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Abstract
Spatial and temporal distribution of seabird transiting and foraging at sea is an im-
portant consideration for marine conservation planning. Using at-sea observations 
of seabirds (n = 317), collected during the breeding season from 2012 to 2016, we 
built boosted regression tree (BRT) models to identify relationships between nu-
merically dominant seabird species (red-footed booby, brown noddy, white tern, and 
wedge-tailed shearwater), geomorphology, oceanographic variability, and climate os-
cillation in the Chagos Archipelago. We documented positive relationships between 
red-footed booby and wedge-tailed shearwater abundance with the strength in the 
Indian Ocean Dipole, as represented by the Dipole Mode Index (6.7% and 23.7% 
contribution, respectively). The abundance of red-footed boobies, brown noddies, 
and white terns declined abruptly with greater distance to island (17.6%, 34.1%, and 
41.1% contribution, respectively). We further quantified the effects of proximity to 
rat-free and rat-invaded islands on seabird distribution at sea and identified break-
ing point distribution thresholds. We detected areas of increased abundance at sea 
and habitat use-age under a scenario where rats are eradicated from invaded nearby 
islands and recolonized by seabirds. Following rat eradication, abundance at sea of 
red-footed booby, brown noddy, and white terns increased by 14%, 17%, and 3%, 
respectively, with no important increase detected for shearwaters. Our results have 
implication for seabird conservation and island restoration. Climate oscillations may 
cause shifts in seabird distribution, possibly through changes in regional productivity 
and prey distribution. Invasive species eradications and subsequent island recoloni-
zation can lead to greater access for seabirds to areas at sea, due to increased for-
aging or transiting through, potentially leading to distribution gains and increased 
competition. Our approach predicting distribution after successful eradications ena-
bles anticipatory threat mitigation in these areas, minimizing competition between 
colonies and thereby maximizing the risk of success and the conservation impact of 
eradication programs.
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1  | INTRODUC TION

Seabirds are apex predators in marine ecosystems (Ballance, Pitman, 
& Fiedler,  2006; Estes, Crooks, & Holt,  2001) and play import-
ant roles in ecosystem functionality (Fukami et  al.,  2006; Graham 
et  al.,  2018; Loder, Ganning, & Love, 1996; Schmidt, Dennison, 
Moss, & Stewart, 2004). Many seabirds, such as boobies (Sulidae), 
shearwaters, and petrels (Procellariidae), complete their life cycle 
primarily at sea and feed predominantly on pelagic forage species 
(e.g., anchovies, flying fish, euphausiids; Brooke,  2004; Votier & 
Sherley, 2017). Multiple threats to seabirds occur throughout their 
distribution, which is impacted by climatic variability and invasive 
species (Croxall et al., 2012; Dias et al., 2019). A recent assessment 
revealed that 69.7% of global seabird populations, including the 
families Laridae, Sulidae, and Procellariidae, are declining (Paleczny, 
Hammill, Karpouzi, & Pauly, 2015).

By linking terrestrial and oceanic trophic webs, seabirds can be 
sensitive indicators of long-term and large-scale changes in both en-
vironmental conditions and human activities (Einoder, 2009; Piatt, 
Sydeman, & Wiese,  2007). At sea, seabird distribution is closely 
linked to that of their prey. Oceanographic conditions (e.g., sea sur-
face temperature, chlorophyll a) and geomorphic characteristics 
(e.g., slope, depth) are therefore commonly used as a proxy of food 
availability (Fox et al., 2017; Hyrenbach, Veit, Weimerskirch, Metzl, 
& Hunt, 2007; Mannocci, Catalogna, et al., 2014; Mannocci, Laran, 
et al., 2014; Maxwell & Morgan, 2013; Vilchis, Ballance, & Fiedler, 
2006).

In the Indian Ocean (IO), several studies have explored link-
ages between oceanographic and geomorphic conditions and sea-
bird distribution derived from single-year surveys (e.g., Kappes, 
Weimerskirch, Pinaud, & Le Corre, 2011; Mendez et  al.,  2017; 
Weimerskirch, Le Corre, Jaquemet, & Marsac, 2005). Hyrenbach 
et al. (2007) explored drivers of seabird distribution in the south-
ern IO, identifying the influence of sea surface temperature 
(SST) and proximity to sub-Antarctic Islands. Mannocci, Laran, 
et al. (2014) found that their distribution in the southwest IO was 
closely related to persistent oceanographic conditions and that 
time-averaged values over the long term (>7  years) were more 
predictive of distribution than those averaged over the short-
term (1 week).

Multiyear studies can provide managers with useful information 
needed to anticipate how interannual climate oscillations such as El 
Niño Southern Oscillation (ENSO; Sprogis, Christiansen, Wandres, 

& Bejder, 2018) and the IO Dipole (Saji, Goswami, Vinayachandran, 
& Yamagata,  1999) may impact seabird distribution. Interannual 
and climate variability in the tropical IO is to a large degree char-
acterized by oscillations in SST gradient between the eastern and 
western basin, referred to as the IO Dipole (Saji et al., 1999). This 
gradient is represented by the Dipole Mode Index (DMI), where 
positive values correspond to cooler waters in the eastern basin 
and warmer in the west, whereas negative values correspond to 
warmer waters in eastern basin and colder in the west. Although 
the influence of climate oscillations and seabird dynamics has been 
the subject of a vast body of work (reviewed in Oro,  2014), the 
effects of the dipole on higher trophic levels remain poorly un-
derstood. A few studies have explored linkages between the IO 
Dipole and seabird population dynamics and behavior (Rivaland, 
Barbraud, Inchausti, & Weimerskirch, 2010; Tryjanowski, Stenseth, 
& Matysioková, 2013), due in part to its relatively recent discovery 
(Ashok, Guan, & Yamagata, 2003). Recent research on land birds 
has shown a positive correlation between the IO Dipole and bird 
community composition (Mehta & Wilby, 2018). However, to our 
knowledge, the influence of climate variability on seabird distribu-
tion in the central Indian Ocean has not been studied.

