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Abstract

Neutron stars harbor extremely strong magnetic fields within their solid outer crust. The topology of this field
strongly influences the surface temperature distribution and, hence, the star’s observational properties. In this work,
we present the first realistic simulations of the coupled crustal magnetothermal evolution of isolated neutron stars
in three dimensions accounting for neutrino emission, obtained with the pseudo-spectral code PARODY. We
investigate both the secular evolution, especially in connection with the onset of instabilities during the Hall phase,
and the short-term evolution following episodes of localized energy injection. Simulations show that a resistive
tearing instability develops in about a Hall time if the initial toroidal field exceeds »1015 G. This leads to crustal
failures because of the huge magnetic stresses coupled with the local temperature enhancement produced by
dissipation. Localized heat deposition in the crust results in the appearance of hot spots on the star surface, which
can exhibit a variety of patterns. Because the transport properties are strongly influenced by the magnetic field, the
hot regions tend to drift away and get deformed following the magnetic field lines while cooling. The shapes
obtained with our simulations are reminiscent of those recently derived from NICER X-ray observations of the
millisecond pulsar PSRJ0030+0451.

Unified Astronomy Thesaurus concepts: Magnetars (992); Neutron stars (1108); Magnetohydrodynamical
simulations (1966); Pulsars (1306); Stellar magnetic fields (1610)

1. Introduction

Neutron stars (NSs) are unanimously believed to power
some of the most violent phenomena observed in the high-
energy sky, from the hyperenergetic giant flares of ultramag-
netized NSs (magnetars; see, e.g., Turolla et al. 2015; Kaspi &
Beloborodov 2017 for reviews), to the spectacular merging of a
binary NS system and the associated emission of gravitational
waves (Abbott et al. 2017). Despite this, many aspects of NS
physics are still poorly understood, mainly—but not only—
concerning their internal structure and composition, as well as
the topology of their magnetic field.

Isolated NSs, from which (thermal) emission coming directly
from the star surface is visible in the X-ray to optical bands,
provide an ideal laboratory to investigate the physics of the
interior of these objects, as first suggested by Tsuruta &
Cameron (1966; see also Turolla 2009). NSs cool down as they
age and their thermal evolution is coupled to that of their
magnetic field. Knowledge of the secular magnetothermal
evolution can discriminate between different cooling scenarios
when compared to observations, thus constraining the equation
of state of ultradense matter (see, e.g., Page et al. 2006; Haensel
et al. 2007). Moreover, it provides a self-consistent map of the
surface temperature, which is essential in deriving any reliable
estimate of the star radius from X-ray observations of
(passively) cooling NSs (see, e.g., Greif et al. 2019 and
references therein). A detailed model of the short-term
evolution, following an impulsive energy release in the NS
surface layers, is equally desirable as it directly bears on the
origin of magnetar outbursts (see, e.g., Rea & Esposito 2011;

Pons & Rea 2012; Coti Zelati et al. 2018) and thermal X-ray
emission in radio pulsars (see e.g., Becker 2009; Miller et al.
2019).
The magnetothermal evolution of NSs has been the focus of

many investigations over the past decades (see Viganò 2013 for
a complete historical outline and further references). First
attempts dealt with cooling in one-dimensional (i.e., spherically
symmetric) models with little or no accounting for the magnetic
field (see, e.g., Yakovlev & Urpin 1981; Page & Baron 1990).
As a further step, axisymmetric, 2D, calculations were
produced, but these either assumed a known evolution of the
temperature when solving for the magnetic field (Pons &
Geppert 2007) or the opposite (Aguilera et al. 2008). Moreover,
inherent numerical difficulties prevented including the Hall
term in the induction equation for a long time, despite its
importance in rearranging the magnetic field on the smaller
spatial scales where dissipation is faster (Pons & Geppert 2007).
The first consistent treatment of the coupled magnetothermal
evolution in 2D was presented in Viganò et al. (2013), who
also succeeded in coping with the Hall term. Recent efforts
have been devoted to investigating the magnetic evolution with
a fully 3D approach and confirmed the role of the Hall term in
shaping the magnetic field in the earlier stages of the NS
evolution when a peculiar magnetic structure develops (the
Hall attractor; Gourgouliatos et al. 2016).
According to the commonly accepted picture, the core of

NSs is in a superfluid and superconducting state, for which
the ground state is magnetic flux free. Up to now, very few
investigations have dealt with the magnetic evolution including

The Astrophysical Journal, 903:40 (12pp), 2020 November 1 https://doi.org/10.3847/1538-4357/abb6f9
© 2020. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0001-5438-0908
https://orcid.org/0000-0001-5438-0908
https://orcid.org/0000-0001-5438-0908
https://orcid.org/0000-0003-3977-8760
https://orcid.org/0000-0003-3977-8760
https://orcid.org/0000-0003-3977-8760
https://orcid.org/0000-0003-1044-170X
https://orcid.org/0000-0003-1044-170X
https://orcid.org/0000-0003-1044-170X
https://orcid.org/0000-0001-5326-880X
https://orcid.org/0000-0001-5326-880X
https://orcid.org/0000-0001-5326-880X
https://orcid.org/0000-0002-1768-618X
https://orcid.org/0000-0002-1768-618X
https://orcid.org/0000-0002-1768-618X
https://orcid.org/0000-0002-1659-1250
https://orcid.org/0000-0002-1659-1250
https://orcid.org/0000-0002-1659-1250
mailto:davide.degrandis@phd.unipd.it
http://astrothesaurus.org/uat/992
http://astrothesaurus.org/uat/1108
http://astrothesaurus.org/uat/1966
http://astrothesaurus.org/uat/1966
http://astrothesaurus.org/uat/1306
http://astrothesaurus.org/uat/1610
https://doi.org/10.3847/1538-4357/abb6f9
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/abb6f9&domain=pdf&date_stamp=2020-10-29
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/abb6f9&domain=pdf&date_stamp=2020-10-29


the core (see, e.g., Ciolfi & Rezzolla 2013), and the structure of
the magnetic field in the core of an NS is poorly understood as
yet. Most studies of the magnetic field evolution, both in two
and three dimensions, have been restricted to the NS crust,
relying on the assumption that the Meissner effect is able to
expel any flux from the core in a timescale shorter than that of
the magnetic and thermal evolutions (see, e.g., Lander 2014,
but also Ho et al. 2017 for a different perspective). In this work,
the same approach is followed.

