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Abstract. Domain adaptation is an active area of current medical image anal-
ysis research. In this paper, we present a cross-device and cross-anatomy adap-
tation network (CCAN) for automatically annotating fetal anomaly ultrasound
video. In our approach, deep learning models trained on more widely available
expert-acquired and manually-labeled free-hand ultrasound video from a high-
end ultrasound machine are adapted to a particular scenario where limited and
unlabeled ultrasound videos are collected using a simplified sweep protocol suit-
able for less-experienced users with a low-cost probe. This unsupervised domain
adaptation problem is interesting as there are two domain variations between
the datasets: (1) cross-device image appearance variation due to using differ-
ent transducers; and (2) cross-anatomy variation because the simplified scan-
ning protocol does not necessarily contain standard views seen in typical free-
hand scanning video. By introducing a novel structure-aware adversarial train-
ing module to learn the cross-device variation, together with a novel selective
adaptation module to accommodate cross-anatomy variation domain transfer is
achieved. Learning from a dataset of high-end machine clinical video and expert
labels, we demonstrate the efficacy of the proposed method in anatomy classifi-
cation on the unlabeled sweep data acquired using the non-expert and low-cost
ultrasound probe protocol. Experimental results show that, when cross-device
variations are learned and reduced only, CCAN significantly improves the mean
recognition accuracy by 20.8% and 10.0%, compared to a method without do-
main adaptation and a state-of-the-art adaptation method, respectively. When
both the cross-device and cross-anatomy variations are reduced, CCAN improves
the mean recognition accuracy by a statistically significant 20% compared with
these other state-of-the-art adaptation methods.

1 Introduction

Although ultrasound (US) imaging is recognized as an inexpensive and portable imag-
ing means for prenatal care, training skilled sonographers is time-consuming and costly,
resulting in a well-documented shortage of sonographers in many countries including
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the UK and the US. 99% of world-wide maternal deaths occur in low-and-middle-
income (LMIC) countries where the access to ultrasound imaging is even more lim-
ited [7]. To address this challenge, recent academic research on solutions for LMIC
setting has proposed a three-component approach: i) the adoption of inexpensive and
portable US equipment, ii) designing simple-to-use US scanning protocols, e.g. the
obstetric sweep protocol (OSP) [1] and iii) innovating intelligent image analysis algo-
rithms [6,10,9]. Arguably, the third innovation plays a bridging role in this approach,
enabling the other two cost-effective components of the solution.

Whilst simplified scanning protocols are less-dependent on user skills, they generate
diagnostic images that deviate in appearance to those acquired using the standardized
protocols used in fetal assessment. Even experienced sonographers can struggle to inter-
pret and analyze data obtained using simple protocols on inexpensive machines, which
are often equipped with older generation transducers and processing units. Furthermore
this data degrades modern machine learning models compared to those developed with
well-curated datasets [5,4,9]. Refining these existing models trained with site-specific
data is an option, but requires additional data to be acquired and manually annotated,
which may present substantial logistic challenges in expertise and cost.

As an alternative, in this work, we propose an unsupervised domain adaptation ap-
proach to train and adapt deep neural networks, learning from a source domain of high-
end ultrasound machine images and expert annotations to classify a target domain of
unpaired unlabeled images. As illustrated in Fig.la, in the fetal anomaly examination
application of interest, as an “instructor” dataset, the source-domain images are ac-
quired by experienced sonographers following an established fetal anomaly screening
free-hand ultra-sound protocol [8], hereafter referred to as the free-hand dataset. The
target-domain dataset is ultrasound video acquired using a simplified single-sweep pro-
tocol [10], also illustrated in Fig. 1b, hereafter referred to as the single-sweep dataset.
Classifying video frames in such single-sweep data into multiple anatomical classes is
useful for assisting a range of clinical applications, including anomaly detection, gesta-
tional age estimation and pregnancy risk assessment [9].

