of a given length scale to

the non-linear length scale q = k/knl, where k3
nl/2π2D2

+(z)P δ(knl) =
1. Here D+(z) represents the linear growth rate of perturbations at
redshift z. At length scales where q � 1, the relevant length scales
are well within the quasi-linear regime, a = b = c = 1, and we
recover the tree-level perturbative results. In the regime where q
� 1, and the length scales we are considering are well within the
non-linear scale, we recover a �= 1 but b = c = 0. In this limit, the
bispectrum becomes independent of configuration. It was recently
pointed out by Munshi et al. (2020a) that the fitting function of Gil-
Marin et al. (2012) is not very accurate in describing the weak lensing
bispectrum. A more accurate fitting function was developed recently
in Takahasi et al. (2020) which we will be using in this study. The
original fitting function by (Scoccimarro & Frieman 1999) involved
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just six free parameters and was valid for k < 3hMpc−1 and 0 <

z < 1. The improved (Gil-Marin et al. 2012) formula has a limited
range of validity k < 0.4hMpc−1 and 0 < z < 1.5 and contains nine
parameters. The fitting function by Takahasi et al. (2019) contains
52 free parameters. Introduction of such a large number of free
parameters increases the validity range to k = 10hMpc−1 and z ≈ 1–
3. This will be important in modelling non-Gaussianity on arcminute
scales probed by the future stage-IV experiments.

3 W EAK LENSING STATISTICS IN
PRO JEC TION

In this section, we will relate the convergence bispectrum κ with its
3D density contrast δ counterpart. Then this bispectrum will be used
to construct the convergence skew-spectrum.

3.1 Projected weak lensing bispectrum

The weak lensing convergence κ and 3D density contrast δ(r) is
related by the following expression:

κ(θ) :=
∫ rs

0
drw(r)δ(r, θ );

w(r) := 3�M

2

H 2
0

c2
a−1 dA(r)dA(rs − r)

dA(rs)
. (3)

We have introduced a kernel w(r) above. In this expression, r =
|r| is the comoving radial distance to the source, θ describes the
angular position on the sky, �M is the cosmological matter density
parameter (total matter density in units of the critical density), H0 is
the Hubble constant, c is the speed of light, a = 1/(1 + z) is the scale
factor at a redshift z, dA(r) represents the comoving angular diameter
distance at a distance r and rs is the comoving radial distance to the
source plane. The corresponding redshift will be represented by zs.
To keep the analysis simple, in our study we will ignore the source
distribution and assume them to be localized on a single source plane
defined by zs. We will study various statistics as a function of zs. To
simplify the analysis, we will also ignore photometric redshift errors.
Throughout we will use the flat-sky approximation (Kilbinger et al.
2017; Kitching et al. 2017). Needless to say, such complications
are essential to link predictions to observational data, and will be
presented in an acompanying study.

Fourier decomposing δ along and perpendicular to the line-of-sight
direction we obtain:

κ(θ) =
∫ rs

0
drω(r)

∫
dk‖
2π

∫
d2k⊥
(2π )2

× exp[i(rk‖ + dA(r) θ · k⊥)]δ(k; r). (4)

Here, we have decomposed the 3D wavenumber k along and
perpendicular to the radial direction, k = (k�, k⊥). We have used the
following convention for the 3D Fourier Transform and its inverse:

δ(k) = 1

(2π )3

∫
d3r exp(−ik · r)δ(r);

δ(r) =
∫

d3k exp(i r · k)δ(k). (5)

The corresponding 3D power spectrum and bispectrum for δ are:

〈δ(k1)δ(k2)〉c := (2π )3δ3D(k1 + k2)Pδ(k1); k = |k|; (6)

〈δ(k1)δ(k2)δ(k3)〉c := (3π )2δ3D(k1 + k2 + k3)Bδ(k1, k2, k3). (7)

Using the small-angle approximation the projected power spectrum
Pκ (l) and bispectrum Bκ (l1, l2, l3) of the convergence field κ can be
expressed respectively in terms of the 3D power spectrum Pδ(k) and
bispectrum Bδ(k1, k2, k3):

P κ (l) =
∫ rs

0
dr

ω2(r)

d2
A(r)

Pδ

(
l

dA(r)
; r

)
; (8a)

Bκ (l1, l2, l3) =
∫ rs

0
dr

ω3(r)

d4
A(r)

Bδ

(
l1

dA(r)
,

l2

dA(r),
,

l3

dA(r)
; r

)
. (8b)

Detailed derivations of these expressions can be found in Munshi
et al. (2008). Cross-correlating two-tomographic bins can be used to
define cross-spectra P κ

αβ and cross-skew spectra Bκ
αβ .

