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Escaping The Complexity-Bitrate-Quality Barriers Of Video
Encoders Via Deep Perceptual Optimization

A. Chadha, R. Anam, I. Fadeev, V. Giotsas, and Y. Andreopoulos
iSIZE, London, U.K.

ABSTRACT

We extend the concept of learnable video precoding (rate-aware neural-network processing prior to encoding)
to deep perceptual optimization (DPO). Our framework comprises a pixel-to-pixel convolutional neural network
that is trained based on the virtualization of core encoding blocks (block transform, quantization, block-based
prediction) and multiple loss functions representing rate, distortion and visual quality of the virtual encoder.
We evaluate our proposal with AVC/H.264 and AV1 under per-clip rate-quality optimization. The results show
that DPO offers, on average, 14.2% bitrate reduction over AVC/H.264 and 12.5% bitrate reduction over AV1.
Our framework is shown to improve both distortion- and perception-oriented metrics in a consistent manner,
exhibiting only 3% outliers, which correspond to content with peculiar characteristics. Thus, DPO is shown to
offer complexity-bitrate-quality tradeoffs that go beyond what conventional video encoders can offer.

Keywords: visual quality, neural networks, video coding, AVC/H.264, AV1

1. INTRODUCTION

Advances in video encoding have traditionally leveraged on reducing the encoding bitrate for a given signal fidelity
that has traditionally been expressed via average peak signal-to-noise ratio (PSNR). However, after questioning
the validity of PSNR as a good indicator of visual quality across various types of content, many groups have
begun making intensive efforts towards the derivation of quality metrics that are better suited to human visual
perception. These have now matured to metrics like the structural similarity index metric (SSIM) and its
multiscale variant (MS-SSIM),” the video multimethod assessment fusion (VMAF),” and DeepQA methods.
These have been shown to be significantly more accurate in assessing visual quality and fidelity to the video
source than PSNR and other such low-level signal distortion metrics. They also open up the opportunity for
advanced perceptual optimization that goes beyond what is achievable with encoding recipe tuning and per-scene
rate-quality optimization in video encoders.

In this paper, after a review of related work, we outline the key principles of a deep perceptual optimizer
framework (DPO) that trains a “precoding” neural network to perform a pixel-to-pixel non-linear mapping prior
to encoding with any standard or proprietary encoder (Section 3). In order to ensure we push the utilized
encoders to their limits, our benchmarking with H.264/AVC and AV1 uses per-scene rate-quality optimization
over multiple resolutions and bitrates” (Section 4). Our experiments show that DPO and H.264 or AV1 obtains
significant rate savings over the same baseline encoder in terms of SSIM, VMAF and VMAF with its recently-
introduced enhancement-limiting modifications. This allows for complexity-bitrate-quality tradeoffs that escape
the barriers of video encoders, examples of which are given in Section 5. Finally, Section 6 concludes the paper.
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2. RELATED WORK

There has been significant work in learned image ™" and video''~'" compression that strives to replace the
entire coding pipeline with optimized autoencoders. For example, Lu et al." replace entire blocks of a standard
video codec with neural networks, such as replacing motion compensation with an optical flow warping network.
Typically, rate is optimized in a latent space that is learned by a neural network-based encoder and not the
frequency-domain transformed space of the image that is adopted by standard image or video codecs. However,
all current results in learned video compression do not surpass standards like AVC or HEVC when the latter are
utilized with their most advanced configurations. ' '° In addition, more advanced encoders like AOMedia Video 1
(AV1) and AV2 encoders and early implementations of MPEG’s Versatile Video Coding (VVC) standard already
include neural components for optimized encoding tool selection, "~ while allowing for real-time decoding on
CPU-based commodity devices like tablets and mobile phones. We therefore design our proposed DPO approach
as a pixel-to-pixel precoding mechanism for any such standard hybrid encoder. This means our proposal does
not alter the encoding or decoding sides in any way and, unlike recent proposals on content-adaptive resolution
selection,””> " it does not even impose any changes to the video resolution.

Blau et al.” recently highlighted how optimization of image-restoration algorithms for distortion measures
such as PSNR or SSIM is not sufficient for ensuring good perceptual quality of the results. There exists a
perception-distortion plane that cannot be attained by any algorithm and, in the proximity of this plane, dis-
tortion must be traded off for perceptual quality or vice-versa. Contrary to recent video compression work
that only accounts for the rate-distortion tradeoff and hence validates on SSIM and PSNR, we are the first
to propose the concept of joint optimization over perceptual quality, rate and distortion, with the intention
of achieving a good operating point within the perception-distortion-rate-complexity space. We therefore vali-
date our proposal on a range of quality metrics that span the perception-distortion space: SSIM, VMAF with
its recently-introduced enhancement-limiting parameters® that are designed to penalize preprocessing methods
that cause perceptual deviations from the source content’,”’ and the original VMAF metric,”’ which is mostly
oriented towards perceptual quality rather than signal distortion.

3. DEEP PERCEPTUAL OPTIMIZER

In this section, we present our deep perceptual optimization for video precoding. Since the full technical details
of our training process require an extensive exposition that goes beyond the scope of the present paper, we
provide a summary presentation here and will present further details in subsequent publications. Essentially, the
objective of our perceptual optimization framework is to provide a perceptually-enhanced and rate-controlled
representation of the input frames via a learnable preprocessing or “precoding”. The precoding must have some
level of encoder-awareness so that it can incorporate the effects incurred from different codec settings during
deployment, such as different modes for block based motion compensated prediction and quantization of error
frame information. Therefore, our optimization framework must model (or “virtualize”) the multiple processing
components of a standard video coding pipeline — from the inter/intra prediction blocks, to the spatial transform
and quantization. These coding blocks are appended to our video precoding, such that they operate in the
precoding space on precoded frames. In this way, we can train the precoding end-to-end with our virtual en-
coder representation and effectively perform perceptual-rate-distortion optimization on the precoding parameters
with stochastic gradient descent. We leverage on our proposed loss formulations to create a generalized model
that approximates the rate-distortion behaviour of standard codecs. During deployment, the virtual encoder is
removed and replaced with a standard codec, such as an MPEG or AOMedia encoder.

The training and deployment frameworks are illustrated in Figure 1. The training framework is in open loop
configuration, which simplifies training, as there is no need for a decoded frames buffer containing previously-
reconstructed frames as in the closed-loop case. Each color outlines a different component in the training
framework. For a given video sequence V = {x1 ... %, Ts11 ... €N} with N frames, the block represents
the precoding network that maps input video frame x; at time ¢ to precoded frame p,. The block
represents the components for inter (motion estimation and compensation) and intra prediction, which outputs

*see pull request #601 of Netflix VMAF repository available online at https://github.com/Netflix/vmaf
fsee commit 615dc24579d531cb3a2c9627ab25a3026f9e2b47 of AOM repository https://aomedia.googlesource.com/aom/

Proc. of SPIE Vol. 11510 115100C-2

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 31 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Training: trainable
Pt—1
Precoding
frozen
shared
@ weights
]
Perceptual = ‘ Precoding
Model =
S Pt
Xt
shared Inter/Intra Pred.
LP weights LF /
T
§ t
Perceptual = Transform + Q
Model §

Entropy Model

Lr

Deployment:

Encoding settings
Input (e-.g- crf, ap, Decoded

preset)
. Standard codec
< Precoding (e.g. H.264, HEVC) <
. . . .