While seabird distribution at sea may fluctuate as a function 
of climatic variability, such as that reflected by the IO Dipole (Dias 
et  al.,  2019), distribution at sea is likely also impacted by invasive 
species on nearby islands. Island invasion by rodents, such as the 
ship rat Rattus rattus, is one of the greatest threats to seabird pop-
ulations (Dias et al., 2019; Jones et al., 2008; King, 1985). Seabirds 
are central place foragers and thus sensitivity to rats may restrict 
their distributions in the water adjacent to invaded islands. Seabirds 
require islands to rest and breed, and both survival and breed-
ing success rates are highest on islands with limited disturbance 
(King, 1985). Rats successfully invade islands by quickly adapting to 
new habitats, in part because of their omnivorous diet. Rats prey 
on both chicks and adults, causing population declines which can 
lead to extirpation (Fleet,  1972; Jones et  al.,  2008; King,  1985; 
Major, Jones, Charette, & Diamond, 2007). The impact of rat inva-
sion on seabirds is species-dependent and depends upon a combi-
nation of biological traits, such as breeding strategy, body weight, 
and life history. For example, small seabirds nesting in burrows such 
as storm-petrels are particularly vulnerable to rat predation (Jones 
et al., 2008; Woodward, 1972). Rat-eradication programs are con-
sidered a major component of successful island restoration and 
seabird population recovery (Borrelle, Boersch-Supan, Gaskin, & 

K E Y W O R D S

boosted regression tree, British Indian Ocean Territory, Chagos Archipelago, island invasive 
species, marine protected areas, Rattus rattus, ship rat

F I G U R E  1   Seabird sampling effort within the Chagos Archipelago and the British Indian Ocean Territory. Boundaries of the BIOT MPA (a) 
and locations within the Indian Ocean (inset). Individual atolls and islands (b–g). Black dots represent the location of individual bird transects. 
Rat-invaded islands are colored in red and rat-free islands in blue. Six islands have been reported with uncertain rat status (Île Verte, Île 
Manon, Île Finon, Île de la Passe, and a small Unnamed Island in Peros Banhos) and are for representation purposes shown as rat-invaded



     |  9341PEREZ-CORREA et al.

(a)

(b) (c)

(d) (e)

(f) (g)



9342  |     PEREZ-CORREA et al.

Towns, 2018; Hutton, Parkes, & Sinclair, 2007; Le Corre et al., 2012; 
Russell & Holmes, 2015; Towns et al., 2009).

The IO has 27 archipelagos that are considered hotspots of 
marine biodiversity (Carr et al., 2020, Danckwerts et  al.,  2014; 
Le Corre et  al.,  2012), most of which are particularly import-
ant to seabirds (Le Corre & Jaquemet,  2005). In the central IO, 
the Chagos Archipelago, encompassed within the British Indian 
Ocean Territory (BIOT), is comprised of 55 tropical islands and 
was designated a no-take marine protected area (MPA) in 2010. 
The majority of the archipelago has been closed to human activi-
ties since 1971 and is therefore relatively undisturbed (Everaarts 
et al., 1999; Readman et al., 2013; Sheppard & Sheppard, 2019). 
The archipelago is considered of great importance for seabird 
conservation, harboring eighteen species of resident breeders, 
and ten designated and two proposed “Important Birds Areas” 
(Hilton & Cuthbert, 2010; McGowan, Broderick, & Godley, 2008). 
Activities surrounding the historical coconut plantations, dating 
back to the turn of the 18th century, led to invasions of ship rats 
and other invasive mammals (i.e., feral cats Felis catus; Wenban-
Smith & Carter, 2016) on 26 islands (95.3% of the island area), neg-
atively affecting the seabird populations (Harper & Bunbury, 2015; 
Harper, Carr, & Pitman, 2019; Hilton & Cuthbert, 2010). Seabird 
densities on rat-free islands are up to 760 times greater than that 
on invaded islands, leading to nutrient subsidies and increased 
productivity on adjacent coral reefs (Graham et al., 2018). Notably, 
these subsidized reefs may recover faster following coral bleach-
ing (Benkwitt, Wilson, & Graham,  2019), primarily enhanced by 
biodiversity richness and ecosystem functionality (Benkwitt, 
Wilson, & Graham, 2020). As productivity near rat-free islands is 
enriched, it is therefore conceivable that seabirds on these islands 
have greater opportunities to feed in proximity to their colonies. 
After the successful eradication of rats from Île Vache Marine in 
2017 (Harper et al., 2019), further rat eradication has been desig-
nated a priority target within the conservation framework of the 
BIOT Draft Conservation Management Plan 2018 – 2023 (BIOT 
Administration, 2018).

Here, we expand on previous work done in the IO (i.e., Hyrenbach 
et al., 2007; Mannocci, Laran, et al., 2014) by using a multiyear sea-
bird survey (from 2012 to 2016) within the BIOT MPA to identify 
drivers of distribution. First, we modeled seabird distribution using 
oceanographic variables, and distance to the nearest island, in order 
to make general seabird distribution predictions and to establish the 
influence of oceanography and interannual variability. Then, having 
established that the at-sea distribution of these species is in fact 
sensitive to the nearest island, we built new models considering 
distance to closest rat-free island or to closest rat-invaded island. 
Finally, predictions based on the rat-invaded island model were sub-
tracted from those of the rat-free model to infer the spatial effect of 
rats on seabird distribution at sea during transiting or foraging. This 
approach enables us to estimate potential suitable marine habitats 
(i.e., distribution gain) in a scenario of a successful archipelago-wide 
rat-eradication program and possible factors relevant to island res-
toration priorities.

