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A B S T R A C T

Background: Socioeconomic position as measured by education may be embodied and affect the functioning
of key physiological systems. Links between social disadvantage, its biological imprint, and cause-specific
mortality and morbidity have not been investigated in large populations, and yet may point towards areas
for public health interventions beyond targeting individual behaviours.
Methods: Using data from 366,748 UK Biobank participants with 13 biomarker measurements, we calculated
a Biological Health Score (BHS, ranging from 0 to 1) capturing the level of functioning of five physiological
systems. Associations between BHS and incidence of cardiovascular disease (CVD) and cancer, and mortality
from all, CVD, cancer, and external causes were examined. We explored the role of education in these associ-
ations. Mendelian randomisation using genetic evidence was used to triangulate these findings.
Findings: An increase in BHS of 0.1 was associated with all-cause (HR = 1.14 [1.12�1.16] and 1.09 [1.07�1.12]
in men and women respectively), cancer (HR = 1.11 [1.09�1.14] and 1.07 [1.04�1.10]) and CVD (HR = 1.25
[1.20�1.31] and 1.21 [1.11�1.31]) mortality, CVD incidence (HR = 1.15 [1.13�1.16] and 1.17 [1.15�1.19]).
These associations survived adjustment for education, lifestyle-behaviours, body mass index (BMI), co-mor-
bidities and medical treatments. Mendelian randomisation further supported the link between the BHS and
CVD incidence (HR = 1.31 [1.21�1.42]). The BHS contributed to CVD incidence prediction (age-adjusted C-
statistic = 0.58), other than through education and health behaviours.
Interpretation: The BHS captures features of the embodiment of education, health behaviours, and more prox-
imal unknown factors which all complementarily contribute to all-cause, cancer and CVD morbidity and pre-
mature death.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)
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Introduction

Social inequalities have been described over time and between
populations showing that social disadvantage was associated with
poorer health and functional outcomes and earlier mortality [1,2].
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Research in context

Evidence before this study

The concept of social embodiment postulates that the human
environment, through its physical, chemical, psychosocial
stresses, solicits several adaptative processes, which over the
life-course leave a sustained biological mark and can be mea-
sured using biomarkers. Measures of the wear and tear of the
physiological systems involved in the stress response capture
socially patterned features of biological ageing and have been
found to relate to mortality and functional outcomes. However,
there is limited evidence on the extent to which social factors,
measures of its embodiment, socially patterned exposures and
behaviours may contribute to these associations, and in partic-
ular to incident chronic diseases.

Added value of this study

We used a composite score to measure the physiological wear-
and-tear of three key systems (inflammatory, metabolic and
cardiovascular) and the functioning of two organs (kidney and
liver) based on the measurement of 13 biomarkers in 366,748
UK Biobank participants who were free of cancer and CVD at
enrolment. Descriptive analyses showed a strong education
gradient in the score that was not fully explained by later-in-
life socially patterned behaviours and exposures, which empha-
sises the ability of such composite scores to capture, in adult-
hood, features of social embodiment that could not be captured
by established health risk factors.

We subsequently related our BHS to all-cause, cancer and
CVD mortality and to cancer and CVD incidence. We found that
the BHS was associated with increased all-cause, cancer and
CVD mortality, and cancer and CVD incidence. Despite strong
gradients in the BHS across education groups, these associa-
tions were only mildly attenuated upon adjustment for educa-
tion, though larger attenuations were observed while adjusting
for other factors, in particular BMI.

