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Abstract 
 

Objectives: 

To present the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) 

conceptual approach to the assessment of certainty of evidence from modelling studies (i.e. 

certainty associated with model outputs).  

Study Design and Setting: 

Expert consultations and, an international multi-disciplinary workshop informed development of a 

conceptual approach to assessing the certainty of evidence from models within the context of 

systematic reviews, health technology assessments, and health care decisions.  The discussions 

also clarified selected concepts and terminology used in the GRADE approach and by the 

modelling community. Feedback from experts in a broad range of modelling and health care 

disciplines addressed the content validity of the approach.  

Results: 

Workshop participants agreed, that the domains determining the certainty of evidence previously 

identified in the GRADE approach (risk of bias, indirectness, inconsistency, imprecision, reporting 

bias, magnitude of an effect, dose-response relation, and the direction of residual confounding) 

also apply when of assessing the certainty of evidence from models. The assessment depends on 

the nature of model inputs and the model itself and on whether one is evaluating evidence from a 

single model or multiple models. We propose a framework for selecting the best available 

evidence from models: 1) developing de novo a model specific to the situation of interest, 2) 

identifying an existing model the outputs of which provide the highest certainty evidence for the 

situation of interest, either “off the shelf” or after adaptation, and 3) using outputs from multiple 

models. We also present a summary of preferred terminology to facilitate communication among 

modelling and health care disciplines.   

Conclusions: 

This conceptual GRADE approach provides a framework for using evidence from models in health 

decision making and the assessment of certainty of evidence from a model or models. The GRADE 

Working Group and the modelling community are currently developing the detailed methods and 

related guidance for assessing specific domains determining the certainty of evidence from 

models across health care-related disciplines (e.g. therapeutic decision-making, toxicology, 

environmental health, health economics). 
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Introduction 
 

When direct evidence to inform health decisions is not available or not feasible to measure (e.g. 

long-term effects of interventions or when studies in certain populations are perceived as 

unethical), modelling studies may be used to predict that “evidence” and inform decision-

making.[1, 2] Health decision makers arguably face many more questions than can be reasonably 

answered with studies that directly measure the outcomes. Modelling studies, therefore, are 

increasingly used to predict disease dynamics and burden, the likelihood that an exposure 

represents a health hazard, the impact of interventions on health benefits and harms, or the 

economic efficiency of health interventions, among others [1]. Irrespective of the modelling 

discipline, decision makers need to know the best estimates of the modelled outcomes and how 

much confidence they may have in each estimate.[3] Knowing to what extent one can trust the 

outputs of a model is necessary when using them to support health decisions [4].  

 

Although a number of guidance documents on how to assess the trustworthiness of estimates 

obtained from models in several health fields have been previously published [5-16], they are 

limited by failing to distinguish methodological rigor from completeness of reporting, and by 

failing to clear distinguish among various components affecting the trustworthiness of model 

outputs. In particular they lack clarity regarding sources of  uncertainty that may arise from model 

inputs and from the uncertainty about a model itself. Modellers and those using results from 

models should assess the credibility of both.[4]  

 

Authors have attempted to develop tools to assess model credibility, but many addressed only 

selected aspects, such as statistical reproducibility of data, the quality of reporting[17], or a 

combination of reporting with aspects of good modelling practices[7, 18-21]. Many tools also do 

not provide sufficiently detailed guidance on how to apply individual domains or criteria. There is 

therefore a need for further development and validation of such tools in specific disciplines. 

Sufficiently detailed guidance for making and reporting these assessments is also necessary.  

 

Models predict outcomes based on model inputs – previous observations, knowledge and 

assumptions about the situation being modelled. Thus, when developing new models or assessing 

whether an existing model has been optimally developed, one should specify a priori the most 

appropriate and relevant data sources to inform different parameters required for the model. 

These may be either (seldom) a single study that provides the most direct information for the 

situation being modelled or (more commonly) a systematic review of multiple studies that identify 

all relevant sources of data. The risk of bias, directness and consistency of input data, precision of 

these estimates, and other domains specified in the Grading of Recommendations Assessment, 
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Development, and Evaluation (GRADE) approach determine the certainty of each of the model 

inputs.[22-28] 

 

When assessing the evidence generated, various disciplines in health care and related areas that 

use modelling face similar challenges may benefit from shared solutions. Table 1  presents 

examples of selected models used in health-related disciplines in Table 1. Building on the existing 

GRADE approach, werefined and expand guidance regarding assessment of the certainty of model 

outputs. We formed a GRADE project group comprised of individuals with expertise in developing 

models and using model results in health-related disciplines, to create a unified framework for 

assessing the certainty of model outputs in the context of systematic reviews [29], health 

technology assessments, health care guidelines, and other health decision-making. In this article, 

we outline the proposed conceptual approach and clarify key terminology (Table 2). The target 

audience for this article includes researchers who develop models and those who use models to 

inform health care-related decisions. 