2  | METHODS

2.1 | Study area

The Chagos Archipelago is located in the central IO at 6°S and 72°E 
at the southern limit of the Chagos–Laccadive ridge and is over 
1,500 km from the nearest continental land mass (Carr, 2012). Fifty-
five islands are clustered within the atolls of Diego Garcia, Peros 
Banhos, Salomon, Egmont, and on the Great Chagos Bank (Figure 1a) 
and constitute combined approximately 60  km2 of land area. The 
territory encompasses approximately 60,000 km2 of shallow photic 
reefs and 580,000 km2 of primarily oceanic habitat, with a maximum 
depth over 6,000 m (Carr, 2011; Dumbraveanu & Sheppard, 1999). 
The climate is tropical, characterized by oceanic conditions and 
the seasonal reversal monsoon (Sheppard,  1999). Situated in the 
intertropical convergence zone (ITCZ), the archipelago has moder-
ate winds generally from the northwest (October to April) and the 
southeast (May to September). Sea surface temperature has an ap-
proximately bimodal distribution with maxima in December–January 
and March–April with a yearly mean of 28°C (Pfeiffer, Dullo, Zinke, & 
Garbe-Schönberg, 2008) oscillating between 24.8 and 30.5°C.

2.2 | Seabird observations

In order to identify the influence of oceanographic conditions and 
island on seabird distribution, we conducted a multiyear survey of 
the archipelago's seabirds at sea. The survey ran from 2012 to 2016 
between November and April, to overlap with the moderate phase 
of the monsoon. This period generally coincides with peak seabird 
breeding activity in the Chagos Archipelago (Carr,  2011, 2015; 
Carr et  al.,  2020). During the months of sampling, the BIOT MPA 
and the IO experienced two seasons of modestly positive IO Dipole 
(2012–2013), which was followed by three neutral IO Dipole events 
(2014–2016; NOAA ESRL Physical Sciences Laboratory [NOAA 
ESRL] 2020).

Seabird transects (n = 317) were conducted from the BIOT patrol 
vessel. Our sampling was primarily designed to target focal sites that 
were typical pelagic habitats within the MPA, such as shallow sea-
mounts (<70 m), deep banks (ca. 400 m), deep seamounts (<900 m), 
and deep basins (<2,000 m). Transects were generated by adapting 
the method of Tasker, Jones, Dixon, and Blake (1984). Each transect 
had a duration of 30 min, during which the vessel typically steamed 
at 12 knots and travelled ca. 11 km. All transects were generated 
within a 180° arc forward of the ship, out to approximately 300 m 
(Table 1, Figure 1). Each year during the survey, sampling effort was 
a trade-off between partial replacement of the previous years to en-
sure a time series, and the addition of new locations, to increase the 
diversity of habitats surveyed. This meant that in certain years, sam-
pling was more evenly spread throughout the archipelago (2012 and 
2016), and more clustered in others (2013, 2014, 2015, Figure 2).

All seabird observations were led by Pete Carr, an expert on sea-
birds within the archipelago (e.g., Carr, 2011; Carr, 2012; Carr, 2015), 
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supported by 1–2 field assistants. This consistency in the same lead 
observer with multiple field assistants and the use of transects with 
limited strip (i.e., 300 m) reduced potential sources of bias (Spear, 
Ainley, Hardesty, Howell, & Webb, 2004).

2.3 | Oceanic habitat modeling

2.3.1 | Variables selection

We retained the most frequent and abundant seabird species (total 
sum of observations > 100) in the BIOT MPA in order to model oce-
anic distributions. These distributions were modeled based on geo-
morphic and oceanographic variables using Boosted Regression Tree 
models (BRT), an advanced form of regression (Friedman, Hastie, & 
Tibshirani, 2000) that use boosting to combine and adapt large num-
bers of relatively simple tree models, enabling model performance 
optimization (Elith, Leathwick, & Hastie, 2008).

The BRTs were fitted using individual species count per sample (a 
proxy for abundance) as the response variables, against explanatory 

variables that previously have been shown to contribute to seabird 
distribution (Fox et  al.,  2017; Mannocci, Catalogna, et al., 2014; 
Mannocci, Laran, et al., 2014; Vilchis et al., 2006; Yen, Sydeman, & 
Hyrenbach, 2004). Slope and distance to nearest island were calcu-
lated using QGIS version 3.8. Slope was derived from seabed depth 
values from a GEBCO 30-arc seconds bathymetry grid (Becker 
et  al.,  2009), whereas distance to coast was obtained in function 
to the nearest island from each transect. Oceanographic variables 
were sea surface temperature (SST), chlorophyll a (CHL) concentra-
tion, and sea-level anomaly (SLA). SST and CHL were obtained from 
aqua-MODIS sensor at 4  km spatial resolution from Ocean Color 
Web (NASA Ocean Biology Processing Group, 2015). The SLA val-
ues were obtained from E.U. Copernicus Marine Service Information 
(2018). For each oceanographic covariate, we used the long-term 
average for the month of sampling, computed over the last 15 years 
(2002–2017) following recommendations by Mannocci et al. (2017) 
for modeling mesoscale distributions of highly mobile animals, such 
as seabirds. Time-averaged oceanographic variables have been 
shown to be more predictive of apex predators than short-term val-
ues (Mannocci et al., 2017; Suryan, Santora, & Sydeman, 2012) and 
are more directly related to habitat consistency and thus ecologically 
relevant (Mannocci, Laran, et al., 2014). We also included an index of 
climatic variability, as represented by the Dipole Mode Index [DMI] 
and oceanic Niño index [ONI]. ONI and DMI were downloaded from 
NOAA (2020, 2020b) repository.

