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Abstract In this paper, we propose a feed-forward control approach to protect arbi-
trary two-qubit pure and mixed initial states using the weak measurement. A feed-
forward operation and measurements are used before the noise channel, and after-
wards a reversed operation and measurements are applied to recover the state back
to its initial state. In the case of two-qubit pure states, we use the unraveling trick to
describe the state of the system in each step of the control procedure. For two-qubit
mixed states, a completely-positive trace-preserving (CPTP) map is implemented. Fi-
nally, the fidelity and success probability are used to evaluate the effect of protection.
The complete recovery conditions for the measurement strengths are derived, under
which we achieve the optimal fidelity and the success probability of recovering the
initial pure and mixed states.
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1 Introduction

The dynamic of open quantum systems becomes decoherent easily due to the in-
evitable interaction with the environment [1]. To suppress the effect of decoherence,
various strategies have been studied, such as decoherence-free subspaces [2], quan-
tum error correction [3–7], quantum feedback control (QFBC) [8–11] and quantum
feed-forward control (QFFC) [12–14]. In both quantum feedback control and quan-
tum feed-forward control, the measurement plays an important role. The measure-
ment in quantum theory significantly differs from that in classical theory. In quantum
measurement there is a trade-off between the information gain and the disturbance
of the system caused by the measurement [15]. Hence, the quantum weak measure-
ment technique is promising, since it has little effect on the dynamic of the quantum
system. Weak measurements generalize ordinary quantum measurements, and they
reveal some information about the quantum state. This process is achieved by lever-
aging a weak coupling between the measurement device and the system.

Amplitude damping is a major decoherence that occurs in many quantum systems
[16], such as a photon qubit in a leaky cavity, an atomic qubit subjected to sponta-
neous decay, or a super-conduction qubit with zero-temperature energy relaxation.
The specific control problem we are interested in here is the stabilisation against am-
plitude damping for two-qubit pure and mixed states. Similar problems have been
considered for one qubit quantum state recovery based on the QFBC and QFFC. A
quantum feedback control scheme was proposed in [16], which included quantum
weak measurement and correction rotation based on the result of the measurements
after the noise channel; and it was experimentally implemented [17]. This scheme
was studied for different initial states, measurements and feedback control bases
[18–20]. Furthermore, it has been illustrated that one-qubit state affected by ampli-
tude damping can be completely recovered through applying feed-forward control
[12]. Feed-forward control has been applied to make the state of the system immune
to the effect of an amplitude damping channel. A feed-forward control (FFC) tech-
nique was used to realize a better impact of the discrimination of two nonorthogonal
states after passing an amplitude damping channel [21]. Also, a quantum composite
control scheme was proposed [22], where quantum feedback control and quantum
feed-forward control were combined for protecting two nonorthogonal states of a
two-level quantum system against the amplitude damping noise. Most of the previ-
ous works on quantum state protection using quantum feed-forward control focused
on protocols for pure states [21,22], and none has addressed the issue of protect-
ing arbitrary mixed states. The QFFC scheme is a probabilistic scheme which in-
cludes the success probability in addition to the fidelity to evaluate the performance
of the control scheme. The QFBC and QFFC were mathematically studied to solve
the problem of protecting the completely unknown states against given noise [13,
14]. In fact, one essentially cannot suppress any given noise by using only QFBC. In
other words, if the initial state is unknown, only the unitary rotational part of noise
can be eliminated. In the QFFC control scheme, it was shown that if the noise is
weak, the best control scheme is to leave the state of the system unchanged; In case
of intense noise, one needs to measure the system before noise and after the noise,
based on the result of the measurement, reconstruct the state. Similar problems were
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considered for two-qubit quantum state recovery based on quantum gates [23]. An
arbitrary two-qubit pure state under amplitude damping in a weak measurement was
probabilistically recovered using Hadamard and CNOT gates. However, their scheme
cannot recover some states, in which they solved it by adding a step before the noise
to prepare the system in a more robust state. Later, the authors used the same method
to protect an arbitrary two-qubit mixed state [24]. In the case of protecting two-qubit
system, a feedback control to control entanglement in open quantum system by us-
ing a feedback action which relies on local operations and classical communication
was proposed [8]. However, this method is not optimal. Later an optimal feedback
control was found [9] by first gaining insights from the subsystem purity and then by
numerical analysis of the concurrence. This method is dependent on the initial state.
Furthermore, the universal optimal Markovian feedback control was considered to
control the entanglement of two-qubit [10], which is optimal and independent of the
initial state. In 2017, we studied the optimal control of quantum state transfer in
a two-dimensional quantum system by a sequence of non-selective projection mea-
surements. In that work we indicated that for a given initial state, one can always find
the corresponding projection operator that can effectively drive the given initial state
to any pure state. An external control field was proposed to compensate the effect of
the free evolution of system [15]. In 2018, we studied the possibility of protecting
the mixed state of a quantum system that went through noise by weak measurements
and control operations [20]. In 2019, we studied the suppression of phase damping
in two cases: there is and isn’t the y component in initial state and deduced the opti-
mal parameters and performances of the control schemes for the various initial state
situations [25].