P κ
αβ (l) =

∫ rmin

0
dr

ωα(r)ωβ (r)

d2
A(r)

Pδ

(
l

dA(r)
; r

)
; (9a)

Bκ
αβ (l1, l2, l3) =

∫ rmin

0
dr

ω1
α(r)ω2

β (r)

d4
A(r)

×Bδ

(
l1

dA(r)
,

l2

dA(r),
,

l3

dA(r)
; r

)
;

rmin = min(rα, rβ ); (9b)

wi(r) := 3�M

2

H 2
0

c2
a−1 dA(r)dA(rsi − r)

dA(rsi)
; i ∈ {α, β}. (9c)

The integration takes contribution only from the overlapping
redshift range of the two bins. Thus, the upper limit extends only
to the source plane defined by the lower redshift rmin = min(rα , rβ ).
Notice that P κ

αβ = P κ
βα but Bκ

αβ �= Bκ
βα and they carry independent

information. It is possible to directly deal with shear bispectrum and
relate them to density bispectrum thus avoiding the map making
process. See Munshi et al. (2011d) for bispectra constructed for
higher spin objects, i.e. shear as well as flexions.

3.2 Skew-spectrum in all-sky and flat-sky

The skew-spectrum statistic for κ is constructed by cross-correlating
the squared κ with itself. We start by introducing the spherical
harmonic transform of a convergence map κ(�̂) defined over the
surface of the sky using spherical harmonics Y
m(�̂) to define the
multipoles κ
m:

κ
m :=
∫

d�̂ Y
m κ(�̂); �̂ = (ϑ, ϕ); d�̂ = sin ϑ dϑ dϕ. (10)

Any Gaussian field is completely characterized by its power spectrum
Cκ


 which is defined as Cκ

 := 〈κ
mκ∗


m〉. In the flat-sky limit the power
spectrum Pκ (l) is identical to Cκ


 at high 
 with the identification l = 
.
The weak lensing κ maps are highly non-Gaussian. The bispectrum
characterizes departure from Gaussianity and is defined as the three-
point coupling of harmonic coefficients. The statistics beyond bispec-
tra, e.g. the trispectra and its higher order analogues are increasingly
noise dominated. By assuming isotropy and homogeneity the all-sky
bispectrum Bκ


1
2
3
is defined as

〈κ
1m1κ
2m2κ
3m3 〉c ≡ Bκ

1
2
3

(

1 
2 
3

0 0 0

)
. (11)

The Wigner-3j symbol appearing above in parentheses ensures
rotational invariance. It is only non-zero for the triplets (
1, 
2, 
3)
that satisfy the triangular condition and 
1 + 
2 + 
3 is even. The
reduced bispectrum bκ


1
2
3
is useful in directly linking the all-sky

bispectrum and its flat-sky counterpart. For the convergence field κ ,
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bκ

1
2
3

is defined through the following expression:

Bκ

1
2
3

:=
√

(2
1 + 1)(2
2 + 1)(2
3 + 1)

4π

(

1 
2 
3

0 0 0

)
bκ


1
2
3
.

(12)

Finally we are in a position to define the skew spectrum as the cross
power-spectra formed by cross-correlating the squared κ2(�̂) maps
against the original map κ(�̂).

S
 := 1

2
 + 1

∑
m

Real
{

[κ2]
m[κ]∗
m
} =

∑

1
2

Bκ

1
2
J
1
2
; (13a)

J
1
2
 :=
√

(2
1 + 1)(2
2 + 1)

4π (2
 + 1)

(

1 
2 


0 0 0

)
. (13b)

Here [κ2]
m represents the harmonic multipoles computed using a
harmonic decomposition of κ2 and ∗ denotes complex conjugation.
The commonly used (normalized) one-point skewness parameter
S3 = 〈κ3〉c/〈κ2〉2

c can be recovered from the skew-spectrum. The
third-order moment 〈κ3〉 is given by:

〈κ3(θs)〉c = 1

4π

∑



(2
 + 1)S
β
3

 (θs); (14)

The smoothing beam (window) is denoted as β
(θ s). Being a two-
point statistic, the skew-spectrum S
 is related to the two-to-one
correlation function ξ 21 in the real space. They are related by the
following expression:

ξ 21(θ12) := 〈κ2(θ1)κ(θ2)〉c = 1

4π

∑



(2
 + 1)S
P
(cos θ12)β3

 (θs).

