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Abstract

Objective

Risk prediction models are widely used to inform evidence-based clinical decision making. 

However, few models developed from single cohorts can perform consistently well at population 

level where diverse prognoses exist (such as the SARS-CoV2 pandemic). This study aims at 

tackling this challenge by synergising prediction models from the literature using ensemble 

learning.  

Materials and Methods

In this study we selected and reimplemented seven prediction models for COVID-19, which 

were derived from diverse cohorts and used different implementation techniques. A novel 

ensemble learning framework was proposed to synergise them for realising personalised 

predictions for individual patients. Four diverse international cohorts (2 from the UK and 2 from 

China; total N=5,394) were used to validate all eight models on discrimination, calibration and 

clinical usefulness. 

Results

Results showed that individual prediction models could perform well on some cohorts while 

poorly on others. Conversely, the ensemble model achieved the best performances consistently 

on all metrics quantifying discrimination, calibration and clinical usefulness. Performance 

disparities were observed in cohorts from the two countries: all models achieved better 

performances on the China cohorts. 

Discussion

When individual models were learned from complementary cohorts, the synergised model will 

have the potential to achieve synergised performances. Results indicate that blood parameters 

and physiological measurements might have better predictive powers when collected early, 

which remains to be confirmed by further studies.

https://mc.manuscriptcentral.com/jamia
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Conclusions

Combining a diverse set of individual prediction models, ensemble method can synergise a 

robust and well-performing model by choosing the most competent ones for individual patients. 

https://mc.manuscriptcentral.com/jamia
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Introduction

Risk prediction models are widely used in clinical practice to inform decision making.[1–3] Good 

models cannot only improve health service efficiencies but also predict deterioration[4] in a 

proactive manner [5], with a great potential to improve outcomes and save lives. Such evidence 

based decision making supports are particularly important in an epidemic or pandemic outbreak, 

not only for informing the treatments/managements of those infected but also for optimising 

healthcare services to minimise indirect effects to most vulnerable service users. For example, 

the recent SARS-CoV2 has caused substantial excess mortality [6,7] at least partly due to an 

indirect effect upon healthcare systems leading to a loss of capacity to provide elective and 

emergency care within the “golden window” of opportunity [7–9]. To mitigate excess mortality, 

more targeted inpatient care in future waves could be informed by (a) better risk prediction and 

(b) insights from international COVID-19 (we use SARS-CoV2 and COVID-19 interchangeably) 

datasets and experience to validate models and learn from different countries’ responses.

There have been numerous prediction models developed for COVID-19, [10–14] but most were 

derived in small datasets, had low methodological quality and are unvalidated.[13] In addition, 

models learned from single cohorts (even from several centres) might not have the predictive 

power to achieve good performance in situations where a disease spreads to the whole 

population, leading to greatly diverse prognoses. In this study, we reproduced various prediction 

models with reasonable quality and synergised them using ensemble learning [15] to assess 

their collective ability to accurately discriminate mild and severe patients in a diverse set of four 

patient cohorts from the UK and China with varying patterns of disease severity (Figure 1a). In 

particular, China and the UK had very different approaches to hospital admission for COVID-19. 

In Wuhan, admission was routine with patients triaged to low intensity (Fangcang hospitals[16]) 

or higher dependency (designated hospitals) settings, whereas in the UK, admission of patients 

with more severe disease or at perceived higher risk of severe disease was prioritised. These 

differences enabled us to assess model performance in different settings. For outcomes 

https://mc.manuscriptcentral.com/jamia
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specifically, we primarily focused on poor prognosis defined by either death or intensive care 

unit (ICU) stay. 

Materials and Methods

Figure 2 depicts the architecture of this work - synergising individual models from the literature 

for preventing excess mortality. For prediction models (Figure 1b), seven models (Dong, [10] 

Shi, [17] Gong, [18] Lu, [19] Yan, [20] Xie, [21] and Levy [22]) were chosen with different model 

types using diverse sets of predictors. Derivation cohorts were diverse, originating from six 

regions in two countries, with median ages ranging from 44-65 years, and with mortality varying 

between 7-52%. Such diversity provides leverage for synergising insights from these derivation 

cohorts to obtain a collective, and hopefully improved predictive power.

