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Abstract—This paper proposes the cooperative cognitive net-
work slicing virtualization solution for smart Internet of things
(IoT) applications. To this end, we deploy virtualized small
base stations (vSBSs) in SDR devices that offer network-slicing
virtualization option. The proposed virtualized solution relies on
Fed4Fire wireless experimental platform. In particular, we assume
that multiple IoT devices can have access to different vSBSs, which
coordinate their resources in a cooperative manner using machine
learning (ML). To this end, a proactive resource management is
deployed in the unlicensed band, where a cooperative solution
is facilitated using the licensed band. The cooperative network
slicing is managed and orchestrated using small cell virtualization
offered by the Fed4Fire . Experimental trials are carried out for
certain number of users and results are obtained that highlight
the benefit of employing cooperative cognitive network slicing in
future virtualized wireless networks.

Index Terms—Network slicing, cooperative machine learning,
wireless network virtualization, NB-IoT.

I. INTRODUCTION

DYnamic network slicing can facilitate the efficient radio
resource management among different type of devices

and communication technologies [1]. A static approach on
network slicing is not recommended to advanced virtualized
wireless networks enabled by network function virtualization
(NFV), where the dynamic radio resource management is
carried out in an agile way [2]. As such a dynamic net-
work slicing virtualization approach is encouraged, that is
driven by specific quality of service (QoS) requirements per
wireless communication technology [3] and is also applied
on heterogeneous cloud radio access networks (C-RAN) [4].
This flexible type of radio resource allocation is provided
by cognitive applications thanks to machine learning (ML)
advances for wireless spectrum knowledge. Towards such a
cognitive network slicing virtualization, a cooperation among
the base stations is beneficial allowing the different cells to
decide about the available resources collectively. This approach
of Cooperative cognitive network slicing is on demand in case
of unlicensed spectrum band as previous in [5] demonstrates.

Specifically, authors in [2] consider the network virtualiza-
tion as enabler for network slicing, where each slice can achieve
the objectives for its own virtual network performance. The
dynamic network slicing has been identified in [1] and [6],

where the former is enabled through fog computing collecting
and analyzing data closely to the devices and the latter deals
with the network slicing adaptations for different type of air
interfaces such as NB-IoT and eMBB. This approach is called
cross-domain network slicing, where each different domain, e.g.
IoT and multimedia technologies, is managed by NFV manage-
ment and orchestration entities [7]. Within the same concept, in
[8], authors deal with multi-tenant network slicing for spectrum
management, while in [9] deal with the statistical multiplexing
at the physical layer. Spectrum management for network slicing
is also important and especially in the unlicensed spectrum as
highlighted recently in [10].

Moreover, in [3], authors provide a solution on network
slicing to the edge. In [11], authors provide conventional
radio resource management for NB-IoT devices, while in [4]
authors propose the dynamic network slicing for multi-tenant
heterogeneous C-RAN. In [12], authors explore network slicing
for guaranteed rate services as admission control and resource
allocation, through game theory. In [13] and [14], the authors
deal with the network slicing in Industry 4.0 applications, while
in the [15] authors propose the network multi-tenancy through
a 5G network slice broker. Moreover, the authors in [16], they
did not work in the network slicing virtualization applying also
ML to the unlicensed band.

It is obvious that the cooperative proactive radio resource
management on the unlicensed band through cooperative ma-
chine learning has not been proposed yet. In this work, we
assume the virtulization of the network slicing for smart IoT
applications over an experimental platform. The network slic-
ing is considered on each virtualized eNodeB (veNb) that is
deployed on an SDR infrastructure. The SDR nodes operate
on the unlicensed spectrum band providing connectivity to
multiple IoT devices in order to support smart agriculture and
grid applications. It is already known, the 5G network slices
will drive different types of vertical industries in order to
isolate the communication among different applications [17]
The spectrum allocation is provided in a cooperative fashion,
where the cooperation takes place over the licensed band. In
order to achieve a proactive radio resource management, we
employ cooperative machine learning by applying double Q
learning (D-QL) over the transmit power and interference. The978-1-7281-4490-0/20/$31.00 c© 2020 IEEE



cooperative network slicing is managed by network slicing
instances (NSI) at the virtualization management and orches-
tration layer. The approach is applied to the Fed4Fire infras-
tructure and experimental results are available for discussion
[18]. In particular, we obtain experimental results by deploying
our solution on Fed4FIRE experimental large-scale platform.