The proposed unsupervised domain adaptation approach in this paper addresses two
unique and specific dataset variations: 1) the variations of anatomical appearance be-
tween the source and target training images attributed to acquiring data with two dif-
ferent ultrasound devices (the cross-device variation); and 2) the variations between
anatomical class labels where the target domain label set is a smaller subset of the
source domain label set (the cross-anatomy variation). We argue that the cross-anatomy
variation is common, since there exists richer anatomical structures and a larger anatom-
ical label set in the free-hand dataset (source domain) compared with the single-sweep
dataset (target domain). More specifically, we propose a novel structure-aware adver-
sarial domain adaptation network with a selective adaptation module to reduce two
types of variations, such that, the model trained using the free-hand dataset with four
anatomical-class-labels can be used to effectively classify a single-sweep dataset with
two classes.

The contributions of this paper are summarized as follows: 1) for the first time,

we propose a Cross-device and Cross-anatomy Adaptation Network (CCAN) to reduce
cross-device and cross-anatomy variations between two datasets, as described in section
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Single-Sweep Dataset (Target Domain)
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Free-Hand Dataset (Source Domain) }
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Fig. 1: (a) Example frames illustrating the cross-device variations between free-hand and single-
sweep datasets. (b) [llustration of the single-sweep protocol.
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Fig. 2: Architecture of a Cross-Device Cross-Anatomy Adaptation Network.

2; 2) we propose a novel structure-aware adversarial training strategy based on multi-
scale deep features to effectively reduce cross-device variations; 3) we propose a novel
anatomy selector module to reduce cross-anatomy variations; 4) we demonstrate the
efficacy of the proposed approaches with experiment results on two sets of clinical
data.

2 Methods

2.1 Cross-Device and Cross-Anatomy Adaptation Network

We assume that the source image X g with the discrete anatomy label Y are drawn from
a source domain distribution Ps(X,Y"), and that the target images X are drawn from
the target domain distribution Pr(X,Y") without observed labels Y7. In our application,
the source and target distributions are represented by the free-hand and single-sweep
datasets, respectively. Since direct supervised learning using the target labels is not
possible, CCAN instead learns an anatomy classifier driven by source labels only, and
then adapts the model for use in the target domain.

As illustrated in the modules connected by black lines in Fig.2, the proposed CCAN
includes an encoder FE, projection layer F', the anatomy classifier C', the domain clas-
sifier D and two Mutual Information (MI) discriminators M, and M. Specifically,
the source images are first mapped by the encoder E to the convolutional feature
E(Xgs), and then projected to a latent global feature representation F'(E(Xg)). Then
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Fig. 3: Architecture and Implementation of (a) local and (b)global MI Estimation.

the anatomy classifier C' minimizes a cross-entropy loss L¢, between the ground-truth
Ys and the predicted source labels C(F(E(Xg))), i.e., b;nblnc Lc. We adopt the ad-

versarial training loss Lp [5] to learn domain invariant features, where the domain
classifier D tries to discriminate between features from the source and target domain,
while F and F tries to “confuse” D, i.e. max min Lp.

E,F D

s

However, facing the large anatomical variations, it is still an open question as to
which levels of deep features to align and which should be domain-invariant. To answer
this question, and referring to the notation in Fig.2, we propose to align the distribution
of multi-scale deep features in adversarial training by compressing information from
local convolutional feature maps [, and the classifier prediction h into a unified global
semantic feature g and to reduce cross-domain variations of g. More specifically, we
maximize the local and global M1 losses, M I(g,1) and M I(g, h), between two feature
pairs, (g,!) and (g, h) respectively. The MI estimation [2] is achieved by two binary
classification losses, distinguishing whether two features are a positive or negative pair
from the same image, as shown in Fig.3. Taking M I(g, h) as an example, it relies on
a sampling strategy that draws positive and negative samples from the joint distribution
P(g, h) and from the marginal product P(g)P(h) respectively. In our case, the positive
samples (g1, hy) are features of the same input, while the negative samples (g1, ho)
are obtained from different inputs. That is, given an input g; and a set of positive and
negative pairs from a minibatch, the global MI discriminator Mg aims to distinguish
whether the other input i; or ho from the same input image as g; or not, as shown in
Fig.3.