(15)

Here P
 is the Legendre Polynomial and β
 is the Gaussian smoothing
beam with full width at half-maximum (FWHM) of θ s. Suitably
normalized two-to-one correlators the lowest order of a family of
statistics also known as cumulant correlator (Bernardeau 1996), it
has also been used in the context of weak-lensing surveys (Munshi
2000). The flat-sky bispectrum is similarly defined through:

〈κ(l1)κ(l2)κ(l3)〉c = (2π )2δ2D(l1 + l2 + l3)Bκ (l1, l2, l3). (16)

The flat-sky bispectrum Bκ (l1, l2, l3) is identical to the reduced
bispectrum b
1
2
2 for high multipole (Bartolo et al. 2004). This
can be shown by using the following asymptotic relationship:

G
1m1,
2m2,
3m3 ≡
∫

d�̂Y
1m1 (�̂)Y
2m2 (�̂)Y
3m3 (�̂)

=
√

(2
1 + 1)(2
2 + 1)(2
 + 1)

4π

×
(


1 
2 


0 0 0

) (

1 
2 


m1 m2 m3

)

≈ (2π )2δ2D(l1 + l2 + l3). (17a)

The skew-spectrum in the flat-sky is given by (Pratten & Munshi
2012):

S(l2) =
∫ ∞

0

l1dl1

2π

∫ 1

−1

dμ

2π
√

1 − μ2

× Bκ (l1, l2, −(l1 + l2))β(l1θs)β(l2θs)β(|l1 + l2|θs). (18)

In our notation μ = (l1 · l2/l1l2), and we have used β
1 (θs) = β(l1θs)
to denote the flat-sky beam. In the high-l limit we have S(l2) → S
2 .

Here a few comments about the skew-spectrum are in order. The
skewness has a high signal to noise. However, it lacks distinguishing
power. Therefore, such statistics cannot distinguish various contri-
butions, e.g. from primordial non-Gaussianity or non-Gaussianity
from intrinsic alignment of source galaxies from the gravity-induced
secondary non-Gaussianity. The skew-spectrum, on the other hand,
retains some of the information regarding the shape of the spectrum,
thus it can, in principle, allow us to separate various contributions or
remove possible source of contamination from systematics.

We consider a direct estimator in this paper. Optimality can be
achieved by using suitable weights (Komatsu, Spergel & Wandelt
2005; Munshi & Heavens 2010). However, optimality is not of crucial
importance for analysing weak lensing maps as the secondary non-
Gaussianity is expected to be detected with a very high signal to
noise. A direct estimator, which is simpler to implement, will thus
be useful for studying non-Gaussianity in weak lensing maps.

A few comments are in order. The skewness, skew-spectrum, and
bispectrum are all third-order statistics. However, their information
contents are not the same. The skewness is an one-point statistics
which can be constructed from the skew-spectrum. The skew-
spectrum being a two-point statistics cannot however be constructed
from the skewness. Similarly bispectrum is a Fourier (or harmonic)
analogue of the three-point correlation function. Being a three-
point statistics it cannot be constructed from the skew-spectrum
and contains more information. The use of skew-spectrum can be
treated as a data compression step as computation of the entire
covariance matrix of the bispectrum can be a challenging task. Indeed
the bispectrum, skew-spectrum, and skewness are equally sensitive
to the second-order non-linearities. However, the skewness cannot
distinguish among different contributions from various sources of
non-linearities that the skew-spectrum is able to do. Physically skew-
spectrum is the Fourier (or harmonic) transform of the two-to-one
correlation function as defined in equation (15).

Next we consider skew-spectrum for specific models of bispectrum
considered in Section 2.

3.3 The skew-spectrum in the tree-level standard perturbation
theory (SPT)

Analytical predictions for the skew-spectrum for large smoothing
angular scales can be obtained using perturbative calculations. The
low 
 limit of the skew-spectrum and its higher order generalizations
were recently presented in Munshi & McEwen (2020). This is
possible using a technique based on a generating function formalism.
However, for arbitrary 
 an order-by-order calculation is needed. We
will obtain these results using a Gaussian smoothing beam where
complete analytical results in closed form can be derived. We will
consider the gravity-induced (secondary) non-Gaussianity.

S (l2) =
∫

dr
w3(r)

d4
A(r)

∫
l1dl1

(2π )2
Pδ

(
l1

da(r)
; r

)
Pδ

(
l2

da(r)
; r

)

×β2(l1θs)β
2(l2θs)T (l1l2) (19a)

T (l1l2) =
[

36

7
I0

(
l1l2θ

2
s

) − 3

(
l1

l2
+ l2

l1

)

× I1

(
l1l2θ

2
s

) + 6

7
I2

(
l1l2θ

2
s

) ]
. (19b)

The angular integral in equation (18) can be done analytically using
the modified Bessel functions represented in Im. To simplify the
notation we adopt a parametrization in terms of the variables Cαβ

m :
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Figure 1. Examples of realizations of all-sky weak lensing convergence or κ maps used for our study. The left- and right-panel panels correspond, respectively,
source redshift zs = 2.0 and 0.5. The κ maps, we have used, were generated at a HEALPIX resolution Nside = 4096, and we have degraded them to Nside = 2048
for our study.