To synergise models derived from multinational datasets, we used ensemble learning, [15,23] a 

machine learning methodology which is particularly effective when single models perform well at 

certain subsets of the whole data samples but none of them can achieve good overall 

performances. The rationale is to partition the data samples into groups and choose the most 

suitable model(s) for particular groups (e.g. to give more weights to models derived from older 

populations with more severe cases for a 78-year-old patient with lymphocyte count of 0.7) so 

that the optimal overall prediction result can be achieved. Figure 1c shows a synthetic and 

schematic illustration of such a situation. In (conventional) ensemble learning scenarios, weak 

predictors are usually trained on subsets of the same dataset. The key difference of this work is 

that the weak predictors were not trained locally on one particular dataset but selected from the 

literature, i.e. learned from external datasets (which the ensemble model does not have access 

to) and re-implemented for aggregation.

The aggregation approaches used in this study do not belong to the stacking method (also 

called stacked generalization [24]) that is to learn a new model using inputs from individual 

classifiers. Instead, they are inspired by bagging predictors [25]   - aggregating results in a data-

independence manner.  

https://mc.manuscriptcentral.com/jamia
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Validation and analytics cohorts 

The first Wuhan cohort (Wuhan01) consisted of 2,869 adults with COVID-19 confirmed by RT-

PCR admitted to one of two hospitals in Wuhan, China (Wuhan Sixth Hospital and Taikang 

Tongji Hospital), admitted between 01/02/2020 and 23/02/2020, and who died or were 

discharged on or before 29/03/2020. The second Wuhan cohort (Wuhan02) consisted of 357 

adults with COVID-19 from Tongji Hospital, data of which was collected between 10/01/2020 

and 04/03/2020. The first UK cohort (KCH) consisted of 1,475 adults (≥18 years old) 

hospitalized with COVID-19 in King’s College Hospital NHS Foundation Trust (London, United 

Kingdom) between 01/03/2020 and 02/04/2020, who have been followed up until 08/04/2020. 

The second UK cohort (UHB) consist of 693 adults (≥18 years old) hospitalized with COVID-19 

at the Queen Elizabeth Hospital (part of the University Hospital Trust Birmingham, United 

Kingdom) between 14/03/2020 and 13/04/2020, who have been followed up to 19/04/2020. 

Mortality rates of Wuhan01, Wuhan02, KCH and UHB are 2.4%, 45.7%, 26.9% and 19.0% 

respectively. The large difference in mortality between two Wuhan cohorts was possibly 

because: (a) Wuhan02 admitted more severe cases under Wuhan city-wide coordination [20]; 

(b) the two were followed up in different periods related to the surge (Figure 1a.2). Table 1 gives 

the baseline for comparing poor-prognosis/died and not-poor-prognosis/did-not-die subgroups 

of all 4 cohorts. All cohorts were retrospective and extracted from Electronic Health Records for 

this study. Demographics and baselines of all four validation cohorts are described in detail in 

supplementary material (Table S2-S5).

Prediction model selection and re-implementation 

In May 2020, we conducted a literature search for COVID-19 poor prognosis models. The 

search and selection process are described with details in supplementary material Figure S1. 

Briefly, for prediction models (Figure 1b), we selected COVID-19 prognosis (either death or 

severity) models that were (a) reproducible (implementable models with all parameters 

reported); (b) using predictors that are readily available at community triage at large scale ( i.e. 
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D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/advance-article/doi/10.1093/jam
ia/ocaa295/5981140 by guest on 13 N

ovem
ber 2020

https://paperpile.com/c/ebbAoK/zjEXQ


7

demographics, underlying conditions, blood tests, and vital signs); (c) with sufficient information 

describing the derivation cohort including cohort size, interquartile range (IQR) of age, 

country/region, follow-up period and mortality/poor-prognosis ratios. Table 2 describes 

information of the seven models including the outcomes, computational methods, information of 

derivation cohorts (size, region/country, mortality rate, follow-up period etc). 

