
Matrix-masking to balance nonuniform 
illumination in microscopy 

PONTUS NORDENFELT,1 JONATHAN M. COOPER,2 AND AXEL 
HOCHSTETTER

2,* 
1Division of Infection Medicine, Department of Clinical Sciences Lund, Medical Faculty, Lund 
University, Lund, Sweden 
2Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, 
UK 
*axel_hochstetter@web.de 

Abstract: With a perfectly uniform illumination, the amount and concentration of 
fluorophores in any (biological) sample can be read directly from fluorescence micrographs. 
However, non-uniform illumination in optical micrographs is a common, yet avoidable 
artefact, often caused by the setup of the microscope, or by inherent properties caused by the 
nature of the sample. In this paper, we demonstrate simple matrix-based methods using the 
common computing environments MATLAB and Python to correct nonuniform illumination, 
using either a background image or extracting illumination information directly from the 
sample image, together with subsequent image processing. We compare the processes, 
algorithms, and results obtained from both MATLAB (commercially available) and Python 
(freeware). Additionally, we validate our method by evaluating commonly used alternative 
approaches, demonstrating that the best nonuniform illumination correction can be achieved 
when a separate background image is available. 
Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further 
distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, 
and DOI. 

OCIS codes: (100.0100) Image processing; (160.0180) Microscopy; (200.0200) Optics in computing. 

References and links 

1. A. Köhler, “Ein neues Beleuchtungsverfahren für mikrophotographische Zwecke,” Z. Wiss. Mikrosk. 10, 433–
440 (1893). 

2. Y. Lu, F. Xie, Y. Wu, Z. Jiang, and R. Meng, “No Reference Uneven Illumination Assessment for Dermoscopy 
Images,” IEEE Signal Process. Lett. 22(5), 534–538 (2015). 

3. F. J. W.-M. Leong, M. Brady, and J. O. McGee, “Correction of uneven illumination (vignetting) in digital 
microscopy images,” J. Clin. Pathol. 56(8), 619–621 (2003). 

4. D. H. Brainard and B. A. Wandell, “Analysis of the retinex theory of color vision,” J. Opt. Soc. Am. A 3(10), 
1651–1661 (1986). 

5. D. J. Jobson, Z. Rahman, and G. A. Woodell, “Properties and performance of a center/surround retinex,” IEEE 
Trans. Image Process. 6(3), 451–462 (1997). 

6. J. M. Morel, A. B. Petro, and C. Sbert, “A PDE formalization of Retinex theory,” IEEE Trans. Image Process. 
19(11), 2825–2837 (2010). 

7. R. Kimmel, M. Elad, D. Shaked, R. Keshet, and I. Sobel, “A Variational Framework for Retinex,” Int. J. 
Comput. Vis. 52(1), 7–23 (2003). 

8. J. Sauvola and M. Pietikäinen, “Adaptive document image binarization,” Pattern Recognit. 33(2), 225–236 
(2000). 

9. J. C. Olivo-Marin, “Extraction of spots in biological images using multiscale products,” Pattern Recognit. 35(9), 
1989–1996 (2002). 

10. A. Hochstetter, E. Stellamanns, S. Deshpande, S. Uppaluri, M. Engstler, and T. Pfohl, “Microfluidics-based 
single cell analysis reveals drug-dependent motility changes in trypanosomes,” Lab Chip 15(8), 1961–1968 
(2015). 

11. P. Nordenfelt, J. M. Cooper, and A. Hochstetter, “Matrix-masking to balance nonuniform illumination in 
microscopy,” https://nordlab.med.lu.se/?page_id=34. 

12. T. Ferreira and W. Rasband, ImageJ User Guide, ImageJ/Fij (2012). 
13. The MathWorks Inc, “Correcting Nonuniform Illumination,” 

https://se.mathworks.com/help/images/examples/correcting-nonuniform-illumination.html. 