The rest of this paper is organized as follows. In Sec.II,
we describe the network slicing virtualization for smart IoT
applications. In Sec.III, we present the cooperative network slic-
ing virtualization for smart IoT applications. Sec.IV provides
the experimental setup and results. Finally, Sec.V provides a
summary of this work.

II. NETWORK SLICING VIRTUALIZATION FOR IOT
APPLICATIONS

In Fig.1, we assume multiple virtualized small base stations
(vSBSs) deployed using the concept of wireless network vir-
tualization [19]. Each vSBS accommodates multiple network
slices, which are deployed transparently on the physical SDR
devices (i.e. SBSs). Each SBS employs one vSBS on the
unlicensed band and one on the licensed band, where the former
is dedicated to the ML in the unlicensed band that is giving
access to the IoT devices through network slices and the latter
to provide cooperation among the vSBSs. There is no network
slicing on the licensed band since it is dedicated to cooperative
communication only. Cooperative machine learning (CoML)
is deployed over the considered network slicing virtualization
dedicated to the unlicensed band that the IoT devices are
connected. Machine learning (ML) is also considered a new
technology for the next generation wireless access networks
[20]. Thus, it provides proactive resource allocation through
spectrum sensing, utility evaluation and carrier selection in
order a SBS can learn the spectrum utilization history in
advance [21]. The proactive resource management for 5G in
unlicensed spectrum can be used for different type of IoT
applications (e.g. smart agriculture and grid 1). The different
SBSs can communicate with the centralized SBS via back-haul
links that employ in-band wireless small cell communication
[24]. Details about the modeling of the cooperative network
slicing virtualization for IoT applications are given in the text
below.

III. COOPERATIVE NETWORK SLICING VIRTUALIZATION
FOR SMART IOT APPLICATIONS

A. Modeling and Algorithms

We consider i network slices on each vSBS, with NSIi
assigned n group of channels containing j component carriers
each. As a result, each vSBS is allocated CC = i ∗ n ∗ j
component carriers. In particular, we assume one vSBS trans-
mitting over the licensed band and one over the unlicensed one
as follows:

1Unlicensed spectrum has been already considered for both smart grid and
agriculture applications [22][23].

Fig. 1. Cooperative machine learning (CoML) through network slicing virtu-
alization for smart IoT applications.

• Licensed spectrum. The vSBSs utilize a licensed spec-
trum band in order to communicate and enforce coopera-
tion among the SBSs using the licensed band.

• Unlicensed spectrum. The vSBSs utilize an unlicensed
spectrum band to communicate with the IoT devices.
To this end, listen before talk (LBT) and discontinuous
transmission (DTX) mechanisms are deployed including
spectrum sensing in order to obtain channel occupancy
time (COT) as well according to [28].

Previous work in [25] elaborates on channel conflict among
multiple IoT devices and shows that it may significantly reduce
IoT throughput performance. Authors in [25] try to maximize
the channel utilization rate and allocate each channel’s re-
sources efficiently among the participating IoT devices. In this
work, we also adopt such an approach and we use machine
learning techniques to improve its efficiency. More specific, to
account for channel resource utilization by the IoT devices we
focus on minimizing IoT transmission conflicts by coordinating
the channel selection process by employing the Q-Learning
(QL) technique. Our solution utilizes QL so that to maximize
the channel utilization according to the history of each chan-
nel’s occupancy time as in [26]. QL generally utilizes a set of
actions and accumulated rewards that are updated according to
the following equation:

Qt+1(st, at)← (1− a) ∗Qt(st, at) + a
(
r(st, at)

+ γ ∗maxQ
∀a

(st+1, a)
)

(1)

with a being the learning rate, r the accumulated reward
received by performing action at when being in state st and
γ the discount factor that accounts for future rewards to the
current state. For the purposes of this work future states do not
affect current decision making, instead we rely on the historical



behavior patterns of the channels to make our decisions. As a
result the future states do not affect our decision making and
thus, the future discount factor γ is set to zero resulting in:

Qt+1(st, at)← (1− a) ∗Qt(st, at) + a
(
r(st, at)

)
(2)

with st being the state under examination. An st state contains
a set of actions at that the vSBS may perform. Such actions
include the channel selection and the amount of subframes to be
transmitted and are defined as follows: a ={ai| select channel
a for i subframes, where i ∈ 1, 2, 3...10}. Now, we search for
the optimal set of actions at for the st set in order to achieve
the maximum channel utilization while also avoiding channel
signal interference. For this reason QL utilizes the accumulated
knowledge on the network traffic of each channel so that it
can learn its behavioral patterns. Channel utilization is a major
factor that leads to throughput improvement as highlighted by
previous work in [27]. In this work, authors manage to improve
the throughput of an IoT network by studying and improving
the channel utilization rate by the IoT devices. In our solution
we adopt a similar approach of throughput maximization by
employing the QL algorithm. More specific, we opt to optimize
the channel utilization rate for the next Qt+1 QL state. To
accomplish this, we maximize the next state st+1 according
to the following equation:

st+1 = arg m
∀a
axQt(st, at) (3)

Solving the maximization function 3 will lead to a r(st, at)
reward that will be used to update the Q-function in equation
2. We define such reward as the difference between the average
and the observed channel IDLE time after the action a took
place:

r(st, at) = IDLEnavg − IDLEnmeasured (4)

By measuring a small channel IDLE time, we conclude that
the previous action a resulted in high channel utilization rate,
meaning that such decision should be rewarded well. Thus, the
less the channel IDLE time, the better the channel reward. We
define n channel’s idle time as follows:

IDLEn = (1− COTn) (5)

with COTn being the COT of channel n which is the per-
centage of time the channel is measured to be occupied.
Such measurement is obtained by the spectrum sensing. In
order also to consider transmit power control for the deployed
SBSs, we extend the QL reward function to include include
power allocation information. To incorporate the new reward
function under the ML algorithm we employ the DQL approach
similarly to [28]. Thus, the reward function is formulated as
follows:

r(s′t, {at, pt}) = σ(IDLEnavg − IDLEnmeasured)

+ (1− σ)βpmax (6)

where pt is the power selection for SBS transmission in channel
t , the σ is a weighting factor between the channel IDLE time

and transmit power values, β normalizes the power levels to
IDLE channel values and pmax represents the highest power
measurement obtained during the previous Q iteration. The
power selection pt action is defined as follows: p ={pi| select
channel p using i dBm transmission power i ∈ 1, 2, 3...10},
where pi is the normalized transmit power of the vSBS. We
also formulate the D-QL function Q′ to contain power control
as follows:

Q′t+1(s
′
t, pt)← (1− a) ∗Q′t(s′t, pt) + a

(
r
(
s′t, {at, pt}

))
(7)

Our goal is to find the optimal action pt for the current set s′t in
order to achieve the lowest possible transmission power, while
maximizing the following formula:

s′t+1 = arg m
∀a
axQ′t(s

′
t, pt). (8)

Algorithm-1 below provides non-cooperative D-QL (NC-
DQL). NC-DQL does not require cooperation between SBSs
and thus each SBS runs an independent instance of the al-
gorithm. In DQL scheme, the Q function is randomly updated
either with power transmission values as in equation 7 focusing
in maximizing the 8 or with channel IDLE time measurements
as in equation 2 focusing in maximizing the function 3. In case
of non-cooperative QL (NC-QL) implementation, algorithm 1
is simplified as NC-QL utilizes one Q function that is related to
the channel IDLE time information only. Such implementation
utilizes the Q function as described in 2 while focusing in 3
maximization. The final step of the algorithm is to use listen
before talk (LBT) and discontinuous transmission (DTX) to the
unlicensed band. LBT makes sure that the selected channel is
not taken and DTX enforces the st set of actions made by the
ML algorithm.