Over the last few years, X-ray (e.g., Bilous et al. 2019)
observations have provided increasing evidence for the presence
of a localized region(s) on the surface of different classes of
isolated NSs with nontrivial thermal/magnetic properties and
evolution. To explain these observations, as well as to validate
results obtained in 2D calculations, fully coupled magnetother-
mal 3D simulations are necessary. In this work, we present some
of the first simulations of such kind, showing some of the
possible applications in which a 3D treatment is necessary to
fully tackle the observed phenomenology.

This paper is organized as follows. In Section 2, we present
the basic equations and their numerical implementation. In
Section 3, some case studies of the long-term evolution of NSs
are presented; in particular, the onset of eMHD instabilities is
discussed in Section 3.2. Some examples of the short-term
evolution following a localized crustal heating are illustrated in
Section 4, with a view to applications to magnetar outbursts
(Section 4.1) and to surface heating in pulsars (Section 4.2).
Discussion and conclusions follow in Section 5.

2. The Model

2.1. Input Physics and Evolution Equations

The NS crust comprises a Coulomb lattice in which nuclei
have negligible motion. Hence, the crustal currents are
produced entirely by the flow of electrons, which form a
highly relativistic and strongly degenerate Fermi gas. Still, their
mean velocity is typically only a tiny fraction of the speed of
light. We can therefore resort to the (nonrelativistic) electron
magnetohydrodynamics (eMHD) approximation in treating the
crustal dynamics. The evolution of the magnetic fieldB in the
crust is described by the induction equation that, also taking
into account the effects of thermal coupling, can be written in
the form

s m  ¶
¶

= - ´ + --B
J G

t
c T e 11[ · · ] ( )

where the term in square brackets is the electric field E as given
by the generalized Ohm’s law. Here, c is the speed of light, e
the electron charge, s and G are the electric conductivity and
the thermopower tensors, and μ is the electron chemical
potential. The latter, for a degenerate relativistic Fermi gas,
depends only on the density, m p= c n3 2 1 3( ) , where ÿis the
reduced Planck constant. Ignoring the displacement current, the
electron current is given by p= ´J Bc 4 .

Assuming the temperature of the crust to be well below the
electron degeneracy temperature but above the ion plasma
temperature, scattering of electrons can be described in terms of
an energy-dependent relaxation time τ (e.g., Ziman 1972;
Urpin & Yakovlev 1980), and the electron conductivity can

then be approximated as

s s d= +- -  B

cne
2ij ij

ijk k1 1( ) ( )

where the symmetric part is

s
t m
m

= c
n

e 32 2 ( ) ( )

and the antisymmetric part represents the Hall effect.
The thermopower can be calculated using the Mott formula

and in general has an isotropic part and a part proportional to
the conductivity tensor. In our model, we include only the
isotropic part (the so-called Seebeck term), which is respon-
sible for the Biermann battery effect,

s
m

p
m

d=
¶
¶

-
-

G k
k T

e
e

4
T

B
ij

1 2 2

· ( )

where the approximate equality is obtained by further assuming
electrons to form a perfect Fermi gas. Here, k is the thermal
conductivity tensor, which is taken to be proportional to s,
according to the Wiedemann–Franz law:

s
p

=k
k T

3e
5

2
B
2

2
( )

where kB is Boltzmann’s constant.
The evolution of temperature is, in turn, governed by the

heat equation,

m ¶
¶

= - - - + + nG J k J E JC
T

t
T T N

e
6

V ⎜ ⎟⎛
⎝

⎞
⎠· · · ·

( )

where CV is the heat capacity (per unit volume) of the crust, Nν

is the neutrino emissivity due to weak processes, and the term
in parentheses is the electron energy flux.
Although general-relativistic effects can be accounted for

with no inherent difficulty in Equations (1) and (6) (see, e.g.,
Pons et al. 2009 and Viganò et al. 2013), they are not included
here. The reason for this is twofold. First, given the small
thickness of the crust, they are of limited importance and will
not change our results qualitatively and, second, a proper
general-relativistic treatment impacts the boundary conditions
that are imposed on the evolution equations (see Section 2.2).
While this poses no serious problem in 2D, it becomes quite
troublesome in 3D. Equation (1) is analogous to the one solved
in Gourgouliatos & Cumming (2014a; with the addition of
thermocoupling terms) and Viganò et al. (2013), where (a
different version of) Equation (6) was included as well.
In order to simplify the equations, all physical quantities are

henceforth expressed in terms of values typical of the outer
crust in a magnetar. In particular, the temperature, magnetic
field, relaxation time, and chemical potential are normalized to

=T 10 K0
8 , =B 10 G0

4 , m = ´ -2.9 10 erg0
5 , and t = ´9.90

-10 s19 . This implies that the reference values for the number
density n and the conductivity h ps= c 42 ( ) are n0 

´2.6 1034 cm−3 and h ´ -3.9 100
4 cm2s−1. It is also

useful to introduce four length scales, which are relevant to the
electron dynamics,

l
p

=
k T

n4 e
Debye length 7B 0

0
2

1 2⎛
⎝⎜

⎞
⎠⎟ ( )

2
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m
p

= -d
n4 e

skin depth 80

0
2

1 2⎛
⎝⎜

⎞
⎠⎟ ( )

m
=L

Be
Larmor radius 90

0
( )

t=l c mean free path, 100 ( )

supplemented by the star radius =R 10 km as the macroscopic
length scale. Furthermore, the ohmic time t h= RO

2
0 

´8 10 yr7 is taken as the reference timescale and =C k nV 0 B 0

as the scale for the heat capacity.
The evolution equations to be solved forB and T then

become
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where we defined

c
d t m t m

t m
=

+ -

+



B

B B BHa Ha
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13ij

ij i j ijk k
2 2

2 2 2

( ) ( )
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and introduced the adimensional numbers

= l LHa 50 Hall 14( )

p l
=

Ll

d
Se

2
0.05 Seebeck 15

2 4

6
( )

= ´ -d

Ll
Pe

3
6 10 Peclet 16

2
5 ( )

p
= ´ -1

Ro

3

2

Pe

SeHa
3 10 Roberts. 17

2 2
4 ( )

Performing adimensionalization with these scales, the neutrino
emissivity is expressed in units of p t m= =nN c R k T8 e b

0 2 2 2
0 0 0

´ - -1.3 10 erg s cm14 1 3.
The large thermal conductivity of the crust, which is reflected

in the fact that Ro 1 , means that on the timescale of magnetic
evolution, the term dependent on the heat capacity of the crust is
subdominant. Rather than using a detailed microphysical model
for CV, we therefore simply take tm=C TV

2 , which implies a
constant effective thermal diffusivity throughout the crust. Under
this assumption, Equation (12) depends on temperature only
through T2, which proves to be an advantageous feature for
numerical implementation.