In this paper, we consider the feed-forward control scheme for recovering arbi-
trary pure and mixed initial two-qubit states. We use the pre-weak measurement to
gain information about the initial state. Then to make the states almost immune to the
amplitude damping channel, we apply feed-forward operation based on the result of
measurements. After the noise channel, we restore the initial state; hence, a reversed
unitary operation and a post-weak measurement are applied. For mixed initial states,
we propose a completely-positive trace-preserving (CPTP) map to describe the re-
covery control and final state of the system. We use the Monte-Carlo method over
a large ensemble of initial states in experimental simulations to prove the effective-
ness of feed-forward control for any arbitrary two-qubit initial state. Furthermore, we
compare the feed-forward control for two-qubit with the method in [23], and prove
that feed-forward control proposed in this paper has much better performance.

The paper’s structure is arranged as follows. In Sect. 2 the feed-forward recov-
ery control for pure and mixed initial states based on weak measurement is studied.
Moreover, the complete recovery condition under which one can completely recover
the state of the system is given. In Sect. 3 the numerical experiments for general re-
covery and complete recovery control and their comparisons are given. Finally, the
conclusion is drawn in Sect. 4.
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2 Weak measurement based Feed-forward recovery control

The control task in this paper is to bring the state of the system after passing through
the noise channel back to its initial state as close as possible before being affected
by noise. To achieve this, the feed-forward control procedure consists of two parts:
a) before and b) after the noise channel parts. Before the noise channel, the pre-weak
measurement is applied to gain some information about the initial state. Then the
feed-forward operations are used to change the state in a way to reduce the effects
of the noise. Amplitude damping leaves the ground states unchanged and decays the
excited states by its decaying rate. Hence, the feed-forward operations need to bring
the states close to ground state of the noise channel. After the noise channel, the
reversed operations are applied to retrieve the information of the initial state. The
schematic diagram of the feed-forward recovery control is given in Fig. 1, which
consists of five steps. In the following, we give and analyze the detail formulas in
each steps for both pure and mixed initial states.

ρin

Pre-weak measurement
M ij

feed-forward operation
Fij

Noise channel

Reversed operation
Fij

Post-weak measurement
Nij

ρ fin

Fig. 1 Schematic diagram of the feed-forward recovery control scheme.

2.1 Two-qubit pure initial state

An arbitrary two-qubit pure initial state can be written as:

|ψin〉= α|00〉+β |01〉+ γ|10〉+δ |11〉 (1)

where |0〉=
(

1
0

)
and |1〉=

(
0
1

)
.
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We intend to protect this state from the noise by means of the feed-forward re-
covery control according to five steps described in Fig. 1.

Table 1 Measurement operators and control operations used in two-qubit feed-forward recovery control.

Pre-weak measurement Unitary operation Post-weak measurement

M00 =


p 0 0 0
0
√

p
√

1− p 0 0
0 0

√
p
√

1− p 0
0 0 0 1− p

 F00 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 N00 =


1−q 0 0 0

0
√

1−q 0 0
0 0

√
1−q 0

0 0 0 1


M01 =


√

p
√

1− p 0 0 0
0 p 0 0
0 0 1− p 0
0 0 0

√
p
√

1− p

 F01 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 N01 =


√

1−q 0 0 0
0 1−q 0 0
0 0 1 0
0 0 0

√
1−q


M10 =


√

p
√

1− p 0 0 0
0 1− p 0 0
0 0 p 0
0 0 0

√
p
√

1− p

 F10 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 N10 =


√

1−q 0 0 0
0 1 0 0
0 0 1−q 0
0 0 0

√
1−q


M11 =


1− p 0 0 0

0
√

p
√

1− p 0 0
0 0

√
p
√

1− p 0
0 0 0 p

 F11 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 N11 =


1 0 0 0
0
√

1−q 0 0
0 0

√
1−q 0

0 0 0 1−q



Step 1: In the first step we need to obtain some information about the initial state
by performing pre-weak measurement as: Π00 = M†

00M00, Π01 = M†
01M01, Π10 =

M†
10M10 and Π11 = M†

11M11 where the measurement operators Mi j(i, j = 0,1) are
given in Table 1, and p ∈ [0,1] is the pre-weak measurement strength. The state of
the system |ψin〉 after being measured by the pre-weak measurements Mi j becomes∣∣ψMi j

〉
as: ∣∣ψMi j

〉
=

Mi j|ψin〉√
〈ψin|M†

i jMi j

∣∣∣ ψin〉
(2)

with probability gMi j = 〈ψin|M†
i jMi j

∣∣∣ ψin〉.
Step 2: The feed-forward operation is applied based on the result of the pre-

weak measurement. The feed-forward operation brings the qubit closer to the ground
state and makes them less vulnerable to the amplitude damping. The feed-forward
operators are given in Table. 1. When the result according to M00 is acquired, the
system is in the ground state and it is immune to the amplitude damping. We apply
the identity operator as F00 to keep the state unchanged. As the result according to
Mi j is acquired, the corresponding Fi j is chosen as the feed-forward operation. The
state of the system

∣∣ψMi j

〉
after the feed-forward operation is given by

∣∣ψFi j

〉
:∣∣ψFi j

〉
= Fi j

∣∣ψMi j

〉
(3)