S (l2) = σ 2
LP κ (l2)R2

∫
l1dl1

2π
ln1 ln2 β2(l1θs)β

2(l2θs)T (l1l2); (20a)

R2 =
∫ rs

0
dr

w3(r)

d4+2n
A (r)

D4
+(z)/

[∫ rs

0
dr

w2(r)

d2+n
A (r)

D2
+(z)

]2

. (20b)

To separate the temporal r and angular l parts of the integral, we
replaced the linear power spectrum Pδ(k) with a power-law form,
i.e. Pδ(k) = AD2

+(z)kn. Due to the choice of normalization here the
skew-spectrum is independent of the power spectrum amplitude A.
The resulting skewness S3 can then be written as

S3 :=
∫

l2 d l2 S(l2) . (21)

The F2 kernel for many modified gravity theories have a similar
structural form and can be treated analytically. Similarly, the EFT
based approaches introduces corrective terms to F2 that too have a
very similar form (Munshi & Regan 2012). The kernel describing the
primordial non-Gaussianity can also be treated in a similar manner.
We will focus on certain well-known cases of modified gravity
theories. The analytical results for these models are important as
there are no established numerical fitting-function available in these
scenarios.

4 N U M E R I C A L S I M U L AT I O N S

The simulated all-sky maps we have used in our study are avail-
able for public use (Takahashi et al. 2017).10 Ray-tracing through
numerical (N-body) simulation were used to generate these maps.
The underlying simulations followed the gravitational clustering of
20483 particles. The lensing maps were generated using multiple lens
planes. A range of source redshifts were used zs = 0.05–5.30 with
�zs = 0.05. In our numerical study, we have used the maps with
source redshifts zs = 0.5, 1.0, 1.5, 2.0. For CMB maps, the lensing
potentials were constructed using the deflection angles which were
used to construct the lensing potentials and eventually the κ maps.
In recent studies inclusion of post-Born terms in lensing statistics
were outlined (Pratten & Lewis 2016). The maps we use include
post-Born corrections. In this study, we will see that at a low source
redshift such corrections do not play any significant role although
they do play an important role at higher redshifts, e.g. in case of

10http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky raytracing/

lensing of CMB. The healpix11 (Gorski et al. 2005) equal area
pixelization scheme was used in generating these maps. The number
of pixels denoted by Npix scale as Npix = 12N2

side where Nside is
the parameter that defines the resolution which take values Nside =
2N with N = 1, 2, ···. The set of maps we use in this study are
generated at Nside = 4096 and were cross-checked against higher
resolution maps. These maps constructed at different Nside were
found to be consistent with each other up to the angular harmonics

 ≤ 2000. Various additional tests were performed including the
Electric/Magnetic (E/B) decomposition of the shear maps for the
construction of κ maps (Takahashi et al. 2017). We have used high
resolution maps generated at Nside = 4096 and degraded them to
Nside = 2048 to analyse them for harmonic modes satisfying 


< 2Nside. The background cosmological parameters used for these
simulations are: �CDM = 0.233, �b = 0.046, �M = �CDM + �b,
�� = 1 − �M and h = 0.7. The amplitude of density fluctuation
σ 8 = 0.82 and the spectral index ns = 0.97. Fig. 1 shows examples of
maps used in numerical study. Several authors have used these maps
in the context of CMB lensing (Namikawa et al. 2019) and for weak
lensing of galaxies at low redhifts (Munshi et al. 2020a; Munshi &
McEwen 2020).

5 THE PSEUDO SKEW-SPECTRU M
ESTI MATOR

An inverse covariance weighting is needed in the construction of
an optimal maximum likelihood (ML) estimator or a quadratic
maximum likelihood (QML) estimator (Efsthathiou 2004). For high
resolution maps the size of the data vector, however, makes these
estimators difficult to implement (Oh, Spergel & Hinshaw 1990). As
a result many suboptimal estimators, which use heuristic weighting
schemes, have been developed. The so-called pseudo-C
 (PCL)
technique was introduced in Hivon et al. (2002) in the harmonic
domain. Later a related correlation function based approach was
introduced in Szapudi et al. (2001). These estimators are unbiased
but are suboptimal. Typically various heuristic weighting depending
on sky coverage, as well as noise characteristics can improve the
optimality of these estimators typically in noise dominated high-
 (or
smaller angular scales) regime. The maximum likelihood estimators,
on the other hand, can be efficiently used for larger smoothing scales.
Different hybridization schemes can be used to combine the large

11https://healpix.jpl.nasa.gov/
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Figure 2. In our study, we use a ‘pseudo Euclid’ mask. In constructing the
mask, all pixels (shown in dark) lying within 22 deg of either the galactic
or ecliptic planes are discarded. The remaining unmasked pixels (shown in
yellow) cover 14 490 deg2 of the sky, making fraction of the sky covered fsky

≈ 0.35.

angular scale (equivalently the low 
) estimates using QML with
small angular scale (high 
) PCL estimates (Efsthathiou 2004). In
our study, we will use a direct pseudo-C
 estimator for the skew-
spectrum. The direct estimator from the masked sky S̃
 is related
to the underlying all-sky S
 skew-spectrum through a mode-mixing
matrix M

′ that depends on the mask.

