Plasma-Enhanced ALD for Opening the ALD Temperature Window

Stephen E. Potts, Wytze Keuning, Erik Langereis, Richard van de Sanden and Erwin Kessels

Baltic ALD Conference, Hamburg, Germany 16th September 2010

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

TU

Outline

- The ALD Temperature Window
- Plasma-Enhanced ALD
 - What is plasma-enhanced ALD?
 - Merits
- Experimental Details
- High(er) temperature ALD
 - Motivation: Why high(er) temperature ALD?
 - Examples of ALD of TiO₂ to obtain the best electronic/optical properties
- Low temperature ALD
 - Motivation: Why low temperature ALD?
 - The plasma-enhanced and thermal ALD of Al₂O₃ as examples
 - Corrosion protection
 - Moisture permeation barrier for OLEDs
- Conclusions
- Acknowledgements

The ALD Temperature Window

A. Condensation
B. Insufficient thermal energy
C. CVD
D. Evaporation

2/30

Substrate Temperature \rightarrow

Assumption: a sub-monolayer of material is deposited

T. Suntola, Mater. Sci. Rep., 4, 261 (1989).

The ALD Temperature Window

Substrate Temperature \rightarrow

- Assumption: a sub-monolayer of material is deposited
- Loss of surface groups with increasing temperature
- Also affected by film density

T. Suntola, *Mater. Sci. Rep.*, **4**, 261 (1989). / Applied Physics / Plasma & Materials Processing / S. E. Potts

Plasma

Plasma-Enhanced ALD

- Collection of free charged particles and other gas-phase species:
 - lons Electrons
 - essential for plasma formation

 - Neutral species (called "plasma radicals")
- Electrically neutral, on average
- Plasma radicals are the main reacting species with surface groups
- Degree of ionisation is typically very low, ≤0.02%

W. M. M. Kessels, H. B. Profijt, S. E. Potts and M. C. M. van de Sanden, Atomic Layer Deposition of Nanostructured Materials, editors: M. Knez and N. Pinna, Wiley-VCH (2011), in press. / Applied Physics / Plasma & Materials Processing / S. E. Potts

Plasma-Enhanced ALD

Ion bombardment?

- lons are accelerated through a plasma sheath
 - $v_e > v_{ion}$ (thermal velocity)
 - Net current to substrate = 0 → electrical field formed
 - Thin positive space-charge region
- Ion bombardment more likely at lower reactor pressures
 - E_{ion} depends on mean free path
 - Affected principally by pressure

versity of Technology

Merits of Plasma-Enhanced ALD

1. Improved material properties

• High reactivity of the plasma can reduce impurities

2. Deposition at reduced substrate temperatures

- Reactive plasma radicals and ions accelerated within the plasma sheath provide more reactivity than is possible with thermal energy alone
- E.g. room temperature depositions of Al₂O₃, TiO₂, Ta₂O₅, ZnO...
- Shorter co-reactant purges can be used

3. Increased choice of precursors and materials

- Plasmas can remove ligands which aren't easily hydrolysed
- Some Cp-based precursors have low reactivity with water during ALD e.g. [Ti(Cp*)(OMe)₃]
- Also limited reactivity with ozone at lower deposition temperatures

W. M. M. Kessels, H. B. Profijt, S. E. Potts and M. C. M. van de Sanden, *Atomic Layer Deposition of Nanostructured Materials*, editors: M. Knez and N. Pinna, Wiley-VCH (2011), **in press**. / Applied Physics / Plasma & Materials Processing / S. E. Potts

Merits of Plasma-Enhanced ALD

4. Good control of stoichiometry and film composition

- Tuning physical variables to tune stoichiometry
- E.g. $[Ta(NMe_2)_5]$ as a precursor to TaN_x

Plasma	Material		
H_2 - N_2 or NH_3	Insulating Ta ₃ N ₅		
H ₂	Conducting TaN		
H ₂ (longer)	TaN _{x<1} (almost Ta metal)		