2.3.2 | Species distribution models

We first constructed full BRT models that included all explana-
tory variables (seven variables) for each species. Secondly, we ob-
served the individual contribution of each variable and rebuilt the 
models selecting the variables with contributions greater than 5%. 
We then used the total explained deviance (TED) to evaluate the 
explanatory power of the models. TED was calculated dividing the 

TA B L E  1   Number of transects made by month and year within 
the BIOT MPA

Sampling Month Sampling Month Transects

2012 November 2012 50

2012 December 2012 40

2013 February 2013 7

2013 March 2013 3

2014 March 2014 10

2014 April 2014 5

2015 January 2015 92

2015 March 2015 1

2016 February 2016 109

F I G U R E  2   Year-to-year sampling 
effort in the Chagos Archipelago. Each 
300-m transect is represented by a black 
dot as the spatial resolution does not 
allowed us to perfectly draw lines
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residual deviance by the null deviance resulting from each selected 
species models. BRT models were fitted using the package gbm on 
R (R Development Core Team 2018 version R version 3.5.2) with 
code modifications provided by Elith et al. (2008). As recommended 
by Elith et al. (2008) and D'agata et al. (2014), we did an analytical 
exploration of BRT models in order to find a “trade-off” between 
numbers of trees (nt; number of interactions), learning rate (lr; the 
shrinkage parameter), and tree complexity (tc; depth of interactions 
between factors of each tree). This approach required investiga-
tion of the bag fraction term (bg) that controls overfitting via the 
introduction of stochasticity to the models (Friedman, 2002). Model 
parameters were chosen while considering the goodness of fit, as 
determined via cross-validation (CV, Table S2). Finally, we used the 
dependence plots resulted from the BRT models to understand the 
shape of the influence of every variable in every species.

2.3.3 | Predictions of seabird distribution

Spatial predictions in unsampled areas were limited to the convex 
hull defined within the BIOT MPA and restricted by the range val-
ues of the variables used to build each model and the max recorded 
value of distance from coast (~137 km). This constraint ensured that 
predictions were only made in areas with similar environmental con-
ditions (see Figure S1 and Table S1). Using this approach, we avoided 
extrapolating beyond the range of the model, while generating 
meaningful predictions beyond our sampled area (Yates et al., 2018). 
Whenever ONI or DMI was retained in the model, we rendered pre-
dictions based on the values for the last year of sampling, 2016. We 
rendered predictions on a 0.4 × 0.4 decimal degree resolved grid. 
This resolution was considered a reasonable trade-off in order to 
capture distribution for species with uncertain range sizes (Seo, 
Thorne, Hannah, & Thuiller, 2008).

2.4 | Modeling the effect of rat invasion

We hypothesize that the presence of rat-invaded islands will influ-
ence the distribution of seabirds at sea. We modeled the effect of 
rat invasion on seabird distribution at sea by modifying our BRTs. 
We first exchanged the variable distance to coast from each transect 
with either the distance to the closest rat-free island or the clos-
est rat-invaded island. This resulted in two additional models. The 
model that included “distance to the closest rat-free islands (km)” 
was considered to represent bird distribution at its theorized maxi-
mum abundance, in the absence of any rat invasion. The model that 
included “distance to the closest rat-invaded islands (km)” was con-
sidering to represent bird distribution assuming total invasion.

These two models were then used to identify thresholds based 
on a broken-line regression analysis of the effect of rat invasion or 
absence. This analysis gave us the chance to quantify the degree to 
which seabird distribution is influenced by the distance to rat-free or 
rat-invaded islands using a Davies' test (Davies,  2002). Davies' test 

enabled us to find the inflexion point of the partial dependence plots 
by testing the difference in the slopes. The test was done using the 
R package segmented (Muggeo, 2008). This analysis has been previ-
ously used to find thresholds on the response to explanatory variables 
(e.g., Clausen, Christensen, Gundersen, & Madsen,  2017; D'agata 
et al., 2014; Isles, Xu, Stockwell, & Schroth, 2017; Picard, Rutishauser, 
Ploton, Ngomanda, & Henry, 2015). As a result, the test provided with 
break points (BP) of the dependence plots with a range of the 95% 
confidence intervals (CI). We contrasted the BP and the CI of the rat-
free model, the rat-invaded model, and the original distribution model.

The final objective of our analysis was to identify possible distri-
bution shifts, after a rat-eradication scenario. In order to determine 
the potential net gain in distribution following a scenario of an archi-
pelago-wide rat-eradication program, we subtracted the predictions 
of the rat-invaded models from the predictions of the rat-free mod-
els. The predictions were mapped only where the nearest island was 
rat-invaded since we assume that no new islands will be invaded, 
showing net gain and net loss in seabird abundance and habitat suit-
ability. An eradication program will not increase a seabird popula-
tion immediately, as islands may first need to be recolonized, and 
only after several years of high reproductive output can substantial 
population increases be expected (e.g., Jones, 2010). Depending on 
whether an island is actually occupied by a species or not, the initial 
recolonization may also spill over the abundance elsewhere (as the 
colonizing birds must come from somewhere). As such, these predic-
tions should be considered as potential only.

