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ABSTRACT

Automatic analysis of students’ collaborative interactions in physi-
cal settings is an emerging problem with a wide range of applica-
tions in education. However, this problem has been proven to be
challenging due to the complex, interdependent and dynamic na-
ture of student interactions in real-world contexts. In this paper, we
propose a novel framework for the classification of student engage-
ment in open-ended, face-to-face collaborative problem-solving
(CPS) tasks purely from video data. Our framework i) estimates
body pose from the recordings of student interactions; ii) combines
face recognition with a Bayesian model to identify and track stu-
dents with a high accuracy; and iii) classifies student engagement
leveraging a Team Long Short-Term Memory (Team LSTM) neural
network model. This novel approach allows the LSTMs to cap-
ture dependencies among individual students in their collaborative
interactions. Our results show that the Team LSTM significantly
improves the performance as compared to the baseline method that
takes individual student trajectories into account independently.
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1 INTRODUCTION

Today many work environments require problem solving as a team
and collaboration in face-to-face contexts. For instance, the success
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in an operation room depends on the communication dynamics
in surgical teams or engineers need to work in teams to solve
many workplace problems collaboratively. Therefore, collabora-
tive problem solving (CPS) is an essential skill for young people
to acquire during their education. As a pedagogical approach, it
can also reinforce knowledge, improves student attainment, and
positively changes student’s attitudes towards the subject stud-
ied [11]. However, positive outcomes of CPS is highly correlated
with students’ engagement with the CPS activities and students
should be appropriately guided in their interactions to achieve the
expected learning outcomes [4, 13]. Direct analysis and guidance
by a teacher or an expert is desirable, yet scaling this approach to
the large number of learners is often not feasible. One promising
solution is to develop automatic learning analytics tools that can
monitor student engagement and success in CPS activities [27].
These analytics information can be used both to adapt required
support and content for students as exemplified in intelligent tutor-
ing systems i.e [20] or to inform teachers for more appropriate and
efficient pedagogical interventions [16, 25].

Nevertheless, most existing work in analysing student engage-
ment focuses on digital learning environments and monotonous
pedagogical approaches such as lecturing [24]. A few available
studies have looked at student collaboration in physical spaces,
yet they leverage intrusive data collection approaches such as eye
tracking [19] or physiological signals [28]. Considering that collab-
oration skills in physical or blended learning settings are extremely
important for the future success of young people, there is an urgent
need for analysing learner behaviours in collaborative interactions
leveraging nonintrusive data sources such as 2D video data only.

This paper focuses on an emerging computer vision problem,
namely, the classification of student engagement in open-ended,
face-to-face CPS activities using 2D video data only. We propose a
novel method, called, Team LSTM model to capture dependencies
of individual students’ behaviours during their CPS process. Our
proposed solution is inspired by the Social LSTM model [2], which
was originally proposed for predicting pedestrian trajectories. How-
ever, to the best of our knowledge, this is the first implementation
of a Team LSTM approach in the learning sciences domain.

2 RELATED WORK

In face-to-face, co-located collaborative learning environments, stu-
dents communicate and interact with their peers via speech, facial
expressions and body gestures, which can be used as indicators
of their collaborative behaviours. For instance, Grover et. al [10]
focused on predicting the collaboration level/strength (i.e., low,
medium, high) during activities of pair programming. Similarly,
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Worsley [29] collected gesture, speech and electro-dermal activa-
tion data from pair collaboration. The gesture data was used to
learn a set of canonical clusters and the relation between students’
clusters and their behaviors showed that gesture data can be used
to predict students’ CPS behaviours. Moreover, in some previous
studies biometric data was also used to analyse students’ collabora-
tive learning. Lubold and Pon-Barry [15] conducted a study related
to acoustic-prosodic features with rapport in collaborative learning
and found that students’ pitch may be similar when they collabo-
rated well with each other. Similarly, Dikker et al. [8] used portable
electroencephalogram (EGG) to record students’ brain activities
and showed that, brain-to-brain synchrony can also be a possible
indicator of dynamic social interaction and effective collaboration.