                                                                                                Vol. 26, No. 13 | 25 Jun 2018 | OPTICS EXPRESS 17279 

#327006 https://doi.org/10.1364/OE.26.017279 
Journal © 2018 Received 6 Apr 2018; revised 31 May 2018; accepted 2 Jun 2018; published 20 Jun 2018 

https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.26.017279&domain=pdf&date_stamp=2018-06-20


1. Introduction 

In most common microscopy configurations, including those used in fluorescence 
microscopy, the light source is aligned for Koehler illumination [1], which ensures that the 
structure of the light source (as either rectangles generated by the LEDs or a light bulb’s coil) 
does not introduce optical artefacts in the microscopy pictures. Such illumination provides a 
clean light with a radial symmetric Gaussian intensity gradient and thus a non-uniform 
illumination. This uneven illumination can cause significant issues in many fields (for 
example it can lead to problems in the assessment of dermoscopy images in the clinical 
sciences [2]). 

In the last decades, the correction of uneven illumination (including vignetting) in 
microscopy has become common, with techniques relying upon a number of techniques, 
including: the acquisition of additional images to subtract the background; the use of inherent 
image features by blurring [3]; or by extracting illumination data from the image (e.g. the 
variational framework for Retinex (VFR) [2,4–7]). These techniques often require the use of 
specific software and/or a deep mathematical understanding. Alternative approaches to 
background reduction include binarization [8] and spot detection [9] which can remove 
greyscale details of the original images (leading to micrographs that are unsuitable for 
detailed analysis or quantification). 

Here, we present a simple method for matrix-based balancing of the nonuniform 
illumination and validate the technique in two common computing environments: the 
commercially available gold standard – MATLAB and its freeware alternative – Python. To 
demonstrate the practical application of this technique, we study images acquired using 
commercial fluorescent and brightfield microscopes. The image depict samples of high 
optical density [Fig. 4] or a microfluidic device [10] (originally designed to study the 
diffusion of fluorophores and single cell motility in laminar flows [10]), [Figs. 2 and 3]. 

2. Materials 

Raw images and fluorescence micrographs were obtained using an Olympus BX 61 upright 
microscope (Olympus, Germany) with a Sensicam camera (PCO, Germany) [Fig. 3(a)]. A 
Xenon lamp was used as light source with a long pass filter set (λExc = 535 nm, AHF, 
Germany). Rhodamine B (0.5% aqueous solution) was used as the fluorophore, and images 
were acquired from within in a previously described microfluidic device [10]. A brief 
description of this device is shown in the Supporting Information [10]. Conventional bright 
field micrographs were collected using a Zeiss Observer A1, [Figs. 2(a) and 2(b)]. 

Image processing was performed with both MATLAB 2014 beta developer trial version 
(MathWorks, USA) and in Python 3.6 with the modules opencv2 to load the images into 
Python, Numpy to convert the images into arrays/matrices and process them, as well as the 
matplotlib.pyplot module to display the results using the Spyder and IPython 6.2.1 upgrade 
(all freeware). The code and all data used in this article is available open access for download 
[11] at https://nordlab.med.lu.se/?page_id=34. 

3. Methodology 

The image processing was performed using two central steps, namely, the acquisition or 
generation of background information and then, subsequently use this background data to 
process sample images. Depending on the available background data of the illumination, we 
will review four different approaches to balance out nonuniform illumination, as shown in the 
decision tree below [Fig. 1]. 

                                                                                                Vol. 26, No. 13 | 25 Jun 2018 | OPTICS EXPRESS 17280 



 

Fig. 1. Decision tree of which image processing could be chosen, depending on what 
background data is available. 

4. Results 

4.1 Acquisition of background images 

In any microscopic analysis, it is typically easy to obtain background data. For example, 
taking a dedicated background image (I) of a blank glass slide (i.e. without any sample). 
Ideally, the settings for the lamp brightness and camera exposure would be the same as for 
taking pictures of samples (such as a cell, a particle or bubble). A normalization step (see 
Table 1) may be performed during image processing to remove differences in overall 
brightness and the gamma value. 