We re-implemented these seven prediction models by extracting all parameters from their 

published/preprint manuscripts or public-facing websites. 5 different models are implemented 

including decision tree, logistic regression, nomogram, scoring, and NOCOS (a customised 

transparent model). We also extracted derivation cohort size, follow-up periods, and 

distributions of numeric predictors (bloods and vitals). Supplementary Table S1 shows 

predictors used by each prediction model and also gives the numeric variable distributions of 

their derivation cohorts. Figure 1b illustrates the timeline of the follow-up periods of all models’ 

derivation cohorts. 

Competence assessment framework for model selection

The key to obtaining an effective ensemble model is a good aggregation mechanism that can 

choose the best performing model(s) for individual patients so that an overall optimal 

classification could be achieved. Stacking methods (learning a model from individual classifiers) 

usually produce better ensembles than bagging (majority vote or weighted majority vote).[23]  

However, the former requires labelled data to further learn a model, which is not possible in our 

scenario - using the ensemble model in clinical decision makings for managing COVID-19. 

Therefore, a data-independent approach (like bagging) is required. For risk prediction models, 

their predictive capacities are underpinned by the patient characteristics of their derivation 

cohorts.  For example, given a new patient, models that were trained on (enough number of) 

similar patients likely perform better than those were not. The conventional bagging methods 

(majority vote or their variations) are unlikely to work very well as they are not capable of 

capturing such a similarity and its associations with model competence.

https://mc.manuscriptcentral.com/jamia
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We propose a novel bagging mechanism using a competence assessment framework for 

assisting model selections in the aggregation step. The framework is designed to quantify the 

competence of each model for a given patient data sample. Three factors are considered. The 

first factor is called familiarity competence, which quantifies the above-mentioned similarity, i.e., 

how familiar is a model with the new patient sample to be predicted. The second factor is the 

general competence which can be reflected by the derivation cohort size as we know prediction 

models derived from large cohorts are usually superior to those from smaller ones.  The final 

factor is to consider data completeness of a patient sample relative to a prediction model. 

‘Absolute’ data completeness of our validation cohorts is observed to be relatively good, 

meaning if a clinical feature is collected at a hospital most patients tend to have it. However, 

‘relative’ completeness (i.e., given a prediction model, the percentage of its risk predictors 

available in the dataset) varies significantly. Model predictive powers are likely to be 

compromised by such relative incompleteness, which therefore needs to be considered in the 

framework. 

We first specify the calculation of the familiarity competence. Let be the set of all 

numeric predictors, be the distribution (median, 1st quartile and 3rd 

quartile respectively) of  in the model ’s derivation cohort. Given a patient data sample: 𝑝 𝑚

, the familiarity competence of on 𝑚

 is defined as follows.𝑝

The final competence calculation is defined as the formula below. The first component divides 

the familiarity competence by the total number of numeric predictors of the model, incorporating 

the relative data completeness of  to . The second component is general competence based 𝑠 𝑚

https://mc.manuscriptcentral.com/jamia
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on the size of a model’s derivation cohort. Assuming the two components are equally important, 

we calculate the overall competence as a sum of the two.

Prediction Fusion in Ensemble Model 

Different methods have been proposed in multiple classifier systems [26] to combine individual 

classifiers for achieving more accurate classifications. Depending on whether further training is 

used or not, the combination methods can be categorised as trainable combiners vs non-

trainable combiners. The former (such as AdaBoost [27]) requires labelled data in the 

application domain (i.e., where the ensemble model is going to be used). The latter (such as 

majority vote combiner) can be used in a data-independent manner, i.e. applicable in new 

domains without the need of further training. The motivation of this work is to use the 

ensemble/combined model to inform decision making in care pathways or policy making, where 

labelled data is not available. Therefore, non-trainable combiners were used.

A set of fusion methods were implemented. For competence-independent ones, we 

implemented voting (majority, one positive, and one negative) and scoring (maximum and 

average), which are common fusion strategies used in ensemble learning [26]. When all models 

are assessed against the data of a given patient, the competence values can then be used to 

fuse predictions (probabilities of poor-prognosis) from all models. We implemented trust-the-

most-competent mode: use the prediction of the one with highest competence value; wisdom-of-

the-crowd mode: use the weighted average of all predictions; highest-in-top-competent-ones: 

use the maxim probability in top k competent models (k=3, 5). Supplementary Figure S2 gives 

an illustrative example of the three fusion strategies. Wisdom-of-the-crowd performed the best 

in our experiments and was used in this work.

https://mc.manuscriptcentral.com/jamia
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The original model design is another factor that needs to be considered in the prediction fusion. 