At a relatively more mature research level, aiming to generate
visualisations from automatically generated metrics of students’
collaborative learning in physical spaces, Martinez-Maldonado et al.
[17] used multimodal data to record students’ learning activities in
healthcare simulations. Similar to group’s previous work by Echev-
erria et al. [9], they tracked and visualized how teams of students
occupy the space in healthcare simulations. Although, visualisa-
tions of how students occupied space in the learning environment
were created, the authors argued that teachers need the additional
contextual information to have an interpretation of the students’
learning process from these visualisations. On the other hand, some
researchers focused on individual student data and analysis rather
than the group data as presented previously. In order to identify
the different performances and behaviours of individual students
during collaborative learning, Oviatt et al. have conducted a series
of studies [21, 22]. The group mainly explored the differences be-
tween expert and novice students, and compared their collaborative
learning behaviours. The participants were asked to solve math
problems in groups of three and video, audio, and written data was
collected. The authors found that expert students performed more
fluently in both writing and speaking during the process of collab-
oration. They also found that expert students had a higher ratio
of using non-linguistic symbolic representations and structured
diagrams to elemental marks. Similarly, Schneider et al. [26] used
eye-tracking, video, and audio data to analyze individual student’s
learning motivation in pair collaboration. Their results show that
using eye-tracking data only is not enough to fully present students’
different levels of learning dynamics.

As the reviewed research above shows, multimodal data from
physical learning environments can provide promising results to
investigate collaborative learning in physical spaces. However, the
collection and analyses of multimodal data from real-world class-
room environments are challenging and it poses significant method-
ological, practical, and ethical challenges [5]. On the other hand,
video recording is a method which is used frequently to collect data
from the classrooms to study student or teacher behaviours. Due
to their low financial and technical costs, video-based analytics of
collaborative learning can provide valuable opportunities for imme-
diate real-world impact. Although, there is early work investigating
the potential of video data to analyze learner behaviors in collabo-
rative learning activities through modelling learner behaviours [7],
there is also a large need for developing novel computational ap-
proaches. For instance, in [7], CPS behaviours were modelled using

a traditional classification approach (decision trees) and a semi-
automated pipeline (active, semi-active, passive engagement values
were manually coded to model CPS competence). The authors pri-
oritised the transparency of the models over their performance
and presented their results as an opportunity for humans to better
interpret the models. On the other hand, here, we present a fully
automated ML pipeline for the labelling of active, semi-active, and
passive engagement behaviours during CPS activities.

3 DATASET

We used the dataset that was introduced by Cukurova et al. [7]. The
dataset comprises video recordings of 3 students working collabo-
ratively to produce a smart object by connecting Arduino boards
and interacting with an Integrated Development Environment. All
the participants were selected by their lecturers in order to obtain
a balanced set of computer science abilities and alleviate the bias of
existing knowledge and skill differences between students on their
collaborative problem-solving performance. Therefore, the data
was collected from three sequential educational interventions with
18 unique individual students at a European university (17 males
and 1 female, average age 20 years). The students were divided
into six groups of three students and some groups worked multiple
times with the system and their interaction was recorded using a
video recorder as shown in Figure 1. No time bounds were given
to students performing their specific tasks. Occasionally, videos
also show teachers and other people in background, just sitting or
passing by. These people were excluded from the analysis.

From this dataset, we used 14 videos, lasting between 27 and
79 minutes with an average of 56 minutes and resulting in a to-
tal of 13 hours of recordings approximately. These videos were
segmented into 30 seconds-long clips, totalling 1573 short clips,
and were manually labelled by two coders using the Nonverbal
Indexes of Students Physical Interactivity (NISPI) framework [6].
The coders annotated the students’ behaviours with respect to three
levels of engagement: (1) “active” indicates that a student is actively
manipulating an object; (2) “semi-active” indicates that a student
is not acting on a object but their attention is oriented towards
an active peer or an object associated with the learning objective;
and (3) “passive” corresponds to any other situation. To achieve
reliable labels, the coders were asked to provide labelling for non-
overlapping windows of 3 seconds and then a final label for each
short clip was obtained by taking average over all windows. When-
ever there was disagreement between the coders for a short clip,
the coders were asked to revise their coding by looking at windows
of 5 seconds. This process resulted in 98% agreement with the or-
dinal alpha value k = 0.912. The decision to use 30 seconds-long
clips and 3 seconds-long windows for human annotation was based
on the pilot work completed and previous research on interpret-
ing collaborative problem-solving (CPS) competence from physical
interactions. As shown in [6], 30 seconds-long clips annotation
is granular enough to generate meaningful distinctions between
low, medium, and high competence CPS groups, but also simple
enough to get high interrater reliability values. 10 seconds-long,
20 seconds-long and 60 seconds-long annotations were also tested
and 30 seconds-long was chosen in the final analysis.

Our manual inspection showed that the camera did not always
capture the whole group and some students were largely occluded.



Pose Estimation

Student Identification Bayesian model

y -
% from previous frame

Compare
facial features

incorporates information

Reference

images

Student Engagement Prediction ,

A C [' RO \ SN missing
K \@ﬁ\ T B \ B
= e O active
'. X > semi-active
9 N passive
Skeleton joint |
data with

C
student / \ S S S X et
Lo > OISO S passive
identification N NN S missing

missing

Figure 1: Our proposed framework i) detects body key points from the recordings of student interactions; ii) combines face
recognition with a Bayesian model to identify and track students with a high accuracy; and iii) classifies student engagement
leveraging a Team Long Short-Term Memory (Team LSTM) neural network model.