S̃
 = M

′S
; Ŝ
 = M−1


′ S̃
; 〈Ŝ
〉 = S
. (22a)

Here S̃ (21)

′ denotes the skew-spectrum computed from a map in the

presence of a mask w(�̂), Ŝ (21)

′ is the all-sky estimate. The mode-

coupling matrix M

′ is given in terms of the power spectrum of the
mask w(�̂) as follows:

M

′ = (2
′ + 1)
∑

′′

(

 
′ 
′′

0 0 0

)2
(2
′′ + 1)

4π

∣∣w2

′′

∣∣. (23)

Here w
 = 1/(2
 + 1)
∑

m w
mw∗

m is the power spectrum of the

mask constructed from the harmonic-coefficient w
m of the map. The
coupling matrix M

′ encodes the mode-mixing due to the presence of
a mask. We have used this estimator for estimation of skew-spectrum
from individual tomographic bins as well as cross-correlating two
different bins. In case of cross-correlation we have used the same

mask for the two different bins. Generalization of the PCL method
were developed in Munshi et al. (2011a,b,d,e).

In our study, we have used the mask which is shown in Fig. 2. To
construct this mask all pixels (shown in maroon) lying within 22 deg
of either the galactic or ecliptic planes are discarded. The remaining
unmasked pixels cover 14 490 deg2 of the sky, making fraction of the
sky covered fsky ≈ 0.35 (Taylor et al. 2019). Various aspects of noise
involved in cross-correlating CMB lensing maps and galaxy lensing
maps are discussed in Fabbian, Lewis & Beck (2019).

Typically, to construct an unbiased PCL estimator the noise
contribution is subtracted from the total estimates. This however
is not necessary for the construction of the skew-spectrum estimator
as the bispectrum of a Gaussian noise is zero. However, presence of
noise in the data does increase the variance of the estimator. We will
not attempt to construct the covariance matrix of our estimator. Such
a generalization will be presented in a future publication.

6 R ESULTS

In this section, we discuss the numerical results presented in this
paper. We have used all-sky simulations generated at Nside = 4096 for
validating the theoretical predictions. We have used the simulations
generated at lower redshifts for weak lensing studies along with
the lensing maps generated at zs = 1100 (last scattering surface).
Examples of the maps and mask used is presented respectively
in Figs 1and 2. We have used these maps for constructing the
skew-spectra at individual redshift as well as computing the skew-
spectrum by cross-correlating two different redshifts. Below we list
our findings.

(i) Skew-spectra from individual tomographic bins: First, we
compute the theoretical skew-spectra S
 using equation (21) as a
function of harmonics 
 for various smoothing angular scales as
well as redshifts. The results for lower redshift bins are plotted
in Fig. 3 and the results for the last scattering surface (LSS) is
plotted in Fig. 4. In Fig. 3 the panels from left to right correspond
to redshifts zs = 0.5, 1.0, 1.5, and 2.0. In each panel three different
smoothing angular scales are considered, from top to bottom the
curves correspond to FWHM of the Gaussian beam θ s = 0.0, 5.0,
and 10 arcmin as indicated. For the CMB sky shown in Fig. 4 the

Figure 3. The skew-spectrum S
 defined in equation (21) is being plotted for various smoothing angles and redshifts. The noisy purple lines correspond to
results from the simulations. The panels from left to right correspond to redshifts zs = 0.5, 1.0, 1.5, and 2.0. In each panel, we show skew-spectra corresponding
to Gaussian beams with full width at half maxima of θ s = 0, 5, and 10 arcmin, as indicated. We have considered all-sky simulations and no noise was included.
The theoretical predictions, shown in black, are computed using the expressions equations (13a)–(13b). The fitting function of Takahasi et al. (2019) was used
throughout this study to model the gravity-induced bispectrum Bδ . We use all modes below 
max = Nside in the computation.