 

What we mean by a model 

 

Authors have used the term model to describe a variety of different concepts [2] and suggested 

several broader or narrower definitions [6, 30], so even modellers in the relatively narrow context 

of health sciences can differ in their views regarding what constitutes a model. Models vary in 

their structure and degree of complexity. A very simple model might be an equation estimating a 

variable not directly measured, such as the absolute effect of an intervention estimated as the 

product of the intervention’s relative effect and the assumed baseline risk in a defined population 

(risk difference equals relative risk reduction multiplied by an assumed baseline risk). On the other 

end of the spectrum, elaborate mathematical models, such as system dynamics models (e.g. 

infectious disease transmission) may contain dozens of sophisticated equations that require 

considerable computing power to solve. 

 

By their nature, such models only resemble the phenomena being modelled – i.e. specific parts of 

the world that are interesting in the context of a particular decision – with necessary 

approximations and simplifications, and to the extent that one actually knows and understands 

the underlying mechanisms.[1] Given the complexity of the world, decision-makers often rely on 

some sort of a model to answer health-related questions.  

 

In this article, we focus on quantitative mathematical models defined as “mathematical 

framework representing variables and their interrelationships to describe observed phenomena or 

predict future events”[30] used in health-related disciplines for decision-making (Table 1). These 

may be models of systems representing causal mechanisms (aka mechanistic models), models 
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predicting outcomes from input data (aka empirical models), and models combining mechanistic 

with empirical approaches (aka hybrid models). We do not consider here statistical models used to 

estimate the associations between measured variables (e.g. proportional hazards models or 

models used for meta-analysis). 

 

The GRADE approach 

 

The GRADE working group was established in the year 2000 and continues as a community of 

people striving to create systematic, and transparent frameworks for assessing and 

communicating the certainty of the available evidence used in making decisions in healthcare and 

health-related disciplines.[31] The GRADE Working Group now includes over 600 active members 

from 40 countries and serves as a think tank for advancing evidence-based decision-making in 

multiple health-related disciplines (www.gradeworkinggroup.org). GRADE is widely used 

internationally by over 110 organizations to address topics related to clinical medicine, public 

health, coverage decisions, health policy, and environmental health.  

 

The GRADE framework uses concepts familiar to health scientists, grouping specific items to 

evaluate the certainty of evidence in conceptually coherent domains. Specific approaches to the 

concepts may differ depending on the nature of the body of evidence (Table 2). GRADE domains 

include concepts such as risk of bias[28], directness of information [24], precision of an 

estimate[23], consistency of estimates across studies[25], risk of bias related to selective 

reporting[26], strength of the association, presence of a dose-response gradient, and the presence 

of plausible residual confounding that can increase confidence in estimated effects[27].  

 

The general GRADE approach is applicable irrespective of health discipline. It has been applied to 

rating the certainty of evidence for management interventions, health care related tests and 

strategies [32, 33], prognostic information[34], evidence from animal studies[35], use of resources 

and cost-effectiveness evaluations[36], and values and preferences[37, 38].  Although the GRADE 

Working Group has begun to address certainty of modelled evidence in the context of test-

treatment strategies[39], health care resource use and costs[36], and environmental health[40], 

more detailed guidance is needed for complex models such as those used in infectious diseases, 

health economics, public health, and decision analysis.  

 

Methods 
 

On May 15 and 16, 2017, health scientists participated in a GRADE modelling project group 

workshop in Hamilton, Ontario, Canada, to initiate a collaboration in developing common 
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principles for the application of the GRADE assessment of certainty of evidence to modelled 

outputs. The National Toxicology Program of the Department of Health and Human Services in the 

USA and the MacGRADE Center in the Department of Health Research Methods, Evidence, and 

Impact at McMaster University sponsored the workshop which was co-organized by MacGRADE 

Center and ICF International.  

 

Workshop participants were selected to ensure a broad representation of all modelling related 

fields (Appendix). Participants had expertise in modelling in the context of clinical practice 

guidelines, public health, environmental health, dose-response modelling, physiologically based 

pharmacokinetic (PBPK) modelling, environmental chemistry, physical/chemical property 

prediction, evidence integration, infectious disease, computational toxicology, exposure 

modelling, prognostic modelling, diagnostic modelling, cost effectiveness modelling, biostatistics, 

and health ethics. 