Under the eMHD approximation, electrons and protons in
the crust have equal, time-independent number densities n. We
will assume that the crust is spherically symmetric, so that n is
a function of the radius r alone. With our definition of the
chemical potential (see above), this implies that μ depends on r,

and we take

m = +
-

r
r

1
1

0.0463
, 18

4 3
⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

following Gourgouliatos & Cumming (2014a); m r( ) increases
from unity at the outer boundary (r= 1) to 4.6 at the inner
boundary (r=0.9). Moreover, we also assume that τ is a
function of r only and, in particular, we take t º 1.
The density profile corresponds to the crust model with the

impurity parameter Q 3 of Cumming et al. (2004). The
assumption of taking the relaxation time τ to be independent of
temperature is adequate in the lower crust, while it is just an
approximation in the upper crust, where scattering is dominated
by phonons (Potekhin et al. 2015). We, nevertheless, note that
taking t º 1, the conductivity in the upper crust corresponds to
the phonon conductivity at a realistic temperature, »T 10 K8 .
We assume an Fe–Ni crust, without accounting for chemical
composition stratification.
The emission of neutrinos in the crust is due to a large

variety of reactions. In this work, the four dominant
contributions are taken into account, namely, phonon decay,
neutrino pair production, neutrino bremsstrahlung, and neutrino
synchrotron emission,

= +
+ +

n B

B

N n T N n T N n T

N n T N n T

, , , ,

, , , . 19
ph pair

bre syn

( ) ( ) ( )
( ) ( ) ( )

We reference Ofengeim et al. (2014) for neutrino pair
bremsstrahlung decay and Kantor & Gusakov (2007) for
phonon decay. A complete review can be found in Yakovlev
et al. (2001). These papers provide fitting formulae for
numerical evaluation, that were implemented in our code.

2.2. Boundary Conditions

Solution of the evolution Equations (1) and (6) requires
boundary conditions that reflect a number of physical prescrip-
tions at the core–crust interface and at the star surface. We
assume that all magnetic flux has been expelled from the
superconducting core. This requires that the normal component
of the magnetic field and the tangential component of the electric
field must vanish at the core–crust boundary, =r rc. The latter
results in a nonlinear boundary condition for the magnetic field
due to the presence of the Hall term. Nevertheless, this
contribution is negligible near the bottom of the crust due to
the high electron density (see Hollerbach & Rüdiger 2004) and
can hence be discarded. This allows the boundary conditions to
be written in terms of the radial magnetic field and of the
tangential component of the current Jt,

= =B r J r0 0. 20r c t c( ) ( ) ( )

We assume that the electrical conductivity in the magneto-
sphere is negligible in comparison with that of the crust, and
therefore, we match the field at the crust outer boundary to a
potential one. This can be achieved in a very natural way by
exploiting the spectral nature of our code, which decomposes
the field using the spherical harmonics q fY ,ℓ

m ( ) as the basis
(see Section 2.3), after introducing a poloidal–toroidal decom-
position:

  = ´ ´ + ´B r rB B . 21pol tor( ) ( ) ( )
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In such a representation, each mode of a potential field is purely
poloidal, such that µ - +B rℓ

m ℓ
pol

1( ) ( ). Hence, the boundary
condition can be met by requiring that

¶
¶

+
+

=

=
=

=





r
B

ℓ

r
B

B

1
0;

0. 22

ℓ
m

ℓ
m

r R

ℓ
m

r R

pol pol

tor

( ) ( )

( ) ∣ ( )

The core conducts heat even more efficiently than the crust
and is therefore approximately isothermal. It cools by neutrino
emission according to the equation

¶
¶

= -
T

t

N T

C
23c c

c

( ) ( )

where Cc is the core specific heat and =N T N Tc
k

0( ) the neutrino
emissivity of the core. The star long-term thermal evolution
is governed by Equation (23) once the neutrino emissivity is
specified. Our model uses a standard slow-cooling scenario with
k=8, = - -C 10 erg s Kc

20 1 2, and = - -N 10 erg c m K0
21 3 8

(Page et al. 2004).
The surface temperature is controlled by the properties of the

thermal blanketing envelope. This layer is geometrically very thin
but hosts a large temperature gradient. Thus, the widespread
approach is to treat it separately, using a plane-parallel approx-
imation to obtain a relation between the temperature at the bottom
of the envelope Tb (that is, the temperature of the top of the crust)
and the surface temperature Ts (Gudmundsson et al. 1983).
Assuming that no energy gains or losses occur in the envelope, the
temperature gradient at the top of the crust is given by (Tsuruta &
Cameron 1966)

s- =k r BT T T , , 24s bsb
4( · ) · ˆ ( ) ( )

where the left-hand side is evaluated at the top of the crust and
r̂ is the radial unit vector. We have chosen the form

= B BT T g T T g T, , , , 25s b s b b
0( ) ( ) ( ) ( )( )

where g is the gravitational acceleration at the surface. We used
the expressions for Ts

0( ) as calculated in Gudmundsson et al.
(1983) for an iron envelope ignoring magnetic fields and the
magnetic correction BT ,b( ) obtained in Potekhin & Yakovlev
(2001).

2.3. Numerical Implementation

Equations (11) and (12) were solved in three dimensions
using a suitably modified version of the code PARODY, which
was originally developed by Dormy et al. (1998) and Aubert
et al. (2008). A version of the same code, which did not include
the thermomagnetic coupling, was first used to investigate the
magnetic field evolution in NSs in Wood & Hollerbach (2015).
The code is pseudo-spectral: it uses a finite grid in the radial
direction and an expansion in spherical harmonics q fY ,ℓ

m ( ) for
the angular part. The NS crust is assumed to be a perfect
spherical shell. The time-stepping algorithm is Crank–Nichol-
son for the ohmic diffusion, backward Euler for the isotropic
part of the thermal diffusion, and Adams–Bashforth for all
other terms.