The overall objective can be summarized by the following minimax optimization:

minmax — Lo +alp +y(MI(g,1) + MI(g, h)) ()

where o and ~ are the weights of £Lp and MI losses respectively. In this work, the
hyper-parameters are set empirically (via grid-searching from the evaluation set) to
weight between the classification loss L, the domain classification loss £p and MI
loss M1(g,l) + MI(g,h). The detailed domain discriminator loss £ and MI losses
therefore, are given by the Eqns (2)-(5). Note that before the inner-product operation in
Eqn.(3), we used two projection layers W}, and W for classifier prediction A and local



Cross-Device Cross-Anatomy Adaptation Network for Ultrasound Video Analysis 5

feature map [ respectively.
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MI(g,h) = Ex,[logo(Mc(g1,h1))] + Exy[log(l — 0(Ma(g1,h2)))]  (4)
MI(g, l) = ]EXP [lOgU(ML(glv ll))] + EXN [log(l - U(ML(gla 12)))] (5)

2.2 Selective Adaptation Module for Cross-Anatomy Variations

Due to different scanning protocols used to acquire the free-hand and single-sweep
datasets, the available anatomical categories of the source domain Y often do not cor-
respond to those of the target domain label Y. Often, the anatomical class set of source
domain Cs may contain classes outside of the one in target domain C'r which hence-
forth we refer to as the outlier. When this large cross-anatomy variation exists, the
network training described in section 2.1 still aims to match identical class categories
between source and target domain, leading to a trained network prone to cross-anatomy
misalignment of the label space. For example, if we directly adapt a source domain
model trained using four-class data Xg to the three-class (shared anatomy) target do-
main data X7, mismatch may occur between the three-class features and the four-class
ones, due to the lack of anatomically paired features. As a result, some features in the
target domain may be randomly aligned with the features from the outlier anatomy
class, possibly due to the indiscriminative marginal feature distribution.

In this work, we investigate the case where categories of Y7 are a subset of the class
categories of Yg, as the single-sweep dataset contains a smaller number of anatomi-
cal classes than the free-hand dataset. We propose CCAN-g, a variant of CCAN with
a small modification, shown as the highlighted red 5 module in Fig.2 to selectively
adapt the model training, focusing on the shared anatomical categories Cs N Cp while
defocusing from the outlier class C's \ Cr.

As shown in Fig.2, § is an anatomy-wise weighting vector with the length of the
source domain class categories |C's|, with its k*" element indicating the contribution
of the k** source domain class. Ideally, 3 functions to down weight the classes from
the outlier anatomy class C's \ Cr and promoting the shared anatomy classes in the
set C's N C. Based on this principle, we calculate B simply using the average of target
classification predictions C'(F(F(X7r))), 8 = NT ZNT C(F(E(z%))), where 3 is the

B == .
max(8)
samples and individual target samples, respectively. For the shared class ks in Cs N Cr,
its weight 3[k;] should be relatively larger than the $[k,] of the outlier anatomy class
ko, where k, belongs to the set C's\ C7. The reason is due to the fact that C(F(E(z.)))
are the class predictions of the target domain from the shared class categories, which
should have higher probabilities and higher values in relevant positions of 3.

normalized vector of B ,B= Nt and xT are the total number of target domain
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Using [ as the weighting vector with the previous loss functions L~ and L leads
to two new loss functions, selectively focusing on the anatomy classifier C' and domain
classifier D on the samples from C's N Cr, as follows:

Ns
o= NLS ; 8., Lo(C(F(E(D)), yl) ©

Ng Nt
Lo =5 3 Olos( P (B - - > tog(1 = DF(EGH))- O

3 Experiment and Results

3.1 Implementations

We used the ResNet50 as the encoder design and the F' is a Fully-Connect (FC) layer
with the output dimension of 1024. The domain discriminator consists of three FC
layers, with the hidden layer sizes of 512 and 512 respectively. The global MI discrim-
inator consists of two FC layers and the local MI discriminator uses a two single 1x1
convolutional layer. When updating the classifier weight £, it is performed after each
epoch.