Figure 1: Deep perceptual optimizer framework for training perceptually-enhanced & rate-controlled represen-
tation of input frames via a learnable precoding. Dashed arrows represent optional components.

a predicted frame p, and residual frame r; by performing block matching between the current and reference
precoded frames, p, and p,_; respectively. The grey block represents the spatial transform and quantization
components for encoding and compressing the residual. The residual frame is transformed to the frequency
domain output and quantized to g,, with the quantization level controlled by the quantization parameter (QP).
We model the rate of g, with an entropy model, as represented with the block, as this is what a standard
encoder would losslessly compact into the compressed bitstream. The blue blocks represent YUV to RGB
conversion and the perceptual model that we use collectively to quantify perceptual quality, based on mean
opinion scores (MOS). These components will allow us to train the precoding network to enhance the perceptual
quality of reconstructed frame p,. We next go through the design of each of these components.

3.1 Precoding

The input video frames are first processed individually by a precoding block, represented in green in Figure 1.
The precoding block F(x;©) comprises a pixel-to-pixel mapping F', with associated parameters ©. For efficient
precoding and deployment, the input frame is luminance only. The luminance channel contains most of the
image information and is the main contributor to perceptual sharpness and bandwidth, which constitute our
main objectives for optimization. Specifically, for input frame & € R¥*W scaled to range [0, 1] and modelled
representation p, the intention is to optimize parameters O, in order to achieve a balance on p between the
perceptual enhancement, rate control and fidelity to . The mapping F' is implemented as a convolutional
neural network (CNN) with single-frame latency (assuming the supporting hardware can carry out the CNN
inference fast enough). In order to reduce the network complexity while allowing for larger receptive field sizes
and maintaining translational equivariance, we utilize dilated convolutions“® with varying dilation rates per layer.
The neural network weights constitute the parameters © that we intend to optimize for perceptual quality, rate
and distortion in our training framework.
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3.2 Inter and Intra Prediction

The precoding network maps current video frame x, at time step to ¢ to p,. The next step is to generate the
residual frame r; via intra or inter prediction. A standard video codec such as H.264 adaptively divides the frame
into variable-sized macroblock partitions and sub-partitions, typically varying from 16 x 16 to 4 x 4. Similarly,
in our virtual codec, the precoded frame p, is first divided into a set of blocks of fixed size K x K. For a block in
the current frame centered on the pixel location (n1,n2) € [(0,0), (H —1,W — 1)], a local search space centered
on (n1,mn2) and of size M x M is extracted from the reference frame. A similarity criterion is used to find the
best matching block of size K x K to the current frame block within the local search space. We emulate the
variable-sized partitioning schemes of standard encoders by randomly selecting K € {4,8,16} during training.
For inter prediction, the local search space is extracted from the previous frame, p,_;. The similarity criterion
e can thus be expressed at (ni,n2) as:

e(my,ma) £ Y d(p,(n1 + k1, ng + k2),py 1 (n1 + K+ ma,ng + ky + my)) (1)
(k1,k2)

where the coordinates (k1,k2) € [(0,K — 1),(0, K — 1)] shift the pixel location within a K x K block and
(m1,mo) € [(—&, -4, (&, 21)] represent the block displacement within the local search space of the reference
frame. d represents the similarity measure, which in this paper is set to mean absolute error (MAE), given
its better handling of outliers than mean squared error (MSE). Importantly, the operation in (1) can be easily
vectorized, which enables efficient end-to-end training on GPUs (at the cost of higher memory allocation). Then,
for the given current frame block, the optimal block displacement m = (m7},m3)" in the reference frame is given
as:

(m1,m3) = argmin(e(ma, my)) (2)
(m1,m2)
The displacement or motion vector m* = (m},m5)T is encoded for each block in the current frame and the
argmin in (2) is converted into a differentiable form for backpropagation by approximating the one-hot matrix,
representing the optimal block location, with a continuous categorical distribution over all blocks in the local
search space (via the softmax function). The predicted frame p;**" is then configured as:

ﬁitntef(nl +ki,no+ ko) = Z ]_("L*)(TI’L;L7 mg).pt_l(nl + ki +mi,ng + ko + mg) (3)

(m1,mz2)

where 1(,,~) is an one-hot matrix with the unity value set at the position m*. The residual frame r; is simply

equal to the difference between the predicted frame and current frame: r, = p, — f)it“ter. For intra prediction,

we follow a similar approach for generating f)itntra, except the reference frame from which we extract the local
search space is from the current frame p, itself (but masking the block being queried). In this way, we are able

to emulate all forms of intra prediction modes.

3.3 Transform and Quantization

The residual frames 7, are transformed in our framework into the frequency domain for further energy com-
paction, akin to a standard video codec. The forward transform is typically a two-dimensional discrete transform
(DCT) followed by quantization. In this paper, we opt for the 4 x 4 core and scale transforms of the integer
DCT defined in the H.264/AVC standard,”" after rescaling r; between [0,255]. The transformed and scaled
frame y, is then quantized by dividing by a quantization value Qstcp and rounding, with Qstep being randomly
selected during training from a range of values. We manually assign the first 6 values of Qcp based on the
equivalent values for AVC QP in the range [0,5]. We can then draw a direct equivalence between Qgiep and the
QP setting used in AVC encoding. Specifically, any value of Quep can be derived from the first 6 values of QP as

Qstep (QP) = 2Qgtep( mod (QP, 6)).floor (%) We denote the quantized frame as ¢, and approximate the non-

differentiable rounding operation via additive uniform noise during training. In a standard video coding pipeline,
Y, is the representation that would be encoded to bits with an entropy coder such as CAVLC or CABAC.”" The
quantization and forward transform can then be inverted by multiplying by Qstcp and taking the inverse integer
DCT, thus producing the reconstructed residual #;. The reconstructed frame p, is equal to p, + 7.
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3.4 Entropy Model

Given that we aim to optimize our precoding on rate, we must minimize the number of bits required to encode
the DCT transformed and quantized frame g,. In order to compute the number of bits in a differentiable
manner (amenable to backpropagation), we approximate the actual rate with the entropy computed on the DCT
subbands. We model each subband as an independent probability density function and assume independence
between subbands. We follow Balle et al.”° and approximate the entropy computation with univariate non-
parametric density models R4(.; ®), where s denotes the subband. Approximating the entropy in this manner
means that: (i) we are assuming a factorized representation; (i) we are not accounting for context-adaptive
entropy coding, which is now a standard tool of advanced video encoding. Nonetheless, we find empirically that
we are still able to minimize the bitrate with the precoding network trained under this approximation.

3.5 Perceptual Model

We aim to optimize our precoding for perceptual enhancement of the decoded input frame representations p,.
To this end, we follow Talebi et al.”® and first pre-train a no-reference image quality assessment (IQA) model
P(.;¥) for predicting the distribution over the ACR scale, which maps human image ratings from poor (1) to
excellent (5). Specifically, we fine-tune a VGG-16 model that is pretrained on ImageNet.”” The fully connected
layers are removed and replaced with global average pooling and single fully connected layer with 5 neurons, each
representing an image rating, and softmax function to map the output to a distribution. Once trained, the IQA
model is then frozen for the precoding optimization. We note that given that our perceptual model is trained on
human-rated RGB images, it is necessary in our perceptual optimization framework to first convert the luminance
frame p, to RGB frame i)f‘GB. We perform a transform from YUV to RGB space by first concatenating p, with
the lossless U and V components of the RGB input, 2}4B.