Algorithm 1 Non-Cooperative Double Q-Learning (NC-DQL)
for all channels c do

Spectrum Sensingc
Calculate COTc
Randomly choose to update one of the following
A. Qt+1(st, at)← (1− a) ∗Qt(st, at)

+a
(
r
(
st, {at, pt}

))
with st+1 = arg m

∀a
axQt(st, at)

B. Q′t+1(s
′
t, pt)← (1− a) ∗Q′t(s′t, pt)

+a
(
r
(
s′t, {at, pt}

))
with s′t+1(s

′
t, pt) = arg m

∀a
axQ′t(s

′
t, pt)

end for
Perform LBT
Perform DTX

Algorithm-2 provides the proposed cooperative Double Q-
Learning (C-DQL). In contrast with individual learning, co-
operative learning utilizes channel and power information by
every available SBS while also incorporating such information
in one global learning function as in [29]. In this work authors
utilize a global QL function which aggregates the information
collected by the various agents. We employ a similar approach
but we also focus on the distributed QL similar to [30] as each



SBS updates its local Q-states individually and thus, integrating
all previously selected actions and their corresponding rewards.
Under this premise each SBS-i transmits its local Q state
Qi(st, at) (or Q′i(s

′
t, pt) in case of transmission power control)

information to the centralized SBS where the maximization of
the global Q function takes places as follows:

st+1 =

n=i∑
n=0

arg m
∀a
axQn(st, at) (9)

or when considering transmit power control:

s′t+1 =

n=i∑
n=0

arg m
∀a
axQ′n(s

′
t, pt) (10)

Finally, the centralized SBS transmits the final decision to all
remaining SBSs in order for them to allocate the resources
accordingly. In cooperative QL scheme (C-QL) the same pro-
cedure with C-DQL follows except that the function 2 is used
as global Q function and the following equation is maximized:
Qt+1(st, at) =

∑n=i
n=0 argm∀a

axQn(st, at).

Algorithm 2 Cooperative Double Q-Learning (C-DQL)
for all channels c do

Spectrum Sensingc
Calculate COTc
Receive Qi information from all i-SBSs
randomly choose to update one of the following
A. Qt+1(st, at)← (1− a) ∗Qt(st, at)

+a
(
r
(
st, {at, pt}

))
with st+1 =

∑n=i
n=0 arg m

∀a
axQn(st, at)

B. Q′t+1(s
′
t, pt)← (1− a) ∗Q′t(s′t, pt)

+a
(
r
(
s′t, {at, pt}

))
with s′t+1 =

∑n=i
n=0 arg m

∀a
axQ′n(s

′
t, pt)

end for
Broadcast decisions made to other SBSs
Perform LBT
Perform DTX

B. Cooperative NSI Implementation

We explain below the implementation of the cooperative
cognitive network slicing using the proposed virtualization
framework to deploy the C-QL and C-DQL algorithms. Fig.2
depicts the cooperation scheme among the available SBSs. Each
SBS-i performs spectrum sensing on its allocated i group of
channels and then calculates the corresponding COT and IDLE
values as described in equation 5. In the sequel, it transmits the
Qi(st, at) and Q′i(s

′
t, pt) sets to the centralized SBS (cSBS)

that acts as a coordinator as described in the previous section.
The coordinator cSBS updates the global Q-sets according to
the sets received by the rest of the SBSs and utilizes QL to
make decisions for each SBSi transmission. The QL outputs
contain information about channel selection, transmit power
control and the amount of subframes to be transmitted on each
channel. Next, that information is transmitted back to the rest of

Fig. 2. Cooperative network slicing through virtualization.

the SBSs. In order to ensure the autonomous operation of each
SBS, we deploy LBT and DTX, which enable the transmission
a specific amount of subframes thus, enforcing the QL decisions
made by the coordinator.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

Fig.3 depicts the detailed set-up of the experiment. We
deploy three B210 USRPs considered as SBSs with each device
composed of two virtual instances veNB1 and veNB2 as in [19].
The veNB1 is capable of transmitting on the unlicensed spec-
trum, specifically in band 20 (791-821 MHz) on the donwlink
(DL) channel. The veNB1 is composed of three network slices
each of them is assigned to a group of transmission channels.

Fig. 3. Experimental setup using USRP B210, SBS virtualization for the
licensed/unlicensed bands, ML to the unlicensed spectrum and centralized SBS.