5. Increased growth per cycle

- Plasma species create a higher density of reactive surface sites
- E.g. [Ti(OⁱPr)₄] at 200 °C: O₂ plasma: ~0.5 Å/cycle H₂O: ~0.15 Å/cycle

6. More processing versatility in general

- Possibility of *in situ* treatment of the substrate/reactor
- E.g. plasma cleaning SF₆ plasma can etch TiN

Experimental Details (Plasma & Thermal ALD)

8/30

Outline

- The ALD Temperature Window
- Plasma-Enhanced ALD
 - What is plasma-enhanced ALD?
 - Merits
- Experimental Details
- High(er) temperature ALD
 - Motivation: Why high(er) temperature ALD?
 - Examples of ALD of TiO₂ to obtain the best electronic/optical properties
- Low temperature ALD
 - Motivation: Why low temperature ALD?
 - The plasma-enhanced and thermal ALD of Al₂O₃ as examples
 - Corrosion protection
 - Moisture permeation barrier for OLEDs
- Conclusions
- Acknowledgements

Why High(er) Temperature ALD?

Electrical and optical properties

- Dielectric constant increases at higher deposition temperatures
- Also depends on morphology, which can be controlled by a plasma
- Refractive index increases, linked to the density and composition of the film.

10/30

Why High(er) Temperature ALD?

- Generally, the best electronic and optical properties can be obtained at higher deposition temperatures.
- A result of:
 - Fewer 'impurities' at higher temperatures
 - Impurities lead to films with lower densities
- E.g. for TiO₂:
 - Required for STOs and other ternary oxides
 - More H at lower temperatures (OH groups)
 - Highest densities obtained at ~150 °C and above

Ligand-Tailoring of TiO₂ Precursors

• Tailoring ligands can allow for an increase in the maximum temperature

12/30

ersity of Technology

- Stronger M–L bonds
- Incorporation of ligands less prone to decomposition

Higher Deposition Temperatures of TiO₂

Combination of OMe ligands and Cp result in the highest decomposition temperature.

Upper limit of temperature window effectively increased

* O₃ processes: 1, 2, 4: P. Williams at ALD 2008, Bruges, Belgium.
 3: R. Katamreddy *et al.*, *ECS Trans.*, **25**, 217 (2009).
 / Applied Physics / Plasma & Materials Processing / S. E. Potts

13/30

Outline

- The ALD Temperature Window
- Plasma-Enhanced ALD
 - What is plasma-enhanced ALD?
 - Merits
- Experimental Details
- High(er) temperature ALD
 - Motivation: Why high(er) temperature ALD?
 - Examples of ALD of TiO₂ to obtain the best electronic/optical properties
- Low temperature ALD
 - Motivation: Why low temperature ALD?
 - The plasma-enhanced and thermal ALD of Al₂O₃ as examples
 - Corrosion protection
 - Moisture permeation barrier for OLEDs
- Conclusions
- Acknowledgements

Why Low Temperature ALD?

- Some applications require high film quality but the substrates required are temperature-sensitive.
- Alloys (or polymers) requiring a corrosion-resistant barrier layer
 - Dense, defect-free films required.
 - Higher temperatures can alter the mechanical properties of industrial alloys.