 

Leading up to the workshop, we held three webinars to introduce participants to the GRADE 

approach. Several workshop participants (VM, KT, JB, AR, JW, JLB, HJS) collected and summarized 

findings from literature and the survey of experts as background material that provided a starting 

point for discussion. The materials included collected terminology representing common concepts 

across multiple disciplines that relate to evaluating modelled evidence, and a draft framework for 

evaluating modelled evidence. Participants addressed specific tasks in small groups and large 

group discussion sessions and agreed on key principles both during the workshop and through 

written documents.  

 

Results 
 

Terminology 

 

Workshop participants agreed on the importance of clarifying terminology to facilitate 

communication among modellers, researchers, and users of model outputs from different 

disciplines. Modelling approaches evolved somewhat independently, resulting in different terms 

being used to describe the same or very similar concepts or the same term being used to describe 

different concepts. For instance, the concept of extrapolating from the available data to the 

context of interest has been referred to as directness, applicability, generalizability, relevance, or 

external validity. The lack of standardized terminology leads to confusion and hinders effective 

communication and collaboration among modellers and users of models. 
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Overcoming these obstacles would require clarifying the definitions of concepts and agreeing on 

terminology across disciplines. Realizing that this involves changing established customary use of 

terms in several disciplines, workshop participants suggested accepting the use of alternative 

terminology while always being clear about the preferred terms to be used and the underlying 

concept to which it refers (Table 2). Experts attending a World Health Organization's consultation 

have very recently suggested a more extensive set of terms [41]. To facilitate future 

communication, participants of this workshop will further collaborate to build a comprehensive 

glossary of terminology related to modelling. 

 

Outline of an approach to using model outputs for decision making 

 

Workshop participants suggested an approach to incorporate model outputs in health-related 

decision making (Figure 1). In this article we describe only the general outline of the suggested 

approach – in subsequent articles we will discuss the details of the approach and provide more 

specific guidance on its application to different disciplines and contexts.  

 

Researchers should start by conceptualizing the problem and the ideal target model that would 

best represent the actual phenomenon or decision problem they are considering [13]. This 

conceptualization would either guide the development of a new model or serve as a reference 

against which existing models could be compared. The ideal target model should reflect: 1) the 

relevant population (e.g., patients receiving some diagnostic procedure or exposed to some 

hazardous substance), 2) the exposures or health interventions being considered, 3) the outcomes 

of interest in that context, and 4) their relationships. [42]. Conceptualizing the model will also 

reduce the risk of intentional or unintentional development of data-driven models, in which inputs 

and structure would be determined only by what is feasible to develop given the available data at 

hand.   

 

Participants identified 3 options in which users may incorporate model outputs in health decision-

making (Figure 1): 

1. Develop a model de novo designed specifically to answer the very question at hand. 

Workshop participants agreed that in an ideal situation such an approach would almost always 

be the most appropriate. Following this approach, however, requires suitable skills, ample 

resources, and time being available. It also requires enough knowledge about the 

phenomenon being modelled to be able to tell whether or not the new model would have any 

advantage over already existing models. 

2. Search for an existing model describing the same or a very similar problem and use it “off-

the-shelf” or adapt it appropriately in order to answer the current question. In practice many 

researchers initially use this approach because of the above limitations of developing a new 
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model. However, it is often not possible to find an existing model that would be directly 

relevant to the problem at hand and/or it is not feasible to adapt an existing model when 

found. Any adaptation of a model requires availability of input data relevant for current 

problem, appropriate expertise and resources, and access to the original model. The latter is 

often not available (e.g. proprietary model or no longer maintained) or the structure of the 

original model is not being transparent enough to allow adaptation (“black-box”).  

3. Use the results from multiple existing models found in the literature [43]. This approach may 

be useful when a limited knowledge about the phenomenon being modelled makes it 

impossible to decide which of the available models is more relevant, or when many alternative 

models are relevant but use different input parameters. In such situations, one may be 

compelled to rely on the results of several models, because selection of the single, seemingly 

“best” model may provide incorrect estimates of outputs and lead to incorrect decisions. 

Identifying existing models that are similar to the ideal target model often requires performing a 

scoping of the literature or a complete systematic review of potentially relevant models – a 

structured process following a standardized set of methods with a goal to identify and assess all 

available models that are accessible, transparently reported, and fulfil the pre-specified eligibility 

criteria based on the conceptual ideal target model. Some prefer the term systematic survey that 

differs from a systematic review in the initial intention to use the results: in systematic reviews the 

initial intention is to combine the results across studies either statistically through a meta-analysis 

or narratively summarizing their results when appropriate, whereas in a systematic survey the 

initial intention is to examine the various ways that an intervention or exposure has been 

modelled, to review the input evidence that has been used, and ultimately to identity a single 

model that fits the conceptual ideal target model the best or requires the least adaptation; only 

when one cannot identify a single such model will it be necessary to use the results of multiple 

existing models. 