3  | RESULTS

3.1 | Seabird sightings

In total, 7,008 seabirds were observed during the five expedi-
tions (Table 2). Seven families were recorded: Laridae (noddies and 
terns), Sulidae (boobies), Procellariidae (shearwaters and petrels), 
Phaethontidae (tropicbirds), Fregatidae (frigatebirds), Hydrobatidae 
(northern storm-petrels), and Oceanitidae (southern storm-petrels). 
The most abundant species were red-footed booby (Sula sula: 1,712 
individuals and 255 observations, Figure 3a and 3b), brown noddy 
(Anous stolidus: 3,027 individuals and 171 observations, Figure 3c 
and 3d), white tern (Gygis alba: 546 individuals and 154 observations, 
Figure 3e and 3f), and wedge-tailed shearwater (Ardenna pacifica: 
562 individuals and 113 observations, Figure 3g and h). These spe-
cies were retained for further distribution modeling (Figure 4).

3.2 | Predictive modeling

3.2.1 | Oceanic drivers of distribution and 
spatial patterns

Total deviance explained for each BRT was 80% for red-footed 
booby, 89% for brown noddy, 88% for white tern, and 99% for 
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wedge-tailed shearwater. Distance to coast was an important vari-
able for all species, explaining between 17.6% and 41.1% of the 
deviance (Figure 5b, 5g, 5k and 5q). Slope was a particularly impor-
tant variable influencing for red-footed booby (22.3% contribution, 
Figure 4a) whereas sea surface temperature was the most important 
for wedge-tailed shearwater (29.4%). Chlorophyll a concentration 
explained between 6.4% and 23.5% for all species. DMI was retained 
for red-footed booby (6.7%, Figure 6a) and wedge-tailed shearwater 
(23.7%, Figure 6b), with both species showing increasing abundance 
with positive values of the DMI.

Spatial predictions for red-footed booby, brown noddy, and 
white tern revealed a strong coast signature (Figure  7a–c), while 
wedge-tailed shearwater distribution was more uniform with higher 
abundance levels near high slope areas and toward the northeast of 
the Archipelago (Figure 7d). Brown noddy and white tern abundance 
was pronounced over shallow seabeds (<1,000  m) in proximity to 

islands and atolls (Figure  7b,c). Red-footed booby abundance was 
more pronounced in pelagic and deeper areas and in areas with in-
termediate slope (ca. 15º, Figure 7a).

3.2.2 | Response to rat invasion

The rat-invaded BRT models outperformed the rat-free models for 
the red-footed booby (86% vs. 82%, total deviance explained), the 
brown noddy (90% vs. 85%), and the wedge-tailed (97% vs. 94%). 
The contribution of distance to rat-free island was higher than dis-
tance to rat-invaded island for red-footed booby (21.7% vs. 16.2%) 
and wedge-tailed shearwater (11.1% vs. 0.8%) and to a lesser degree 
for brown noddy (39.6% vs. 37.9%) Conversely, for white tern, dis-
tance to rat-free island explained less deviance (28.7%) than distance 
to rat-invaded island (36.6%; Figure 8).

F I G U R E  3   Four most abundant seabird 
species at sea in the Chagos Archipelago, 
recorded in flight (a, c, e, and g) and 
on island for breeding (b and h), or for 
roosting (d and f). These species were 
retained for distribution modelling only

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Breaking points (BP) indicated the threshold to which the nearest 
island, whether invaded or not, influenced the distribution of sea-
birds. Thresholds BP in the effect of islands differ among all species 
(Figure 9). The BP for red-footed booby was 37.8 km for rat-free model 
[CI 39.4, 40.7] and at 60.0 km for rat-invaded model [CI 55.2, 65.0]. The 
BP for brown noddy was at 48.6 km [CI 46.6, 50.6] for rat-free model 
and 56.6 km for rat-invaded model [CI 51.9, 61.3]. The BP for white tern 
was 54.5 km for rat-free model [CI 50.9, 58.0] and 24.4 km [CI 23.4, 
25.4] for rat-invaded model. The effect on wedge-tailed shearwater 
showed a bimodality with different response from lesser and greater 
distance. At lesser distance, the BP was 21.2 km for rat-free model [CI 
18.9, 23.5] and 32.1 km [CI 30.4, 33.8] for rat-invaded model (Table 3).

The presence of rats on nearby islands reduced the suitable hab-
itat of seabirds (Figure  10). Following rat eradication, abundance 
at sea of red-footed booby, brown noddy, white tern, and wedge-
tailed shearwater increased by 14%, 17%, 3%, and 4% respectively. 
However, the models for wedge-tailed shearwater distribution were 
weak and the effect was negligent. Hence, it is not reported in figure.

4  | DISCUSSION

Using our at-sea observations in the Chagos Archipelago over a 
5-year period, we have identified spatiotemporal trends in seabird 

Common Name Scientific Name Observations
Individuals 
count

Laridae (Terns and Noddies)

Brown Noddya  Anous stolidus 171 3,027

Lesser Noddy Anous tenuirostris 41 393

White Terna  Gygis alba 154 546

Greater Crested Tern Thalasseus bergii 42 163

Common Tern Sterna hirundo 3 3

Black-naped Tern Sterna sumatrana 9 22

Little Tern Sternula albifrons 1 1

Bridled Tern Onychoprion anaethetus 26 51

Sooty Tern Onychoprion fuscatus 47 179

Sulidae (Boobies)

Red-footed Boobya  Sula sula 255 1,712

Brown Booby Sula leucogaster 36 104

Masked Booby Sula dactylatra 4 5

Procellariidae (Shearwaters and Petrels)

Wedge-tailed 
Shearwatera 

Ardenna pacifica 113 562

Audubon's Shearwater Puffinus lherminieri 25 58

Tahiti petrel Pseudobulweria rostrata 1 1

Bulwer's Petrel Bulweria bulwerii 18 26

Jouanin's Petrel Bulweria fallax 2 2

Fregatidae (Frigatebirds)

Great Frigatebird Fregata minor 39 104

Lesser Frigatebird Fregata ariel 6 17

Hydrobatidae (Boreal Storm-petrels)

Wilson's storm-petrel Oceanites oceanicus 1 2

Matsudaira's 
storm-petrel

Oceanodroma 
matsudairae

6 22

Phaethontidae (Tropicbirds)

Red-tailed Tropicbird Phaethon rubricauda 1 1

White-tailed Tropicbird Phaethon lepturus 3 6

Oceanitidae (Austral Storm-Petrels)

White-faced 
Storm-Petrel

Pelagodroma marina 1 1

aRepresent the species with the greatest counts used for modeling. 