3.6 Loss Functions

Our overall objective is to train our precoding F(x;;©) to perform perceptual-rate-distortion optimization on
the decoded frame representations p, relative to the input video frames x;. Assuming the domain shift between
our virtual codec and standard video codec is marginal, this should equate to optimizing the rate, perceptual
quality and distortion of the decoded frames during deployment with a standard video codec. To this end, we
train the precoder end-to-end with the building blocks of our optimization framework and a perceptual loss (Lp),
rate loss (Lg) and fidelity loss (Lr). The overall loss function for training the precoder can thus be written as
a weighted summation: L(x:,D,;0) = vLp + ALk + L, where v and A are the perceptual and rate coefficients
respectively. By jointly training all three loss components, we find the operating point close to the rate-distortion
convex hull whilst maintaining or enhancing the perceptual quality relative to the input frame ;. Our fidelity
loss comprises the combination of multiscale SSIM (as defined by Wang et al.”) and the L, distance between x;
and p,, which is good for preserving luminance. The rate loss is summed over all DCT subbands; per-subband,
it comprises the log-likelihood of values of y,. Finally, our perceptual loss expresses the need for the perceptual
quality of j)f‘GB to be greater than mBGB. We can quantify perceptual quality with our pre-trained perceptual
model P, by computing the mean opinion scores (MOS) as the expectation over the output ACR distributions.
Our perceptual loss thus optimizes the MOS score of our precoded frame representation P (155 GB) over the input
frame P(xRCB).

4. EXPERIMENTAL RESULTS
4.1 Implementation Details

The perceptual model P is first trained on a proprietary no-reference IQA dataset using stochastic gradient
descent with momentum set to 0.9 and an initial learning rate of 1 x 1073, Our IQA dataset comprises a large
number of training images with authentic distortions captured ‘in the wild’ and associated human opinion scores.
The perceptual model is then frozen and the deep precoding is trained in an end-to-end manner as per the design
of Figure 1 and loss functions of Section 3.6. Let us denote Conv(f,c,r) as convolutional layers, with f being the
kernel size, ¢ the number of channels and r the dilation rate. The precoding architecture can thus be expressed
as: Conv(3,16,1) — Conv(3,16,1) — Conv(3,16,2) — Conv(3,16,4) — Conv(3,16,8) — Conv(3,1,1). Each
convolutional layer is followed by a parametric ReLu activation function. Inspired by human foveal vision and
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focus-of-attention, we only pass fixed size crops of size 512 x 512, rather than the full frame, for efficient training.
During training we alternate between our inter and intra prediction blocks; we follow a standard encoding pipeline
and default to inter prediction only, switching to intra prediction for 1 mini-batch every 100 training iterations
(i.e. in correspondence to 1 I-frame every 100 P or B frames). The local search space size M is fixed at 24. The
precoding is trained with Adam optimizer and initial learning rate of 1 x 10~* for 40k steps, with the learning
rate decayed by a factor of 10 after 20k steps. We derive our precoder model variants, by adjusting the rate
coefficient A € [0.001,0.1] and perceptual coefficient v € [0.1, 1], which controls the perception-distortion-rate
tradeoff. While numerous models can be generated, we only utilize two models, which we term enhOm and
enh3m; they correspond to setting v = 0.1 in both cases and A = 0.01 for enhOm and A = 0.001 for enh3m. At
deployment, we only retain the precoding that comprises the learned pixel-to-pixel mapping of these two models,
i.e., the virtual codec is replaced with a standard video codec.

In terms of runtime complexity, for each of the two utilized models our current implementation in 16-bit
floating-point arithmetic achieves 8.4ms per frame for 1080p input on an NVIDIA Tesla T4 GPU, and can easily
run in real time for both full HD and ultra HD, with the latter requiring two GPUs. For CPU implementation,
quantizing the inference model via Intel’s OpenVINO framework (with the ‘Accuracy Aware’ quantization method
and ‘accuracy’ preset) and optimizing load times and padding at the borders, yields up to 456% speedup over their
floating-point counterparts: on an Intel Xeon platinum 8259cl CPU, we achieve up to 11.4 fps for 8-bit quantized
precoding networks versus 2.5 fps for 32-bit floating point. We can therefore achieve real-time performance for
1080p video with a cluster of 5 or 6 such CPUs. The impact of 8-bit quantization on accuracy of our precoding
can be limited, and on-going work will assess the deployment efficiency of such designs on Intel CPUs.

4.2 Experimental Setup for Bjontegaard Delta-Rate Results

We present a detailed evaluation of different models against state-of-the-art implementations of two encoder
generations used in adaptive streaming systems: the Advanced Video Coding (AVC) and AOMedia Video 1
(AV1), utilizing the libx264 and aomenc open implementations of these standards. This makes our results
cross-comparable under realistic encoder designs that are deployed widely within adaptive streaming systems.

We report on tests with XIPH and CDVL sequences? (representing prime content) and YouTube UGC 1080p
‘LiveMusic’ and ‘Sports’ (as examples of user-generated content”') using the x264 H.264/AVC recipe:

ffmpeg -y -i XIPH_video_in.y4m -vf scale=WxH:flags=lanczos -c:v 1ibx264 -profile:v high
-threads 4 -preset Ph264 -crf C -refs 5 -g 150 -tune ssim -x264opts ssim=1 -keyint_min 150
-sc_threshold O -f mp4 XIPH_video_out.mp4

and aomenc AV1 recipe (Lanczos downscaling takes place losslessly prior to encoding with aomenc):

aomenc --passes=2 --pass=1 --fpf=aoml.log --target-bitrate=B --cpu-used=Pavl --threads=8
--tile-columns=1 --tile-rows=0 --kf-max-dist=150 -o "video_out.webm" "video_in.y4m" 2>1

aomenc --passes=2 —-pass=2 --fpf=aoml.log --target-bitrate=B --cpu-used=Pavl --threads=8
--tile-columns=1 --tile-rows=0 --kf-max-dist=150 -o "video_out.webm" "video_in.y4m" 2>1

The utilized CRF values for H.264 encoding are: C€{18, 22, 26, 30, 34, 38, 42}. For AV1, the utilized
bitrates are: B€{138, 230, 385, 642, 1070, 1800, 3000, 5000, 8000} kbps, i.e., increase by 40% per step.
In terms of complexity presets, we are testing with Ph264€{slow,veryslow} and Pavie{3,5}. All utilized
resolutions WxH are produced by FFmpeg Lanczos used on the source video or on the DPO output. They are:
1080p, 720p, 540p, 432p, 360p, 288p, 216, 144p. All decoded results are upscaled with FFmpeg bicubic to 1080p
prior to quality measurement via libvmaf. All Bjontegaard delta-rates (BD-rates)’ are produced by first finding
the subset of monotonically-increasing bitrate-quality points that are in the convex hull of the quality-bitrate
curve, and then using standard BD-rate measurements to find average rate saving per sequence (positive BD-
rates indicate rate loss). To avoid skewing the BD-rate averages from the use of very-low or very-high bitrate
points, we keep results within the following ranges: e 40 < VMAF < 96; ¢ 88 < SSIM < 99, which correspond to
commercially-viable quality ranges and avoid excessively-high bitrates that would not be used in practice. We
have also confirmed that, under these limits, the calculated BD-rates for the different quality metrics correspond

YXIPH source material from https://media.xiph.org/video/derf/ and CDVL material from https://www.cdvl.org/
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to similar bitrate ranges and can thus be averaged together. This type of measurement corresponds to a dynamic-
optimizer type of BD-rate measurement per clip” for the quality regimes usable in video delivery. That is, for
each point in the bitrate-quality range, our method for evaluation finds the optimum resolution and CRF (or
bitrate) of that resolution to use per clip. For each case reported, the DPO+codec results correspond to the
same resolutions and encoding recipe used as for the codec results. For all experimental points per sequence,
only a single-pass is required per frame for each of our enhOm and enh3m models, and the latency is only 1
frame. VMAF and SSIM were computed using the Netflix libvmaf library. With regards to VMAF, we used the
standard 0.6.1 library with and without the latest update that includes parameters: ADM_ENHN_GAIN_LIMIT and
VIF_ENHN_GAIN_LIMIT, which are designed to eliminate the gain offered by nave preprocessing.”” When setting
these parameters to 1.0 in the libvmaf code, the results are reported as Anti-Hacking VMAF (AH-VMAF). For
reference we also report the conventional VMAF score without these limits (shown as VMAF).