Implications of all the available evidence

Overall our results suggest that composite scores such as ours
may act as markers of biological ageing, capturing features of
social embodiment as well as biological effects of more proxi-
mal behaviours and health risk factors. Our study is the first to
show a strong social gradient in a measure of biological wear
and tear and we show that this role is independent of (i) educa-
tion as a marker of social determinants of health, and (ii) estab-
lished (and potentially socially patterned) health risk factors.
We further show that biological age complements health
behaviours to improve prediction of CVD incidence. Under-
standing the alternative mechanisms linking biological ageing
markers, social determinants and adverse health outcomes,
independently of behaviours, should be a research priority to
identify novel targets for policy interventions.
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While evidence has accumulated to relate social experiences, health
behaviours and outcomes [3�6], the way social environment over
the life-course affects biological functioning is poorly understood.
Once behavioural factors are accounted for, the social gradient in
health remains pervasive, pointing to alternative mechanisms linking
the social to the biological environments. This has been formalised in
the concept of social embodiment, which postulates that the human
environment, through its physical, chemical and psychosocial
stresses, precipitates several adaptative processes [2]. In the life-
course, these processes can be measured using biomarkers. Multi-
system scores such as the allostatic load measure the physiological
‘wear-and-tear’ of key biological systems involved in the stress
response across the life-course [7] and have been associated with
subsequent functional decline and mortality [8,9]. These have
appeared to be socially patterned and to capture features of biological
ageing at different life-stages [10]. There is limited evidence to date
on the extent to which social factors, measures of its embodiment,
socially patterned exposures and behaviours may contribute to these
associations and � in particular � to risk of incident chronic disease.
Understanding the complex links between social disadvantage, bio-
logical health and chronic disease may highlight areas for public
health action beyond focussing on individual-level behaviours.

As an extension of the allostatic load, we previously developed a Bio-
logical Health Score (BHS) which included physiological systems not
directly related to the stress response [11], and showed that participants
with lower educational attainment had higher BHS values (i.e. higher
biological risk) independently of socially patterned exposures and
behaviours. This suggested that composite scores are able to capture
aspects of the effect of social environmentonbiological functioning [11].

In the present study, using data from UK Biobank participants, we
investigate the link between education, biological functioning (as
measured by the BHS), and all-cause and cause-specific mortality, as
well as cardiovascular disease (CVD) and cancer incidence. We calcu-
late baseline BHS as a proxy for biological ageing and (i) evaluate the
association between the BHS and prospective health outcomes, (ii)
investigate if and to what extent these links are explained by educa-
tion and socially patterned exposures, and (iii) use genetic evidence
to further triangulate the association between the BHS and health
outcomes through Mendelian randomisation.

Methods

Study population

The UK Biobank study includes 502,536 volunteers from the UK
aged 37�73 years at entry between 2006 and 2010. Participants
were recruited throughout England, Wales and Scotland and included
socioeconomic and ethnic heterogeneity and an urban-rural mix of
the population [12]. Each participant completed an electronic
informed consent form and filled a computer-based questionnaire on
life-course exposures, medical history and treatments. Participants
underwent clinical measurements using standardised protocols in
the 22 assessment centres. They donated a blood sample for long-
term storage from which (i) DNA was extracted for genotyping
[13,14], and (ii) a set of 30 biomarkers were measured [15].

Socioeconomic position and covariates

As a more extensive measure of socioeconomic position capturing
both the length of education (through the highest diploma achieved),
but also features of future occupation of the participant, we used edu-
cational attainment as a proxy for early-life socio-economic position.
It was coded in three categories: high (college or university degree),
intermediate (A/AS levels or equivalent, O levels/GCSEs or equiva-
lent), and low (none of the aforementioned).

We considered as potential confounders the following variables
previously used when analysing the BHS [11]:

(i) the number of comorbidities (recoded into two categories: none,
one or more comorbidities) among conditions that may potentially
affect at least one physiological system of interest (supplementary
methods);

(ii) the number of pharmacological treatments, which were recoded
into three categories: none, one, and two or more reported treat-
ments;
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(iii) smoking and physical activity, which were recoded into binary
variables indicating if the participant had ever smoked or was
undertaking vigorous physical activity for more than 10 min, at
least once a week;

(iv) alcohol consumption coded into 4 categories: Non-drinker
(Never); Social drinker (One to three times a month, Special occa-
sions only); Moderate drinker (Once or twice a week); Daily
drinker (more than three times a week);

(v) Body mass index (BMI, kg/m2) grouped using the following four
categories: <25, 25�29.99, 30�39.99, and �40.
Biomarkers, BHS calculation, and genotypes

Similarly to the allostatic load, the BHS includes measures of the
physiological wear and tear of the inflammatory, cardiovascular, and
metabolic systems, and is further complemented bymarkers of the level
of functioning of two key organs: liver and kidney [11]. As detailed in
Box 1, of the 30 biomarkers available in the UK Biobank dataset, we
selected those related to any of the aforementioned physiological sys-
tems (N = 13). The BHS was calculated by first dichotomising the distri-
bution of each biomarker, considering an individual being ‘at risk’ for
that specific biomarker if the measured level of that biomarker was in
the extreme age and gender-specific quartile. As a conservative assump-
tion, if the value of a given biomarker was missing, a null sub-score was
allocated to the individual for that specific biomarker. The per-system
sub-score was obtained by summing biomarker-specific scores across
all biomarkers within the system, and the BHS by summing each sys-
tem-specific sub-score. Scores were scaled to ensure that the BHS and
each system-specific sub-score were measured on the same scale and
not driven by the number of biomarkers they included.