TA B L E  2   Number of observations 
and individual counts during the survey 
(2012–2016), separated by family and 
species
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distribution. Our multiyear survey spanned a broad range of environ-
mental conditions and has enabled us to identify how geomorphic 
and oceanographic variability drives seabird distribution, including a 
possible association between regional abundance and the IO Dipole 
oscillation through the DMI. Furthermore, we have modeled the spa-
tially explicit impact of islands with and without rats on seabird distri-
bution and have identified areas of net increase in abundance under 
an archipelago-wide rat-eradication scenario, adding to a mounting 
body of research on the considerations for rat-eradication priorities, 
both globally (Buxton, Jones, Moller, & Towns,  2014) and in BIOT 
(Dawson et al., 2015). Information on seabird hotspots, sensitivity 
to climate oscillation, and how eradication can result in distribution 
shifts has critical implications for tropical seabird conservation and 
for island restoration strategies.

4.1 | Drivers of seabird distribution within the 
Chagos Archipelago

The red-footed booby showed a primarily oceanic distribution, 
with pronounced hotspots east of Diego Garcia, northwest of 
Peros Banhos, and south of Salomon. Red-footed booby distribu-
tion has traditionally been thought to be positively associated with 
areas of high productivity and elevated chlorophyll a concentration 

(>0.16  mg  m−3  chl-a) (Ballance, Pitman, & Reilly,  1997; Jaquemet, 
Le Corre, Marsac, Potier, & Weimerskirch,  2005; Weimerskirch 
et al., 2005). In contrast, Mendez et al. (2017) identified a negative 
correlation between red-footed boobies and chlorophyll a, by track-
ing foraging behavior of red-footed boobies in colonies along the 
equator (Galapagos Islands, Mozambique Channel, New Caledonia, 
and the IO) which permitted a more robust understanding of fac-
tors that determines distribution. Mendez et  al.  (2017) concluded 
that across the pantropical range of the red-footed booby, distri-
bution is closely driven by intra- and interspecific competition for 
prey. As chlorophyll a concentration was negatively correlated with 
red-footed boobies here, our results appear consistent with Mendez 
et al. (2017), with competition being an important driver of distribu-
tion. Red-footed booby were sensitive to rats, aggregating in greater 
abundance near rat-free islands.

Brown noddy and white tern distributions were strongly related 
to distance to coast, concentrating around islands, and over shallow 
water (<1,000 m). Furthermore, brown noddy distribution was as-
sociated with high sea surface temperature (>29.5°C), while white 
terns were strongly influenced by low chlorophyll a concentration 
(<0.2 mg m−3 chl-a). Our results are in line with previous observations 
of brown noddies leaving and returning to islands during the same 
day in the breeding season, suggesting they are not long-distance 
or multiday foragers (Jaquemet, Le Corre, & Weimerskirch,  2004; 

F I G U R E  4   Number of individual 
seabirds by family summed across year (a) 
and for the four most abundant species 
red-footed booby (Sula sula), brown noddy 
(Anous stolidus), white tern (Gygis alba), 
and wedge-tailed shearwater (Ardenna 
pacifica) standardized by the number of 
samples for each year (b)

(a)

(b)
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Surman, Nicholson, & Ayling,  2017). The two species appeared to 
have different responses to rat invasion. The reasons for this differ-
ence in response remain unknown, but could be linked to the fact 
that both species breed on rat-invaded islands (Carr, pers. obs.), thus 
confounding any signal related to invasion status.

Wedge-tailed shearwater were restricted to less productive 
waters (<0.20 mg m−3 chl-a) with high slope (> 20°) and were more 
attracted to colder water (<29°C) across the BIOT MPA. Our ob-
servations were consistent with those of Mannocci, Laran, et al. 
(2014) in the western IO, reporting lower numbers in productive 
areas (>0.37 mg/m3). The wedge-tailed shearwater were the least 
sensitive species to distance to coast and in contrast to the other 

species appeared to increase in abundance with increasing distance. 
A potential reason for this is that shearwaters typically have a wider 
foraging range from nesting colonies (ca. 480 km; King, 1974) than 
red-footed booby (ca. 67.5 km; Young et al., 2010) and brown noddy 
(ca. 80 km; Harrison & Stone-Burner, 1981; King, 1974). Therefore, 
this response is likely an artifact of the observed birds commut-
ing to foraging areas, rather than actually foraging in the relatively 
near-coast areas. Wedge-tailed shearwater return to burrows only 
at night, so that their distribution appears independent from islands 
may be due to a predominantly scattered and remote distribution 
during the day (Dias, Alho, Granadeiro, & Catry,  2015). Although 
we found no significant effect of rat invasion on wedge-tailed 

F I G U R E  5   Partial dependence plots of each variable modeled in the BRTs for all four species red-footed booby (a–e), brown noddy 
(f–g), white tern (k–o) and wedge-tailed shearwater (p–s). The green solid line in each graph represents the response of the species to the 
variables. The relative contribution of the model is showed from the greatest to the least. Plots manifest that nonmonotonic responses were 
found

(b) (c) (d) (e)(a)

(g) (h) (i) (j)(f)

(l) (m) (n) (o)(k)

(q) (r) (s)(p)
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shearwater distribution, many shearwater species and allies are 
particularly vulnerable to invasive land predators (Dias et al., 2019; 
Smith, Polhemus, & VanderWerf, 2002), because they nest in ground 
burrows. The pelagic behavior and large foraging range which our 
sampling range failed to capture may mask any distribution shift re-
lated to rat invasion and the other environmental variables, as indi-
cated by the weaker models.