Individual models were designed for predicting different severities: mortality or different 

definitions of severities. We manually defined a severity score for each model (death models: 

1.0; poor prognosis ones: 0.3) and combined those scores in the final fusion formula as follows. 

The formula considers predictions from all individual models and combines them as weighted 

average.

Results

The performances of prediction models were evaluated on three aspects: discrimination (C-

Index), model calibration and a number of parameters defining likely clinical utility. For 

discrimination (Figure 3a) of individual models, we observed that Xie achieved the best result 

(C-index 0.899, 95%CI 0.874-0.926 ) on Wuhan01, Dong performed the best (0.881, 95%CI 

0.841-0.913) on Wuhan02, and Levy was the best on KCH (0.658, 95%CI 0.629-0.685) and 

UHB (0.660, 95%CI 0.617-0.713). None of the seven models examined consistently performed 

the best across all cohorts, whereas the ensemble model consistently had the best 

discrimination in all cases: 0.914(95%CI 0.891-0.937), 0.890(0.856-0.921), 0.665(0.640-0.692) 

and 0.683(0.643-0.723) on Wuhan01, Wuhan02, KCH and UHB respectively. However, the top 

models (Ensemble, Xie, Levy and Dong) all performed much better on Wuhan cohorts 

compared to the UK ones. This difference might be explained by the different admission 

strategies of the two countries, indicating that chosen predictors (Figure 1a.3-8) might be less 

predictive at later stages of clinical presentation and disease progression.  
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For clinical usefulness, we focus on decision-making support for admission strategies (i.e., who 

to admit and to where). It is not appropriate to use a fixed threshold of probability to validate 

model performances as (a) individual models are derived from cohorts with diverse severities 

and on slightly different definitions of poor prognosis; (b) severity in the validation cohorts also 

varies significantly. Instead, for each validation cohort we compute an event-rate (number of 

poor-prognosis/deceased patients divided by total number of patients) and for models we 

compute a prediction rate (predicted events divided by total number of patients). We then 

validate the sensitivity and specificity of a model when its prediction rate is closest to 1.5 times 

of the event rate or a minimal ratio of 0.15, whichever is larger. Figure 3b shows the 

performances of all models on 4 cohorts using cohort-specific prediction rate. We observed the 

ensemble model consistently outperforms individual models across all cohorts on positive 

predictive value (PPV), sensitivity and specificity. We observed prediction rate based cut-offs 

led to quite different performances on the metrics of PPV, sensitivity and specificity. These were 

what we expected. For example, for Wuhan01, the mortality rate is 2.4%, which is close to the 

population level. Therefore, we would expect a good model to have high specificity (ensemble 

model achieved 0.88) to correctly reject less severe patients so that hospital capacity can be 

mostly reserved for likely-to-deteriorate patients (without admitting too many mild patients). On 

the contrary, when the cohort is very severe (e.g. Wuhan02), high sensitivity is preferred 

(ensemble model: 0.96) as we don’t want to discharge those who would likely need intensive 

care.

To quantify how well the ensemble model reclassifies patients, we also calculated the net 

reclassification improvements [28]  by comparing it to the best individual model on each 

validation cohort. Table 3 gives the details, where the ensemble model achieved net 

improvements in all cases with the biggest on Wuhan02 and the smallest on KCH. 

We also evaluated the model calibrations of all models on all four cohorts: Figure 3c shows the 

calibration slope and calibration-in-large, and Figure S3 depicts the calibration plots. For 

individual models, similar to C-index performances, they did not perform consistently well across 

https://mc.manuscriptcentral.com/jamia
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cohorts. For example, Xie had very good calibration on Wuhan01 while it performed poorly on 

UHB. Again, the ensemble model has shown robust performances on all cohorts - calibrations 

were good to very good generally.