DNA samples from UK Biobank participants were genotyped using
custom Affymetrix arrays. After pre-processing, quality-control filter-
ing of both samples and genetic variants [16], the genetic data
included N = 672,345 SNPs assayed in 488,377 participants.

Health outcomes

As the two main causes of deaths in the UK, we focused on cancer
and CVD [17], and, as a negative control group not reported to be
associated with the level of functioning of any of the physiological
systems included in our score, we also investigated external causes of
death including suicide and accidents (ICD-10: V00-V99, W00-W99,
X00-X99, Y00-Y99). The cause of death of the UK Biobank partici-
pants was obtained by linkage to the national death registers. The
health status of the UK Biobank participants was followed up (range
0.27 to 12.04 years) by linkage to NHS central registers: incident
cases of cancer were identified through linkage to cancer and hospital
registers and incident CVD cases, using hospital registers and nurse-
administered questionnaires. As previously reported [2], we adopted
a broad definition of cancer, including all sites (see Supplementary
Table 1, ICD10 codes: C00-C97 and D00-D48). For CVD, we adopted a
disease definition including coronary artery disease (CAD), angina,
stroke and related outcomes [18] (Supplementary Table 2, ICD10
codes: G45, I20-I25, I63, I64, I67.2, I67.9, and OPCS-4 code K).

Data analysis

Participant selection
Of the 502,536 participants, we excluded (i) 381 participants with

inconsistent genetic and reported sex or inconsistent date of death,
(ii) a total of 105,950 (N = 77,772 cancer, N = 34,230 CVD) prevalent
cases, (iii) 2138 individuals with all biomarkers missing, (iv) 26,166
participants with missing information on education or one or more
missing covariate, and (vi) one participant with uncertain cancer sta-
tus (Supplementary Figure 1), leaving 366,748 (171,193 men,
195,555 women) participants free of cancer and CVD at baseline. Age
at recruitment was grouped into the following three categories: <50,
50�64, and >64 years old, giving similar number of participants in
each age group among men and women (Supplementary Table 3).

We calculated the BHS (and system-specific sub-scores) for each
participant and explored age and education gradients in the scores
using linear models (Supplementary Methods). Up to March 1st,
2016 (i) a total of 14,396 deaths were observed, including 8,014,
1,899, and 488 from cancer, CVD, and external causes, respectively
(Supplementary Table 4-A), and (ii) 52,443 and 15,653 cases of cancer
and CVD were diagnosed (Supplementary Table 4-B).

Survival analyses
Univariate and multivariate Cox proportional hazard regression

models using age as timescale were fitted to estimate hazard ratios
(HRs) for the BHS on health outcomes. We set the BHS (or system-spe-
cific sub-score) as predictor, and sequentially adjusted for education
level, lifestyle behaviours (smoking, physical activity, and alcohol con-
sumption), BMI, and co-morbidities and treatments. Analyses were con-
ducted in men and women separately for (i) all-cause, (ii) cancer, (iii)
CVD, and (iv) external-cause mortality, and (v) cancer and (vi) CVD inci-
dence (Supplementary Methods). Effect size estimates were expressed
as hazard ratios per 0.1 increase in the BHS (or system-specific sub-
scores). We adopted the same sequential adjustment procedure for
models setting education as predictor, which were further adjusted for
behaviours, BMI, co-morbidities and treatments, and the BHS.

To assess the predictive performances of the models investigated,
we used the same Cox regression models using age as timescale to
derive the distribution of the age-adjusted 10-year event-free sur-
vival probabilities in cases and non-cases, as well as age-adjusted
Harrell’s C-statistic. C-statistics were also calculated for survival mod-
els unadjusted for age, by taking time elapsed since enrolment as
timescale and additionally including chronological age as a predictor.