Two datasets were used for this study to evaluate the CCAN. The first free-hand
dataset (50-subjects) was acquired during a fetal anomaly examination using a GE Vo-
luson E8 with a convex C2-9-D abdominal probe, carried out at the maternity ultra-
sound unit, Oxford University Hospitals NHS Foundation Trust, Oxfordshire, United
Kingdom. The four class labels “Heart”, “Skull”, “Abdomen” and “Background”, with
78685, 23999, 51257 and 71884 video frames, respectively, were obtained and anno-
tated by experienced senior reporting sonographers. The single-sweep POCUS dataset
were acquired using a Philips HD9 with a V7-3 abdominal probe, which follows the
single-sweep scanning protocol [1] also shown in Fig.1(b). The single-sweep dataset
were also labeled with the same four classes, with 4136, 5632, 10399 and 17393 video
frames respectively. It is important to note that the background class is clinically defined
as image frames obtained during the scouting at the beginning of the procedure and
transition periods between localizing other anatomical regions of interest (i.e. the fore-
ground classes). Therefore, the background classes in the free-hand dataset may contain
different anatomical contents. The target domain single-sweep dataset was split into
70% training, 10% evaluation and 20% unseen test datasets, whilst the 80% and 20% of
the source domain free-hand dataset were used for training and evaluation, respectively.
The mean recognition accuracy is reported on the test target domain data. In addition,
the A-distance is also reported to measure the distribution discrepancy (d4)[3]. The
smaller the A-distance, the more domain-invariant the features are, in general, which
suggests a better adaptation method to reduce the cross-domain divergence.

3.2 Cross-Device Adaptation Results

To evaluate the ability of CCAN to reduce cross-device variation, we compare CCAN
with the method trained using source-domain data only and the benchmark domain
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adversarial neural network (DANN) [5]. In this work, the ResNet-50 network was pre-
trained using ImageNet and fine-tuned using the source domain free-hand dataset only,
which was used as the No-Adaptation model. For comparison, the no-adaptation recog-
nition accuracy was obtained by directly classifying the single-sweep dataset using this
model. For the three compared models, we perform two adaptation tasks: Expl) using
all samples from three anatomical classes, excluding the back-ground classes in both
datasets (as they may contain different anatomical features described in section 1 and
3); Exp2) using all samples from the four classes in both source and target datasets.

As shown in Table 1, compared to the no-adaptation model, statistically significant
improvement (on an average of 23%) in recognition accuracy was observed by using
the adaptation techniques (DANN and CCAN), with both p-values<0.001 based on a
pairwise Wilcoxon signed-rank test at a significance level of av = 0.05 (used for all the
p-values reported in this study unless otherwise indicated). Compared with the DANN,
our CCAN increased the mean recognition accuracy by 9.3% in Expl and in particular,
when considering the challenging 4-class adaptation, CCAN outperforms DANN by
19.0%. These two results are both statistically significant, with the p-values<0.001.

The confusion matrices of CCAN using four-class and three-class adaptation are
shown in Table 2, summarizing the recognition accuracies on a per-class basis. In
Exp2’s confusion matrix, recognition accuracies of 26.9% and 57.6% were obtained
for the fore-ground heart and abdominal classes, respectively. We hypothesized that it
is challenging for both DANN and CCAN that the images from free-hand dataset back-
ground class may include more diverse and unknown anatomical structures compared
to the background class for the single-sweep dataset, as shown in Fig.1(a) and section
3.1. This also motivated the selective adaptation module proposed in section 2.2, with
its results presented in section 3.3.