Discussion

This work has shown that single models for prediction did not consistently perform well. For 

example, Dong’s C-index on Wuhan02 is the best in individual models but it only achieved the 

4th highest C-index on KCH. Similar situations were observed on other top single models 

including Xie and Levy. The challenge of getting consistent performances in diverse cohorts 

resides in the fact that COVID-19 prognosis will vary depending on variables underlying 

demography (age and comorbidity of the populations) and severities of disease in different 

settings (because of different admission strategies). For models derived from single cohorts, 

their prediction capacities were limited by the characteristics of data samples they have seen. 

Therefore, they are unlikely to achieve a high performance in external cohorts when there are 

many patients with novel characteristics. On the other hand, ensemble learning methods have 

the potential to make the best use of all available models. If these models were learned from 

complementary cohorts, the synergised model will have the potential to achieve better 

performances than any single model by using most competent ones for individual patients.

Comparing results in the UK (patients being admitted with more severe disease) and Chinese 

cohorts (more patients being admitted with mild disease), all models consistently performed 

worse on UK cohorts. Considering the fact that individual models used quite diverse predictors, 

adopted different computational algorithms and were derived from different regions/countries, it 

seems the observed poorer performances are likely associated with the UK’s response to the 

first wave of COVID-19 surge. The UK mainly admitted severe patients aiming to reserve health 

service capacities. Therefore, one possible explanation is that blood parameters and 

physiological measurements are better collected as early as possible to contribute to improved 

predictive utility. 
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One limitation of this work was that we were unable to include prediction models that were 

learned from European cohorts, particularly from the UK. Including more local models would 

probably facilitate the ensemble framework to identify those predictors that are more predictive 

in the European cohorts, which would in turn improve the overall performance in the UK cohorts. 

In our future work, we will create a web platform to allow the community to share models so that 

a wide range of diverse and complementary models can be synergised.

Conclusion

In this study we selected and reimplemented seven prediction models for COVID-19 with 

diverse derivation cohorts and different implementation techniques. A novel ensemble learning 

framework was proposed to synergise them for realising personalised predictions for individual 

patients. Four international COVID-19 cohorts were used in validating both individual and 

ensemble models. Validation results showed that ensemble methods could synergise a robust 

and good-performing model by choosing the most competent model for individual patients.
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Data sharing
Metadata of individual prediction models, their re-implementations, ensemble learning methods 
and all validation scripts are available at https://github.com/Honghan/EnsemblePrediction. 
Details of the validation cohorts are described at https://covid.datahelps.life/.

The Wuhan01 and Wuhan02 datasets used in the study will not be available due to inability to 
fully anonymise in line with ethical requirements. Applications for research access should be 
sent to TS and details will be made available via https://covid.datahelps.life/prediction/.

A subset of the KCH dataset limited to anonymisable information (e.g. only SNOMED codes
and aggregated demographics) is available on request to researchers with suitable training in
information governance and human confidentiality protocols subject to approval by the King's
College Hospital Information Governance committee; applications for research access should 
be sent to kch-tr.cogstackrequests@nhs.net. This dataset cannot be released publicly due to 
the risk of re-identification of such granular individual level data, as determined by the King's 
College Hospital Caldicott Guardian.

A subset of the UHB dataset limited to aggregate anonymised information is available on 
request to researchers with suitable training in information governance and human 
confidentiality protocols, subject to approval and data sharing agreements by the UHB hospitals 
NHS foundation trust. 

Ethics approval and consent to participate

The KCH component of the project operated under London South East Research Ethics 
Committee (reference 18/LO/2048) approval granted to the King’s Electronic Records Research 
Interface (KERRI); specific work on COVID-19 research was reviewed with expert patient input 
on a virtual committee with Caldicott Guardian oversight. The UHB validation was performed as 
part of a service evaluation agreed with approval from trust research leads and the Caldicott 
Guardian. The Wuhan validations were approved by the Research Ethics Committee of 
Shanghai Dongfang Hospital and Taikang Tongji Hospital.
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Tables

Wuhan01 cohort (n=2869) Wuhan02 cohort 
(n=357)

KCH cohort 
(n=1475)

UHB cohort

 (n=693)

 

Not poor 
prog. 
(n=2738)

Poor prog. 
(n=131)

Did not die 
(n=194)

Died 
(n=163)

Not poor 
prog. 
(n=949)