MNRAS 498, 6057–6068 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/4/6057/5905423 by U
C

L, London user on 28 O
ctober 2020



Weak lensing skew-spectrum 6063

Figure 4. The skew-spectra S
 defined in equation (21) for the CMB is being plotted for various smoothing angles. The smooth dashed and dotted lines correspond
to theoretical predictions. The points with error-bars correspond to measurements from numerical simulations. The panels from left to right correspond to various
smoothing beams of Full Width at Half Maximum (FWHM) θ s = 0.0, 2.0, 5.0, and 10

′
. respectively. We have considered all-sky simulations and no noise was

included. The theoretical predictions are computed using (Takahasi et al. 2019). The dotted curves in each panels are computed using the Born approximation,
whereas the dashed curves are computed using more accurate post-Born approximation. The error-bars are computed using ten different realizations of the
simulations. The plots underline the importance of post-Born correction in the computation skew-spectrum. Although such corrections can safely be ignored at
lower redshifts.

panels from left to right correspond to four different Gaussian beams
θ s = 0.0, 5.0, and 10 arcmin. We have computed the skew-spectra
using the Born approximation as well as including the post-Born
correction terms (Pratten & Lewis 2016). We found that the post-
Born corrections will be important in modelling the skew-spectra
at high redshifts. However, for the lower redshifts we found this
corrections to be negligible as expected. We have considered all-sky
simulations and no noise was included. The theoretical predictions
are computed using the expressions in equations (13a)–(13b). The
fitting function of Takahasi et al. (2019) was used throughout in
this study to model the gravity-induced bispectrum Bδ . We use
all modes below 
max = 2Nside in our computation. We have also
removed all modes 
max < 100 from our computation. These fitting-
functions are found to be an excellent description of the simulated
data.

(ii) Cross-correlating two tomographic bins: The skew-spectra
computed by cross-correlating κ2(�̂) and κ(�̂) from two different
redshift bins is being plotted in Figs 5 and 6. In particular, squared
κ1 = κ(z1) defined for a source redshift z1 and κ2 = κ(z2) at redshift
z2 is being cross-correlated in the harmonic domain. For this plot
we restrict ourselves to z1 > z2. We use the expression of mixed
bispectrum given in equations (9b)–(9c) for computing the theoretical
predictions. The expression for the estimator for the skew-spectrum
is given in equation (21). From left to right-hand panels correspond
to z1 = 2.0, 1.5 and 1.0 respectively and various curves in each
panel correspond to z2 as indicated. The maps used were constructed
at HEALPIX resolution Nside = 4096. We have filtered all 
 > 2048
modes out before analysing them. No additional smoothing was
considered. We do not include any noise due to intrinsic ellipticity
distribution of galaxies. We have used one single all-sky realization
to compute the skew-spectra and no mask was included. The skew-
spectra constructed by cross-correlating κ2 at the Last Scattering
Surface (LSS, zs = 1100) and κ at lower redshift is presented in
Fig. 7. Similarly, the skew-spectrum constructed using κ at LSS and
κ2 at lower redshift is presented in Fig. 8. We found that the post-Born
correction is negligible in modelling the skew-spectrum constructed
cross-correlating maps from two redshifts.

(iii) Accuracy of predictions: To quantify the difference of
predicted skew-spectra and the one estimated from numerical simu-

lation, we have used the following statistics:

�b = 1

σb

[
Ŝb − Sth

b

]
. (24)

Here Ŝb represents the binned theoretical skew-spectrum and Sth
b

is the estimated binned skew-spectrum from numerical simulation
and σ b is the standard deviation of the fluctuations in individual 


modes within a bin. We have chosen a bin-size of δb. The results are
shown in Fig. 9. The left-hand panel shows the errors in skew-spectra
obtained by cross-correlating κ2

LSS and low redshift κ (upper curves)
and their symmetric counterparts (lower curves). The fitting functions
underpredict the simulation results for 〈κ2

LSSκ〉 and underpredict the
results for skew-spectra associated with 〈κLSSκ

2〉. The difference
between theory and simulation is lowest for zs = 0.5 and increases
with the redshift. For zs = 2.0 it can be as high as 1.5σ b. The
results are more pronounced for the intermediate bins. The middle-
and right-hand panels of Fig. 9 depicts �b for κ2

1 κ2 (middle-panel)
and κ2

2 κ1, respectively. The difference is highest for skew-spectra
involving zs = 0.5 and lower for higher redshift zs = 2.0. The �b

can reach a value of 2.5 for lower redshifts. The theory typically
underpredicts the data.

The individual skew-spectral bins are correlated as the skew-
spectrum is an integrated measure, i.e. individual 
 modes (bins)
depend on the entire range of 
 modes (bins). So a straightforward
χ2 analysis (using a diagonal covariance matrix) is not possible.
Nevertheless, notice that we have considered noise-free simulations
in characterization of errors. Inclusions of noise will increase σ b and
decrease �b. We have considered full-sky maps but, inclusion of the
masks will increase the scatter and thus further reduce the value of
�b. Hence, the deviations seen here should be seen as a maximum
possible deviation for the chosen Nside.