Table 1. General MATLAB and Python scripts for illumination balancing of brightfield 
images 

Step MATLAB Python with numpy and opencv2 
Loading the background and 
sample image into MATLAB or 
Python. 

background  = imread(‘bg.tif’);  

sample         = imread(‘sample.tif’); 

import cv2 as cv2  

import numpy as np 

Background = cv2.imread(‘bg.tif’) 

Sample        = cv2.imread(‘sampl.tif’) 

Converting the images to 2-D 
matrices 

BG             = im2double(background); 

SAMPLE     = im2double(sample); 

BG               = np.matrix(Background) 

SAMPLE     = np.matrix(Sample) 

Getting the average brightness 
value of the background and 
sample images 

lvlBG           = median(BG(:)]; 

lvlSAMPLE = median(SAMPLE(:)); 

lvlBG           = np.mean(Background) 

lvlSAMPLE = np.mean(Sample) 

Creating normalized versions of 
the images 

nBG             = BG .* lvlSAMPLE; 

nSAMPLE   = SAMPLE .* lvlBG; 

nBG             = BG * lvlSAMPLE 

nSAMPLE   = SAMPLE * lvlBG 

Calculating the image as resulting 
from even illumination 

RESULT      = nSAMPLE - nBG; RESULT      = nSAMPLE - nBG 

Maximizing the contrast I: setting 
the lowest value to zero 

RESULT      =RESULT -
min(RESULT(:)); 

RESULT      = RESULT - 
np.min(RESULT) 

Maximizing the contrast II: 
stretching the values from zero to 
one 

RESULT = 
RESULT ./ max(RESULT(:)); 

RESULT      =RESULT / 
np.max(RESULT) 

Image processing steps and the respective MATLAB and python code examples. The results can be seen in Fig. 2. For 
ease of use we color-coded: loops, comments and filenames. 

Often, the background data is obtained with different exposure times or different lamp 
powers, and thus, the average grey value of the pictures can be different [Figs. 1(a) and 1(b)]. 
Multiplying the sample image [Fig. 1(a)] with the average grey value of the background 
image [Fig. 1(b)] and vice versa normalizes the images [Figs. 1(c) and 1(d)]. Subsequently, 
subtraction of the normalized background [Fig. 1(d)] from the normalized sample image [Fig. 
1(c)] yields an image with balanced illumination [Fig. 1 (e)]. To further improve the image, 
we can increase the contrast by first subtracting the matrix’s lowest value from all the pixel’s 

                                                                                                Vol. 26, No. 13 | 25 Jun 2018 | OPTICS EXPRESS 17281 



values and subsequently dividing all values by the highest value in the matrix. The resulting 
matrix has values which range from 0 (full black) to 1 (absolute white) as shown in [Fig. 
1(f)]. Note, the codes for MATLAB and Python corresponding to these operations can be 
found in Table 1. 

If it is not feasible to obtain a blank background image (e.g. one may be working with 
historical data sets), then it is possible to emulate (II) by recording multiple (hundreds) 
images of samples, collected with the same optical setup and then average them using e.g. Fiji 
(ImageJ) and its built-in feature Z-project (Image > Stack > Z-project) [12]. 

Similarly, but more cumbersome, images can be imported into bitmap-software like GIMP 
or Photoshop as layers and then be averaged. Both Matlab and Python could be used as well, 
by importing all relevant images, converting them to matrices, which can then be averaged. 
The random distribution of objects throughout the stack of images would ideally cancel out 
any bright and dark spots on the individual sample images. With the background image 
acquired, it is possible to balance nonuniform illumination, as described in Table 1, with the 
result shown in Fig. 2. 

4.2 Image processing 

 

Fig. 2. The process of balancing uneven illumination with a background image of the same 
optical setup: (a) the original sample image, taken in a bright field setup of Koehler 
illumination, with obvious vignetting and a sample of high optical density. (b) background 
image, acquired using the same illumination with a sample-free stage. The brightness levels 
are evident to an uneven illumination with the brightest point to the left of the center, 
exhibiting a 2-dimensional normal distribution. (c) & (d) the sample image and the background 
image with normalized brightness, as interim results of the process. (e) interim result of 
subtracting the normalized background image (d) from the normalized sample image (c). (f) 
The final result, where the contrast has also been maximized. The sample now appears on a 
completely evenly lit background while all the details within the sample have been retained. 
(g) Graph depicting the grey value along the top-left to bottom-right diagonal (magenta line) of 
the original sample image [Fig. 1(a), top, black], the background image [Fig. 1(b), top, grey], 
and the resulting image [Fig. 1(f), bottom, black]. We chose to use a diagonal line for the 
image analysis to include both the center and the edges of the image, as well as a section of the 
sample and sample free parts of the image. Results using MATLAB and Python are essentially 
the same (see Fig. 5 for MATLAB results, Python results are shown here). 