We typically use 128 radial grid points and spherical
harmonics up to degree »ℓ 100, obtaining a typical resolution
of 100 m on the surface. Parallelization is implemented using
MPI, and the code is run on a cluster of CPUs. Work is
distributed in such a way that each thread takes care of a

spherical shell containing N Nmodr cores points, where Nr is the
radial grid size. In order to compute space derivatives within
our finite difference scheme in each thread, a single shell
should contain at least four grid points; hence, to achieve the
desired resolution, the code is typically run on 32 cores.

3. Study Cases

In order to validate the code and provide comparisons with
previous works, we first address the problem of the secular
magnetothermal evolution of highly magnetized, isolated NSs.
The magnetic evolution follows two different timescales, the
Hall and Ohm ones (Goldreich & Reisenegger 1992),

t
p

= »
n eR

cB

4
10 yr 26H

0
2

0

4 ( )

t h= »R 10 yr. 27O
2

0
7 ( )

Magnetic field reconfiguration occurs on the Hall timescale,
when small-scale structures are formed by the action of the Hall
term, while on the Ohm one, dissipation takes place. Long-term
thermal evolution also occurs on a time t O (see, e.g., Potekhin
et al. 2015 for a review). A 3D approach is particularly suited,
and indeed necessary, to follow the formation and evolution of
small-scale structures in the Hall phase.

3.1. Neutron Star Magnetothermal Evolution

In order to set the initial7 magnetic configuration for our
simulations, we followed the widespread approach of confining
the field in simple, large-scale structures (Rüdiger et al. 2013).
In particular, we selected a force-free B-field matching our
boundary conditions, with both nonzero poloidal (ℓ=1,
m=0) and toroidal (ℓ=2, m=0) components. For such a
field, the components of Equation (21) take the form

q f zµB Y r r,ℓ
m

ℓ
m

ℓ( ) ( ) , where zℓ is a linear combination of
spherical Bessel functions of degree ℓ, constructed in such a
way as to obey the boundary conditions (see Chandrasekhar &
Kendall 1957 for a full derivation). We stress that the evolution
of the poloidal/toroidal components is strongly coupled by the
action of the Hall term, which can transfer energy both ways
between them (Pons & Geppert 2007). The initial temperature
profile is assumed to be a constant = ºT r t, 0 10 K8( ) , but
we note that the overall evolution is virtually independent of
this choice. This is due to the fact that the term µ¶ ¶T t in
Equation (12) is suppressed by a factor »- -Ro 101 4, so that
the temperature rapidly achieves a quasi-steady state.
The evolution of the B-field over a few Hall timescales is

shown in Figure 1 for three different initial magnetic
configurations: a purely dipolar field ( »B 0 10 Gpol

14( ) ,
=B 0 0tor ( ) ) and a field with poloidal and toroidal components

of the same order but opposite relative polarities ( »B 0pol ( )
 »B 0 10 Gtor

14( ) ). Our simulations confirm the previous
finding that the magnetic field evolves toward the so-called
Hall attractor (Gourgouliatos & Cumming 2014b), where the
magnetic field tends to reach a configuration dominated by the
modes ℓ=1, 2, 3, 5, 7 (see again Figure 1). The dominance of
odd modes with respect to the nearby even ones is a general
feature of the Hall attractor. We remark that for a better
comparison with previous works (Viganò et al. 2013;

7 We remark that throughout the work, the initial time is set in
correspondence to the superfluid transition, which typically occurs a few years
later than the formation of the proto-NS.
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Turolla et al. 2011), we chose initial conditions that are
essentially axisymmetric. Our results show that initially
axisymmetric configurations tend to maintain their symmetry
as they evolve.

The components of the magnetic field in spherical
coordinates, Br, Bθ, and Bf, at the beginning of the simulation
(t= 0) and at t= ´t 3 10 yr H

4  are shown in Figure 2 for
the case with » +B B0 0pol tor( ) ( ). A general feature of the
magnetic field is the appearance of an equatorial structure in
which the field is stronger (Gourgouliatos et al. 2016) and of
small-scale structures due to the Hall term.

As already mentioned, the temperature distribution tends to
follow the magnetic field. The structure of the Hall attractor, in
which an equatorial current ring forms, is reflected in a hotter
equatorial region. Moreover, formula (5) implies that heat tends
to be transported preferentially along the field lines. Hence, the
equatorial region is hotter not only because of higher
dissipation, but also because heat is trapped by the closed
field lines appearing in that region. Figure 3 shows a typical
case, which is representative—at least qualitatively—of all
our nearly axisymmetric runs. We note that, owing to the
dependence of the properties of the heat-blanketing envelope
on the geometry of the magnetic field, the observable surface
map can be quite different from the one on the top of the crust.
As an example, the last panel of Figure 3 shows the surface
temperature for the very same case: the overall topology is
quite different, as the equatorial belt is not just hotter, but
instead shows a colder ring at the very equator (see e.g., the
recent results in Kondratyev et al. 2019, in which a similar
behavior is discussed in a 3D stationary framework). Even
though the various features are on a large scale, they exhibit a
smaller scale—yet well-resolved—structure, due to the Hall
term.

3.2. Magnetars and eMHD Instabilities

As already noted in Gourgouliatos & Pons (2020), the
presence of a strong toroidal field can trigger a resistive tearing
eMHD instability (Wood et al. 2014). This instability, even
when starting from an initial condition that is essentially
symmetric, produces non-axisymmetric small-scale magnetic
structures that, due to Joule dissipation, translate into localized
heat deposition. A strong toroidal component in the star crust
passes undetected and is invoked to explain the observed

activity in the so-called low-B magnetars, i.e., sources with a
dipole field comparable to that of the radio-pulsar population
(see Section 5.1 for further details).
To explore this issue better, we ran a simulation assuming an