Poor prog. 
(n=526)

Not poor 
prog. 
(n=477)

Poor prog. 
(n=216)

Age 60 (49-68) 70 (63-78) 51 (37-62) 69 (62-77) 69 (54-81) 75 (60-86) 72 (57-82) 70 (56-80)

Sex (male) 1389 (50.7%) 84 (64.1%) 91 (46.9%) 118 (72.4%) 514 (54.2%) 330 (62.7%) 254 (53.2%) 144 (66.7%)

Clinical features - median (IQR)

Red cell 
distribution 
width

12.9 (12.3-
13.5)

13.0 (12.5-
14.0)

12.0 (11.8-
12.7)

12.9 (12.3-
13.9) - -

13.7 (12.7-

15.4)

13.9 (13.2-

15.1)

Albumin 38.3 (35.5-
40.7)

31.6 (28.7-
35.0)

37.5 (34.2-
40.2)

30.1 (27.6-
33.0)

38.0 (35.0-
41.0)

36.0 (33.0-
39.0)

31.0 (26.0-

35.0)

28.0 (22.0-

32.0)

C-reactive 
protein 2.1 (0.8-7.3) 59.9 (14.2-

120.0)
19.5 (3.8-

49.8)
114.1 (61.9-

178.8)
72.5 (28.8-

127.9)
112.2 (56.8-

216.5)
83.0 (42.0-

140.2)

180.0 (102.5-

267.0)

Serum 
blood urea 
nitrogen

4.3 (3.6-5.4) 6.8 (5.0-11.0) - - - - 6.3 (4.5-10.4) 8.1 (5.4-13.1)

Lymphocyte 
count 1.5 (1.1-1.9) 0.7 (0.5-1.1) 1.1 (0.8-1.5) 0.6 (0.4-0.8) 1.0 (0.7-1.4) 0.9 (0.6-1.4) 0.9 (0.7-1.3) 0.9 (0.6-1.2)

Direct 
bilirubin 3.3 (2.5-4.4) 5.4 (3.5-7.2) 3.5 (2.5-4.7) 6.2 (4.4-9.2) - -

10.0 (7.0-

14.0)

11.0 (8.0-

20.0)

Lactate 
dehydrogen
ase

174.6 (150.3-
210.2)

332.2 (244.9-
461.0)

250.0 (202.2-
310.5)

567.0 (427.5-
762.0) - -

316.5 (245.8-

411.0)

436.0 (340.0-

623.0)

Serum 
sodium

141.6 (140.0-
143.2)

139.8 (137.4-
143.4)

139.2 (136.5-
141.2)

138.9 (135.8-
143.6) - -

137.0 (134.0-

140.0)

138.0 (135.0-

143.0)

Neutrophil 
count 3.5 (2.7-4.5) 6.7 (4.8-9.9) - - 5.1 (3.7-7.4) 6.6 (4.5-9.4) 4.7 (3.4-6.7) 6.7 (4.8-9.4)

Oxygen 
saturation

97.8 (97.0-
98.2)

96.6 (94.5-
97.7) - - 19 (18-20) 23 (20-28)

94.0 (93.0-

96.0)

92.0 (88.0-

94.0)

Table 1. The baselines of poor prognosis/death subgroups vs not poor prognosis/survival subgroups of 4 
cohorts. Data are median (IQR) or number (%). Poor prognosis is defined as either ICU stay or death. 
Wuan02 does not have ICU stay data, therefore its analysis only compared death/survival instead.
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 Shi Xie Dong Levy Yan Gong Lu

outcome
Poor 

prognosis
Death

Poor 

prognosis
Death Death

Poor 

prognosis
Death

model type scoring
Logistic 

regression
nomogram NOCOS Decision tree nomogram scoring

Region Zhejiang Wuhan Anhui, Beijing New York Wuhan
Wuhan, 

Guangzhou
Wuhan

Derivation 

cohort size
487 299 208 11,095 375 189 577

Age - median 

[IQR]
46 [27-65] 65 [54-73] 44 [28-60] 65 [54-77] 59 [42-75] 49 [35-63] 55 [39-66]

Follow-up 

period (in 

2020)