 

If a systematic search revealed one or more models meeting the eligibility criteria, then 

researchers would assess the certainty of outputs from each model. Depending on this 

assessment, researchers may be able to use the results of a single most direct and lowest risk of 

bias model “off-the-shelf” or proceed to adapt that model. If researchers failed to find an existing 

model that would be sufficiently direct and low risk of bias, then they would ideally develop their 

own model de novo.  

  

Assessing the certainty of outputs from a single model 

 

When researchers develop their own model or when they identify a single model that is 

considered sufficiently direct to the problem at hand, they should assess the certainty of its 
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outputs (i.e. evidence generated from that model). Note, that if a model estimates multiple 

outputs, researchers needs to assess the certainty of each output separately [23-28]. Workshop 

participants agreed that all GRADE domains are applicable to assess the certainty of model 

outputs, but further work is needed to identify examples and develop specific criteria to be 

assessed, which may differ depending on the model being used and/or situation being modelled. 

 

Risk of bias in a single model 

 

The risk of bias of model outputs (i.e. model outputs being systematically overestimated or 

underestimated) is determined by the credibility of a model itself and the certainty of evidence for 

each of model inputs. 

 

The credibility of a model, also referred to as the quality of a model (Table 2) is influenced by its 

conceptualization, structure, calibration, validation, and other factors. Determinants of model 

credibility are likely to be specific to a modelling discipline (e.g., health economic models have 

different determinants of their credibility than PBPK models). There are some discipline-specific 

guidelines or checklists developed for the assessment of credibility of a model and other factors 

affecting the certainty of model outputs such as the framework to assess adherence to good 

practice guidelines in decision-analytic modelling [18], the questionnaire to assess relevance and 

credibility of modelling studies [18, 44, 45], good research practices for modelling in health 

technology assessment [5, 6, 8, 9, 12-14], the approaches to assessing uncertainty in read-across 

[46], and the quantitative structure-activity relationships [47] in predictive toxicology. Workshop 

participants agreed that there is a need for comprehensive tools developed specifically to assess 

credibility of various types of models in different modelling disciplines. 

 

The certainty of evidence in each of the model inputs is another critical determinant of the risk of 

bias in a model. A model has several types of input data – bodies of evidence used to populate a 

model (Table 2). When researchers develop their model de novo, in order to minimize the risk of 

bias they need to specify those input parameters to which the model outputs are the most 

sensitive. For instance, in economic models these key parameters may include health effects, 

resource use, utility values, and baseline risks of outcomes. Model inputs should reflect the entire 

body of relevant evidence satisfying clear pre-specified criteria rather than an arbitrarily selected 

evidence that is based on convenience (“any available evidence”) or picked in any other non-

systematic way (e.g., “first evidence found” – single studies that researchers happen to know 

about or are the first hits in a database search).  

 

The appropriate approach will depend on the type of data and may require performing a 

systematic review of evidence on each important or crucial input variable [48-50]. Some inputs 
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may have a very narrow inclusion criteria and therefore evidence from single epidemiological 

survey or population surveillance may provide all relevant data for the population of interest (e.g. 

baseline population incidence or prevalence).  

 

The certainty of evidence for each input needs to be assessed following the established GRADE 

approach specific to that type of evidence (e.g. estimates of intervention effects or baseline risk of 

outcomes)[22, 32, 34, 37]. Following the logic of the GRADE approach that the overall certainty of 

evidence cannot be higher than the lowest certainty for any body of evidence that is critical for a 

decision [51], the overall rating of certainty of evidence across  model inputs should be limited by 

the lowest certainty rating for any body of evidence (in this case input data) to which the model 

output(s) was proved sensitive. 

  

Application of this approach requires a priori consideration of likely critical and/or important 

inputs when specifying the conceptual ideal target model and the examination of the results of 

back-end sensitivity analyses. It further requires deciding how to judge whether results are or are 

not sensitive to alternative input parameters.  Authors have described several methods to identify 

the most influential parameters including global sensitivity analysis to obtain “parameter 

importance measures” (i.e. information based measures) [52];  or alternatively by varying one 

parameter at a time and assessing their influence in “base case” outputs [52] For example, in a 

model-based economic evaluation one might  be looking for the influence of sensitivity analysis on 

cost-effectiveness ratios at a specified willingness-to-pay threshold. 