The validity of the proportional hazard assumption was evaluated
by visual inspection of the Schoenfeld residuals.

Sensitivity analysis
To check the potential role of ethnicity, we ran our survival mod-

els adjusting for ethnicity. Ethnicity was self-reported in the UK Bio-
bank and reflects social aspects of minority communities.

As an unsupervised alternative to the BHS, we constructed a con-
tinuous biomarker score based on principal component analysis
[19,20] to summarise the information in the biomarker data and
chose the first component of (i) the 13 biomarkers as an alternative
to the BHS and (ii) biomarkers included in each system, as an alterna-
tive to each system-specific score in our survival analyses.

Mendelian randomisation
We adopted a one-sample two-stage least squares Mendelian ran-

domisation (MR) approach [21] relying first on the identification of
genetic instruments which were used to estimate the instrumentally
explained (exposure-independent) part of the BHS. The selection of
genetic variants as instrumental variables was done using a linear
model coupled with a stringent pruning strategy (Supplementary Meth-
ods) [22]. We performed series of sensitivity analyses for the selection of
instrumental variables using (i) the BOLT-LMM model, as an alternative
with relaxed normality assumptions, (ii) using different values of the
significance level to select variants in the clumping step, and (iii) using
different values of r2 for the pruning of SNPs in high LD. In the second
stage, the genetically predicted BHS was regressed against the health
outcomes and resulting effect size estimates were used to infer the
causal effect of the BHS on each outcome (Supplementary methods).
The second stage regression was based on a proportional hazard Cox
model [23] adjusted for sex, and the first 10 principal components
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capturing the latent population structure. The univariable MR model
including only BHS as risk factor was extended to a multivariable Men-
delian Randomisation (MVMR) [24], where the survival model also
included the instrumental estimate of the education variable as addi-
tional risk factor, using the same genetic instruments in order to account
and adjust for a pleiotropic effect via education.

All statistical analyses were performed using R v3�6�1 in the
RStudio environment and PLINK v1.90p 64-bit (16 Apr 2016).

Ethical approval

Ethical approval for the nurse visit was obtained from the
National Research Ethics Service (Reference: 10/H0604/2). Partici-
pants gave written consent for blood sampling (McFall et al. 2014).

Role of the funding source

The funders had no role in the design and conduct of the study;
collection, management, analysis, and interpretation of the data; and
preparation, review, or approval of this manuscript.

Results

Data and BHS exploration

Characteristics of the study participants are given in Table 1 for
each age group in men and women separately. Mean follow-up for
Table 1
Description of the study population across all covariates by gender and age class. The
total number of individuals in that age class and gender. The average and standard erro
low-up (for living, cancer and CVD free individuals at the end of follow-up) are also repo

Women (%)

Age Group <50 (N = 51,726) 50�64 (N = 113,793) >6

Education
Low 1716 (3.32%) 17,078 (15.01%) 8
Intermediate 28,433 (54.97%) 58,888 (51.75%) 14
High 21,577 (41.71%) 37,827 (33.24%) 6
Co-morbidities
None 41,301 (79.85%) 93,630 (82.28%) 25
One or more 10,425 (20.15%) 20,163 (17.72%) 4
Number of treatments
None 29,786 (57.58%) 52,826 (46.42%) 9
One 9245 (17.87%) 19,137 (16.82%) 4
Two or more 12,695 (24.54%) 41,830 (36.76%) 15
Smoking
Never 33,160 (64.11%) 68,118 (59.86%) 17
Yes 18,566 (35.89%) 45,675 (40.14%) 12
Sports activity
At least one sport 33,486 (64.74%) 67,856 (59.63%) 17
None 18,240 (35.26%) 45,937 (40.37%) 12
Alcohol consumption
Non-drinker 3888 (7.52%) 9244 (8.12%) 3
Social drinker 14,767 (28.55%) 29,904 (26.28%) 8
Moderate drinker 14,795 (28.6%) 29,221 (25.68%) 6
Daily drinker 18,276 (35.33%) 45,424 (39.92%) 11
Body Mass index (Kg/m2)
Below 25 24,934 (48.2%) 45,471 (39.96%) 10
Above 25 and below 30 16,470 (31.84%) 42,411 (37.27%) 12
Above 30 and below 40 9051 (17.5%) 23,371 (20.54%) 6
above 40 1271 (2.46%) 2540 (2.23%)
Person-years: mean (s.d.)
All-cause deaths 4.94 (1.95)
Cancer deaths 5.00 (1.89)
CVD deaths 4.61 (2.24)
External cause deaths 4.24 (2.00)
Other cause deaths 4.97 (1.99)
Alive at the end of follow-up 7.58 (0.88)
Cancer incident cases 3.94 (2.18)
CVD incident cases 4.22 (2.18)
Cancer and CVD-free individuals 7.57 (0.88)
all-cause and cause-specific mortality were comparable (mean per-
son-years ranging from 4.24 to 5.00). Shorter follow-up was observed
for cancer and CVD incidence (from 3.94 to 4.22 person-years).