If, however, it is not possible to acquire a background (i.e. both (I) and (II) are not viable), for 
example, because the objects on the available sample images are not distributed randomly but 
always centered, or because there is no background data available, there are options for image 
processing that remain. The route which is generally recommended for MATLAB is shown as 
(III) [13], an approach which “blurs” the image to obtain a background image. This method 
generally works well for small objects that are evenly distributed over an entire image and do 
not introduce large patches of brighter or darker background. 

For images, that do not meet these requirements, we present option (IV), as an alternative 
way to balance nonuniform illumination, by generating a background image de novo (see 

                                                                                                Vol. 26, No. 13 | 25 Jun 2018 | OPTICS EXPRESS 17282 



Table 2), a technique that is especially suitable for fluorescence microscopy. The method 
works by selecting the brightest line from the fluorescence image [Fig. 3(a)] and smoothing it 
into a single vector. This vector represents the brightness ( = the grey value) of each pixel 
along the brightest lines of the fluorescence image [Fig. 3(b)]. By multiplying the vector with 
itself (using the outer product) we generate a matrix which simulates the non-uniform 
illumination of the fluorescence image [Fig. 3(c)]. This can be inverted to compute a second 
matrix, which will cancel out the non-uniform illumination [Fig. 3(d)]. Simple multiplication 
of the normalized background with the sample image (see Table 3) provides a result which 
represents the original image taken with perfectly even and uniform illumination [Fig. 3(e)]. 

 

Fig. 3. The process of extracting the background image of an uneven, yet symmetrically 
illuminated image. (a) the original image of a solution of fluorescent rhodamine B in a 
microfluidic channel [10]. (b) the extracted grey value along the brightest lines of the image’s 
long dimension, smoothed to avoid artefacts. (c) radially symmetric illumination matrix, which 
was obtained by multiplying the values shown in Fig. 3(b) with themselves. This is a 
reconstruction of the spatial intensity of the illumination source. (d) The creation of a matrix 
mask which can be used to cancel out the uneven illumination of the light source, fitted to the 
original image. (e) The resulting image of applying the mask to the original image. This image 
shows how the original image would have looked, had the light source had a perfectly even 
spatial light distribution. Results using MATLAB and Python are essentially the same (see Fig. 
6 for MATLAB results, Python results are shown here). 

                                                                                                Vol. 26, No. 13 | 25 Jun 2018 | OPTICS EXPRESS 17283 



Table 2. Algorithm to obtain background image from a single grey-value line 
measurement 

Step MATLAB Python with numpy and opencv2 
Loading the black and 
white sample image into 
MATLAB or Python. 

sample = imread(‘sample.tif’); 

SAMPLE = im2double(sample); 

[nx, ny] = size(SAMPLE); 

F           = cv2.imread('sample.tif', -1) 

FCM     = np.matrix(f) 

nx, ny   = np.shape(f) 

X          = np.linspace(1,nx,nx) 

XMax   = np.linspace(1,nx,nx) 

Taking the brightest line 
along the image’s long 
axis as a vector. 

x = SAMPLE(:,1); 

For i = 1:nx  

       x [i] = mean(SAMPLE(i,:) 

end  

k = find(x == max(x(:)]); 

xm = SAMPLE(:,k)  

for n in range(nx): 
      X[n] = np.max(FCM[n,:])  

for n in range(nx): 
      XMax[n] = np.sum(FCM[n,:]) 

m         = np.max(XMax) 

xm       = [i for i, j in enumerate(XMax) if j == 
m] 

#Alternatively: finding the median of the top 
90% value 

#xa = [i for i, j in enumerate(XMax) if j > 
m*0.9] 

v         = np.linspace(1,ny,ny)  

for i in range(ny): 
      v[i] = np.mean([FCM[xa,i]]) 

Smoothing the vector 
reduces artefacts along the 
way. 

s = smooth(v, 9)  

%MATLAB can automatically 
smooth over a given amount of 
adjacent values (e.g. 9) along a 
vector (e.g. v). Increasing the 
number (e.g. 100), gives a 
smoother appearance in 
MATLAB. 