3.3 Cross-Anatomy Adaptation Results

As described in section 2.2, the proposed CCAN-{ reduces cross-anatomy variations,
such that a network trained with a source domain dataset can be adapted to a target
domain dataset with only a subset of the classes defined in the source domain. In our
application, the free-hand dataset with the four classes were used in the training, while
two experiments in which the subset classes from the single-sweep dataset were tested.
The first experiment (Exp3) uses three foreground classes of heart, abdominal and skull
and the second experiment (Exp4) uses two classes of heart and background in the
single-sweep dataset. The recognition accuracies are compared in the two experiments,
between the four models, the no-adaptation, the DANN, the CCAN and the CCAN-3
with the selective adaptation module.

Tables 1 (c),(d) summarises the results from Exp3 and Exp4. Without the selective
adaptation module, CCAN significantly outperforms the no-adaptation and the DANN
results by 11.7% and 6.2%, respectively in Exp3 (p-values<0.001). The outperformance
of CCAN-/ was further boosted to 27.2% using the proposed selective adaptation mod-
ule, achieving a mean recognition accuracy of 73.5%. The results from Exp4 are sum-
marized in Table 1 (d), which indicate statistically significant outperformances of 6.9%,
9.7% and 12.5% using CCAN-/3 in mean recognition accuracy (p-value<0.001), com-
pared to CCAN, DANN and no-adaptation respectively.



8 Q.Chen et al.

Table 1: Recognition rates (%), statistics and A-distance (da) of cross-device adaptations in (a)
and (b), cross-anatomy adaptations in (c) and (d).

(a) Expl (b) Exp2
Methods  [Acc.[Median,[1*,3"7] Quartile[ d Methods  [Acc.[Median,[1*,37"] Quartile[ d 4
No-Adaptation|60.9]  73.7,[25.1,100.0] 1.96 No-Adaptation|55.0 0.0,[0.0,61.5] 1.98
DANN [5] [79.2]  88.9,[25.1,100.0] 1.85 DANN [5] [62.6 14.0,[4.0,79.7] 1.94
CCAN(Ours) |88.5]  95.2,[73.4,100.0] |1.64 CCAN(Ours) |81.6 76.3,[39.6, 97.8] 1.77
(c) Exp3 (d) Exp4
Methods  [Acc.[Median,[1°",3"%] Quartile[ d Methods  [Acc.[Median,[1°7,3"7] Quartile[ d 4
No-Adaptation |34.6 6.4,[0.0,94.8] 1.99 No-Adaptation |77.1 100.0,[0.0,100.0] 1.84
DANN [5] |40.1 0.0,[0.0,94.8] 2.00 DANN [5] |789]  94.5,[42.6,100.0] 1.85
CCAN(Ours) |46.3 26.2,[0.0,72.5] 1.95 CCAN(Ours) 82,5 100.0,[46.0,100.0] |1.79
CCAN-B(Ours)|73.5]  96.1,[23.0, 100.0]  |1.88 CCAN-B(Ours)[89.6]  98.7,[79.3,100.0] |1.55

Table 2: Confusion matrix (%) of using CCAN for Expl (88.5%), Exp2 (81.6%) and Exp3
(73.5%). H, A, S, B stand for heart, abdomen, skull and background.