Constant competition over prey is expected to lead to a prey 
depredation zones around colonies, otherwise known as Ashmole's 
Halo (Ashmole, 1963). Halos vary as a function of colony, size, and 
bird foraging range (Birt, Birt, Goulet, Cairns, & Montevecchi, 1987). 

Within the Chagos Archipelago, many islands are <100  km apart 
and are clustered close together (<20  km between islands) within 
atolls. The range to which the abundant red-footed booby, brown 
noddy, and white tern distributions radiate out from islands (i.e., 
263, 136, and 133  km respectively) makes it therefore very likely 
that neighboring colonies compete, either by overlapping in distribu-
tion or by expressing behavior to minimize foraging overlap (Mendez 
et  al.,  2017; Wakefield et  al.,  2013). The wider distribution range 
and lower abundance of the wedge-tailed shearwater make compe-
tition between colonies less likely than for other seabirds (Gaston, 
Ydenberg, & Smith, 2007).

F I G U R E  6   Partial dependence plots of the response of red-
footed booby (a) and wedge-tailed shearwater (b) to Dipole Mode 
Index. Both species show a positive correlation with increasing 
positive DMI. Positive DMI means cooler temperature in eastern 
Indian Ocean and warmer temperature in western Indian Ocean

(a)

(b)

F I G U R E  7   Predicted distribution of red-footed booby, brown noddy, white tern, and wedge-tailed shearwater as a function the BRT 
models. Color scales represent the seabird abundance response, ranging from highest predicted value (red) to zero (blue). Scales differ 
between species as a function of difference in abundance. Predictions were run within the convex hull of the variables

(a) (b) (c) (d)

F I G U R E  8   Contribution of the distance to coast on the 
distribution model, rat-free model, and rat-invaded model for 
red-footed booby (RFT), brown noddy (BN), white tern (WT), and 
wedge-tailed shearwater (WTS). Contribution of distance to a 
near rat-free island was greater in red-footed booby and brown 
noddy. White tern showed that rat-invaded island has a greater 
contribution. Wedge-tailed shearwater showed difference in 
contribution between rat-free and rat-invaded island but the 
contribution of distance to coast in the distribution model was 
greater
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4.2 | Influence of climate oscillation

Our multiyear time series enabled us to document effect of climatic 
oscillations at the interannual scale on distribution. We observed 
similar abundance trends for red-footed booby and wedge-tailed 
shearwater during the 5  years of sampling, with both species 

abundance positively correlating with the DMI. We detected no 
correspondence between seabird abundance and the ONI, a proxy 
for the ENSO index. These observations are consistent with cur-
rent understanding regarding the influence of the dipole of higher 
trophic levels in the Indian Ocean, adding to a limited but growing 
body of research on the importance of the Dipole on IO megafauna. 

F I G U R E  9   Sensitivity of seabird 
distribution to presence or absence of 
rats on nearby islands. Partial dependence 
plot (a, c, e, g) of the effects of rat-free 
(blue lines) and rat-invaded (red lines) 
islands contrasted with the original 
distribution model (green lines). Stippled 
line denotes location of the breaking point 
that denotes a threshold in distribution. 
Comparison of the break point regression 
using the 95% confident intervals 
calculated in Davies’ test is shown (b, d, 
f, h)

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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For example, Kumar, Pillai, and Manjusha (2014) identified a positive 
association between IO tuna productivity and the Dipole Index. In 
the southern IO, albatross breeding success has also been positively 
correlated with the Dipole Index (Rivaland et al., 2010). The knowl-
edge of mechanisms driving these patterns is at present limited 
and any explanation must remain speculative at this stage. There is 
evidence that equatorial upwellings in the IO are more pronounced 
and that westerly winds decrease in intensity during positive Dipole 
events (Du & Zhang,  2015). In the Chagos Archipelago, it is thus 
possible that negative Dipole events result in weakened regional 
upwelling and therefore require seabirds to forage further afield, 
leading to a drop in regional abundance. This would be consistent 
with present understanding regarding other climate oscillations such 
as ENSO, which is known to influence forage species productivity 
(Lehodey, Bertignac, Hampton, Lewis, & Picaut,  1997), with impli-
cations for higher trophic levels. For example, common bottlenose 
dolphin (Tursiuops trunctatus) migrate offshore during strong ENSO 
years, possibly due to a lack of inshore prey (Sprogis et al., 2018). 
Use of telemetry and satellite tracking is currently being deployed 
on red-footed boobies in BIOT (Carr, pers. obs.), which will enable 
mechanisms to be explored in more detail. The greater sensitivity 
of wedge-tailed shearwater to both oceanographic variables and to 
the Dipole suggests this family may be the most vulnerable to global 
environmental change.

Any linkage between the Dipole and mobile megafauna is likely 
mediated by multiple trophic links (Oro, 2014). As foragers commen-
sal with subsurface predators, seabirds could be impacted by the 
Dipole both directly, for example, by a reduction in forage species 
abundance, and indirectly, by an increase in tuna abundance (Kumar 
et al., 2014; Maxwell & Morgan,  2013). It is beyond our scope to 

distinguish these processes here; however, we are currently expand-
ing our analysis of seabird distribution to include data on subsur-
face prey and predator abundance collected simultaneously to the 
seabird observations, using midwater baited videography (Letessier, 
Bouchet, & Meeuwig, 2017; Letessier et al., 2019).