%For Python however, we 
needed to write a code snippet:  

 

s           = v #dedicated smoothed vector     

#for values with 4 neighbours to both sides:  

for i in range(4,ny-4): 
      s[i] = np.mean([v[i-4],v[i-3],v[i-2],v[i-
1],v[i],v[i+1], 
      v[i+2],v[i+3],v[i+4]])  

s[0]      = np.min(s[0:4]) 

s[ny-1] = np.min(s[ny-4:ny-1]) 

#for the first 4 values, we use a linear 
regression: 

for i in range (1,4): 

    s[i] = s[0]+i*(s[4]-s[0])*.2  

#for the last 4 values we also use linear 
regression: 

for i in range (ny-1,ny-4): 

    s[i] = s[ny-1]+i*(s[ny-4]-s[ny-1])/4     

Inverting the vector. si = 1./s; si = 1/s; 

Multiplying the vector 
with itself to generate a 
radial symmetric matrix of 
the image’s illumination. 

M = si' .* si 

%The order is important for 
MATLAB.  
% si .* si’ ≠ si’ .* si 

M = np.outer(si,si) 

Cutting the matrix to the 
size 

BG = M(round((ny-nx+1)/2):ny-
round((ny-nx+1)/2)+1,1:end); 

 

BG=np.matrix(M[round((ny-nx)/2):ny-
round((ny-nx)/2)+1, ]) 

This table is to guide the user through the steps needed to generate a matrix that represents the nonuniform 
illumination in a sample picture, along with examples in both MATLAB and python to arrive at the same result. 
The greater library of built-in function in MATLAB ensures a leaner code. For ease of use we color-coded: loops, 
comments and filenames. Full code available at [11]. 

                                                                                                Vol. 26, No. 13 | 25 Jun 2018 | OPTICS EXPRESS 17284 



 

Table 3. General MATLAB and Python scripts for illumination balancing of fluorescence 
images 

Step MATLAB Python with numpy and opencv2 
Loading the background and 
sample image into MATLAB or 
Python. 

background  = imread(‘bg.tif’);  

sample         = imread(‘sample.tif’); 

Background = cv2.imread(‘bg.tif’) 

Sample        = cv2.imread(‘.tif’) 

Converting the images to 2-D 
matrices 

BG               = 
im2double(background); 

SAMPLE     = im2double(sample); 

BG               = np.matrix(Background) 

SAMPLE     = np.matrix(Sample) 

Creating normalized version of 
the background 

nBG             = BG ./ max(BG(:)]; 

 

nBG             = BG * lvlSAMPLE 

Calculating the image as resulting 
from even illumination 

RESULT      = nSAMPLE.*nBG; RESULT      = nSAMPLE * nBG 

Image processing steps and the respective MATLAB and Python code examples. The results can be seen in Fig. 3. 
For ease of use we color-coded: loops, comments and filenames. Full code available at [11]. 

A direct comparison between the MATLAB standard procedure (III) and our “matrix-
mask” method (IV) shows a significant difference in the quality of balancing out the 
nonuniform illumination. If the same fluorescence image used for the approach described 
above (IV) is treated using (III), the results [Fig. 4] show an improved distribution of grey 
values all over the image but it introduces artefacts, especially around areas with a large 
variance of grey values within small areas [Fig. 4(e)]. We extracted the grey values along the 
brightest lines in the center (N = 19) and plotted them over their x-position in the image, for 
both our newly proposed approach IV [Fig. 3(c)] and the MATLAB standard procedure III 
[Fig. 4(f)]. We also calculated the standard deviation of these plotted vectors [Figs. 4(c) and 
4(f)] to be 0.31 for the original image (uncorrected), 0.11 for the MATLAB approach (III), 
and less than 0.01 for our “matrix-mask” approach (IV), which correspond best to the 
constant concentration of fluorophore within the microfluidic channel. 