(iv) Mask: We have examined the impact of an Euclid-type mask
on skew-spectrum in a Pseudo-C
 based approach introduced in
Section 5. The results are presented in Fig. 10. The upper solid-
lines in each panel correspond to all-sky theoretical predictions of
S
. The upper lines with scatter correspond to the estimates from one
realization of the simulated maps. The left-hand panel corresponds
to the source redshift zs = 1.0 and the right-hand panel corresponds
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Figure 5. The skew-spectra computed by cross-correlating κ2 and κ from two different redshift bins is plotted. In particular, the squared κ1 = κ(zs1) defined
for a source redshift zs1 and κs2 = κ(zs2) at redshift zs2 are being cross-correlated in the harmonic domain. For this plot we restricted ourselves to zs1 > zs2.
The smooth lines correspond to the theoretical predictions and the lines with error bars correspond to results from numerical simulations. We use the expression
of mixed bispectrum given in equations (9b)–(9c) for computing the theoretical predictions. The expression for the estimator for the skew-spectrum is given in
equation (21). The panels from left to right correspond to zs1 = 2.0, 1.5 and 1.0 respectively and various curves in each panel correspond to z2 as indicated.
The maps used were constructed at Healpix resolution Nside = 4096. We have filtered all 
 > 2048 modes out before analysing them. No additional smoothing
was considered. We do not include any noise due to intrinsic ellipticity distribution of galaxies. We have used one single all-sky realization to compute the
skew-spectra and no mask was included.

Figure 6. Same as Fig. 5 but the skew-spectrum is being computed cross-correlating κ1 and κ2
2 instead of κ2

1 and κ2 for zs1 > zs2.

to zs = 2.0. The lower dashed-curves in each panel correspond to the
PCL based theoretical predictions S̃
 computed using equation (22a).
The corresponding (lower) lines with scatter are estimates from one
realization of partial sky with the Euclid-type mask, shown in Fig. 2,
applied.

(v) Noise: The impact of noise which we assume to be Gaussian on
estimation of skew-spectrum is shown in Fig. 11. In both panels the
source plane is fixed at zs = 1. The solid lines in each panel represent
the theoretical skew-spectrum for zs = 1. The dashed lines represent
the pseudo skew-spectrum represented as S̃l with an Euclid-type
mask being included. If we compare the scatter with corresponding
plots in Fig. 10 we can see how the inclusion of noise increases the
scatter though the estimator remains unbiased. Skew-spectrum for a
Gaussian noise alone is zero so the only effect the noise has on the
estimator is to increase its scatter.
The noise was generated at each pixel using a Gaussian deviate with
variance σ = σε/

√
n̄. Where we take σ ε represents the variance

of the observed ellipticity σ ε = 0.3, and n̄ is the average number
density of source galaxies per pixel computed using total number

of observed galaxies, fraction of sky covered and number of pixel
at a specific HEALPIX resolution. We have used two different values
of n̄. The left-hand panel of Fig. 11 corresponds to a source density
of ns = 30 arcmin−2 and the right-hand panel corresponds to ns =
10 arcmin−2. The fraction of the sky covered by the mask was taken
to be fsky = 0.35.

7 C O N C L U S I O N S

In this paper, we have introduced the skew-spectrum statistic as a
probe for weak lensing bispectrum. While we found an excellent
agreement of numerical simulations and fitting-function based theo-
retical predictions for the autocorrelation we have studied, we also
found significant deviation in many other situations and found that the
current analytical uncertainty is not sufficient for high accuracy work.
We have primarily focused on gravity-induced secondary bispectrum
in a �CDM cosmology. However, several extensions of our study
are possible.
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Weak lensing skew-spectrum 6065

Figure 7. The skew-spectra computed by cross-correlating κ2
LSS at the last scattering surface of zLSS = 1100 and low redshift weak lensing convergence maps

at zs is being plotted. As before the solid smooth lines in different panels correspond to theoretical results and the lines with error bars correspond to the results
from numerical simulations. The panels from left to right correspond to zs = 2.0, 1.5, 1.0, and 0.5, respectively. No mask or smoothing was considered. We use
the expression of mixed bispectrum given in equations (9b)–(9c) for computing the theoretical predictions.

Figure 8. Same as Fig. 7 but are constructed by cross-correlating κLSS against κ2
s .

7.1 Skew-spectrum in beyond �CDM scenarios

In most modified gravity theories and dark energy models, the
bispectrum is currently known only in the perturbative regime. We
have provided analytical expressions for the skew-spectrum in such
scenarios. To go beyond perturbative regime a non-linear model
for the bispectrum is required. It is expected that a fitting-function
based description in such scenarios will eventually be available as
more accurate simulations are performed. Similarly, the modelling
of bispectrum based on effective field theories will also be extended
to modified gravity theories. Once such results are available, they
can readily be used to compute the skew-spectrum in these models.