For baseband processing, we used the srsLTE [31] software
in order to create an NB-IoT implementation. Our choice of
utilizing the LTE baseband is not arbitrary as previous work
in [32] shows that NB-IoT devices use LTE design either as
standalone operation mode or within the LTE spectrum. Our
choice of LTE baseband for NB-IoT is also compatible with the
3GPP standardization as discussed in [33]. Finally, the veNB2
operates on the LTE licensed band (e.g. Band 38 of 2570-
2620 MHz) to cooperate with other SBSs using the in-band
communications capabilities [24].

Table I provides the srsLTE parameters and the configuration
options selected for the experimental set-up. The baseband uti-
lizes the sub-1GHz frequency band-20 with channel bandwidth
of 180 KHz and carrier spacing of 15KHz. Sub–1GHz bands
are used for low cost IoT devices due to ideal propagation
conditions [5], while the 180KHz bandwidth is selected when
considering IoT as highlighted in [34]. The aforementioned
configuration results in 10 channels with 1 resource block
(RB) each and 1 component carrier (CC). We also employ
the standalone operation mode as described in [34] and [32]
with single tone transmission mode and QPSK modulation type.
QPSK modulation is utilized by the IoT downlink channel as
the 3GPP standard overview of the release 14 shows in [33].
The maximum theoretical bandwidth is 2.5 Mbp/s per SBS, and
thus 7.5 Mbp/s for the whole network. In order to satisfy the
requirements for the cooperative D-QL algorithm, we specify
a centralized SBS (cSBS) playing the role of controller, where
the learning decision is made as described in Sec.II.

The coverage level within the IoT devices depends on the
channel conditions. The extreme coverage level corresponds
to a low power received value and a normal coverage level
corresponds to a high power received value Each selected cov-
erage class determines the transmission parameters including
the number of repetitions. Such a deployment allows each
IoT device in different coverage conditions characterized by
different ranges of path loss. Depending on the coverage level,
the serving cell indicates to the UE to repeat the transmission
1, 2, 4, 8, 16, 32, 64, 128 times, using the same transmission
power on each retransmission. Combining the different retrans-
missions allows a coverage extension. For the purposes of this

TABLE I
SETUP PARAMETERS

Parameter Value
veNB1 Band Band 38

veNB1 Frequency 2570 - 2620 MHz
veNB2 Band Band 20

veNB2 Frequency(DL) 791 - 821 MHz
Channel Bandwidth 180 KHz

Carrier spacing 15 KHz
# Channels 10

# RBs 1
# Component carriers 1
IoT Operation mode Standalone
Transmission mode Single tone

Modulation QPSK
Transmit power 14 dBm

work, we make sure that the coverage level 0 and 1 criteria
are met. As such we select the appropriate sub-carrier spacing
configuration, i.e. 15 kHz and we guarantee that the maximum
coupling loss (MCL) levels are between 144dB and 154dB.
Thus, we assume three coverage classes for the NB-IoT devices
linked to three SDR devices:

• CE level 0: normal coverage with MCL 144 dB and 15
kHz sub-carrier spacing.

• CE level 1: robust coverage with MCL 154 dB and 15
kHz sub-carrier spacing.

• CE level 2: extreme coverage with MCL 164 dB and 3.75
kHz sub-carrier spacing.

B. Experimental Results

We implement all QL alternatives in the experimental setup
described above under various traffic conditions. We provide
below the network traffic conditions and the different QL im-
plementations considered in the course of the experimentation:

• Uniform traffic: the IoT traffic is equally distributed
across the available channels.

• Non-uniform traffic: the IoT traffic is randomly dis-
tributed across the available channels.

• Low traffic: the IoT traffic occupies 25% of the channels.
• Medium traffic: the IoT traffic occupies 50% of the

channels.
• High traffic: the IoT traffic occupies 75% of the channels.
• Non cooperative Q-Learning (NC-QL): the QL algo-

rithm runs individually on each vSBS. In this setup the
SBSs compete for the available network resources.

• Non cooperative Double Q-Learning (NC-DQL): the
QL runs individually on each vSBS, also taking decisions
for transmit power control under the D-QL paradigm.