Step 3: The Two-qubit goes through the amplitude damping noise channel. The
amplitude damping of a single qubit can be represented by Kraus operators as e0 =(

1 0
0
√

1− r

)
, e1 =

(
0
√

r
0 0

)
, where r ∈ [0,1] is the possibility of decaying of the
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excited state [26]. For a two-qubit we assume that amplitude damping occurs for
both qubits locally and independently but with the same decaying rate r = r1 = r2.
Therefore the amplitude-damping process for the whole two-qubit system can be
described by four Kraus operators (emn, m,n = 0,1) as:

e00 = e0⊗ e0 =


1 0 0 0
0
√

1− r 0 0
0 0

√
1− r 0

0 0 0 1− r


e01 = e0⊗ e1 =


0
√

r 0 0
0 0 0 0
0 0 0

√
r
√

1− r
0 0 0 0


e10 = e1⊗ e0 =


0 0
√

r 0
0 0 0

√
r
√

1− r
0 0 0 0
0 0 0 0


e11 = e1⊗ e1 =


0 0 0 r
0 0 0 0
0 0 0 0
0 0 0 0



(4)

The state of the system
∣∣ψFi j

〉
in Eq. (3) after passing through the noise channel

is not pure anymore. But to make the calculation more manageable, we use a math-
ematical technique called unraveling. So the qubit trajectories can be divided into
two parts, ‘jump’ and ‘no jump’ trajectories, and each qubit can jump to state |0〉,
or ‘no jump’ happens. If both qubits jump, the system state becomes |ψe11〉 = |00〉
with probability ge11 =

〈
ψFi j

∣∣ e†
11e11

∣∣∣ ψFi j

〉
, which is non-invertible. If ‘no jump’ sce-

nario happens for at least one of the qubits, the state of the system transforms to

|ψemn〉=
emn

∣∣∣ψFi j

〉
√〈

ψFi j

∣∣∣ e†
mnemn

∣∣∣ψFi j

〉 with probability gemn =
〈
ψFi j

∣∣ e†
mnemn

∣∣ ψFi j

〉
and we can

recover the state of the system.
Step 4: After the noise channel, the reversed operations Fi j, which are the same

as the ones in step 2, are applied based on the feed-forward operations. The state of
the system after using the reversed operation becomes∣∣∣ψemn

Fi j

〉
= Fi j|ψemn〉 (5)

Step 5: We retrieve the information of the initial state by means of post-weak
measurement in a way that Mi jNi j is almost proportionate to I. The post-weak mea-
surement operators N0 and N1 are from the complete measurement sets

{
N0, N0

}
and{

N1, N1
}

, respectively, as:

N0 =

(√
1−q0 0

0 1

)
, N0 =

(√
q0 0
0 0

)
N1 =

(
1 0
0
√

1−q1

)
, N1 =

(
0 0
0
√

q1

) (6)
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where N†
0 N0 +N†

0N0 = I and N†
1 N1 +N†

1N1 = I.
In our recovery control we just preserves the result of Ni, discard the result of Ni

and normalize the final state at the end of recovery control process. The post-weak
measurement operators for two-qubit with q0 = q1 = q are given in Table. 1, where
q ∈ [0,1] is the post-weak measurement strength.

The state of the system after being measured by the post-weak measurement is
presented as: ∣∣∣ψemn

Ni j

〉
=

Ni j

∣∣∣ψemn
Fi j

〉
√〈

ψ
emn
Fi j

∣∣∣ N†
i jNi j

∣∣∣ ψ
emn
Fi j

〉 (7)

with probability gemn
Ni j

=
〈

ψ
emn
Fi j

∣∣∣ N†
i jNi j

∣∣∣ ψ
emn
Fi j

〉
.

Since we consider the damped state in two scenarios: ‘jump’ and ‘no jump’, the
final state of the system corresponding to Mi j is given by:

ρ
f in

Mi j
=

1

∑
m,n=0

gemn
Ni j

∣∣∣ψemn
Ni j

〉〈
ψ

emn
Ni j

∣∣∣√
gemns

Ni j

(8)

The success (selection) probability g f in
Mi j

for each weak measurement operator is:

g f in
Mi j

=
1

∑
m,n=0

gemn
Ni j

(9)

The total success (selection) probability gtotal after the whole process of recovery
control for all weak measurement operators is:

gtotal = g f in
M00

+g f in
M01

+g f in
M10

+g f in
M11

(10)

We derive the total success probability as a function of pre-weak measurement
strength p, post-weak measurement strength q and damping probability r as

gtotal(p,q,r) = (pq+qr− pqr−1)2 (11)

According to Eq. (11), the total success probability is not a function of initial
state. In other words, initial state elements do not have any effects on the amount of
total success probability.

The fidelity between the initial state |ψin〉 and the final state ρ
f in

Mi j
that corresponds

to each weak measurement operator is: FidMi j = 〈ψin| ρ f in
Mi j

∣∣∣ ψin〉. The total fidelity
Fidtotal for all weak measurement operators is calculated by the fidelity FidMi j as:

Fidtotal =
g f in

M00
FidM00+g f in

M01
FidM01+g f in

M10
FidM10+g f in

M11
FidM11

g f in
M00

+g f in
M01

+g f in
M10

+g f in
M11

(12)

The final expression for total fidelity is too long, so the behavior of the fidelity is
explained by numerical simulations in sec.III.
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To better understand the control process, here we present an analytic expression
only for measurement operator M00. All the states corresponding to all measurement
operators can be analytically obtained, although for brevity we do not bring them in
this paper.