7.2 Higher order corrections

The theoretical expressions of the skew-spectrum are derived using
many simplifying assumptions. We have ignored the corrections due
to magnification bias as well as reduced shear which should be
included in more accurate theoretical predictions. In addition, the
skew-spectrum here is computed using the Limber approximation
(Kitching et al. 2017).

7.3 Skew-spectrum from shear maps

We have computed the skew-spectrum from a convergence map.
However, for many practical purposes a skew-spectrum estimated
directly from shear maps can bypass many of complications of the
map making process.

7.4 Intrinsic alignment

The intrinsic alignment (IA) of galaxies (see Vlah, Chisari & Schmidt
1910, and the references therein) are caused by the tidal interaction
and is a source of contamination to gravity-induced (extrinsic) weak
lensing. The lensing bispectrum induced by IA is typically at the level
of 10 per cent of the lensing induced bispectrum. Several methods
have been proposed to mitigate or remove such contamination using
joint analysis of power spectrum and bispectrum. The skew-spectrum
retains some of the shape information of the original bispectrum.
A joint analysis of power spectrum and skew-spectrum can thus
be useful in separation of these two different contributions. The
skew-spectrum introduced in this study can further be optimized
by introducing weights to judge the level of cross-contamination
from the intrinsic alignment much in the same way as was achieved
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Figure 9. In this figure we present the accuracy of the fitting function we have used in our study. We have used the binned skew-spectra for our comparison.
A bin-size of δb = 100 is being used. Here �
 represents the normalized deviation from predictions and results from simulations (see the text for details).
The left-hand panel corresponds to the skew-spectrum computed by cross-correlating the CMB sky and the low redshift weak lensing The middle- and the
right-hand panel correspond to the skew-spectra obtained by cross-correlating two tomographic lensing maps. The plots in the left-hand panel are obtained using
the results presented in the Figs 7 and 8. The upper set of curves correspond to the cross-correlation of tomographic bins against convergence map at zLSS i.e.
〈κ 2(zs)κLSS〉, whereas the lower curves correspond to their symmetric counterparts 〈κ(zs )κ2

LSS〉. The error in skew-spectra computed using lower redshift maps
that are associated with 〈κ 2(z)κLSS〉 are depicted in the middle panel. Their symmetric counterparts are shown in the right-hand panel. The line-styles used in
the middle and right-hand panels are identical. For the corresponding skew-spectra see Figs 5 and 6, respectively.

Figure 10. The pseudo-S
 for two different redshifts are presented. A Euclid-type mask was used in our study. The regions which are within 22 deg of the
galactic or ecliptic plane are removed from our study. The fraction of the sky left unmasked is fsky = 0.35 (roughly 14 490 deg2 of the sky). The left-hand (right)
panel corresponds to zs = 1.0(zs = 2.0). The upper smooth solid curves represents the theoretical S
. The two upper curves represent estimated skew-spectrum
from a single realization. The curve that shows more scatter represents skew-spectrum estimated from an all-sky map. The curve which shows more scatter
correspond to Ŝ
 using equation (22a).

Figure 11. The impact of noise (assumed Gaussian) on estimation of skew-spectrum is presented. In both panels the source plane is fixed at zs = 1. The solid
lines in each panel represent the theoretical skew-spectrum for zs = 1. The dashed line represent the pseudo skew-spectrum or S̃l for the Euclid-type mask being
considered. Inclusion of Gaussian noise increases the scatter but the estimator remains unbiased. The left-hand panel corresponds to source density of ns =
30 arcmin−2 and the right-hand panel corresponds to ns = 10 arcmin−2.
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in case of point source contamination of CMB studies designed to
detect primordial non-Gaussianity from Planck data.

7.5 Primordial non-Gaussianity and active perturbations

We have considered the gravity-induced non-Gaussianity in our study
as it is the most dominant source of non-Gaussianity in weak lensing
maps. However, similar results can also obtained for computing the
subdominant contributions from primordial non-Gaussianity as well
as secondary sources of non-Gaussianity induced by active sources,
e.g. cosmic strings.

7.6 Baryonic feedback

We have not included any baryonic feedback in our modelling of
the skew-spectrum but such corrections can be incorporated in the
skew-spectrum for direct comparison with any realistic data.

7.7 Covariance and likelihood

We have not discussed the covariance of the skew-spectrum in
this study. An accurate description of the covariance will be an
important ingredient of cosmological likelihood analysis involving
skew-spectrum. A simple form of covariance can be derived under
the assumption of Gaussianity and thus ignoring all higher order
correlation contributing to the covariance. Such an estimation will be
useful in the noise-dominated regime but will not be sufficient in the
highly non-linear scales characterized by high signal-to-noise probed
by the future surveys such as Euclid. The methods developed so far
in computing the covariance include the ones based on perturbative
analysis, halo model, or simulated mocks (Rizzato et al. 2019). These
methods can be adapted to compute the skew-spectrum covariance.
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