Unknown 

to Feb 17

Jan 01 to 

Feb01

Jan 20 to 

Mar 18

Mar 01 to 

May 05

Jan 10 to 

Feb18

Jan 20 to 

Mar 02

Jan 21 to 

Feb 05

Mortality rate - 51.84% - 23.40% 41.33% - 6.76%

Poor 

prognosis 

rate

10.06% - 19.23% - - 14.81% 17.33%

Table 2. Seven prognosis prediction models. For outcomes, poor prognosis is defined as severities 
including length of stay, ICU stay, or categories of treatments. For model type, scoring - models that 
calculate a sum from scores predefined to individual predictor values; logistic regression and decision 
tree - models where these computational models are used; nomogram - models represented as a 2-
dimensional graphical calculating diagram. NOCOS - a customised model.

Wuhan01 
(Ensemble vs Xie)

Wuhan02 
(Ensemble vs Dong)

KCH 
(Ensemble vs Levy)

UHB 
(Ensemble vs Levy)

Event No Event Event No Event Event No Event Event No Event

Higher 13 132 26 10 51 77 15 42

Lower 7 124 16 17 48 74 11 37

Total 432 2,438 127 230 642 833 325 368
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Net 
Reclassificatio
n 
Improvements

1.72% 4.83% 0.83% 2.59%

Table 3. Net reclassification improvements of Ensemble model compared to the best individual model on 
each validation cohort. 

Figure captions

Figure 1 Validation cohorts, prognosis models and ensemble learning. a, four validation cohorts. a.1 - 
cohort size and mortalities; a.2 - follow-ups aligned with wave 1 periods of China and the UK, red colours 
indicating high new daily cases; a.3 - age distributions; a.4-7 - distributions of bloods and vitals. b, 
timeline of follow-up periods of derivation cohorts of all individual prediction models. c, Illustrative diagram 
of ensemble learning by combining three linear models for binary classification.

Figure 2 Architecture of the proposed ensemble learning framework. At the centre is the ensemble 
method taking seven individual models as input (top left) and synergising them based on their 
competence on target cohorts. Four international COVID-19 cohorts (top right) were included in this study 
for evaluation of ensemble learning (bottom).

Figure 3 Validation results of discrimination, clinical usefulness and calibration. a, discrimination 
performances: median (95%CI). b, positive predictive value (PPV), sensitivity and specificity of all models 
validated on cohort-specific prediction rate. Models that could not achieve expected prediction rates were 
excluded. c, calibration results on four validation cohorts: median (95%CI) where empty cells are for 
those models which were not validated because they were derived from the same hospital data.
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Wuhan01 and Wuhan02 are two cohorts from 

Wuhan, China. KCH is King’s College Hospital, 

London, U.K. UHB is University Hospital 

Birmingham, Birmingham, U.K. 

2. Timeline of cohort follow-ups and UK/China Wave 1 periods 

   
< 1.5 109/L: viral infections 

 
>280 U/L: organ/tissue damage 
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< 95%: lung problem 
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a 

 

Wuhan01  

 

Wuhan02*  

 

KCH  

 

UHB 

* Yan/Shi were not evaluated on Wuhan02 as they were derived from the same hospital data 

 

b 

 
Performance at prediction rate: 0.15 

 
Performance at prediction rate: 0.69 
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0

0.1
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Performance at prediction rate: 0.54 

 
Performance at prediction rate: 0.47 

 
c 

Calibration results on four validation cohorts 

 Levy Xie Yan Lu Gong Dong Shi Ensemble model 

Wuhan01 (Poor prognosis) 

slope 0.952  

(0.952-0.952) 

1.124  

(1.124-1.000) 

0.482  

(0.482-0.482) 

0.807  

(0.807-0.807) 

0.000 

(0.000-0.000) 

0.405  

(0.405-0.405) 

0.235  

(0.235-0.235) 

1.462  

(1.462-1.000) 

calibration-in-large 0.127  

(0.127-0.127) 

-0.050  

(0.000--0.050) 

-0.026  

(0.000--0.026) 

0.002  

(0.002-0.002) 

0.046  

(0.046-0.046) 

-0.047  

(0.000--0.047) 

-0.015  

(0.000--0.015) 

-0.022  

(0.000--0.022) 
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