In the first step, we apply a pre-weak measurement defined by Mi j. Let us consider
the result corresponding to M00 is acquired. The state of the system |ψin〉 in Eq. (1)
after being measured by M00 becomes:

∣∣ψM00

〉
= M00|ψin〉=

1
√gM00

(
α p|00〉+β

√
p
√

1− p|01〉

+ γ
√

p
√

1− p|10〉+δ
√

1− p|11〉
) (13)

where gM00 = α2 p2 + β 2 p(1− p) + γ2 p(1− p) + δ 2 (p−1)2 is the probability of
achieving the result according to measurement operator M00.

Since the result corresponding to M00 happens, before noise we choose the feed-
forward operation F00, and leave the state unchanged.

∣∣ψF00

〉
is the state of the system

after applying the feed-forward operation:

∣∣ψF00

〉
= F00

∣∣ψM00

〉
=
∣∣ψM00

〉
(14)

Now the two-qubit enters the noise channel. As we explained before, the state of
the system ‘jumps’ into |00〉 state or ‘no jump’ happens. The ‘jump’ scenario for both
qubits happens with probability ge11 =

〈
ψFi j

∣∣ e†
11e11

∣∣∣ ψFi j

〉
= |δ |2 r2(p−1)2, and the

state of the system becomes |ψe11〉 = |00〉. Also, ‘no jump’ scenario for both qubits
transfers the state into |ψe00〉 as:

∣∣∣ψe00
M01

〉
=

1
√ge00

(
α p|00〉

+β
√

p
√

1− p
√

1− r|01〉

+ γ
√

p
√

1− p
√

1− r|10〉
+δ (1− p)(1− r)|11〉

)
(15)

where ge00 = |α|2 p2 +(|β |2 + |γ|2)(p(1− p)(1− r))+ |δ |2 (1− p)2 (1− r)2 is the
probability of no jumping of both qubits after the noise channel. The state of the
system in the case that just one of the qubits jumps is analyzed in appendix A. Here
we calculate the states which both qubits jump or no jump. After the noise channel,
we make the reversed operation F00. Hence the state of the system from ‘no jumping’
trajectory becomes

∣∣∣ψe00
F00

〉
= F00|ψe00〉 = |ψe00〉, and the ‘jump’ trajectory becomes∣∣∣ψe11

F00

〉
= F00|ψe11〉= |00〉.
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At last the post-weak measurement is applied by using the measurement operator
N00. The state of the system from ‘no jumping’ scenario becomes:∣∣∣ψe00

N00

〉
=

1
√gN00

(
α p(1−q) |00〉

+β
√

p
√

1− p
√

1− r
√

1−q|01〉

+ γ
√

p
√

1− p
√

1− r
√

1−q|10〉
+δ (1− p)(1− r)|11〉

)
(16)

with probability ge00
N00

= |α|2 p2 (1−q)2+(|β |2+|γ|2)(p(1− p)(1− r)(1−q))+|δ |2 (1−
p)2 (1− r)2.

The jumping state after post-weak measurement becomes
∣∣∣ψe11

N00

〉
= |00〉 with

probability of ge11
N00

= |δ |2 r2(1− p)2(1−q)2. The final state of the system correspond-
ing to measurement operator M00 after passing through the whole control procedure
is given by:

ρ
f in

M00
=

1
ge00

N00
+ge01

N00
+ge10

N00
+ge11

N00

(
ge00

N00

∣∣∣ψe00
N00

〉〈
ψ

e00
N00

∣∣∣
+ge01

N00

∣∣∣ψe01
N00

〉〈
ψ

e01
N00

∣∣∣+ge10
N00

∣∣∣ψe10
N00

〉〈
ψ

e10
N00

∣∣∣+ge11
N00
|00〉〈00|

) (17)

where
∣∣∣ψe01

N00

〉〈
ψ

e01
N00

∣∣∣, ∣∣∣ψe10
N00

〉〈
ψ

e10
N00

∣∣∣, ge01
N00

, and ge10
N00

are presented in the appendix A.

2.2 Two-qubit mixed initial state

The state vector representation is only suitable for pure states. In this subsection we
use the completely-positive trace-preserving (CPTP) map based on density matri-
ces to describe the recovery control. To apply the proposed feed-forward recovery
control in the case of the mixed initial state, we consider a completely-positive trace-
preserving (CPTP) map, which acts on a two-qubit density matrix. Hence, the non-
normalized final recovered state corresponding to measurement operator Mi j(i, j =
0,1) is given as:

C(ρ̄ f in
Mi j

) =
1

∑
m,n=0

Ni jFi jemnFi jMi jρin (Ni jFi jemnFi jMi j)
†

=
1

∑
m,n=0

Ni jFi jemnFi jMi jρinM†
i jF

†
i je

†
mnF†

i jN
†
i j

(18)

where Ni j are the post-weak measurement operators, Fi j are the feed-forward op-
erations, Mi j are the pre-weak measurement operators given in Table. 1. Moreover,
emn,m,n = 0,1 are four different Kraus operators for amplitude damping noise given
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in Eq. (4). The probability for gaining the result ρ̄Mi j is the normalization factor of
Eq. (18) as:

ḡ f in
Mi j

=
1

∑
m,n=0

trace
(

Ni jFi jemnFi jMi jρinM†
i jF

†
i je

†
mnF†

i jN
†
i j

)
(19)

The total success probability for mixed initial states is given by substituting Eq.
(19) in Eq. (10).