4.3 BD-Rate Results with H.264/AVC and AV1

The results of Table 1-Table 4 show that the average rate saving over VMAF, AH-VMAF and SSIM for both
H.264 and AV1 standards is over 10%. As expected, our gains are higher on metrics that are increasingly
perception-oriented rather than distortion-oriented: on VMAF, our framework offers 23% to 30% saving; on
AH-VMAF, they are between 6% to 12% and on SSIM they are 1.3%-3.6% for AV1 and 3.4%-4.7% for H.264.
This makes the average BD-rate of all three metrics a reliable estimate of the bitrate saving that can be offered
in practice, since this average is influenced by performance in both distortion (SSIM) and perceptual dimensions
(VMAF), as well as on AH-VMAF that strikes a balance between the two. In summary: (i) these savings
are achieved on top of the dynamic optimizer approach,” which already pushes the rate-quality curves of each
baseline encoder to its performance limits; (%) our framework demonstrates consistency across multiple encoders,
encoding presets and multiple metrics with very few outliers.

To contrast these results with hand-crafted alternatives for perceptual enhancement that are based on sharp-
ening filters, we also run the same comparisons as for Table 1-Table 4 by replacing our DPO with: (i) the
FFmpeg recipe -vf eq=brightness=0.0:contrast=1.075,unsharp=5:5:1.05:5:5:0.0 prior to x264 encod-
ing at each resolution and CRF, which was proposed as a mild contrast adjustment and sharpening alternative
in a recent article of J. Ozer (Streaming Media Mag., March 2020); (ii) the ~tune=vmaf _with_preprocessing
for VMAF enhancement within aomenc, as was proposed recently by Google. Table 5 shows the results of these
sharpening based approaches. Evidently, such sharpening recipes are very well suited for the perceptual side
(bitrate reductions for VMAF range between 32% to 34%), but perform poorly on the distortion side (SSIM and
AH-VMAF drop significantly, with the exception of aomenc cpu=3 on XIPH & CDVL, where bitrate reduction
of 19% is attained for AH-VMATF). This leads to their BD-rate averages on all metrics (bottom of Table 5) being
negligible or even detrimental in terms of bitrate. Therefore, unlike our proposal, such sharpening approaches
are found to be very biased towards the perceptual front. This may make their deployment more challenging
than the proposed DPO that shows significantly more consistent behavior across all quality metrics.

Analysis of Outliers: The XIPH and CDVL sequences exhibited no outlier behaviors. However, a small
number of UGC sequences exhibited abnormal encoding behaviors and were excluded from our averages in
order not to skew our results. These correspond to 6 sequences out of the 93 sequences used. Out of the 6
videos, ‘LiveMusic_1080P-157b’, ‘LiveMusic_-1080P-59b3” and ‘LiveMusic_1080P-3ela’ exhibited gains for DPO
preprocessing, but had sharp jumps in SSIM and/or VMAF for the AV1 encoder, as seen in the example of
Figure 2(a-b). This makes their BD-rate calculations unreliable for AV1. Hence, these sequences were excluded
from the averages of Table 4. The remaining 3 sequences: ‘LiveMusic_1080P-7948’, ‘Sports_1080P-43e2’ and
‘Sports_1080P-7203" (so around 3% of our tests), exhibited significant discrepancies between the VMAF /AH-
VMAF measurements and the SSIM measurements for both encoders: one set of metrics was increasing in
comparison to the codec but the other was decreasing [Figure 2(c-d)], or all metrics were saturating. Detailed
inspection revealed that these sequences exhibit one or more of the following issues: extreme temporal flicker,
significant spatial aliasing, intensity saturation, large number of frames that comprise black background with
letters. Such peculiarities can be handled with a pass-through (or ‘null’) model that will detect that metrics
are not improving in a coherent manner and will just pass the original source frames through to the output
of the DPO without any processing. If such detection of metrics’ abnormalities is implemented, it also raises
the interesting prospect of using our framework as a neural ‘visual inspector’, which can detect spatio-temporal
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abnormalities in the input video for the benefit of the content service provider (e.g., recommendations on visual
aesthetics of the source content can be made prior to compression). Since we did not include such a detection and
pass-through option in our results, these 3 sequences are excluded from our averages. Finally, it is interesting to
note that the VMAF and AH-VMAF exhibited significantly more robust behaviour than SSIM. This illustrates
their advantage and robustness in comparison to SSIM (or PSNR).

100 LiveMusic 1080P-157b 100 LiveMusic 1080P-157b Sports 1080P-7203 Sports 1080P-7203

98
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(a) aomenc cpu=3 (b) aomenc cpu=3 (c) x264 veryslow (d) x264 veryslow
Figure 2: Parts (a) and (b) show an example of normal behaviour of DPO; however, the sharp jump in SSIM
leads to erroneous BD-rate calculations, and is therefore excluded from our averages. Parts (c) and (d) show an
example of abnormal behaviour of DPO, where SSIM follows the expected trend but AH-VMAF is saturated;
this corresponds to a case that can be dealt with via pass-through DPO.

5. COMPLEXITY-BITRATE-QUALITY TRADE-OFFS

Since our approach offers more than 11% BD-rate reduction for the combination of VMAF, AH-VMAF and SSIM,
it is interesting to explore its effects across multiple encoders and encoding settings. Table 6 and Table 7 show
average BD-rates over VMAF, AH-VMAF and SSIM when transitioning between encoders and encoding recipes
with and without DPO. The boldface & underlined numbers show the BD-rate when transitioning from a baseline
encoding setting to another encoding setting (target) that is the immediately less-complex; the corresponding
speed ratios between ‘Baseline’ and ‘Target’ encoders are given in Table 8, as measured in multi-CPU cloud
instances®.

For example, inspection of Table 6 and Table 7 shows that downgrading from x264 veryslow to x264 slow
incurs 7.75% increase in bitrate. Downgrading aomenc cpu=5 to x264 veryslow comes at 43.63% bitrate increase,
showcasing the substantial benefits offered by aomenc in comparison to x264. However, these transitions come
at 2-fold and 14.5-fold increase in encoding speed, as shown in Table 8. Hence, if this loss in performance can
be ameliorated, this may make the benefit of speed improvements overcome the bitrate detriment, especially
when considering a number of scenarios involving high-volume video encoding. The use of DPO makes such
amelioration possible, as shown in Table 7. For example, switching from x264 veryslow to DPO + x264 slow
preset allows for this two-fold increase in encoding speed while simultaneously providing for 7.89% reduction
in bitrate (cell 2,1 of Table 7). Similarly, switching from aomenc cpu=3 to DPO + aomenc cpu=5 allows for
2.49% bitrate saving and 1.88-fold speedup (cell 4,3 of Table 7 and Table 8). Taking this approach to cross-
encoder switching, going from aomenc cpu=5 to DPO + x264 veryslow incurs 24.46% overhead and allows for the
aforementioned 14.5-fold speedup in encoding. While the 24.46% loss of encoding efficiency is still substantial,
it is significantly less than the aforementioned 43.63% difference between aomenc cpu=>5 and x264 veryslow.