We observe a social gradient in BHS across education groups in
both men and women with higher scores (i.e. higher biological risk)
in the lower education group (Fig. 1-A), and slightly higher BHS val-
ues in individuals diagnosed with CVD during the follow-up com-
pared with non-cases (Fig. 1-B). We found differences in the BHS
according to all covariates (Supplementary Table 5, p < 10�16). Simi-
larly, we found, in both genders and all age groups, a downward gra-
dient leading to higher metabolic, cardiovascular, inflammatory, and
liver scores in the lowest education group (Supplementary Table 6).
The effect of education on the BHS was stronger in younger age
groups, and, irrespective of age, an attenuation of that effect was
observed while adjusting for each covariate, in particular BMI (Sup-
plementary Table 7).
Survival models: mortality and incidence

Univariate Cox models using the scores as predictor indicate that
the BHS and all system-specific sub-scores were associated with
higher all-cause, cancer and CVD mortality. Estimated HR (mean
[2.5th�97.5th percentiles]) for 0.1 higher BHS were 1.14 [1.12�1.16],
1.11 [1.09�1.14], 1.25 [1.20�1.31] respectively in men (Table 2-A)
and 1.09 [1.07�1.12], 1.07 [1.04�1.10], 1.21 [1.11�1.31] in women
(Table 2-B). The metabolic, inflammatory and liver scores were all
percentages given in parenthesis are the proportion of individuals relative to the
rs of person-years to death, the first event (cancer or CVD incidence) or end of fol-
rted for men and women separately.

Men (%)

4 (N = 30,036) <50 (N = 46,127) 50�64 (N = 96,930) >64 (N = 28,136)

938 (29.76%) 2494 (5.41%) 13,952 (14.39%) 7799 (27.72%)
,344 (47.76%) 24,964 (54.12%) 46,695 (48.17%) 12,367 (43.95%)
754 (22.49%) 18,669 (40.47%) 36,283 (37.43%) 7970 (28.33%)

,557 (85.09%) 38,759 (84.03%) 84,572 (87.25%) 24,765 (88.02%)
479 (14.91%) 7368 (15.97%) 12,358 (12.75%) 3371 (11.98%)

937 (33.08%) 32,096 (69.58%) 53,296 (54.98%) 10,890 (38.7%)
991 (16.62%) 6501 (14.09%) 14,726 (15.19%) 4484 (15.94%)
,108 (50.3%) 7530 (16.32%) 28,908 (29.82%) 12,762 (45.36%)

,891 (59.57%) 27,408 (59.42%) 48,812 (50.36%) 11,802 (41.95%)
,145 (40.43%) 18,719 (40.58%) 48,118 (49.64%) 16,334 (58.05%)

,364 (57.81%) 34,170 (74.08%) 64,110 (66.14%) 17,702 (62.92%)
,672 (42.19%) 11,957 (25.92%) 32,820 (33.86%) 10,434 (37.08%)

320 (11.05%) 2953 (6.4%) 4893 (5.05%) 1561 (5.55%)
605 (28.65%) 8755 (18.98%) 13,864 (14.3%) 4044 (14.37%)
990 (23.27%) 13,867 (30.06%) 24,080 (24.84%) 6606 (23.48%)
,121 (37.03%) 20,552 (44.56%) 54,093 (55.81%) 15,925 (56.6%)

,762 (35.83%) 13,098 (28.4%) 24,870 (25.66%) 7206 (25.61%)
,537 (41.74%) 22,548 (48.88%) 48,170 (49.7%) 14,686 (52.2%)
295 (20.96%) 9899 (21.46%) 22,664 (23.38%) 6039 (21.46%)
442 (1.47%) 582 (1.26%) 1226 (1.26%) 205 (0.73%)