4.3 | Implication for rat-eradication programs

Past rat-eradication efforts in the Chagos Archipelago include a 
failed attempt on Eagle Island (Meier, 2006) and successful attempts 
on Îles Vache Marine, du Sel, and Jacobin (Harper et al., 2019). The 
latter attempts were focussed on small islands to test the feasibility 
of eradication and appropriate methodologies on a small scale. Island 
rodent eradication is increasingly recognized as a powerful strategy 
for the preservation and recovery of avian populations (Brooke 
et  al.,  2018; Jones et  al.,  2016; Lavers, Wilcox, & Donlan,  2010). 
However, eradication is technically challenging and expensive 
(Warren, 2018), requiring the application of toxic rodenticide pos-
ing a risk to humans, livestock, pets, and wildlife (Pickrell, 2019; Van 
den Brink, Elliott, Shore, Rattner, and (Eds.)., 2018). Eradication is 
more likely to fail in the tropics, with high mean annual temperatures 
and constant precipitation (Russell & Holmes, 2015), and in the pres-
ence of land crabs and coconut palms (Holmes et al., 2015), making 
a program in the Chagos Archipelago challenging. Eradication on the 
largest island of Diego Garcia is likely to be particularly complex and 
expensive as it is inhabited (Harper & Carr, 2015).

Our analysis has revealed potential increases in habitat usage fol-
lowing rat eradication and that these habitats are spatially and spe-
cies-specific. On the basis of our study, we propose that eradication 

Species Models
Estimated break 
point (km)

Confidence 
Intervals (km)

Lower Upper

Red-footed booby Distribution Model 37.4 34.0 40.8

Rat-invaded Model 60.0 55.0 65.0

Rat-free Model 37.8 34.9 40.7

Brown noddy Distribution Model 49.0 45.6 52.3

Rat-invaded Model 56.6 51.9 61.3

Rat-free Model 48.6 46.6 50.6

White tern Distribution Model 27.1 26.2 27.9

Rat-invaded Model 24.4 23.4 25.4

Rat-free Model 54.5 50.9 58.0

Wedge-tailed shearwater Distribution Model 91.2 57.1 125.4

Rat-invaded Model 32.1 30.4 33.8

64.0 61.4 66.7

Rat-free Model 21.2 18.9 23.5

83.3 76.3 90.3

Note: The broken-stick regression is represented by the breaking point which is the inflection point 
of the partial dependence plot from each model. Lower and upper confidence interval at 95% is 
reported in each break point.

TA B L E  3   Results of the broken-stick 
regression for the boosted regression 
trees models considering the original 
distribution model, a rat-free model 
(where we exchanged the variable 
distance to coast with distant to the 
nearest ret-free island) and the rat-
invaded model (where we replaced 
distance to coast by distance to nearest 
rat-invaded island)
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should be prioritized on Île Manoel, Île Yeye, and Île de la Passe in 
Peros Banhos Atoll and on Eagle Island in the western Great Chagos 
Bank. In addition to minimizing overlap between distributions of the 
recovering colonies, these islands fulfill all the criteria identified by 
Buxton et al. (2014), such as proximity to healthy metapopulation 

and seabird diversity. Our recommendations are consistent with 
those of Dawson et al. (2015), which rank Île de la Passe in the top 25 
islands for invasive vertebrate eradication in the UK overseas terri-
tories. We note that these recommendations are on the basis of fac-
tors explored in this study only and that there are other factors that 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)



     |  9353PEREZ-CORREA et al.

dictate the feasibility, success, and approach to rodent eradication. 
Our results here aim to form part of a far wider set of considerations, 
with the ultimate aim of eradicating rats from all islands in the archi-
pelago, in order to achieve full conservation impact.

4.4 | Concluding remarks

Seabird abundance and distribution at sea in BIOT are driven by ge-
omorphology and oceanographic conditions. Our distribution pre-
dictions complement previous efforts elsewhere in the IO, and our 
time series has enabled us to identify potential interannual variabil-
ity related to climate oscillation. Seabird populations are vulnerable 
to both climatic variability and human activities (Dias et  al.,  2019; 
Paleczny et al., 2015). Environmental variability is predicted to in-
crease globally under climate change scenarios (IPCC, 2014), and 
evidence suggests that global warming variability may decouple 
the Dipole from upwelling in the western IO (Watanabe, Watanabe, 
Yamazaki, Pfeiffer, & Claereboudt, 2019). Identifying how interan-
nual processes like the IO Dipole drives seabird distribution where 
human activities are limited is valuable for identifying long-term 
strategies for seabird protection. For example, our predictions will 
enable responses to predicted extreme climatic event to be antici-
pated and thus mitigated in spatial management regimes.

To our knowledge, this is the first attempt at predicting the po-
tential response of seabird distribution by predicting potential shifts 
in habitats usage following a rat-eradication scenario. We have 
demonstrated areas of potential distribution gain and have predicted 
new hotspots at sea following a rat-eradication program. There is 
considerable impetus for eradicating invasive species on islands 
(Brooke et al., 2018; Dawson et al., 2015; Holmes et al., 2019; Jones 
et al., 2016; Lavers et al., 2010), further supported by our research 
here and other related research in the Chagos Archipelago (Benkwitt 
et al., 2019, 2020; Graham et al., 2018; Harper et al., 2019). In addi-
tion to practical considerations such as cost and probability of suc-
cess, eradication programs should identify where eradication can 
have the greatest conservation potential and ecological impact. This 
is particularly important for seabirds, whose niche extends beyond 
terrestrial breeding colonies.
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