Such transitions can also operate in reverse. For example, switching from x264 ‘slow’ to DPO + aomenc
cpu=3 has the daunting prospect of slowing down encoding speed to only 2% of that of x264. However, it can
also allow for 47.5% saving in bitrate, which may make such a transition much more worthwhile to attempt
for highly-popular video content. Similarly, switching from x264 ‘slow’ to DPO + x264 ‘veryslow’ comes at

§ Average runtimes are taken over multiple runs on an AWS gddn.8xlarge instance (32 vCPUs, 128GB RAM) with
8-thread execution of the x264 and aomenc encoder versions available from their respective repositories at the time of this
writing. While speedup ratios between different encoding recipes and encoders will evolve over time based on the degree
of optimization devoted to each implementation, both encoders are now reasonably mature and stable, and they are used
widely as open benchmarks for speed and encoding efficiency.
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Table 1: Bjontegaard delta-rate results for DPO enhOm+enh3m models and H.264/AVC in terms of metrics
that are increasingly perceptual in nature: SSIM, AH-VMAF (ADM_ENHN_GAIN_LIMIT = VIF_ENHN_GAIN_LIMIT

x264 Encoder Preset

l

slow

l

veryslow

|

= 1.0) and VMAF. The first 16 sequences are from the XIPH website; the remaining sequences are from CDVL.
|

Sequence

| SSIM (%) | AH-VMAF

(%) | VMAF (%) | SSIM (%) [ AH-VMAF (%) | VMAF (%) |

rush_field_cuts_1080p30 -3.74 -10.50 -21.81 -3.16 -9.20 -21.82
rush_hour_1080p25 -0.98 -12.61 -25.72 -2.04 -12.60 -25.43
sunflower_1080p25 -7.68 -13.4 -24.91 -6.82 -12.16 -21.62

tractor_-1080p25 -6.73 -14.29 -21.97 -7.05 -13.73 -21.85
touchdown_pass_1080p30 -7.23 -13.46 -26.77 -5.44 -13.12 -26.39
riverbed_-1080p25 -1.78 -7.04 -13.76 -1.73 -7.17 -14.11
west_wind_easy_-1080p30 -4.42 -10.28 -21.19 -2.64 -9.81 -20.54
aspen-1080p30 -5.26 -9.10 -25.94 -4.97 -10.86 -26.05
blue_sky_1080p25 -4.97 -8.33 -17.57 -4.40 -8.23 -17.35

controlled_burn_1080p30 -6.26 -12.12 -30.92 -4.38 -10.85 -31.65
crowd_run-1080p50 -5.01 -10.39 -19.45 -5.26 -10.28 -19.15

ducks_take_off_1080p50 -9.39 -17.46 -27.32 -8.31 -18.06 -28.75

old_town_cross_1080p50 -6.07 -14.11 -31.84 -4.52 -13.92 -31.29
park_joy_1080p50 -8.18 -12.66 -22.72 -7.03 -12.42 -22.34

pedestrian_area_1080p25 -4.38 -14.38 -22.66 -4.77 -13.51 -21.95
red_kayak_1080p30 -1.42 -10.92 -18.86 -1.46 -10.54 -18.56

vgeghd4_csrcll_original -1.25 -11.35 -23.82 -1.18 -9.97 -22.36

vgeghd4_csrc12_original -6.49 -13.91 -31.12 -3.65 -13.76 -29.79

vgeghd4_csrcl3_original -5.84 -14.17 -25.43 -5.78 -14.65 -25.16

vgeghd4_csrcl14_original -5.15 -8.73 -24.13 -4.26 -8.69 -23.94

vqeghd4 _src01_original -1.79 -12.28 -26.41 -3.39 -11.99 -25.94

vgeghd4 _src02_original -3.593 -9.94 -20.45 -3.31 -9.54 -19.94

vgeghd4 _src03_original -5.21 -14.55 -32.32 -4.88 -14.3 -33.18

vgeghd4 _src04_original -1.69 -7.92 -19.34 -1.18 -7.33 -20.25

vgeghd4 _src05_original -6.32 -17.18 -34.25 -6.51 -19.57 -40.62

vgeghd4 _src06_original -4.06 -12.27 -29.18 -4.52 -16.16 -30.22

vgeghd4 src07_original -3.99 -12.18 -21.12 -4.19 -11.98 -20.83

vgeghd4 _src08_original -3.46 -16.42 -28.55 -2.79 -15.21 -28.05

vgeghd4 _src09_original -4.00 -15.78 -30.97 -4.06 -14.23 -35.33

vgeghdb_csrcl1_original -1.25 -11.34 -23.81 -1.18 -9.97 -22.36

vgeghdb_csrcl12_original -6.49 -13.91 -31.12 -3.66 -13.76 -29.79

vgeghdb_csrcl3_original -5.84 -14.17 -25.43 -5.78 -14.62 -25.14

vgeghdb_csrcl4_original -5.15 -8.73 -24.13 -4.26 -8.69 -23.94

vgeghdb_src01_original -2.99 -12.22 -25.03 -4.00 -11.45 -24.93

vgeghdb_src02_original -3.15 -5.67 -28.57 0.01 -0.77 -30.52

vgeghdb_src04_original -5.07 -13.38 -21.24 -3.77 -13.38 -21.16

vgeghdb_src05_original -9.35 -12.90 -28.43 -5.25 -10.54 -26.78

vgeghdb_src06_original -2.23 -9.21 -14.93 -1.64 -9.51 -14.83

vgeghdb_src08_original -5.21 -19.37 -35.85 -4.15 -18.62 -35.74

vqgeghd5_src09_original -3.81 -12.16 -24.33 -5.05 -12.58 -24.61

| Average | -4.67 -12.27 -25.08 | -4.06 -11.94 -25.11 |
[ Av. AH-VMAF & VMATF | - -18.68 [ - -18.53 |
l Average of all three | -14.00 | -13.70 ‘
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Table 2: BD-rate results for DPO enhOm+enh3m models and H.264/AVC. The sequences are from YouTube
UGC dataset.”" Videos marked with an asterisk (*) are excluded from the averages and are discussed separately.