Since the initial and final states are both mixed, we find the fidelity corresponds
to each measurement operator Mi j as:

FidMi j =

[
Tr

(√√
ρ̄

f in
Mi j

ρ̄in

√
ρ̄

f in
Mi j

)]2

(20)

The total fidelity for mixed initial state is defined by substituting Eq. (20) in Eq.
(12).

2.3 Complete recovery condition of feed-forward control

As we explained in subsection A, the state of the system after passing through the
amplitude damping noise channel will be in ‘jump’ or ‘no jump’ scenario. If one
of the qubits or both of them jump, we are not able to retrieve the information of
the initial state. However, when ‘no jump’ scenario takes place for both qubits by
selecting the appropriate measurement strength for the post-weak measurements, one
can make the state of the system after post-weak measurement

∣∣∣ψe00
Ni j

〉
, completely

same as the initial state |ψin〉. The state
∣∣∣ψe00

N00

〉
given in Eq. (16) is the final state of

the system for measurement operator M00 when no jump takes place for both qubits. It
should be equal to the initial state of the system given in Eq. (1). Hence, all the vectors
must be equal as: p(1−q)=

√
p
√

1− p
√

1− r
√

1−q=
√

p
√

1− p
√

1− r
√

1−q=
(1− p)(1− r), therefore, the complete recovery condition can be obtained as:

q = 1− (1− p)(1− r)
p

(21)

which is a function of damping probability r and pre-weak measurement strength p.
We emphasize that in this paper we will frequently use Eq. (21) as the complete

recovery condition. The complete recovery condition is the same for pure and mixed
initial states. In fact, the complete recovery condition is independent of initial state.

Here we show that under complete recovery condition obtained in Eq. (21), the
state

∣∣∣ψe00
N00

〉
given in Eq. (16) will be exactly same as initial state.
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By substituting the post-weak measurement strength q as Eq. (21), the state of the
system given in Eq. (16) becomes:∣∣∣ψ̃e00

N00

〉
=

1√
g̃e00

N00

(
α(1− p)(1− r)|00〉

+β (1− p)(1− r)|01〉
+ γ(1− p)(1− r)|10〉

+δ (1− p)(1− r)|11〉
)

=
(1− p)(1− r)√

g̃e00
N00

(α|00〉+β |01〉+ γ|10〉+δ |11〉)

(22)

with probability

g̃e00
N00

= |α|2 (1− p)2 (1− r)2 + |β |2 (1− p)2 (1− r)2

+ |γ|2 (1− p)2 (1− r)2 + |δ |2 (1− p)2 (1− r)2

= (1− p)2 (1− r)2
(
|α|2 + |β |2 + |γ|2 + |δ |2

)
= (1− p)2 (1− r)2

(23)

By substituting Eq. (23) in Eq. (22), the state
∣∣∣ψ̃e00

N00

〉
becomes:

∣∣∣ψ̃e00
N00

〉
=

(1− p)(1− r)√
(1− p)2 (1− r)2

(α|00〉+β |01〉+ γ|10〉+δ |11〉)

= α|00〉+β |01〉+ γ|10〉+δ |11〉= |ψin〉

(24)

Hence, one can see from Eq. (24) that the final state becomes exactly same as the
initial state.

The same process occurs for the final states of all measurement operators
∣∣∣ψe00

Ni j

〉
,

when ”no jump” scenario happens for both qubits. Therefore, under complete recov-
ery condition obtained in Eq. (21), when ”no jump” scenario happens for both qubits,
one can completely recover the state of the system, for all measurement operators.

Under the complete recovery condition obtained in Eq. (21), we can obtain the
complete recovery total success probability as follows. By substituting Eq. (21) in
Eq. (11), the complete recovery total success probability becomes:

gtotal(p,r) =
(1− p)2(1− r)2(2p+ r− pr)2

p2 (25)

According to Eq. (25), the total success probability under the complete recovery
condition is not a function of the initial state; therefore, the behavior of the total
success probability is the same for mixed and pure initial states.
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3 Experiments and Discussions

In this section we study the performance of the proposed scheme in two cases: a)
general recovery control, b) complete recovery control. In general recovery control
the variables in recovery control such as pre-weak measurement strength p and post-
weak measurement strength q have independent amounts. However, in complete re-
covery control, we use complete recovery condition in Eq. (21), where post-weak
measurement strength q is a function of pre-weak measurement strength p and damp-
ing probability r.

For each recovery control scheme we study the behavior of total success proba-
bility and total fidelity.