 Films need to be deposited on organic substrates

Coating metal substrates at TU/e

OLEDs at TU/e

Low Temperature Oxide ALD in the Literature

16/<u>30</u>

Material	Metal Precursor	Oxidant	Lowest <i>T_s</i> (°C)	Reference
Al ₂ O ₃	[AI(CH ₃) ₃]	H ₂ O	33	Groner et al.
	[AI(CH ₃) ₃]	O ₃	25	Kim <i>et al.</i>
	[AI(CH ₃) ₃]	O ₂ plasma	25	van Hemmen <i>et al.</i>
TiO ₂	[Ti(O [/] Pr) ₄]	H ₂ O	150	Ritala <i>et al.</i>
	[Ti(O [/] Pr) ₄]	H ₂ O ₂	77	Liang et al.
	[Ti(O [/] Pr) ₄]	O ₂ plasma	25	Potts <i>et al.</i>
	[Ti(Cp ^{Me})(O ⁱ Pr) ₃]	O ₂ plasma	50	Potts <i>et al.</i>
	[Ti(Cp*)(OMe) ₃]	O ₂ plasma	50	Potts <i>et al.</i>
	[Ti(Cp ^{Me})(NMe ₂) ₃]	O ₂ plasma	25	Sarkar et al.
Ta ₂ O ₅	TaCl ₅	H ₂ O	80	Kukli <i>et al.</i>
	[Ta(NMe ₂) ₅]	H ₂ O	150	Maeng et al.
	[Ta(NMe ₂) ₅]	O ₂ plasma	25	Potts <i>et al.</i>
PtO _x	[Pt(acac) ₂]	O ₃	120	Hämäläinen et al.
	[Pt(Cp ^{Me})Me ₃]	O ₂ plasma	100	Knoops <i>et al.</i>
ZnO	[Zn(CH ₂ CH ₃) ₂]	H ₂ O	60	Guziewicz et al.
	[Zn(CH ₂ CH ₃) ₂]	H ₂ O ₂	25	King et al.
	[Zn(CH ₂ CH ₃) ₂]	O ₂ plasma	25	Rowlette et al.

S. E. Potts et al., J. Electrochem. Soc., 157, P66 (2010).

Plasma-Enhanced & Thermal ALD of Al₂O₃

On Si (100)

- Wide variation in growth due to changes in density (low T) and dehydroxylation (higher T)
- Densest films have lowest OH concentrations

J. L. van Hemmen *et al.*, *J. Electrochem. Soc.*, **154**, G165 (2007). S. E. Potts *et al.*, *J. Electrochem. Soc.*, **157**, P66 (2010). / Applied Physics / Plasma & Materials Processing / S. E. Potts

Corrosion Barriers: FP7 CORRAL Project

- Corrosion protection with perfect atomic layers = CORRAL
- EC FP7 project

18/30

Goal:

- The complete sealing of industrial metal alloys for corrosion protection
- Test criteria:
 - Films must be deposited at $T_s \leq 160 \text{ °C}$
 - Films must have a density >90% of the bulk material
 - show complete coverage on polished surfaces: porosity <0.2%

Current state-of-the-art for corrosion protection:

- 3 µm thick films
- Aim for ≤50 nm

Corrosion Barriers: Substrates

- Same alloys as those used for industrial applications
- 3 sizes for analysis
- 2D substrates, two surface finishes:
 - Lapped
 - (Fine) ground
- N-type Si reference

19/30

Corrosion Barriers: NSS Tests

Neutral salt-spray tests

- Addition of Al₂O₃ to 100Cr6 mild steel improves its resistance to corrosion.
- Thicker films offer better protection
- Plasma ALD films lasted longer than thermal ALD in the tests

20/30

Corrosion Barriers: TEM

Al₂O₃ on Al2024-T3

- Films conformal on the substrates in both cases
- Gap between coating in the case of thermal ALD suggests poor adhesion
- Plasma-enhanced ALD affords better adhesion in this case.

Technische Universiteit **Eindhoven** University of Technology

Corrosion Barriers: ToF-SIMS

substrate coating interface 10⁵ ntensity (Counts) AIO, 10⁴ AI ЭН 10³ 0 10² FeO O_2 plasma **10**¹ 10° 100 200 300 400 500 600 coating interface subs. 10⁵ AIO, ntensity (Counts) 10⁴ AI OH 10³ 0 10² FeO2 Water 10¹ 10° 300 400 500 600 100 200 0 Sputtering Time (s)

PartsTech

50 nm Al₂O₃ on 100Cr6

in association with CNRS

- Show a slightly higher C and FeO₂ content at the interface for thermal ALD
- Confirm lower OH levels in bulk of plasma ALD coating