In some cases, although a student was labelled as active, they were
not visible in the clip, either their hands were visible only or they
were missing from the clip completely. To handle such cases, we
introduced a fourth label called “missing”. This resulted in the
following the distribution of labels: 53% active, 24% semi-active,
and 7% passive, and 16% missing.

4 PROPOSED FRAMEWORK

As shown in Figure 1, the proposed framework is composed of three
main steps: (1) estimating body pose in the video and extracting
their key points; (2) performing face recognition to identify and
track individual students and discard other people; and (3) training
a neural network model called Team Long Short-Term Memory
(Team LSTM) to classify student engagement into three categories,
namely, active, semi-active and passive.

4.1 Pose Estimation

Our framework builds upon OpenPose library [3] to estimate hu-
man pose from videos. OpenPose utilises a bottom up approach
where individual body parts are recognised in the image and poten-
tial human poses are constructed from the recognised parts. In the
clips, students are positioned in a way that objects they are work-
ing on are within the camera view most of the time. Therefore, to
recognise if a student is modifying or holding an object of interest,
we also estimate hand pose using OpenPose and include hand key
points in the features to train the model in addition to the body key
points. OpenPose output contains a numerical value representing
confidence of estimation for each key point. These values are also
used as an input to the network.

Taken together, each student’s nonverbal cues at any time instant
are represented by triplet of body and hand key point values, namely,
x coordinate, y coordinate, and confidence. For each student, the
network takes as input a feature vector consisting of 3 X 25 = 75
values for body pose and 3 X 21 = 63 for each hand pose, resulting
in 201 features (body plus two hands) in total.

4.2 Student Identification

Our framework uses face recognition python library [1] from dlib
[12] for student identification. The main improvement is that it
utilises a Bayesian model to incorporate information from previous
frames to improve student identification and tracking accuracy. To
improve face recognition accuracy, we manually select multiple
template face images (around five) for each student, comprising
slightly different views. In practice, template face images can be
obtained by the student standing in front of camera for few seconds.

Table 1: Student identification accuracy and statistics (%).

Student A | Student B | Student C
Average 87 81 84
Max. 100 100 100
Min. 65 15 68
Std Dev 11 25 12

We use the output of OpenPose to locate potential face regions in
aframe, and these regions are then fed into the Dlib CNN Face model
to extract embeddings. These embeddings are then compared with
the embeddings from template face images using Hungarian algo-
rithm. Euclidean distance is used to calculate the distance between
template embeddings and query embeddings. We assign estimated
skeletons to the recognised faces based on the distance between
face box and nose key point. However, this frame-by-frame basis
approach yields unreliable results on some of the videos, especially
when students look away from the camera or their face is blurred
due to rapid movement. Therefore, following the method in [18],
we build a Bayesian statistical model to improve the accuracy by
incorporating information from the previous frame.

4.3 Student Engagement Prediction

Landolfi et al. [14] uses a deep neural network with recurrent LSTM
layers as final stage classifier. This approach has been shown to be
useful, considering temporal essence of this classification problem.
Therefore, we have based our model on this design which has
multiple dense layers connected to LSTM layer and a final pooling
layer to obtain final classification result. However, they train a
separate network for each student, and their method cannot learn
interactions between students. Inspired by Social LSTM [2], we have
developed a neural network model, called Team LSTM, to address
this problem. More explicitly, our model includes an additional
shared LSTM layer on top of individual student layers to allow the
network to learn the student collaborative interactions.

Our proposed Team LSTM architecture can be summarised as
follows. Features from each student are independently inputted into
multiple linear neural network dense layers with rectifier activation
function (ReLU). The main purpose of this initial block of layers is
to learn higher level representations (such as recognising certain
gesture or position) from the key points data. These layers have
identical weights for each student. To prevent over-fitting, addi-
tional dropout layers are added in between the dense layers. Output
of the last dense layer is used as input into LSTM layer. Again this
layer have the same weights for all students, but the hidden state



and cell state are learned separately for each student. Output of
the individual LSTM is used as an input to the Team LSTM layer
which is shared between students. The final dense layer (pooling)
combines output of the Team layer and the individual student LSTM
layers and outputs 4 values - probabilities for each possible student
state (i.e., active, semi-active, passive, and missing). This layer is
also individual for each student, and the weights are shared.

