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Summary

Magnetic fields play a crucial role in the dynamics and evolution of our Sun and other stars.
A common method used to model the magnetic fields in solar and stellar atmospheres is the
potential field source surface (PFSS) model (Altschuler & Newkirk, 1969; Schatten, Wilcox,
& Ness, 1969). The PFSS equations assume that there is zero electrical current in the domain
of interest, leading to the equations

∇ ·B = 0; ∇×B = 0 (1)

These are solved in a spherical shell between the surface of the star and a configurable outer
radius called the ‘source surface’. Boundary conditions are given by the user specified radial
component of B on the inner boundary and the imposed condition of a purely radial field on
the source surface, which mimics the effect of the escaping stellar wind.
Historically, either custom implementations or the pfsspack1 IDL library have been used to
perform PFSS extrapolations. As Python has become a major programming language within
the solar physics and wider astronomy community (Bobra et al., 2020), there is a need to
provide well documented and tested functionality to perform PFSS extrapolations within the
Python ecosystem, a niche that pfsspy fills.

pfsspy

pfsspy is a Python package for solving the PFSS equations, and carrying out other common
related tasks such as tracing magnetic field lines through the solution, importing various
magnetic field data sources, and visualising all of this data.
The PFSS code implements a finite difference solver, based on the method of Ballegooijen,
Priest, & Mackay (2000). Given a 2D map of the radial magnetic field on the inner boundary,
the magnetic vector potential is calculated on a 3D grid equally spaced in sin(latitude),
longitude, and ln(radius). This method is tailored in order to achieve ∇×B = 0 to machine
precision. More details on the exact numerical scheme are given in the online documentation2.

1https://www.lmsal.com/~derosa/pfsspack/, which forms part of the larger SolarSoft library for solar
physics (Freeland & Handy, 1998), written in Interactive Data Language (IDL).

2https://pfsspy.readthedocs.io
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Integration

pfsspy is designed to closely integrate with other packages in the astronomical and solar
physics Python ecosystems. Coordinate aware input and output maps are created with the
sunpy package (Mumford et al., 2020; The SunPy Community et al., 2020), and pfsspy
is fully integrated with the coordinate and unit framework present in astropy (The Astropy
Collaboration et al., 2018). This makes it easy to combine magnetic fields and field lines
calculated in pfsspy with other data sources. As an example, Figure 1 shows magnetic field
lines overplotted on an extreme-ultraviolet image of a large active region on the Sun.
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Figure 1: An image of the Sun taken by SDO/AIA at 193 angstroms, with selected magnetic field lines
traced through a PFSS solution overplotted in white. The PFSS solution and field line tracing were
done with pfsspy, with a Global Oscillations Network Group (GONG) photospheric magnetogram
as input and a source surface at 2.5 solar radii. Although only selected field lines are shown, the
magnetic field is solved over the whole Sun.

The solar physics community has already made use of pfsspy in a number of works, from
interpreting observations from Parker Solar Probe (Badman et al., 2020; Bale et al., 2019),
investigating the structure of coronal mass ejections (Maguire, Carley, McCauley, & Gallagher,
2020), and drawing links between the Sun and the solar wind (Stansby, Baker, Brooks, &
Owen, 2020). We hope that it continues to provide a useful resource for the community in
the future.
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