• Cooperative Q-Learning (C-QL): the QL runs in a
distributed way on each vSBS with the cSBS acting as the
centralized controller which is responsible for cooperation
between SBSs. Thus SBSs do not compete for network
resources, instead they cooperate in order to maximize the
resource utilization of the whole network.

• Cooperative Double Q-Learning (C-DQL): the QL runs
on each vSBS in a distributed way as in C-QL, while also
taking decisions for transmit power control by employing
the D-QL algorithm.

To evaluate the performance of our setup, we measure the
achievable throughput considering the different ML implemen-
tations. To this end, we assess the performance of each QL
implementation by measuring the throughput achieved by the
three SBSs collectively namely network throughput on the
unlicensed band. Fig.4 depicts such results, where the following
observations are made:

• C-DQL algorithm achieves the best throughput. This is
expected as distributed learning takes into account inputs
from each SBS and thus it fosters cooperation instead of
SBSs competition. The result is an efficient coexistence
scheme that maximizes the network throughput.
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• NC-QL is outperformed by other QL schemes, especially
the C-DQL. NC-QL does not utilize channel information
by other SBSs, instead it relies on the information provided
by the host SBS only. As a result the three SBSs compete
for the available channels, thus preventing the measured
throughput.

To study the impact of the QL training to the SBS throughput,
we measure the achievable throughput during subsequent QL
iterations. Fig.5 depicts the results over 1000 QL training
iterations. It is clear that C-DQL achieves the best performance
per iteration when compared to other QL schemes. Also QL
performance is analogous to the amount of training steps
undertaken, and thus it requires some time to maximize its
performance. Another observation is related to QL throughput
improvement rate which is lowered when the algorithm closes
to its convergence point. As a result, QL iterations from 900
to 1000 do not offer significant throughput increase compared
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Fig. 6. Transmit power under different QL implementations.

to previous training steps.
In order to verify the efficiency of DQL, we measure the

power consumption on the transmitter side on each vSBS
under three different QL configurations (Fig.6). We observe
that the C-DQL performs better in terms of power saving when
compared to NC-DQL. C-DQL, due to its cooperative nature
exploits spectrum power information obtained by every vSBS
and then properly adjusts the transmission power, resulting in
lowering the power consumption of each vSBS. Further, com-
parison between the NC-QL and the C-QL demonstrates the
significant power reduction achieved by the latter. Fig.6 depicts
the transmit power of the NC-QL algorithm as comparison
baseline as it remains static during run time. Our choice for
14 dBm baseline power transmission is compliant with 3GPP
release 14 as described in [33]. The 14dBm power class is
introduced in release 14 and is ideal for low power NB-IoT
devices.



V. SUMMARY

In this work, we present the cooperative cognitive network
slicing virtualization for smart IoT applications such as smart
grid and agriculture. We deploy a cooperative machine learning
over virtualized base stations that operate on the unlicensed
band and cooperate on the licensed band. The radio resources
are monitored and observed through spectrum sensing and
the results are collectively made known to the different base
stations. A centralized type of networking management is
taken place using a cooperative double Q learning algorithm.
Specifying the requirements of the different IoT devices and the
wireless networking setup, experiments are carried out using
the Fed4Fire wireless experimental platform. Experimental
results are presented and discussed highlighting the impact of
deploying a cooperative scheme among the virtualized network
slicing.
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J. Bergman and H. S. Razaghi, ”A Primer on 3GPP Narrowband Internet
of Things”, IEEE Commun. Magazine, vol. 55, no. 3 , pp. 117-123, Mar.
2017.

[33] A. Hoglund, X Lin, O. Liberg, A. Behravan, E. A. Yavuz, M. Van Der
Zee, Y. Sui, T. Tirronen, A. Ratilainen and D. Eriksson , ”Overview of
3GPP Release 14 Enhanced NB-IoT”, IEEE Network, vol. 31, no. 6, pp.
16-22, November/December 2017.

[34] S. Martiradonna, G. Piro and G. Boggia, ”On the Evaluation of the NB-
IoT Random Access Procedure in Monitoring Infrastructures”, Sensors,
(Basel, Switzerland), vol. 19,14 3237. 23 Jul. 2019.