4.3.1 Team LSTM Layer. For modelling the interactions between
the students, we have taken inspiration from Social LSTM cell [2],
which combines hidden states of multiple LSTM cells between
multiple frames. In contrast to the problem of pedestrian trajectory
tracking as presented in [2], in our case there is no need to use
position based pooling as all 3 students interact with each other
all the time and their locations do not change much. Initially, our
model was implemented pooling all the hidden states of the student
LSTM cells between frames. However, this configuration did not
yield promising results in capturing the interactions in our case.
Differently from [2], instead of pooling hidden states and modifying
LSTM inner functioning, the outputs of all individual student LSTM
layers are pooled using a dense linear layer and are inputted into
the Team LSTM layer (of the same size as an individual LSTM).

5 EVALUATION

In this section, we evaluate our proposed framework on the CPS
dataset introduced by [7] and compare Team LSTM model with a
baseline model.

5.1 Implementation

5.1.1 Baseline Model. To evaluate the effectiveness of the Team
LSTM model, we have built a model using a similar structure to
the Team model but without the LSTM Team layer. This model
resembles the design of Landolfi et al. [14], but it is not direct
reimplementation. To reuse all the built pipelines and make the
model directly comparable with the Team Model, this model takes
the same form of input and produces the same output. The network
is trained on the 3 students at the same time, but the networks of
individual students are not connected in any way.

5.1.2  Training. The recorded videos do not have the same frame
rate, thus the 30 seconds windows have variable number of frames.
Therefore, for training, the frames are sampled to set the frame
rate to 10 frames per second. When training the models, the 30
seconds windows (corresponding to 300 frames) are inputted into
one learning step. The result of the model after processing the last
frame is compared with the ground truth label. OpenPose is not able
to estimate the body pose and hand pose when there are significant
occlusions, or a student is missing from the frame completely. In
case of missing key point the input value is set to 0.

Both models are implemented using Pytorch deep learning li-
brary [23] and our implementation is publicly available!. We use
stochastic gradient descent with momentum for optimizing the
neural network weights, where we set learning rate to 0.001, mo-
mentum to 0.9, and dropout rate to 0.2. We train models with cross
entropy loss using 500 epochs. K-fold cross validation is used to
measure performance of the model, with K selected as 7 leaving
clips from 2 of 14 videos for testing in each fold. Since personalised
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models are more appropriate for applications in education, we fol-
low a subject-independent cross-validation approach, namely, there
is a chance that the same student can appear in both training set
and testing set.

Table 2: Comparison of the Team model with the baseline
model in terms of accuracy (%).

Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Ave.
Baseline | 17% 6% 16% 3% 15% 14% 42% 17%
Team 63% 70% 52% 23% 93% 57% 48% 53%

Table 3: Confusion matrix of the Team model result.

Passive | Semi-active | Active | Missing
Passive 8 107 123 5
Semi-active 137 216 523 15
Active 372 304 1265 35
Missing 29 22 69 478

5.2 Experimental Results

5.2.1 Student Identification. In Table 1, we present our results for
student identification. Proposed modifications to face recognition
algorithm in dlib achieves an accuracy of 84% on average, which is
reliable enough for the subsequent engagement prediction task.

5.2.2 Student Engagement Prediction. In Table 2, we compare the
Team model with the baseline model in terms of accuracy (%). We
present our results for the 4-class classification task (i.e., active
vs. semi-active vs. passive vs. missing). Looking at the results, the
Team model achieves significantly better performance compared
to the baseline model on this challenging computer vision problem.
The Team model is able to recognise 53% of labels correctly.

We provide the break-down of the results by folds in Table 2. The
performance of individual folds differs significantly. For example,
fold 5 outperforms all other folds with a performance of 93%, on the
other side of the spectrum, fold 4 performs poorly with only 23% of
successfully classified labels. The high variance can be explained
by the challenging nature of the problem. Some clips do not show
the whole group and some students are largely occluded, leading
to errors in face recognition, and/or pose estimation.

We also present the confusion matrix of the Team model in
Table 3. As can be seen, one of the main challenges is the unbalanced
distribution of the labels, where only 7% of the labels is “passive”.
Consequently, our model performs better for predicting the “active”
state as compared to “passive” and “semi-active” states.

5.3 Conclusion and Future Work

In this paper, we focused on an emerging computer vision problem,
predicting student engagement in collaborative problem solving
purely from video data. For this problem, we proposed a novel
method, called Team LSTM, to capture the interactions between the
students, and our results demonstrated the potential of the Team
LSTM approach for automatically detecting student engagement
in collaborative problem-solving from video data. Although our
results show significant implications for exploring this problem
further, our approach can also be improved from several aspects.
Particularly, for future work, we will investigate strategies to alle-
viate the imbalanced data problem.
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