 

Indirectness in a single model 

By directness or relevance, we mean the extent to which model outputs directly represent the 
phenomenon being modelled. To evaluate the relevance of a model, one needs to compare it 
against the conceptual ideal target model. When there are concerns about the directness of the 
model or there is limited understanding of the system being modelled making it difficult to assess 
directness, then one may have lower confidence in model outputs.  
 
Determining the directness of model outputs includes assessing to what extent the modelled 
population, the assumed interventions and comparators, the time horizon, the analytic 
perspective, as well as the outcomes being modelled reflect those that are current interest. For 
instance, if the question is about the risk of birth defects in children of mothers chronically 
exposed to a certain substance, there may be concerns about the directness of the evidence if the 
model assumed short-term exposure, the route of exposure was different, or the effects of 
exposure to a similar but not the same substance were measured. 
 
Assessing indirectness in a single model also requires evaluating two separate sources of 
indirectness:  

1. indirectness of input data with respect to the ideal target model´s inputs. 
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2. indirectness of model outputs with respect to the decision problem at hand. 
 
This conceptual distinction is important because, although they are interrelated, one needs to 
address each type of indirectness separately.  Even if the outputs might be direct to the problem 
of interest, the final assessment should consider if the inputs used were also direct for the target 
model. 
 

Using an existing model has potential limitations: its inputs might have been direct for the decision 

problem addressed by its developers but are not direct with respect to the problem currently at 

hand. In this context, sensitivity analysis can help to assess to what extent model outputs are 

robust to the changes in input data or assumptions used in model development.  

 

Inconsistency in a single model 

 

A single model may yield inconsistent outputs owing to unexplained variability in the results of 

individual studies informing the pooled estimates of input variables. For instance, when 

developing a health economic model, a systematic review may yield several credible, but 

discrepant, utility estimates in the population of interest. If there is no plausible explanation for 

that difference in utility estimates, outputs of a model based on those inputs may also be 

qualitatively inconsistent. Again, sensitivity analysis may help to make a judgment to what extent 

such inconsistency of model inputs would translate into a meaningful inconsistency in model 

outputs with respect to the decision problem at hand.  

 

Imprecision in a single model 

 

Sensitivity  analysis characterizes the response of model outputs to parameter variation, and helps 

to determine the robustness of model´s qualitative conclusions [52, 53]. The overall certainty of 

model outputs may also be lower when the outputs are estimated imprecisely. For quantitative 

outputs one should examine not only the point estimate (e.g., average predicted event) but also 

the variability of that estimate (e.g., results of the probabilistic sensitivity analysis based in the 

distribution of the input parameters). It is essential that a report from a modelling study always 

includes information about output variability. Further guidance on how to assess imprecision in 

model outputs will need to take into account if the conclusions change according to that specific 

parameter. In some disciplines, for instance in environmental health, model inputs are frequently 

qualitative. Users of such models may assess “adequacy” of the data, i.e. the degree of “richness” 

and quantity of data supporting particular outputs of a model. 
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Risk of publication bias in the context of a single model 

 

The risk of publication bias, also known as “reporting bias”, “non-reporting bias”, or “bias owing to 

missing results”, as it is currently called in the Cochrane Handbook [54], is the likelihood that 

relevant models have been constructed but were not published or otherwise made publicly 

available. Risk of publication bias may not be relevant when assessing the certainty of outputs of a 

single model constructed de novo. However, when one intends to reuse an existing model but is 

aware or strongly suspects that similar models had been developed but are not available, then 

one may be inclined to think that their outputs might have systematically differed from the model 

that is available. In such a case, one may have lower confidence in the outputs of the identified 

model if there is no reasonable explanation for the inability to obtain those other models.  

 

Domains that increase the certainty of outputs from a single model 

 

The GRADE approach to rating the certainty of evidence recognized three situations when the 

certainty of evidence can increase: large magnitude of an estimated effect, presence of a dose-

response gradient in an estimated effect, and an opposite direction of plausible residual 

confounding.[27] Workshop participants agreed that presence of a dose-response gradient in 

model outputs may be applicable in some modelling disciplines (e.g., environmental health). 

Similarly, whether or not a large magnitude of an effect in model outputs increases the certainty 

of the evidence may depend on the modelling discipline. The effect of an opposite direction of  

plausible residual confounding seems theoretically also applicable in assessing the certainty of 

model outputs (i.e. a conservative model not incorporating input data parameter in favour of an 

intervention but still finding favorable outputs) but an actual example of this phenomenon in 

modelling studies is still under discussion.  