[ x264 Encoder Preset [ slow [ veryslow ]
[ Sequence [ SSIM (%) [ AH-VMAF (%) [ VMAF (%) [ SSIM (%) [ AH-VMAF (%) [ VMAF (%) |
LiveMusic_1080P-14af -0.90 -9.93 -20.30 -1.65 -9.74 -19.86
LiveMusic_1080P-157b -5.63 -13.40 -28.51 -6.03 -12.98 -27.77
LiveMusic_1080P-1ace -1.83 -8.55 -22.54 -3.15 -7.96 -22.54
LiveMusic_1080P-21dd -3.52 -10.48 -23.63 -2.48 -10.25 -24.02
LiveMusic_1080P-28fe -4.91 -12.68 -22.73 -3.02 -12.21 -23.17
LiveMusic_1080P-2930 -4.69 -11.07 -19.28 -4.15 -11.37 -18.74
LiveMusic_1080P-2b7a -2.30 -10.15 -22.67 -6.09 -9.94 -22.61
LiveMusic_1080P-2f7f -1.44 -10.26 -23.74 -1.24 -11.02 -21.76
LiveMusic_1080P-3549 -8.09 -10.34 -23.18 -8.16 -9.89 -21.80
LiveMusic_1080P-3ela -2.75 -10.29 -30.44 -1.98 -7.77 -28.47
LiveMusic_1080P-3f95 -7.11 -9.80 -21.68 -2.97 -5.70 -21.94
LiveMusic_1080P-48d5 -5.07 -11.58 -21.02 -5.47 -10.04 -17.79
LiveMusic_1080P-514¢e -0.73 -7.71 -13.64 -1.84 -8.80 -13.44
LiveMusic_1080P-51{6 -2.74 -14.67 -23.17 -3.26 -12.53 -21.10
LiveMusic_1080P-541f -5.17 -11.89 -33.50 -2.06 -11.52 -33.75
LiveMusic_1080P-59b3 -0.96 -7.04 -21.52 -0.42 -10.42 -23.70
LiveMusic_1080P-6blc -3.81 -6.99 -21.56 -3.41 -8.05 -22.10
LiveMusic_1080P-6bbe -4.37 -7.75 -13.60 -4.17 -7.83 -14.93
LiveMusic_1080P-6d1a, 2.61 -15.19 -33.22 0.97 -13.34 -33.59
LiveMusic_1080P-6fe2 -1.55 -7.29 -20.09 -5.30 -7.26 -19.98
LiveMusic_1080P-77e8 -0.95 -13.01 -52.66 3.73 -7.83 -49.50
LiveMusic_1080P-7948* 75.00 33.65 43.46 75.00 37.06 47.87
LiveMusic_1080P-7ead -1.30 -15.97 -23.57 0.09 -11.90 -22.18
Sports_1080P-0063 -8.17 -21.18 -38.74 -9.01 -20.17 -41.67
Sports_1080P-0640 -0.99 -11.40 -23.27 -2.60 -10.64 -23.02
Sports_1080P-08el -4.24 -4.51 -17.73 -3.99 -4.33 -18.14
Sports_1080P-0d0c -4.27 -10.73 -23.96 -4.76 -10.34 -22.98
Sports_1080P-15d1 -9.52 -16.05 -27.04 -8.00 -15.70 -27.31
Sports_1080P-19d8 -7.20 -9.69 -31.83 -4.74 -14.46 -32.72
Sports_1080P-1ae3 -5.01 -14.94 -31.92 -4.59 -14.27 -32.63
Sports-1080P-1bf7 -6.93 -16.40 -29.80 -6.59 -15.20 -27.90
Sports-1080P-1d78 -4.78 -21.92 -36.43 -2.63 -18.54 -36.59
Sports_1080P-241e -2.50 -7.50 -22.70 -1.71 -6.78 -23.98
Sports_1080P-2524 -5.79 -21.60 -46.66 -4.19 -21.59 -47.17
Sports_1080P-28a6 -3.41 -10.49 -30.44 -2.38 -8.92 -29.07
Sports_1080P-2a21 -2.32 -9.25 -22.85 -1.55 -9.36 -22.49
Sports_1080P-3a3b -4.36 -11.86 -25.35 -4.18 -11.96 -24.69
Sports-1080P-3db7 -4.48 -12.36 -32.14 -4.01 -10.79 -30.46
Sports_1080P-3eb0 -3.29 -11.94 -31.72 -4.84 -11.69 -31.53
Sports_1080P-43e2* 75.00 -4.09 -35.49 75.00 -7.62 -35.28
Sports_1080P-46ed -6.22 -13.25 -32.56 -6.17 -12.65 -32.59
Sports_1080P-47e9 -6.31 -6.18 -30.42 -4.67 -4.77 -32.63
Sports_1080P-4978 -5.95 -18.55 -37.68 -4.54 -13.05 -35.72
Sports_1080P-49c5 -1.86 -9.86 -22.40 -2.57 -10.13 -22.10
Sports_1080P-4e05 -1.57 -15.50 -32.48 -3.37 -14.42 -31.67
Sports-1080P-53a0 -2.84 -19.48 -36.93 -3.32 -15.18 -36.61
Sports_1080P-5d25 -4.14 -20.74 -34.35 -3.59 -21.18 -35.13
Sports_1080P-6571 -4.75 -15.24 -32.43 -3.48 -14.45 -33.06
Sports_1080P-6710 -4.54 -10.06 -37.13 -4.84 -13.54 -38.68
Sports_1080P-679d -3.42 -10.29 -31.52 -3.60 -10.12 -30.99
Sports_1080P-7203* -4.50 75.00 75.00 -4.75 75.00 75.00
Sports_1080P-7584 -0.87 -10.40 -21.28 -1.09 -11.09 -21.28
Sports_1080P-76a2 3.99 -20.37 -40.86 7.12 -20.73 -44.43
Sports_1080P-78fa -1.76 -12.10 -29.65 -2.18 -11.36 -28.88
Sports_1080P-7b51 -5.47 -14.19 -25.23 -4.77 -13.29 -26.14
Sports_1080P-7dba -9.30 -7.84 -30.31 -9.52 -10.19 -33.46
[ Average [ -8.76 ] -12.30 [ -28.00 [ -3.44 ] -11.68 [ -27.93 ]
[ Av. AH-VMAF & VMAF | — [ -20.15 [ — [ -19.81 |
[ Average of all three | -14.69 | -14.35 ]
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Table 3: BD-rate results for DPO enhOm-+enh3m models and AV1. The first 16 sequences are from the XIPH
website and the remaining sequences are from CDVL.

[ aomenc cpu setting [ cpu=5 [ cpu=3 ]
[ Sequence | SSIM (%) [ AH-VMAF (%) | VMAF (%) | SSIM (%) [ AH-VMAF (%) | VMAF (%) |
rush_field_cuts_1080p30 -4.07 -10.10 -21.62 -1.35 -6.05 -18.63