3.1 General recovery control numerical experiments

In this subsection, we consider the general recovery control for two-qubit, in which
the variables of pre-weak measurement strength p and post-weak measurement strength
q have independent values.

The final expression for total success probability as a function of pre-weak mea-
surement strength p, post-weak measurement strength q and damping probability r
is given in Eq. (11). Fig. 2 depicted the total success probability given in Eq. (11), in
general recovery scheme for a fixed amount of damping probability r = 0.5.
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Fig. 2 General recovery total success probability as a function of pre-weak measurement strength p and
post-weak measurement strength q for a fixed amount of damping probability r = 0.5.

As Fig. 2 shows, in general recovery control, post-weak measurement strength
has the most significant effects on the behavior of success probability. By selecting
weaker post-weak measurement strength, one can gain higher total success probabil-
ity.

Since the analytical expression for the total fidelity as a function of (p, q,r) in
general recovery control is complicated, we use the simulation experiments to study
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the behavior of the fidelity. The total fidelity as a function of post-weak measurement
and pre-weak measurement strength for a fixed amount of damping probability r =
0.5 via Monte-Carlo method for pure and mixed initial states are given in Fig. 3.
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(a) Pure initial states.
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(b) Mixed initial states.

Fig. 3 General recovery total fidelity as a function of pre-weak measurement and post-weak measurement
strength for pure and mixed initial state for a fixed amount of damping probability r = 0.5 via Monte-Carlo
method.

As Fig. 3 illustrates, to gain higher fidelity one needs to apply stronger post-
weak measurement and pre-weak measurement for both pure and mixed initial states.
However, the general recovery total fidelity for mixed initial states is higher than the
total fidelity for pure initial states. The highest amount of total fidelity for pure initial
states is Fidtotal = 91.32%, where its amount for mixed initial states is Fidtotal =
99.63%

3.2 Complete recovery control numerical experiments

In this subsection we study the performance of the recovery control under complete
recovery condition Eq. (21).

The complete recovery success probability is given in Eq. (25). To study the be-
havior of the complete recovery total success probability, we set the value of post-
weak measurement strength q as complete recovery condition in Eq. (21), and use
Monte-Carlo method over a large ensemble of two-qubit initial states. The complete
recovery total success probability as a function of pre-weak measurement strength p
and damping probability r for pure and mixed initial states via Monte-Carlo method
is given in Fig. 4.

As can be seen from Fig. 4, in complete recovery control the success probability
has the most significant value while the pre-weak measurement strength is so weak.
By increasing the amount of pre-weak measurement strength the amount of total suc-
cess probability decreases and tends to zero. We note that in complete recovery con-
trol, according to Eq. (21) q is the function of pre-weak measurement p and damping
probability r. Since q≥ 0 the lowest amount of p depends on damping probability r.
That’s why in Fig. 4 there are some gaps in the amount of success probability for the
small pre-weak measurement strength p.
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Fig. 4 Complete recovery total success probability as a function of pre-weak measurement strength and
damping probability.
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(a) Pure initial states.
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(b) Mixed initial states.

Fig. 5 Complete recovery total fidelity as a function of pre-weak measurement and damping probability
for pure and mixed initial state via Monte-Carlo method.

The final expression for complete recovery total fidelity is too long, so the behav-
ior of the fidelity is explained in numerical simulations. The behavior of the complete
recovery total fidelity as a function of pre-weak measurement strength and damping
probability for pure and mixed initial states via Monte-Carlo method are given in Fig.
5. We generate random initial pure and mixed states according to Haar measure of
SU(4) by using MATLAB toolbox QETLAB [28], and change the amount of damp-
ing probability r and pre-weak measurement strength p uniformly from 0 to 1. Five
steps of the recovery control described in Sec. II are applied on the random initial
states. The total fidelity calculated according to Eq. (12). The averaged total fidelity
over all random generated initial states are given in Fig. 5. Fig. 5(a) is the median
value of the complete recovery total fidelity for pure initial states as in Eq. (12) and
Fig. 5(b) is the median value of complete recovery total fidelity for mixed initial states
by substituting Eq. (20) in Eq. (12).

Complete recovery total fidelity increases by adding the amount of pre-weak mea-
surement strength as shown in Fig. 5. In a way that for p ≈ 1 one can get the total
fidelity close to 1 for both pure and mixed initial states. However, the fidelity of the
complete recovery control is better in case of mixed initial states. It can be seen from
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Fig. 6 The relation between total fidelity and total success probability under complete recovery condition
for (r=0. 01, 0.5 and 0.9) . Green curves correspond to pure initial states and magnet curves to mixed initial
states.

Fig. 5(b) that the fidelity of mixed initial states is more than 99% for all amounts
of damping probability by choosing the appropriate amount of pre-weak measure-
ment. As one can see from Fig. 5 the behaviors of fidelity for mixed and pure initial
states are different, so the total fidelity is dependent on initial state. However, the total
success probability as given in Eq. (25) is independent of initial state.