 

Assessing the certainty of outputs across multiple models 

 

Not infrequently, particularly in disciplines relying on mechanistic models, the current knowledge 

about the real system being modelled is very limited precluding the ability to determine which of 

the available existing models generates higher certainty outputs. Therefore, it may be necessary 

to rely on the results across multiple models. Other examples include using multiple models when 

no model was developed for the population directly of interest (e.g. the European Breast Cancer 

Guideline for Screening and Diagnosis relied on a systematic review of modelling studies that 

compared different mammography screening intervals [55]) or when multiple models of the same 

situation exist but vary in structure, complexity, and parameter choices (e.g. HIV Modelling 

Consortium compared several different mathematical models simulating the same antiretroviral 
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therapy program and found that all models predicted that the program has the potential to 

reduce new HIV infections in the population [56]).   

 

When researchers choose or are compelled to include outputs from several existing models, they 

should assess the certainty of outputs across all included models. This assessment may be more 

complex than for single models and single bodies of evidence. The feasibility of GRADE’s guidance 

to judge the certainty of evidence lies in the availability of accepted methods for assessing most 

bodies of evidence from experimental to observational studies. However, the methods for 

systematic reviews of modelling studies are less well-established, some stages of the process are 

more complex, the number of highly skilled individuals with experience in such systematic reviews 

is far lower, and there is larger variability in the results [57]. Additionally, researchers must be 

careful to avoid “double counting” the same model as if it were multiple models. For instance, the 

same model (i.e. same structure and assumptions) may have been used in several modelling 

studies, in which investigators relied on different inputs. When facing this scenario, researchers 

may need to decide which of the inputs are the most direct to their particular question and 

include in only this model in the review.   

 

Risk of bias across multiple models 

 

The assessment of risk of bias across models involves an assessment of the risk of bias in each 

individual model (see above discussion of risk of bias in single model) and subsequently making a 

judgement about the overall risk of bias across all included models. Specific methods for 

operationalizing this integration remain to be developed. 

 

Indirectness across multiple models 

 

As for the risk of bias, researchers need to assess indirectness of outputs initially for each of 

included models and then integrate the judgements across models. Likewise, specific methods for 

operationalizing this integration still remain to be developed. During this assessment researchers 

may find some models too indirect to be informative for their current question and decide to 

exclude them from further consideration. However, the criteria to determine which models are 

too indirect should be developed a priori, before the search for the models is performed and their 

results are known. 

 

Imprecision across multiple models 

 

The overall certainty of model outputs may also be lower when model outputs are not estimated 

precisely. If researchers attempt a quantitative synthesis of outputs across models, they will 
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report the range of estimates and variability of that estimates. When researchers choose to 

perform only a qualitative summary of the results across models, it is desirable that they report 

some estimate of variability in the outputs of individual models and an assessment of how severe 

the variability is (e.g. range of estimated effects). 

 

Inconsistency of outputs across multiple models 

 

The assessment of inconsistency should focus on unexplained differences across model outputs 

for a given outcome. If multiple existing models addressing the same issue produce considerably 

different outputs or reach contrasting conclusions, then careful comparison of the models may 

lead to a deeper understanding of the factors that drive outputs and conclusions. Ideally, the 

different modelling groups that developed relevant models would come together to explore the 

importance of differences in the type and structure of their models, and of the data used as model 

inputs.  

 

Invariably there will be some differences among the estimates from different models. Researchers 

will need to assess whether or not these differences are important, i.e. whether they would lead 

to different conclusions. If the differences are important but can be explained by model structure, 

model inputs, the certainty of the evidence of the input parameters or other relevant reasons, one 

may present the evidence separately for the relevant subgroups. If differences are important, but 

cannot be clearly explained, the certainty of model outputs may be lower.  

 

Risk of publication bias across multiple models 

 

The assessment is similar to that of the risk of publication bias in the context of a single model. 

 

Domains that increase the certainty of outputs across multiple models 

 

All considerations are the same to those in the context of a single model. 

 

Discussion 
 

The goal of the GRADE project group on modelling is to provide concepts and operationalization of 

how to rate the certainty of evidence in model outputs. This article provides an overview of the 

conclusions of the project group. This work is important because there is a growing need and 

availability of modelled information resulting from a steadily increasing knowledge of the 

complexity of the structure and interactions in our environment, and computational power to 
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construct and run models. Users of evidence obtained from modelling studies need to know how 

much trust they may have in model outputs. There is a need to improve the methods of 

constructing models and to develop methods for assessing the certainty in model outputs. In this 

article we have attempted to clarify the most important concepts related to developing and using 

model outputs to inform health-related decision-making. Our preliminary work identified 

confusion about terminology, lack of clarity of what is a model, and need for methods to assess 

certainty in model outputs as priorities to be addressed in order to improve the use of evidence 

from modelling studies.  