rush_hour_1080p25 -1.38 -11.97 -28.17 -2.55 -10.99 -29.29
sunflower_1080p25 -0.99 -8.30 -26.58 2.59 -3.70 -15.29
tractor-1080p25 -4.92 -13.12 -25.39 -4.49 -10.24 -20.67
touchdown_pass_1080p30 -4.61 -11.52 -22.37 -3.71 -7.60 -19.56
riverbed_1080p25 -3.53 -6.33 -14.19 -3.42 -4.45 -13.15
west_wind_easy_1080p30 -1.30 -4.78 -29.84 1.84 2.48 -31.29
aspen-1080p30 -0.14 -7.29 -28.69 -0.45 -7.11 -25.54
blue_sky_1080p25 -4.30 -6.98 -15.09 -2.49 -3.28 -11.55
controlled_burn_1080p30 -4.29 -6.80 -29.80 -2.14 -7.50 -31.07
crowd_run-1080p50 -3.46 -8.99 -16.91 -2.09 -7.35 -14.47
ducks_take_off_1080p50 -6.96 -16.68 -27.62 -4.38 -8.95 -23.61
old_town_cross_1080p50 -0.48 -6.47 -23.93 -2.63 0.45 -19.51
park_joy_1080p50 -6.90 -12.11 -22.99 -4.81 -8.42 -20.41
pedestrian_area_1080p25 -1.59 -12.78 -22.79 -3.52 -8.18 -20.69
red_kayak_1080p30 -3.74 -8.12 -20.91 -3.35 -5.81 -19.03
vgeghd4_csrcll_original -3.14 =777 -22.20 -1.80 -5.71 -20.79
vgeghd4_csrcl12_original -6.33 -2.49 -30.32 4.29 -0.87 -29.13
vgeghd4_csrcl3_original -6.19 -12.39 -26.82 -3.36 -8.61 -26.17
vgeghd4_csrcl4_original -4.18 -7.12 -23.84 -3.81 -3.88 -20.63
vqeghd4 _src01_original -3.31 -12.59 -25.87 -1.30 -9.86 -25.27
vqeghd4 _src02_original -1.67 -7.33 -21.71 -2.97 -4.88 -19.56
vqeghd4 _src03_original -4.29 -9.01 -33.27 -2.71 -7.09 -32.41
vqeghd4 _src04_original -2.87 -12.63 -23.36 -1.32 -5.46 -16.18
vgeghd4 _src05_original -1.14 -16.06 -45.65 1.82 -14.15 -42.65
vgeghd4 _src06_original -6.82 -12.81 -35.96 -8.34 -12.93 -25.51
vqeghd4 _src07_original -6.52 -16.45 -27.09 -4.60 -7.47 -18.94
vgeghd4 _src08_original -3.02 -18.59 -31.85 1.54 -12.66 -28.57
vgeghd4 _src09-original 5.55 -7.54 -27.52 10.05 0.49 -22.81
vgeghdb_csrcl1_original -3.14 =77 -22.20 -1.80 -5.71 -20.79
vgeghdb_csrcl12_original -6.33 -2.49 -30.32 4.29 -0.87 -29.13
vgeghdb_csrcl3_original -6.19 -12.39 -26.82 -3.36 -8.61 -26.17
vgeghdb_csrcl14_original -4.18 -7.12 -23.84 -3.82 -3.88 -20.63
vgeghdb_src01_original -3.30 -10.33 -20.71 -3.13 -8.50 -18.93
vgeghdb_src02_original -9.02 -0.07 -28.65 -0.04 6.56 -33.32
vgeghd5_src04_original -3.46 -13.79 -21.19 -1.32 -11.39 -20.05
vgeghdb_src05_original 0.09 -0.19 -25.53 -0.98 3.21 -18.24
vgeghdb_src06_original -5.31 -11.13 -16.99 -2.62 -8.57 -13.87
vgeghdb_src08_original -4.87 -10.64 -43.43 -2.27 -6.53 -30.45
vgeghdb_src09_original -2.60 -9.72 -23.85 -3.51 -9.17 -21.24
| Average [ -3.62 | -9.52 -25.90 | -1.70 | -6.08 -22.88 |
[ Av. AH-VMAF & VMATF | - | -17.71 [ - | -14.48 |
l Average of all three | -13.01 | -10.22 ‘
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Table 4: BD-rate results for DPO enhOm+enh3m models and AV1. The sequences are from YouTube UGC
dataset.”" Videos marked with an asterisk (*) are excluded from the averages and are discussed separately.

[ aomenc cpu setting [ cpu=5 [ cpu=3 ]
[ Sequence [ SSIM (%) [ AH-VMAF (%) [ VMAF (%) [ SSIM (%) [ AH-VMAF (%) [ VMAF (%) |
LiveMusic_1080P-14af 3.39 -9.43 -21.35 2.19 -6.86 -20.56
LiveMusic_1080P-157b* 25.69 -10.17 -35.85 -7.09 -7.51 -34.03
LiveMusic_1080P-1ace -0.68 -0.19 -18.57 -0.66 -0.48 -19.68
LiveMusic_1080P-21dd -1.13 -9.93 -27.05 -0.69 -7.02 -26.09
LiveMusic_1080P-28fe -1.97 -8.27 -24.90 -0.40 -10.59 -26.33
LiveMusic_1080P-2930 -2.18 -9.51 -20.25 -1.84 -7.26 -17.93
LiveMusic_1080P-2b7a -2.56 -10.61 -27.47 -2.19 -8.59 -25.79
LiveMusic_1080P-2f7f -2.38 -8.16 -21.41 -1.83 -7.17 -23.00
LiveMusic_1080P-3549 -11.52 -7.47 -25.44 -8.19 -3.86 -24.51
LiveMusic_1080P-3ela* -0.12 1.47 -46.58 75.00 -0.01 -49.45
LiveMusic_1080P-3f95 -1.23 -4.48 -36.95 -1.13 -1.48 -35.83
LiveMusic_1080P-48d5 -7.40 -8.17 -19.00 -5.12 -4.76 -17.37
LiveMusic_1080P-514e -5.10 -17.21 -18.77 -5.46 -29.24 -60.38
LiveMusic_1080P-51{6 3.14 -8.37 -20.02 4.48 -8.04 -20.11
LiveMusic_1080P-541f -4.98 -11.88 -32.22 1.31 -8.09 -29.88
LiveMusic-1080P-59b3* 18.72 33.19 -18.76 -13.66 27.10 -68.16
LiveMusic_1080P-6blc -1.24 -3.24 -23.88 -1.43 -2.46 -24.00
LiveMusic_1080P-6bbe -1.32 -9.65 -17.18 -0.34 -4.71 -13.52
LiveMusic_1080P-6d1a -0.13 -7.28 -31.64 0.74 -4.91 -29.44
LiveMusic_1080P-6fe2 0.08 -7.79 -26.34 0.52 -5.45 -24.10
LiveMusic_1080P-77e8 3.83 -15.32 -75.00 2.11 -14.16 -75.00
LiveMusic_1080P-7948* 75.00 75.00 75.00 75.00 75.00 75.00
LiveMusic_1080P-7ead 4.51 -11.49 -14.53 11.09 -16.09 -29.39
Sports_1080P-0063 -4.98 -22.68 -43.05 -5.58 -14.62 -37.08
Sports_1080P-0640 -0.08 -9.97 -19.31 -0.72 -9.17 -18.75
Sports_1080P-08el -5.24 -3.58 -20.46 -3.13 -1.25 -18.03
Sports_1080P-0d0c -4.66 -7.64 -21.60 -3.96 -7.08 -22.64
Sports_1080P-15d1 -6.48 -11.20 -25.90 -3.87 -9.16 -25.28
Sports_1080P-19d8 39.70 -7.81 -48.45 10.73 -5.35 -47.25
Sports_1080P-1ae3 -3.36 -13.16 -32.14 -3.03 -11.20 -30.77
Sports_1080P-1bf7 -5.43 -10.34 -31.13 -2.32 -8.76 -30.60
Sports_1080P-1d78 -5.89 -19.73 -38.08 -4.98 -14.76 -34.08
Sports_1080P-241e -6.41 -4.67 -25.30 -6.46 -1.31 -19.65
Sports_1080P-2524 -0.66 -8.41 -31.41 -1.05 -5.02 -28.95
Sports_1080P-28a6 2.34 2.92 -37.85 0.10 7.10 -46.34
Sports_1080P-2a21 -2.57 -11.85 -23.31 0.95 -7.93 -21.97
Sports_1080P-3a3b -3.59 -12.97 -26.17 -2.55 -9.82 -24.43
Sports_1080P-3db7 -0.76 -12.49 -34.76 0.43 -7.89 -23.75
Sports_1080P-3eb0 -1.27 -10.82 -45.46 -0.88 -8.92 -39.19
Sports_1080P-43e2* 75.00 0.15 -40.89 75.00 2.22 -38.29
Sports_1080P-46ed -1.67 -13.57 -35.56 0.31 -8.41 -31.95
Sports_1080P-47e9 1.45 0.21 -44.07 -24.96 4.70 -40.03
Sports_1080P-4978 0.57 -4.59 -27.85 3.01 -0.47 -27.00
Sports_1080P-49c5 0.26 -1.84 -25.54 0.17 -4.41 -28.44
Sports_1080P-4e05 -3.90 -16.87 -37.10 1.33 -11.97 -33.73
Sports_1080P-53a0 -1.90 -14.71 -36.07 -2.68 -11.07 -35.4
Sports_1080P-5d25 -4.60 -23.34 -39.10 -5.4 -19.44 -37.46
Sports_1080P-6571 -1.34 -10.51 -38.58 -0.82 -6.64 -37.54
Sports_1080P-6710 -2.16 -8.13 -46.65 -1.80 -5.96 -48.86
Sports_1080P-679d 0.22 -1.03 -32.40 0.64 -1.62 -49.90
Sports_1080P-7203* 3.74 75.00 75.00 2.49 75.00 75.00
Sports_1080P-7584 -1.53 -9.00 -19.95 -1.08 -6.71 -18.44
Sports_1080P-76a2 -2.77 -10.92 -27.21 -2.93 -9.53 -26.70
Sports_1080P-78fa -0.25 -9.68 -29.29 3.07 -8.61 -26.82
Sports_1080P-7b51 -3.82 -16.05 -29.41 -3.12 -13.97 -28.44
Sports_1080P-7dba -5.64 -1.84 -32.01 -3.82 1.37 -28.98
[ Average [ -1.31 ] -9.49 [ -80.14 [ -1.42 ] -7.38 [ -30.23 ]
[ Av. AH-VMAF & VMAF [ — | -19.82 [ — | -18.81 ]
[ Average of all three | -13.65 | -13.01 ]
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Table 5: Average BD-rate results (%) over VMAF, AH-VMAF and SSIM under the use of sharpen-
ing filters prior to encoding. For x264, an FFmpeg sharpening filter recipe is used. For aomenc, the
—-tune=vmaf _with_preprocessing flag was used.