 

Fig. 4. Balancing of nonuniform illumination using the recommended procedure for MATLAB 
[13] for the same fluorescence image as in Fig. 2. (a) the original image of fluorescent 
rhodamine B in a microfluidic channel [10]. (b) The background image that was calculated by 
MATLAB. (c) The extracted grey value along the brightest lines of the original image (green, 
[Fig. 3(a)]) and of the corrected illumination image (black, [Fig. 3(e)]), analogous to Fig. 3(b). 
(d) The image, which results from subtracting the background image Fig. 4(b) from sample 
image Fig. 4(a). (e) The final result after maximizing the contrast. (f) The grey values along 
the same lines as above for Figs. 4(e) (black) and 4(a) (green) for comparison. 

It is also possible to use this new “matrix-mask” approach to process images for which 
background data is available. The background image [Fig. 4 (b)] can be used to create a 
matrix for the illumination, which is typically nonuniform, while the sample image is also 
converted into a second matrix; each pixel in the images generates one value in the 

                                                                                                Vol. 26, No. 13 | 25 Jun 2018 | OPTICS EXPRESS 17285 



corresponding matrix, whilst the pixel’s grey value is represented in the value of the 
individual data points. 

4.3 Alternative matrix-based approaches 

The presented method proved to be the best and most reliable matrix-based approach using 
both MATLAB and Python. There are shorter operations that can be carried out in order to 
balance out uneven illumination, which are intuitively correct, but lead to sub-optimal results 
(for example, simple pixel-by-pixel subtraction or division of the background image from the 
sample image, or vice versa). Since these operations will result in mostly black images with 
poor contrast, a contrast maximization akin to the one presented on the bottom of Table 1 was 
carried out right afterwards. In Table 4, we have compiled all of these operations, the 
algorithms needed to perform them in both MATLAB and Python, together with the results 
obtained from these operations, demonstrating that our Python bundle with numpy and the 
opencv2 module often automatically performs a contrast maximization, especially after 
subtractions. 

Table 4. MATLAB and python scripts for worse matrix approaches to illumination 
balancing 

Bad solution MATLAB Python with numpy and opencv2 
Simply subtract the background 
from the sample image, followed up 
with contrast maximization to 
brighten up the dark result 
(MATLAB only): 
The contrast maximization always 
follows the route BAD2 = BAD2-
mean(mean(BAD2)]; 
BAD2 = BAD2./max(max(BAD2)]; 
*the opencv2 module with numpy 
automatically does the contrast 
maximization after + / - operations 
leading to different results 

BAD1 = SAMPLE – BG; 

 
MATLAB contrast maximization 
always follows the route: 
BAD = BAD-mean(BAD(:)]; 
BAD = BAD ./ max(BAD(:)]; 
 

BAD1 = SAMPLE – BG 

 
The python contrast maximization 
always follows the route: 
BAD = BAD – np.min(BAD) 
BAD = BAD / np.max(BAD) 

Subtracting the sample image from 
the background image followed up 
with contrast maximization to 
brighten up the dark result 
(MATLAB only) resulted in a 
worse resolution, contrast and blur. 

BAD2 = BG – SAMPLE; BAD2 = BG – SAMPLE 

 

A pixel-by-pixel division of the 
sample image by the background 
image resulted in a generally dark 
image, dominated by a bright white 
edge. 

BAD3 = SAMPLE ./ BG; BAD3 = SAMPLE / BG 

 
Dividing the background image by 
the sample image resulted in an 
overly white image with a dark 
corner. A subsequent normalization 
resulted in a restoration of the 
original image, yet with inversed 
coloration and increased noise 
artefacts. 

BAD4 = BG ./ SAMPLE; 

 

BAD4 = BG / SAMPLE 

 

Alternative approaches to balance out uneven illumination might feel intuitive yet lead to worse results. Due to 
different internal handling of the matrices, the same operations can lead to different results for MATLAB and 
Python, as shown above. 