Furthermore, to show the effectiveness of our recovery control for pure and mixed
initial state, Fig. 6 illustrates the relation between total fidelity and total success prob-
ability via Monte Carlo method over 104 iterations of the two-qubit mixed and pure
initial states. Once more, the complete recovery total fidelity for pure initial states
is given in Eq. (12), and the complete recovery total fidelity for mixed initial states
calculated by substituting Eq. (20) in Eq. (12). The complete recovery total success
probability is given in Eq. (25). In each plot, the damping probability r is fixed as
r = 0.1, 0.5 and 0.9, and the pre-weak measurement strength p changes from 0 to 1.

From Fig. 6, one can see that the higher the fidelity is, the lower success prob-
ability becomes, and vice versa. However, even for heavy damping probability our
control scheme can protect two-qubit pure and mixed states from noise. By compar-
ing the relation between total success probability and total fidelity of mixed and pure
initial states, one can see the proposed feed-forward control has the same success
probability but better fidelity for mixed initial states.

In order to compare the effectiveness of our recovery control for protecting two-
qubit against amplitude damping, we demonstrate the total fidelity and total success
probability in complete recovery condition and the control scheme in ref. [23]. In ref.
[23], the Hadamard gate angle is a function of damping probability to get the best
result of the control. In our paper, the complete recovery condition Eq. (21) is used
to get the best result of the control, so the performance comparisons between these
two control schemes are fair. Also, in ref. [23] the amplitude damping caused by
weak measurement has been considered, which is equivalent to ‘no jump’ scenario
for both qubits in our paper. Hence, we only consider the case of ‘no jump’ scenario.
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For each amount of damping probability r, the best pre-weak measurement p is cho-
sen for calculating the complete recovery total fidelity and complete recovery total
success probability. As showed in Fig. 4 and Fig. 5 the highest fidelity is obtained
with stronger pre-weak measurement and highest success probability is obtained with
weaker pre-weak measurement. We generate arbitrary two-qubit pure states density
matrices via extensive Monte-Carlo method over 104 iterations. Success probability
as a function of damping probability for our complete recovery control Eq. (25) and
recovery control in ref. [23] are shown in Fig. 7.

As demonstrated in Fig. 4, we need to choose the weakest possible pre-weak mea-
surement strength p to gain the maximum success probability. According to complete
recovery condition Eq. (21), the post-weak measurement strength q is a function of
pre-weak measurement strength p and damping probability r. Since q≥ 0, the small-
est amount of pre-weak measurement strength p depends on r and is different for
each amount of damping probability r. That’s why in Fig. 7 the amount of success
probability is varied for different damping probabilities and even higher for intense
damping probabilities.
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Fig. 7 Success probability as a function of damping probability r via Monte-Carlo method. The red curve
is the success probability for protecting scheme in ref. [23]; and blue curve is the complete recovery total
success probability of our scheme.

From Fig. 7 we can see that by choosing the appropriate amount of pre-weak
measurement strength p, our control with complete recovery condition makes sig-
nificant improvement for success probability even for the high amount of damping
probability.

In addition, the fidelity as a function of damping probability via Monte-Carlo
method is shown in Fig. 8. Fd is the fidelity between damped state and the initial state,
without any control field; Fr corresponds to the fidelity of the recovery control in ref.
[23]; and Fep is the total fidelity of our control with complete recovery condition.
Since we choose the strongest pre-weak measurement strength, fidelity of our control
is close to 1 for all amounts of damping probability.

Also, to compare the amount of success probability (fidelity) for the given fidelity
(success probability), we plot the relation between fidelity and success probability for
our recovery control with the complete recovery condition and the recovery control in
ref. [23] in Fig. 9. To make sure that our comparison is not just for some suitable states
we use Monte-Carlo method over 104 iterations. The amount of damping probability
varies from 0 to 1, and each point represents the corresponding amount of fidelity



Two-qubit state recovery from amplitude damping based on weak measurement 17

damping probability (r)
0 0.2 0.4 0.6 0.8 1

F
id

el
it

y

0.2

0.4

0.6

0.8

1

F
ep

F
r

F
d

Fig. 8 Fidelity as a function of damping probability r via Monte-Carlo method. The black curve is the
fidelity without any control field, the red curve is the fidelity for the control scheme in ref. [23]; and the
blue curve is the total fidelity of our scheme with the complete recovery condition.

and success probability. The pre-weak measurement strength was chosen to be the
smallest amount for each damping probability amount based on Eq. (21).
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Fig. 9 The relation between fidelity and success probability via Monte-Carlo method. The red curve cor-
responds to our scheme and blue curve is for the control scheme in ref. [23].

As Fig. 9 depicted, our recovery control always has significant improvement in
terms of success probability (fidelity) for the given fidelity (success probability).

3.3 Comparison between general recovery control and complete recovery control

We derive the complete recovery condition Eq. (21) to make the final state same as
initial state in case that ”no jump” scenario happens for one or both qubits. The ques-
tion here arises as how effective is the complete recovery condition. To answer this
question, in this subsection, we compare the performance of the complete recovery
and general recovery control. As we show in subsections A and B, there is a trade-
off between fidelity and success probability. Hence, the relation between fidelity and
success probability is used to compare the general recovery control and complete
recovery control.
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(a) Pure initial states (r = 0.1) (b) Pure initial states (r = 0.5) (c) Pure initial states (r = 0.9)

(d) Mixed initial states
(r = 0.1)

(e) Mixed initial states
(r = 0.5)

(f) Mixed initial states (r = 0.9)

Fig. 10 The relation between total fidelity (Fidtotal) and total success probability (gtotal) for pure and
mixed initial states in general recovery control and complete recovery control via Monte-Carlo method.
The green curve corresponds to complete recovery control for pure states and the magnet curve corresponds
to complete recovery control for mixed states. The dashed red line represents the fidelity without any
measurement and control.