SSIM
Dataset \ sharp+x264 slow | sharp+x264 veryslow \ sharp+aomenc cpu=5 | sharp+aomenc cpu=3
XIPH+CDVL 21.56 22.61 18.83 22.70
UGC 45.46 45.64 27.45 28.62
AH-VMAF
XIPH+CDVL 4.86 8.22 9.41 -19.48
UGC 16.49 18.71 21.48 26.06
VMAF
XIPH+CDVL -34.21 -34.04 -30.04 -27.08
UGC -32.98 -32.97 -32.36 -31.83
Average over SSIM, AH-VMAF and VMAF
XIPH+CDVL -2.60 -1.07 -0.60 -7.95
UGC 9.66 10.46 5.52 7.62

Table 6: Average BD-rate results (%) over VMAF, AH-VMAF and SSIM when transitioning between different
encoders. Interpretation example: Row ‘x264 veryslow’ and column ‘x264 slow’ shows the BD-rate increase of
7.75% incurred when switching from x264 veryslow preset to the x264 slow preset.

From To Target
Baseline x264 slow | x264 veryslow | aomenc cpu=5 | aomenc cpu=3
x264 slow 0.00 -7.07 -33.90 -40.96
x264 veryslow 7.75 0.00 -29.17 -36.72
aomenc cpu=»s 51.16 43.63 0.00 -10.88
aomenc cpu=3 60.02 55.43 12.45 0.00

Table 7: Average BD-rate results (%) over VMAF, AH-VMAF and SSIM when transitioning between different
encoders and encoders with our proposed DPO enhOm+enh3m precoding models. Interpretation example: Row
‘x264 veryslow’ and column ‘DPO+x264 slow’ shows the BD-rate reduction of 7.89% incurred when switching
from x264 ‘veryslow’ preset to the DPO+x264 ‘slow’ preset.

From To Target
Baseline DPO+x264 slow \ DPO+x264 veryslow \ DPO+aomenc cpu=>5 \ DPO+aomenc cpu=3
x264 slow -14.35 -20.00 -41.42 -47.5
x264 veryslow -7.89 -14.03 -37.28 -43.81
aomenc cpu=> 32.50 24.46 -13.33 -21.40
aomenc cpu=3 45.70 38.00 -2.94 -11.62

Table 8: Average speed ratio: %Em (numbers below 1.00 indicate slowdown) when transitioning between

different encoders. Interpretation example: Row ‘x264 veryslow’ and column ‘x264 slow’ shows that switching
from x264 ‘veryslow’ to ‘slow’ allows for 2-fold increase in encoding speed.

From To Target
Baseline x264 slow ‘ x264 veryslow ‘ aomenc cpu=5o ‘ aomenc cpu=3
x264 slow 1.00 0.50 0.03 0.02
x264 veryslow 2.00 1.00 0.07 0.04
aomenc cpu=»s 29.02 14.50 1.00 0.53
aomenc cpu=3 54.55 27.25 1.88 1.00
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slowdown of encoding speed to 50%, but at the same time increases the bitrate reduction from 7.07% to 20%,
which can make such a switch very worthwhile. Overall Table 6-Table 8 show how our approach helps bridge
the gap between encoder complexity presets, or even between encoding standards generations. While the DPO
realization itself requires GPU or multi-CPU with support for fast quantized neural network inference in order to
run in real time, our models only need to apply to the content once, and multiple encoding runs can be carried out.
For example, its complexity can become negligible in comparison to the complexity of the 50 or more encodings
per video needed in order to produce the dynamic optimizer results reported in this paper. This single-pass
property of DPO reduces the implementation overhead versus conventional encoding. We intend to reduce the
runtime complexity with further speed optimizations and a content-adaptive selection between models that will
have minimal impact in the obtained results, or can even provide for further bitrate gains. We have noticed that
the deployment pace of such optimizations is significantly faster than optimizing hand-crafted code of encoders,
since they are carried out via training, finetuning, prunning and quantization/approximation experiments that
are data-driven and operate in a semi-automatic manner.

6. CONCLUSION

We propose deep perceptual optimization as the means of generating a perceptually enhanced and rate-controlled
representation of each input frame via learnable preprocessing or ‘precoding’. Our proposed DPO framework
models the building blocks of a standard video encoder in order to optimize the precoding for rate, distortion and
perceptual quality in an end-to-end differentiable manner for backpropagation. At inference, only the precoder
is deployed and prepended to carry out a single pass through each frame prior to any standard encoder targeting
any bitrate. Our results show that our learned precoding offers controllable gains on both standard distortion
and perceptual-oriented metrics, such as VMAF and SSIM, when evaluated on two codec generations used in
streaming systems. This allows for complexity-bitrate-quality trade-offs that go beyond those offered by tunable
encoder recipes in standards, thereby making transition between older and newer standards more seamless, or,
conversely, making the transition to a newer and more complex encoder significantly more beneficial in terms of
quality reported by standard metrics. The full set of libvmaf JSON measurements and Matlab/Octave code to cal-
culate the optimal rate-quality convex hull per sequence and obtain the BD-rates of this paper is available online
at https://www.isize.co/spie2020.zip as a 3.8GB file deflating to a 29GB cache of 296K measurement files. The
main script to compute BD-rates between the results of any two folders is json_sequence_folders_comp_v1.m.
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