 

In some situations, decision-makers might be better off developing a new model specifically 

designed to answer their current question. However, we suggest that it is not always feasible to 

develop a new model or that developing a new model might not be any better than using already 

existing models, when the knowledge of the real life system to be modelled is limited precluding 

the ability to choose one model that would be better than any other. Thus, sometimes it may be 

necessary or more appropriate to use one or multiple existing models depending on their 

availability, credibility, and relevance to the decision-making context. The assessment of the 

certainty of model outputs will be conceptually similar when a new model is constructed, or one 

existing model is used. The main difference between the latter two approaches is the availability 

of information to perform a detailed assessment. That is, information for one’s own model may be 

easily accessible, but information required to assess someone else’s model will often be more 

difficult to obtain. Assessment of the certainty evidence across models can build on existing 

GRADE domains but requires different operationalization.  

 

Because it builds on an existing, widely used framework that includes a systematic and 

transparent evaluation process, modelling disciplines’ adoption of the GRADE approach and 

further development of methods to assess the certainty of model outputs may be beneficial for 

health decision making. Systematic approaches improve rigor of research, reducing the risk of 

error and its potential consequences; transparency of the approach increases its trustworthiness. 

There may be additional benefits related to other aspects of the broader GRADE approach, for 

instance a potential to reduce unnecessary complexity and workload in modelling by careful 

consideration of the most direct evidence as model inputs. This may allow, for instance, 

optimization of the use of different streams of evidence as model inputs. Frequently, authors 

introduce unnecessary complexity by considering multiple measures of the same outcome when 

focus could be on the most direct outcome measure.  

 

The GRADE working group will continue developing methods and guidance for using model 

outputs in health-related decision-making. In subsequent articles we will provide more detailed 

guidance about choosing the “best” model when multiple models are found, using multiple 
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models, integrating the certainty of evidence from various bodies of evidence with credibility of 

the model and arriving at the overall certainty in model outputs, how to assess the credibility of 

various types of models themselves, and further clarification of terminology. In the future we aim 

to develop and publish the detailed guidance for assessing certainty of evidence from models, the 

specific guidance for the use of modelling across health care-related disciplines (e.g. toxicology, 

environmental health or health economics), validation of the approach, and accompanying 

training materials and examples. 
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Table 1. Examples of modelling methods in health-related disciplines (not comprehensive)* 

 

Decision analysis 
models 

Structured model representing health care pathways examining effects of an 
intervention on outcomes of interest. 

Types 
 Decision tree models 
 State transition models  

o Markov cohort simulation 
o Individual based microsimulation (first-order Monte Carlo)  

 Discrete event simulation 
 Dynamic transmission models 
 Agent based models 

Examples 
 Estimation of long-term benefits and harms outcomes from complex 

intervention, e.g. minimum unit pricing of alcohol 
 Estimation of benefits and harms of population mammography screening based 

in microsimulation model, e.g. Wisconsin model from CISNET collaboration[58] 

 Susceptible-Infectious-Recovery transmission dynamic model to assess 

effectiveness of lockdown during the SARS-CoV-2 pandemic[59] 

 

Pharmacology and 
toxicology models 
 

Computational models developed to organize, analyse, simulate, visualize or 
predict toxicological and ecotoxicological effects of chemicals. In some cases, these 
models are used to estimate the toxicity of a substance even before it has been 
synthesized. 

Types 
 Structural alerts and rule-based models  
 Read-Across 
 Dose response and Time response 
 Toxicokinetic (TK) and toxicodynamic(TD)  
 Uncertainty factors 
 Quantitative structure activity relationship (QSAR) 
 Biomarker-based toxicity models 

Examples 

 Structural alerts for mutagenicity and skin sensitisation 

 Read-across for complex endpoints such as chronic toxicity 

 Pharmacokinetic (PK) models to calculate concentrations of substances in 
organs, following a variety of exposures QSAR models for carcinogenicity 

 TGx-DDI biomarker to detect DNA damage-inducing agents 

Environmental 
models 
 

The EPA defined these models as: ‘A simplification of reality that is constructed to 
gain insights into select attributes of a physical, biological, economic, or social 
system.’ It involves the application of multidisciplinary knowledge to explain, 
explore and predict the Earth´s response to environmental change, and the 
interactions between human activities and natural processes. 
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Classification (based on the CREM guidance document): 

 Human activity models 

 Natural systems process 

 Emission models 

 Fate and transport models 

 Exposure models 

 Human health effects models 

 Ecological effects models 

 Economic impact models 

 Noneconomic impact models 

Examples 

 Land use regression models 

 IH SkinPerm [60] 

 ConsExpo [61] 

 other exposure models [62] 

Other  HopScore: An Electronic Outcomes-Based Emergency Triage System [63] 

 Computational general equilibrium (CGE) models [64] 

*Although not described in this classification simple calculations incorporating two or more pieces of evidence as 

for example the multiplication of a RR by the baseline risk to obtain the absolute risk difference of an intervention 
is a model, although pragmatic, with their respective assumptions. 