                                                                                                Vol. 26, No. 13 | 25 Jun 2018 | OPTICS EXPRESS 17286 



5. Discussion 

The results shown in Fig. 3 demonstrate the effectiveness of this simple matrix-based 
approach to balance out uneven illumination, and also show, that it is possible to extract the 
illumination information from a single line of one image. The quality of the obtained 
illumination matrix can be further improved by averaging over several lines – preferably 
through the point of highest light intensity – and by additional smoothing to avoid the 
introduction of artefacts [Fig. 3]. This approach, however, only works when the sample has 
the same brightness value along the selected line (e.g. due to the same amount of fluorophore 
present along the line). In the sample we chose, some artefacts to the left of the channel result 
in additional reflection and thus a non-normal distribution in the extracted vector [Fig. 3(b)] 
and ultimately the illumination mask [Fig. 3(d)]. The ideal solution for balancing out uneven 
illumination in micrographs is nonetheless, first taking a dedicated, sample free background 
image with the same optical parameters and subsequently performing the recipe shown in 
Table 1 [see also Fig. 2]. Nonetheless, our approach yielded better results than the gold-
standard MATLAB procedure [Fig. 4], and had so few artefacts that the grey value of the 
image could be taken to visualize the concentration of fluorophore within the device (see 
supplementary data of [10]). 

Additionally, other matrix-based approaches have been tested and shown to yield worse 
results in regards of balancing out uneven illumination, as shown in Table 4. For example, 
simply subtracting the background image from the sample image (see Table 4, “BAD1”), or 
vice versa (see Table 3, “BAD2”) leads to images with poor contrast, loss of details and 
introducing artefacts. In the results obtained from Python, artefacts were found where the 
sample image was brighter than the background image, in unexpected switching of black and 
white. 

Both, commercial MATLAB and freeware Python, offer solutions that ultimately lead to 
comparable results. Differences in the resulting images (see Table 4) can be explained by the 
different algorithms MATLAB and Python use in their cores for handling the matrices, which 
represent the images. As an example, there are salient spots in the first two right-hand side 
images in Table 4, areas of bright white surrounded by darkness and areas of deep black in a 
generally bright area. These black/white inversions could stem from misinterpreting negative 
numbers or a data compression step, where the matrices are no longer handled point-by-point 
but segmented to safe calculation space. 

With the correct coding, however, both programs can be used to greatly improve image 
quality of micrographs, be it with dedicated background data, or by extracting illumination 
information from the sample images themselves and applying our matrix-mask method. This 
opens up many possibilities, including fast and easy balancing of sample micrographs 
illumination, or of using the grey value of a fluorescent image to measure the concentration of 
a fluorophore at any position in fluorescence micrographs. 

Appendix A. 

MATLAB processing results, for comparison with Figs. 2 and 3. 

                                                                                                Vol. 26, No. 13 | 25 Jun 2018 | OPTICS EXPRESS 17287 



 

Fig. 5. The figure shows MATLAB processing results of Fig. 2(a), comparable to the python 
processing shown in Fig. 2. (a) before (b) after the processing. (c) & (d) are pseudo-colored 
versions of (a) and (b). 

 

Fig. 6. The figure shows MATLAB processing results of Fig. 3(a), comparable to the python 
processing shown in Figs. 3(a) and 3(e). (a) before (b) after the processing. (c) & (d) are 
pseudo-colored versions of (a) and (b). 

Funding 

EPSRC (EP/K027611/1) and ERC Advanced Grant 340117. 

Acknowledgments 

AH worked on it in his free time, using freeware and a beta developer testing version. Jon 
Cooper acknowledges EPSRC (EP/K027611/1) and ERC Advanced Grant 340117. Axel 
Hochstetter would like to thank Thomas Pfohl for fruitful discussions. 

Disclosures 

The authors declare that there are no conflicts of interest related to this article. 

                                                                                                Vol. 26, No. 13 | 25 Jun 2018 | OPTICS EXPRESS 17288 