Fig. 10 is the relation between total fidelity (Fidtotal) and total success probabil-
ity (gtotal) via Monte-Carlo method. The amount of damping probability is fixed as
r = 0.5. The blue dots demonstrate the performance of general recovery control for
all independent real amounts of (p, q) from 0 to 1. The green curve corresponds to
complete recovery control for pure states and the magnet curve corresponds to com-
plete recovery control for mixed states which is given in Fig. 6 . The dashed red line
represents the fidelity without any measurement and control.

For each amount of fidelity, the maximized success probability is located on the
boundary of the diagram. Hence, the maximized fidelities and success probabilities
are distributed on the boundary line of the diagram. Each point on the boundary line
has a group of measurement strength (p, q) amount which one can gain the highest
amount of success probability and corresponding fidelity.

As Fig. 10 depicted, for pure initial states, the performance of the complete re-
covery control (green curve) is close to highest amount of performance in general
recovery control only for weak damping probabilities. However, the complete recov-
ery control for mixed initial states (magnet curve) gains highest performance even for
intense damping probabilities r = 0.9. Hence, for mixed initial states, the proposed
complete recovery control gains the highest total success probability and total fidelity
for all amounts of damping probability. While for pure initial states, the complete re-
covery control has the highest performance only for weak damping probabilities.

4 Conclusion

In this paper, we proposed a feed-forward control and its reversal to protect the ar-
bitrary initial state of two-qubit system. The aim of the feed-forward operation is to
make the state of the system robust to the amplitude damping. We consider the recov-
ery in two cases: a) two-qubit pure initial state and b) two-qubit mixed initial state.



Two-qubit state recovery from amplitude damping based on weak measurement 19

Fidelity and success probability were calculated to evaluate the performance of the
control. Theoretical expressions were derived, and specific numerical results were il-
lustrated in plots. We have shown that under complete recovery condition the state
of the system can be completely recovered. The behavior of the performance of the
proposed control scheme were studied for different initial state situations. Further-
more, we showed that the complete recovery control gains the maximum fidelity and
success probability in case of mixed initial states, even for intense damping probabil-
ities. We have demonstrated that: 1) The recovery scheme proposed in this paper is
applicable for any arbitrary initial two-qubit state, which can gain complete fidelity
even for heavy damping probabilities, by choosing the appropriate amounts for the
variables in recovery control; 2) The complete recovery condition is independent of
initial state; 3) The total success probability is independent of initial state; 4) The
total fidelity is dependent on initial state. Our scheme has applications in quantum
key distribution (QKD) protocols [29–31] where the state needs high tolerance to the
noise of a communication channel.

A Appendix

Here we give the states of the system after the noise channel in case that the result |00〉 corresponding to
M00 is acquired and after the noise channel just one of the qubits ‘jump’.

If the first qubit ‘no jump’ and the second qubit ‘jump’, the state of the system becomes:∣∣∣ψe01
M00

〉
=

1
ge01

(
β
√

p
√

1− p
√

r|00〉+δ
√

r
√

1− r(1− p)|10〉
) (A1)

with probability ge01 = β 2 p(1− p)r+δ 2r (1− r)(1− p)2.
After the noise channel by applying the reversed operationF00, the state of the system becomes:∣∣∣ψe01

F00

〉
= F00|ψe01 〉= |ψe01 〉.

At last, after the post-weak measurement the recovered state of the system represented as:∣∣∣ψe01
N00

〉
=

1

gN00
e01

(
β (1− p)

√
1− p

√
r(1− r)

√
p

|00〉

+
δ
√

r(1− r)(1− p)
√

1− p
√

p
|10〉

) (A2)

with success probability:

gN00
e01

=
β 2(1− p)3r (1− r)2 +δ 2r (1− r)2 (1− p)3

p
.

In the case that first qubit ’jump’ and second qubit ‘no jump’, the state of the system after the noise
channel is:

∣∣∣ψe10
M00

〉
= 1

ge10

(
γ
√

p
√

1− p
√

r|00〉+δ
√

r
√

1− r(1− p)|01〉
)

with probability ge10 = γ2 p(1−

p)r+δ 2r (1− r)(1− p)2.

After the feed-forward operation, the state of the system becomes
∣∣∣ψe10

F00

〉
= F00|ψe10 〉= |ψe10 〉.

Finally, to recover the state of the system, we apply the post-weak measurement which makes the state
of the system as: ∣∣∣ψe10

N00

〉
=

1

gN00
e10

(
γ(1− p)

√
1− p

√
r(1− r)

√
p

|00〉

+
δ
√

r(1− r)(1− p)
√

1− p
√

p
|01〉

) (A3)
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with success probability:

gN00
e10

=
γ2(1− p)3r (1− r)2 +δ 2r (1− r)2 (1− p)3

p
.
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