ℓ=1, m=0 initial magnetic field with a poloidal field
»B 0 10 Gpol

14( ) and a toroidal one » ´B 4 10 Gtor
15 . Given

the nature of the solution we are looking for, the resolution for
this case was improved to =ℓ 250max , corresponding to cells of
a few tenths of meters on the surface. Indeed, an instability is
triggered after about a Hall time tH . The spectrum of all the ℓ

modes at t 10 yr4 (Figure 4) exhibits the characteristic
features of the Hall attractor: even modes are suppressed with
respect to the nearby odd ones up to ℓ 100, and this produces
the typical wavy profile. However, the onset of an instability is
marked by the appearance of well-resolved structures that form
up to ℓ 100 , with a complex structure of secondary peaks on
top of the Hall structure. The flatness of the spectrum at high ℓ

guarantees that the instability is of physical and not numerical
origin. The slight increase at very high ℓ is due to numerical
aliasing. The spectrum of m modes, on the other hand, is
sharply peaked toward zero and hence is not shown.
In the small structures, the magnetic field can reach values

up to ~ ´2 10 G16 , and this drives a local temperature
increase, as shown in Figure 5. Such strong fields generate
high magnetic stresses in the crust. As a gauge to determine
whether such stresses are strong enough to lead to crustal
failure, we compared them to the maximum mechanical yield
of the crust through the von Mises criterion (see, e.g., Pons &
Rea 2012; Lander & Gourgouliatos 2019),

tM M n T, 28ij
ij

max¯ ¯ ( ) ( )

where Mij¯ is the traceless part of the magnetic stress tensor
p=M B B 4ij i j . Chugunov & Horowitz (2010) derived esti-

mates for tmax by means of molecular dynamic simulations and
elucidated the strong dependence of the breaking stress on
temperature. In our calculation, we used the fit they provide for
the maximum crustal yield,

t = -
G -

n
Z

a
0.0195

1.27

71

e
29imax

2 2
⎜ ⎟⎛
⎝

⎞
⎠ ( )

where G = Z ak Te B
2 2 is the classical Coulomb coupling

parameter, ni is the ion density, p= -a n4 3i
1 3( ) is the ion

sphere radius and, following Horowitz et al. (2007), we took
Z=29.4 as the mean ion charge in the Fe–Ni crust. Because
tmax decreases at higher T, a 3D, coupled magnetothermal code
provides the most accurate way to investigate the onset of
crustal failures in magnetars.
Figure 6 shows the ratio between the magnetic and the

breaking stress in our simulation after a time ´6.2
t10 yr H

3 . The map refers to the region of the crust where
the ratio is maximum, at about half the crust depth. The
magnetic stress reaches values up to ~50% of the maximum
yield in our simulation so that the von Mises criterion for
crustal yielding is likely to be fulfilled. Crustal failures can
therefore be triggered in our simulation because of the large
magnetic stress coupled with the heating produced by magnetic
dissipation, which significantly increases the temperature in the
equatorial region, thus lowering the breaking stress. The
instability lasts for some 1000 yr before it is damped by
dissipation. This directly concerns magnetar activity, because
magnetically induced crustal failures (“starquakes”) are thought

Figure 1. Time evolution of the energy in the first seven ℓ modes for three
typical initial configurations of the field: a purely poloidal field (solid) and two
cases with an added toroidal field of opposite polarity (dashed and dotted).
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to be responsible for magnetar bursts and outbursts (Pons &
Rea 2012).

We conclude this section by noticing that the use of the von
Mises criterion as expressed by Equation (28), albeit wide-
spread in the literature, should be taken with some care. In fact,
it does not take into account the effects of the enormous
gravity, which tends to inhibit any radial displacement (see,
e.g., Haskell 2008). However, because the resistive tearing
instability arises as a consequence of the presence of a strong

toroidal field, our result is not much affected even when setting
to zero all radial shear terms (the maximum stress-to-yield ratio
decreases from ∼50% to 45%). Nevertheless, only a consistent,
nonlocal calculation that takes into account the global
hydrostatic structure of the crust could unambiguously solve
the issue.

4. Localized Heating in NS Crust

In order to fully exploit the three dimensionality of our code,
we investigated models in which a localized heat source is
present in the NS crust. This is accounted for by adding a term
H heated to Equation (6), describing the heat injection rate per

unit volume. In particular, we consider two cases: (i) localized
heat deposition in the deep crustal layers and (ii) heating of the
star’s external layers. Although no direct application to real
astrophysical sources will be attempted, these two models are

Figure 2. A meridional cut of the crust along the prime meridian (f=0) showing the the magnetic field components Br, Bθ, and Bf (from left to right) at the start (top
row) and after t´ »3 10 yr H

4 (bottom row) for the run with ~ +B B0 0pol tor( ) ( ). The plots for the f component also show the field lines of the poloidal field. Here
and in all figures where relevant, the crust thickness is enhanced by a factor of 4 for better visualization.

Figure 3. Temperature maps at t= ´ »t 3 10 yr H
4 for a case with

» + » ´B B 10 G0
pol

0
tor 14 . Top: meridional cut, with the field lines of the

poloidal component superimposed. Bottom left: temperature at the top of the
crust (i.e., under the heat-blanketing envelope). Bottom right: surface
temperature according to Equation (25), showing how the envelope can
change the very topology of the temperature distribution.

Figure 4. Power spectrum (in code units) of the ℓ modes at t 10 yr4 . On top
of the wavy profile privileging odd modes, typical of the Hall attractor, a more
complex pattern at short wavelengths reflecting the instability is visible. The
slope ℓ

−2, obtained from the scaling relations for the Hall turbulence in
Goldreich & Reisenegger (1992), is shown for reference.
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of interest in connection with the evolution of magnetar
outbursts and the X-ray emission from radio pulsars.

4.1. Heating in the Deep Crust

As already mentioned, magnetar activity is believed to be
associated with crustal failures (see Section 3.2). However, the
crustal dynamics in such events is little explored as yet, owing
to its inherent complexity (e.g., the crust may flow plastically;
Lander 2016). Such a study is beyond the capability of our
code, which does not incorporate a description of the motion of
crustal matter.

As a minimal model to address the physics of crustal
failures, and in particular the way in which heat is transported
to the surface, we therefore performed a simulation in which
energy is injected during a short time interval in a localized
region of the crust, much in the same way as in Pons & Rea
(2012), but exploiting our fully 3D approach. As the
background state, we take an NS with an initial field

»B 10 Gpol
12 and »B 10 Gtor

13 that has been consistently
evolved for a Hall time. This high toroidal field configuration
was chosen in the spirit of the results of Section 3.2 and mimics
a low-B magnetar.