(a) Expl (b) Exp2 (c) Exp3
Predicted Class Predicted Class Predicted Class
T ATS H[A[S|B H[A|S]|B
- H[26.9]4.2[0.4[685 H|95.6] 0.0 | 0.0 [4.4
Actual H|77.4|22.6| 0.0 Actuall\ 103 |57.6| 4.7 |47.4 Actual| 1 66.4/20.0| 2.3 2.3
A(12.2/84.5 3.3 $/0.0[0.0[91.8/8.2 S[5.010.0 (92327
S|0.3]0.6(99.1 B|0.0|0.0/0.7(99.3

Table 2 (c) reports the per-class accuracies of Exp3 and we can observe a consider-
able impact due to the anatomy variation being selectively adapted by the proposed
module. For example, the misclassifications of the three anatomical classes to the outlier
anatomy class (the background class in free-hand dataset) are below 5%. Still, we can
observe that 66.4% of abdomen class samples are misclassified to the heart class, poten-
tially due to very similar image appearance between the abdomen in the single-sweep
dataset and the heart in the free-hand dataset.

4 Conclusions

In this paper, we presented a cross-device and cross-anatomy adaptation network to
classify an unlabelled single sweep video dataset guided by knowledge of a labelled
freehand scanning protocol video dataset. The proposed novel CCAN approach signif-
icantly improved the automated image annotation accuracy on the single sweep video
dataset, compared to the benchmark domain adaptation methods, by reducing both the
cross-device and cross-anatomy variations between the clinical dataset domains.
Acknowledgement The authors gratefully acknowledge the support of EPSRC grants
EP/R013853/1, EP/M013774/1 and the NIHR Oxford Biomedical Research Centre.



Cross-Device Cross-Anatomy Adaptation Network for Ultrasound Video Analysis 9

References

10.

. Abuhamad, A., Zhao, Y., Abuhamad, S., Sinkovskaya, E., Rao, R., Kanaan, C., Platt, L.:

Standardized six-step approach to the performance of the focused basic obstetric ultrasound
examination. American journal of perinatology 2(01), 090-098 (2016) 2, 6

. Belghazi, M.I., Baratin, A., Rajeswar, S., Ozair, S., Bengio, Y., Courville, A., Hjelm, R.D.:

Mine: mutual information neural estimation. arXiv preprint arXiv:1801.04062 (2018) 4

. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of

learning from different domains. Machine learning 79(1), 151-175 (2010) 6

. Chen, Q., Liu, Y., Wang, Z., Wassell, 1., Chetty, K.: Re-weighted adversarial adaptation

network for unsupervised domain adaptation. In: 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 7976-7985 (2018) 2

. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand,

M., Lempitsky, V.: Domain-adversarial training of neural networks. The Journal of Machine
Learning Research 17(1), 2096-2030 (2016) 2,4, 7,8

. Gao, Y., Noble, J.A.: Detection and characterization of the fetal heartbeat in free-hand ultra-

sound sweeps with weakly-supervised two-streams convolutional networks. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 305—
313. Springer (2017) 2

. van den Heuvel, T.L., Petros, H., Santini, S., de Korte, C.L., van Ginneken, B.: Combining

automated image analysis with obstetric sweeps for prenatal ultrasound imaging in devel-
oping countries. In: Imaging for Patient-Customized Simulations and Systems for Point-of-
Care Ultrasound, pp. 105-112. Springer (2017) 2

. Kirwan, D.: NHS Fetal Anomaly Screening Programme: 180 to 20+ 6 Weeks Fetal Anomaly

Screening Scan National Standards and Guidance for England. NHS Fetal Anomaly Screen-
ing Programme (2010) 2

. Maraci, M.A., Yaqub, M., Craik, R., Beriwal, S., Self, A., von Dadelszen, P., Papageorghiou,

A., Noble, J.A.: Toward point-of-care ultrasound estimation of fetal gestational age from
the trans-cerebellar diameter using cnn-based ultrasound image analysis. Journal of Medical
Imaging 7(1), 014501 (2020) 2

Maraci, M.A., Bridge, C.P., Napolitano, R., Papageorghiou, A., Noble, J.A.: A framework
for analysis of linear ultrasound videos to detect fetal presentation and heartbeat. Medical
image analysis 37, 22-36 (2017) 2