 

 

Table 2. Selected commonly used and potentially confusing terms used in the context of modelling 

and the GRADE approach  

 

Term General definition 

Sources of evidence 

(may come from in vitro or in vivo experiment or a mathematical model) 

Streams of evidence Parallel information about the same outcome that may have been obtained using 

different methods of estimating that outcome. For instance, evidence of the 

increased risk for developing lung cancer in humans after an exposure to certain 

chemical compound may come from several streams of evidence: 1) mechanistic 

evidence – models of physiological mechanisms, 2) studies in animals – observations 

and experiments in animals from different phyla, classes, orders, families, genera, 

and species (e.g., bacteria, nematodes, insects, fish, mice, rats), and 3) studies in 

humans.  

Bodies of evidence Information about multiple different aspects around a decision about the best 

course of action. For instance, in order to decide whether or not a given diagnostic 

test should be used in some people, one needs to integrate the bodies of evidence 

about: the accuracy of the test, the prevalence of the conditions being suspected, 

the natural history of these conditions, the effects of potential treatments, values 

and preferences of affected individuals, cost, feasibility, etc. 

Quality  
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(may refer to many concepts, thus alternative terms are preferred to reduce confusion) 

Certainty of model 

outputs 

 

Alternative terms: 

▪ certainty of modelled 

evidence 

▪ quality of evidence 

▪ quality of model 

output  

▪ strength of evidence 

▪ confidence in model 

outputs 

In the context of health decision-making, the certainty of evidence (term preferred 

over “quality” in order to avoid confusion with the risk of bias in an individual study) 

reflects the extent to which one’s confidence in an estimate of an effect is adequate 

to make a decision or a recommendation. Decisions are influenced not only by the 

best estimates of the expected desirable and undesirable consequences but also by 

one’s confidence in these estimates. In the context of evidence syntheses of 

separate bodies of evidence (e.g., systematic reviews), the certainty of evidence 

reflects the extent of confidence that an estimate of effect is correct. For instance, 

the attributable national risk of cardiovascular mortality resulting from exposure to 

air pollution measured in selected cities. 

The GRADE Working Group published several articles explaining the concept in 

detail.[22-28, 65] Note that the phrase “confidence in an estimate of an effect” does 

not refer to statistical confidence intervals. Certainty of evidence is always assessed 

for the whole body of evidence rather than on a single study level (single studies are 

assessed for risk of bias and indirectness). 

Certainty of model 

inputs 

 

Alternative term: 

▪ quality of model 

inputs 

Characteristics of data that are used to develop, train, or run the model, e.g., source 

of input values, their manipulation prior to input into a model, quality control, risk of 

bias in data, etc. 

Credibility of a model 

 

Alternative terms: 

▪ quality of a model 

▪ risk of bias in a 

model 

▪ validity of a model 

To avoid confusion and keep with terminology used by modelling community[7] we 

suggest using the term credibility rather than quality of a model. The concept refers 

to the characteristics of a model itself – its design or execution – that affect 

the risk that the results may overestimate or underestimate the true effect. Various 

factors influence the overall credibility of a model, such as its structure, the analysis 

and the validation of the assumptions made during modelling. 

Quality of reporting Refers to how comprehensively and clearly model inputs, a model itself, and model 

outputs have been documented and described such that they can be critically 

evaluated and used for decision-making. Quality of reporting and quality of a model 

are separate concepts: a model with a low quality of reporting is not necessarily a 

low-quality model and vice versa. 

Directness  

Directness of a model 

 

Alternative terms: 

▪ relevance 

▪ external validity 

▪ applicability 

▪ generalizability 

▪ transferability 

▪ translatability 

By directness of a model we mean the extent to which the model represents the 

real-life situation being modelled which is dependent on how well the input data and 

the model structure reflect the scenario of interest. 

Directness is the term used in the GRADE approach, because each of the alternatives 

has been used usually in a narrower meaning. 
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* There may be either subtle or fundamental differences among some disciplines in how these 

terms are being used; for the purposes of this article, these terms are generalized rather than 

discipline specific. 
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Figure 1. The general approach to using modelled evidence and assessing its certainty in health-

related disciplines. 
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