4.87 (2.00)
4.98 (1.95)
4.55 (2.08)
4.37 (2.04)
4.92 (2.03)
7.58 (0.88)
4.07 (2.17)
4.21 (2.15)
7.57 (0.88)
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Fig. 1. (A) Distribution of the BHS by age groups and education levels for the study population excluding prevalent cases. For each category the point estimate of the mean BHS is
represented by a bullet and the vertical line represents the 2.5�97.5% confidence interval of the score in that category for men (left) and women (right). Low, intermediate and high
education are represented in red, green and blue, respectively. For both genders and within each age class, differences in mean BHS by education category were statistically signifi-
cant (p < 0.001, mean BHS in the high education category as reference) as were trends in BHS across the three education categories for both genders and within each age class
(p < 0.001). (B) BHS distribution for incident cancer (red), and CVD (blue) cases and for full population at the latest follow-up (black) in men (left), and women (right).
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associated with all-cause, cancer and CVD mortality, in men and
women.

Results also suggested that the BHS was associated with a small
increase in cancer incidence (mean HR [2.5th�97.5th percentiles]:
1.02 [1.01�1.03] and 1.02 [1.01�1.03] in men and women, respec-
tively). Much stronger effects were estimated for CVD incidence,
mean HR [2.5th97.5th] percentiles were 1.15 [1.13�1.16] and 1.17
[1.15�1.19] in men and women respectively (Table 2). All system-
specific sub-score (except kidney score) were associated with CVD
incidence and (weaker) associations with cancer incidence of the
metabolic, cardiovascular (in women only) and the inflammatory
sub-scores were observed.

The effect of the BHS � or its continuous alternative, the score of
the first principal component summarising the 13 biomarkers � on
all-cause, cancer and CVD mortality, and cancer and CVD incidence
was similar or mostly greater than that of any of the individual bio-
marker (Supplementary Figure 2).

Attenuation analyses

Multivariate Cox models showed modest attenuation of the effect
of the BHS and all system-specific sub-scores on all cause, cancer and
CVD mortality when adjusting for education. Stronger effect attenua-
tion was observed when adjusting for lifestyle behaviours (Fig. 2A-C,
and Supplementary Tables 8�10). In the fully adjusted models, the
HR remained statistically significant for the BHS on all-cause, cancer
and CVD mortality, as was also the case for the metabolic, cardiovas-
cular (except for cancer mortality in women), and inflammatory
(except for CVD mortality in women) sub-scores. The BHS or system-
specific sub-scores were not associated with external causes of



Table 2
Hazard Ratios (HR) (and 95% confidence interval) from the univariate Cox model including the BHS or each system-specific sub-score as predictor. HRs were
expressed for a 0.1 increase in the score, and models were run for all-cause, cancer, CVD and external-cause mortality and for cancer and CVD incidence in men
(A) and women (B), separately.

Mortality Incidence

All-cause (N = 7144
deaths)

Cancer (N = 3914
deaths)

CVD (N = 846
deaths)

External cause
(N = 315 deaths)

Cancer (N = 43,772
cases)

CVD (N = 11,653
cases)

HR [95% CI] p-value HR [95% CI] p-value HR [95% CI] p-value HR [95% CI] p-value HR [95% CI] p-value HR [95% CI] p-value