In our test model, heat has been released in the northern
hemisphere and in the innermost half of the crust, assuming a
Gaussian profile along the three spatial dimensions with
s 100 mr  , s s pq f 5 rad  . The additional heating term in

Equation (12) is ´ -H 5 10 erg s37 1  , modulated by the
Gaussian profile. Heating is assumed to be quasi-instantaneous
(the H term is active for Dt 3 sinj  ). The NS luminosity has
then been calculated assuming blackbody emission at the local
temperature, after deriving Ts from Equation (25). The time
evolution follows a typical FRED (fast-rise-exponential-decay)
pattern, as shown in Figure 7. The two curves in Figure 7
illustrate the role played by neutrino losses in the crust. The
temperature increase produced by heat deposition, in fact, is
large enough in this case to make neutrino emission sizable
(contrary to what occurs when the crust is not heated), and this
results in a photon luminosity lower by a factor of ∼2 with
respect to the case in which neutrino losses are turned off. In
the present case, the peak luminosity is ~ -10 erg s33 1, with an
increase of a factor ≈10 above the quiescent level.
The hot structure that develops onto the surface exhibits a

somehow peculiar evolution. In fact, its shape is determined by
heat diffusion, which is not isotropic but depends on the
magnetic field direction according to Equations (2) and (5).
Hence, heat tends to flow along field lines. Figure 8 shows how
during the luminosity rise time, heat is not just flowing radially
to reach the surface, but does so following the magnetic field.
Moreover, once it is formed, the hotter region tends to drift as it
cools down, both in latitude, toward the equator, and in
longitude. Such behavior is clearly visible in Figure 9, which
shows four snapshots of the heated surface patch evolution.
The duration of this event is of some thousands of years,

with a rise time of about a century (however, timescales in this
case are affected by code limitations; see Section 5.2). Still, on
a qualitative basis, it can be taken as a representation of the
observed flux variation during magnetar outbursts, which
happen on shorter timescales (Coti Zelati et al. 2018).

4.2. Surface Heating

The framework discussed in Section 4.1 can be easily
adapted to study the shape of pulsar hot spots. In fact, the
physical ingredients remain the same as long as it can be
assumed that no other effects apart from heating come into
play. The major difference with respect to the model presented
in the previous section is that now energy is deposited in the
outermost crustal layers, as it is the case, e.g., for the heat
deposited by backflowing currents on the surface of radio
pulsars.

Figure 5. Temperature at the top of the crust showing the formation of a hotter
equatorial belt with a small-scale, yet numerically resolved, pattern that reflects
the eMHD instability. Note that this is not the surface temperature.

Figure 6. Ratio between magnetic stresses and maximum yield during the
instability, shown at the radius where it attains its maximum value, close to half
of the crust depth.

Figure 7. Luminosity evolution after an impulsive heat injection in the inner
half of the crust. Neutrino emission reduces the peak luminosity by a factor of
∼2.3 compared to radiative cooling only.
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As a background state, we take an NS with initial field
»B B 10 Gpol tor

12 and temperature ´T 5 10 K7 , which
was evolved for some Hall times, ~t 10 yr5 . Then, a heating
source is placed in a small region of size ∼0.5 km close to the
magnetic pole. We chose this spot position because even
though the external magnetic field in our simulations is not a
pure dipole, its qualitative shape is similar to it, as displayed in
Figure 10, and heating of the polar regions is to be expected.8

Backflowing currents in pulsars can reach a depth ranging
from about a tenth to the entire width of the crust
(Karageorgopoulos et al. 2019). In our simulations, we choose

to insert the heat source uniformly from the surface down to a
quarter of the crust width. We at any rate checked that different
depth values provide quite similar results, possibly because this
length is anyway much smaller than the other relevant lengths
in the problem.
Results show that if heat injection is steady, the hot spot

reaches a state of quasi-equilibrium in a few years. Starting
with a heated patch of size ∼1 km, the spot tends to assume a
quasi-circular shape, staying on top of the injection region. The
evolution is shown in Figure 11 (top row), where the initial
shape and the equilibrium configuration of the hot spot are
compared for steady heat injection = ´ -H 5 10 erg s25 1 . We
then followed the evolution of the same spot after the heating
term is turned off. In a time ≈1000 yr, the spot cools down in
such a way that only a ring corresponding to the region rim is

Figure 8. Meridional cuts (at the same f) of the evolution of the hot spot
during the rise phase. The first panel corresponds to the initial injection, and the
subsequent ones are separated by ∼50 yr. Transport of heat to the surface
happens preferentially along magnetic field lines, whose planar projection is
superimposed in black. Note that color bar range decreases between the two
rows to improve visualization.

Figure 9. Surface thermal evolution of the hot spot producing the luminosity
shown in Figure 7. Time increases from left to right and from top to bottom;
snapshots are separated by ∼200 yr and the first one corresponds to the peak of
the luminosity curve. The magnetic north pole is highlighted for reference.

Figure 10. Extrapolated external magnetic field lines, in which the color bar
encodes the strength from black (zero) to copper (maximum value), compared
to a purely dipolar field (dashed red lines). Given the high degree of symmetry
of this case, only a quarter of the star is shown for better visualization.

Figure 11. Top row: initial (left) and equilibrium (right) stages of the evolution
of a hot region (magnetic pole at the center, toward the observer) during steady
heating from above. Bottom row: cooling of the spot after heating is turned off.
The last three snapshots (from top to bottom and from left to right) are
separated by a time interval of ∼200 yr. Note that the color bar range decreases
between panels to highlight the effect.

8 Even if our simulations do not explicitly include the dynamics of the
magnetosphere, its configuration can be extrapolated from the boundary
condition, Equation (22), for the magnetic field at the top of the crust, requiring
that for each harmonic > = +

 B r R B R rℓ
m

ℓ
m ℓ 1( ) ( ) .
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left. In the final cooling phases (Figure 11, bottom row), a
crescent-like structure drifting toward the equator becomes
visible. It is a somehow subdominant feature, as the main hot
spot is still in correspondence with the initially heated region,
but we observed that it can eventually become hotter than the
central spot in the very late cooling stages (when temperature
differences from the background are small). We note that some
asymmetry in the position/shape of the initially heated region
with respect to the magnetic pole is necessary for the formation
of crescent-like structures during the evolution. Heat injection
in a circular patch exactly below the magnetic pole results in a
nearly circular cooling spot. However, simulations show that
such deviations need to be indeed small, and in real sources,
they are expected to be produced, e.g., by the effect of the
coupling of crustal heating currents with the rotation of the star
(Karageorgopoulos et al. 2019) or the presence of subdominant
nondipolar components.