University of Technology

Corrosion Barriers: Porosity

Film porosity = % bare substrate surface

Obtained using capacitance-voltage measurements on 100Cr6 mild steel

23/3

- Inversely proportional to film thickness
- Lowest deposition temperatures give higher porosities
- Plasma-enhanced ALD gives lower porosity at lower thicknesses

ParisTech

Moisture Permeation Barrier for OLEDs

Organic LEDs (OLEDs)

- Energy-efficient lighting
- Large luminous area
- Sensitive to H₂O, O₂ and temperature

Requirements:

- Deposition temperature <110 °C
- Water vapour transmission rate (WVTR) <10⁻⁶ g m⁻² day⁻¹
- No visible defects after calcium tests (black spots)

Testing the Water Vapour Transmission Rate

25/30

Calcium Tests

- Metallic calcium turns transparent on reaction with water (CaO)
- WVTR from Ca tests on PEN decreases with deposition temperature
- Lowest reported value ~10⁻⁶ g m⁻² day⁻¹

Al₂O₃ at TU/e

- Best barrier film obtained at room temperature (25 °C)
- Opposite trend to Al₂O₃ deposited by thermal ALD

E. Langereis *et al.*, *Appl. Phys. Lett.*, **89**, 081915 (2006). / Applied Physics / Plasma & Materials Processing / S. E. Potts

Testing the Water Vapour Transmission Rate

26/30

Comparison with standard to find the intrinsic WVTR of Al₂O₃

- Standard: 300 nm a-SiN_x:H
- Allows bleeding from pinholes to be discounted

Barrier Layer			
SiO_x (40 nm)			
Ca (40 nm)			
Glass			

sense and simplicity

System	Plasma Deposition	Material	Thickness (nm)	WVTR (10 ⁻⁶ g m ⁻² day ⁻¹)
Plasmalab 100	CVD	a-SiN _x :H	300	<1
FlexAL	ALD	Al ₂ O ₃	40	2

P. van de Weijer et al., Proceedings of the OSC (2008).

OLED Encapsulation: Defect Density

27/30

Technische Universiteit E**indhoven** University of Technology

- Lower black spot density on poly-LED/Al₂O₃: enhanced conformal growth in the case of ALD
- Temperature window for Al₂O₃ is effectively extended down to room temperature

sense and simplicity

Conclusions/Summary

- Plasma-Enhanced ALD at high(er) deposition temperatures
 - Better electronic and optical properties
 - Able to use stable precursors (stronger M–L bonds)
- Plasma-Enhanced ALD at low deposition temperatures
 - · Higher OH content, lower density
 - Al₂O₃ as barrier layers
 - Protects 100Cr6 and Al2024-T3 alloys from corrosion
 - Gives a lower film porosity at lower temperatures
 - Lowest water vapour transmission rates at room temperature
- The temperature window is subjective and dependent on the process requirements
- Plasmas allow for ALD at higher and lower temperatures than those possible with thermal ALD

Acknowledgements

NSS Testing L. Schmaltz M. Fenker

Porosity & ToF-SIMS

- B. Diaz J. Światowska
- V. Maurice

P. Marcus

Chimie ParisTech École nationale supérieure de chimie de Paris in association with CNRS **TEM** G. Radnóczi L. Tóth

29/3

Al₂O₃ Depositions G. Dingemans L.R.J.G. van den Elzen **TiO₂ Depositions** A. Sarkar J.C. Goverde Technical Assistance J.J.A. Zeebregts C.A.A. van Helvoirt

Funding

European Community's FP7/2007-2013 project CP-FP213996-1, CORRAL (corrosion barriers). Philips Lighting (OLED barriers) **PHILIPS**

/ Applied Physics / Plasma & Materials Processing / S. E. Potts

sense and simplicity

Thank you for your attention!

TUe Technische Universiteit Eindhoven University of Technology

Where innovation starts