In the case of a higher heat injection, = ´ -H 5 10 erg s26 1 ,
we observe a similar phenomenology, but a turbulent-like
pattern emerges (see Figure 12), which is nonetheless well
resolved by our grid. This results in a more complex evolution
of the shape as the spot cools down. Its relic, in fact, gets
fragmented into many smaller structures that do not exhibit the
ordered, ring-like shape of the previous case. A drifting
crescent-shaped subdominant structure is again formed in the
final phases.

Moreover, the backreaction on the magnetic field becomes
important: in fact, in this situation, a temperature gradient
perpendicular to the (radial) density one develops, hence the
Biermann battery effect, which provides negligible feedback in
the long-term evolution of isolated NSs, can give rise to a
substantial local enhancement of the magnetic field. Such
behavior is displayed in Figure 13. When the stationary state is
reached, some small magnetic structures appears on top of the
≈1012 G large-scale (quasi) dipolar field, where the field
strength can reach values up to ´6 10 G14 . Thus, localized
heating may also account for small-scale magnetic structures in

the crust, which are therefore not originated by dynamo-like
processes.
The appearance of these crustal magnetic features is reflected

in the creation of local magnetic structures in the magneto-
sphere, even though the overall B-field remains very close to
dipolar. Figure 14 shows the external field lines for the same
case as in Figure 13, as derived by solving the magnetospheric
structure (see footnote 2). After subtracting the contribution of
the m=0 modes, which are dominated by the dipolar field, a
small magnetic field loop is clearly visible above the heated
region, extending outwards to a distance R with a typical
strength »10 G9 . This shows that magnetic structures are not
necessarily confined to the crust but can extend in the inner
magnetosphere.
The cooling phase lasts some thousands of years. It is

therefore possible that the aftermath of powerful heating events
can produce a long-lasting thermal structure on an NS crust,
evolving in complex patterns along field lines.

5. Discussion and Conclusions

In this paper, we presented for the first time 3D numerical
simulations of the coupled magnetothermal evolution in
isolated NSs fully accounting for neutrino emission from the
crust and a simplified neutrino core-cooling model. While
results for the long-term evolution show no substantial
deviations with respect to those obtained with 1D and 2D
calculations (see, e.g., Pons & Viganò 2019, for a review), the
capability of a 3D approach to consistently also deal with the
smaller spatial scales proved essential to highlight the onset of
eMHD instabilities and to follow the evolution of localized heat
injection in the star crust. In particular, our main findings are:

Figure 12. Cooling of a spot similar to the one in Figure 11 but for a heat flux
10 times higher. Here, snapshots are separated by ∼300 yr, the first one
referring to the time at which heating stops. Note that the color bar range
decreases between the two rows to highlight the effect.

Figure 13. Radial component of the magnetic field in the localized heating
steady state shown on the first panel of Figure 12. The crust thickness is
enhanced by a factor of 4 to help visualization.

Figure 14. The extrapolated external magnetic field for the case in Figure 13.
The left half shows the total field and the right one the difference between the
total field and its m=0 modes, which are dominated by the dipole.
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(i) the magnetic field evolves toward the so-called Hall
attractor (Gourgouliatos & Cumming 2014b). In this
configuration, magnetic energy is stored preferentially in
the odd modes and especially in the ℓ=1, 2, 3, 5 ones.
This results in the appearance of magnetic and thermal
structures near the (magnetic) equator;

(ii) a strong toroidal magnetic field component (≈1015 G–
1016 G) can trigger the resistive tearing eMHD instability
in less than a Hall time. Our simulations show that the
appearance of small-scale high-B structures, mainly along
the equator, coupled with a local enhancement of the
temperature produces the conditions for crustal yielding
according to the von Mises criterion;

(iii) a localized, impulsive heat injection in the deep crustal
layers results in a cooling hot spot on the star surface. The
emitted luminosity has a sharp rise followed by an longer
decay;

(iv) as a result of anisotropic heat transport in the magnetized
crust, the heated region drifts and may change its shape as
it cools;

(v) even with an essentially dipolar field, quasi-symmetric
hot regions near the poles can cool down assuming a
crescent-like shape.

Our 3D simulations of the evolution of a locally heated
region in the star crust revealed a variety of behaviors reflecting
the location of the heat source (position and depth in the crust),
the energy injection rate, and the crust magnetic and thermal
structure. In particular, we considered two scenarios in which
heating occurs either inside the crust (deep heating) or in the
outermost layers (surface heating). Both of them may be
relevant for magnetar outbursts, during which a hotter region
on the star surface appears and then progressively cools down
and shrinks (see, e.g., Coti Zelati et al. 2018). In fact, this has
been explained in terms of dissipated magnetic energy inside
the crust (Lyubarsky et al. 2002; Pons & Rea 2012) or of Joule
heating due to returning currents flowing along the field lines of
a (locally) twisted magnetic field (Beloborodov 2009; see also
Turolla et al. 2015).

In the simulations presented in this work, neutrino emission
is relevant only for the case presented in Section 4.1. In fact,
neutrinos become important if injection is fast, so that high
local temperatures can be reached. According to 2D simula-
tions (Pons & Rea 2012), large neutrino losses result in an
upper limit on the radiative luminosity released in magnetar
outbursts. At present, such regimes cannot be investigated with
our code, due to numerical hindrances associated with the
treatment in three dimensions of a strongly nonlinear term (as a
rule of thumb, µnN T 7.5). In fact, this term can cause the
appearance of numerical spurious features in our solutions
when temperature gradients become very high. Moreover, if the
background state has an ultrastrong magnetic field, turbulent
patterns analogous to those discussed in Section 4.2 can also be
triggered in the context of impulsive heat injection; with our
present numerical setup, such behavior has proven to be hard to
treat numerically when neutrino losses are important. This
prevents a comprehensive treatment of impulsive heating
events. The question of whether (and how) results obtained
in a 3D framework are different with respect to the 2D
treatment of Pons & Rea (2012) is a matter that will be
addressed in a future study.

5.1. Ramifications

Comparison with low-B magnetars—The presence of strong
toroidal fields in magnetars has long been invoked to explain
their distinguishing activity compared to radio pulsars with
similar spin-down magnetic fields, the high-B pulsars with

» -B 10 10 Gdip
13 14 (see, e.g., Turolla et al. 2015). On the

other hand, some sources with Bdip as low as»10 G12 can show
magnetar-like activity (the low-B magnetars; see, e.g., Turolla
et al. 2011 and references therein). According to our
simulations, the resistive tearing instability appears on a
timescale t » 10 yrH

4 and lasts for about »1000 yr. This
mechanism can hence provide a viable explanation for the
activity (bursts and outbursts) detected in young sources (age
104 yr), which are the vast majority of the magnetar
population.9 Whether such an instability can be triggered
under the conditions typical of older objects, like the low-B
sources SGR0418+5729 and SwiftJ1822.3–1606 (age »
105–106 yr; Turolla et al. 2011; Rea et al. 2012), or the onset
of outbursts is produced by a different, possibly related,
mechanism is an open question.
Crescent-shaped features and observations—Nonpolar,

crescent-like hot spots have been recently detected in NICER
X-ray observations of the millisecond pulsar PSRJ0030+0451
and interpreted as due to heating from backflowing currents in
a nondipolar magnetic field (Miller et al. 2019). Our results
show that such features can actually form as thermal relics of
past events of heat deposition even in the presence of a dipole-
dominated field, provided that the crustal transport properties
are properly accounted for. Even though the evolutionary
history of PSRJ0030+0451 is likely quite different from that
of a passively cooling NS and its (dipolar) field is lower than
the one used in our model, our results show that a qualitatively
similar behavior of the crust may be responsible for the
observed pattern even without invoking strong multipolar field
components.
Battery effects and magnetar magnetospheres—In Section 4,

we showed how the magnetic field created through battery
effects by an external heating source can reach strong local
values in a turbulent-like pattern. The existence of small-scale
magnetic structures, in which the field strength is orders of
magnitude higher than in the surrounding dipole, has been
invoked to explain the (relatively) large energy (≈1–10 keV) of
the absorption features detected in the (quiescent) emission of
some magnetars, if these are interpreted to be due to cyclotron
absorption/scattering onto protons, E B0.6 10 Gcp

14( ) keV.
The prototypical source is the low-field ( ~ ´B 6 10 Gdip

12 )
magnetar SGR0418+5729, where a phase-dependent absorp-
tion feature at ∼2–10 keV was discovered in the XMM-
Newton data by Tiengo et al. (2013). According to their
interpretation, the line arises as radiation from a cooling spot on
the star surface crosses a baryon-loaded, small (≈100 m)
magnetic loop where absorption occurs. Although associating
this kind of magnetic structure with those produced by the
battery effect in our simulations is tempting, we warn that
thermocoupling effects turn out to be less important in the case
of deep heating (see Section 4.1), where the local enhancement
of the magnetic field is modest.

9 See the McGill magnetar catalog at http://www.physics.mcgill.ca/~pulsar/
magnetar/main.html (Olausen & Kaspi 2014).
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5.2. Present Limitations

In this work, we highlighted the perspectives that a novel
three-dimensional approach can open up in the study of NS
magnetothermal evolution. There are, nevertheless, some
limitations that must be taken into account when interpreting
our numerical results.

In fact, we had to reduce the microphysical input to a
realistic yet simplified model for the computing time to be
manageable. This concerns in particular the use of a simplified
form for the hydrostatic equilibrium density profile of
Equation (18), which was also assumed to be independent of
the temperature and magnetic field, and the use of a constant τ
throughout the crust. Moreover, we have chosen some strong
prescriptions on thermal conductivity and heat capacity. In
particular, the assumption that CV is linearly dependent on the
temperature is valid only for the electron contribution and does
not take into account the contribution of the lattice. This
implies that Equation (6) depends on T2 only, which is a key
point for the efficiency of the numerical scheme. However,
such an assumption becomes questionable when the term
µ¶ ¶T t starts to dominate, as in the case of impulsive heating
in Section 4.1. In particular, this affects our estimates for the
duration of thermal relaxation events. In fact, the heat diffusion
timescale across a length L can be estimated as (Chaikin et al.
2018)

òt ~ l
C

k

1

4
d , 30

L

V
diff

1 2 2

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ ( )

hence it is regulated by the specific heat-to-thermal conductiv-
ity ratio. According to the estimates of Chaikin et al. (2018), for
the typical conditions of an NS, the timescale of heat transport
from an internal heater to the surface is 1 yr, whereas in our
model, the value of the characteristic diffusion time across the
crust turns out to be much longer, t » 50 yrdiff . This may well
be related to our assumptions that make the ratio kCV be
independent of the temperature, while it is expected to depend
on the temperature as well as on the properties of the crustal
superfluidity (Potekhin et al. 2015 and references therein).
Hence, our results for this case should simply be regarded as
indicative of the general evolution of such events. For the
model discussed above, the evolution timescale is longer than
what is expected under more realistic conditions by a factor of
»100, although extending this to other cases is haphazard.

Another strong prescription is that the whole physics of the
core is embodied in the boundary conditions (23) and (20).
Addressing the complex microphysics of the core and the
description of the crust–core transition is beyond the scope of
this paper (and is in general a problem best suited for one-
dimensional studies). However, a direct implication of
Equation (23) is that heat conduction from the crust to the
core is inhibited. This is not a problem for our models but could
become an issue when dealing with extremely high heat
injections in the deep crust. Moreover, Equation (20) implies
that the core is assumed to be in a Type I superconducting
phase, so that no magnetic field is allowed to enter it, and that
the magnetic flux has been completely expelled during the
phase transition. However, current models of pulsar glitches
(see, e.g., Baym et al. 1969) suggest that the state is of a Type
II superconductor, or in any case, that at least some field is

present in the core. Dealing with the modeling of this more
complicated transition is again beyond the scope of this work.

Simulations were run at CloudVeneto, an HPC facility
jointly owned by the University of Padova and INFN, and at
UCL Grace HPC facility (Grace@UCL). The authors gratefully
acknowledge the use of both facilities and the associated
support services. RT and RT acknowledge financial support
from the Italian MIUR through grant PRIN 2017LJ39LM.
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