A. Men N = 4428 N = 2225 N = 681 N = 220 N = 20,962 N = 7925
BHS 1.14 [1.12�1.16]

7.63 £ 10�44
1.11 [1.09�1.14]
1.00 £ 10�16

1.25 [1.20�1.31]
2.70 £ 10�24

0.99 [0.91�1.08]
8.49 £ 10�01

1.02 [1.01�1.03]
1.01 £ 10�04

1.15 [1.13�1.16]
1.28 £ 10�93

System-specific
sub-score

Metabolic 1.05 [1.04�1.06]
2.66 £ 10�14

1.04 [1.02�1.06]
1.27 £ 10�05

1.14 [1.11�1.18]
5.80 £ 10�20

0.97 [0.92�1.03]
3.45 £ 10�01

1.01 [1.00�1.01]
4.20 £ 10�03

1.12 [1.11�1.13]
6.43 £ 10�138

Cardiovascular 1.05 [1.04�1.06]
2.99 £ 10�26

1.04 [1.02�1.05]
1.32 £ 10�07

1.10 [1.07�1.12]
1.06 £ 10�15

1.04 [1.00�1.08]
6.13 £ 10�02

1.00 [1.00�1.01]
2.22 £ 10�01

1.05 [1.05�1.06]
1.31 £ 10�51

Inflammatory 1.07 [1.06�1.08]
3.20 £ 10�57

1.06 [1.05�1.08]
7.09 £ 10�22

1.09 [1.07�1.11]
3.51 £ 10�15

1.01 [0.97�1.05]
7.00 £ 10�01

1.01 [1.01�1.02]
1.20 £ 10�06

1.04 [1.03�1.05]
6.72 £ 10�32

Liver 1.03 [1.02�1.04]
1.89 £ 10�11

1.03 [1.01�1.04]
2.06 £ 10�04

1.04 [1.02�1.07]
3.61 £ 10�04

1.02 [0.98�1.06]
3.73 £ 10�01

1.00 [1.00�1.01]
1.63 £ 10�01

1.02 [1.02�1.03]
1.42 £ 10�10

Kidney 0.99 [0.98�0.99]
1.24 £ 10�03

1.00 [0.98�1.01]
4.20 £ 10�01

0.99 [0.97�1.01]
5.75 £ 10�01

0.95 [0.91�0.99]
2.05 £ 10�02

1.00 [1.00�1.00]
8.60 £ 10�01

1.00 [0.99�1.01]
8.59 £ 10�01

B. Women N = 2716 N = 1689 N = 165 N = 95 N = 22,810 N = 3728
BHS 1.09 [1.07�1.12]

8.38 £ 10�16
1.07 [1.04�1.10]
8.54 £ 10�06

1.21 [1.11�1.31]
1.21 £ 10�05

0.94 [0.83�1.07]
3.51 £ 10�01

1.02 [1.01�1.03]
1.07 £ 10�05

1.17 [1.15�1.19]
6.84 £ 10�65

System-specific sub-
score

Metabolic 1.04 [1.03�1.06]
3.91 £ 10�08

1.03 [1.01�1.05]
4.44 £ 10�04

1.18 [1.12�1.24]
9.45 £ 10�10

0.94 [0.86�1.02]
1.54 £ 10�01

1.01 [1.01�1.02]
9.69 £ 10�06

1.12 [1.11�1.14]
3.56 £ 10�87

Cardiovascular 1.03 [1.02�1.04]
1.29 £ 10�06

1.01 [1.00�1.03]
8.94 £ 10�02

1.08 [1.03�1.13]
1.47 £ 10�03

1.00 [0.94�1.07]
9.96 £ 10�01

1.01 [1.01�1.01]
7.99 £ 10�06

1.05 [1.04�1.06]
6.72 £ 10�26

Inflammatory 1.04 [1.03�1.05]
2.81 £ 10�12

1.03 [1.02�1.05]
2.49 £ 10�05

1.07 [1.02�1.12]
4.15 £ 10�03

0.99 [0.92�1.06]
7.05 £ 10�01

1.00 [1.00�1.01]
3.59 £ 10�02

1.05 [1.04�1.06]
1.15 £ 10�19

Liver 1.03 [1.02�1.04]
1.51 £ 10�07

1.02 [1.01�1.04]
3.06 £ 10�03

1.04 [0.99�1.09]
8.38 £ 10�02

0.99 [0.93�1.06]
7.49 £ 10�01

1.00 [1.00�1.01]
8.45 £ 10�02

1.04 [1.03�1.05]
5.31 £ 10�15

Kidney 1.00 [0.99�1.01]
9.93 £ 10�01

1.00 [0.99�1.01]
9.05 £ 10�01

0.98 [0.95�1.02]
4.20 £ 10�01

0.99 [0.94�1.04]
6.23 £ 10�01

1.00 [1.00�1.00]
9.83 £ 10�01

1.01 [1.00�1.01]
1.16 £ 10�01

6 M. Chadeau-Hyam et al. / EClinicalMedicine 29�30 (2020) 100658
mortality (N = 315 deaths), irrespective of the covariates included in
the model (Supplementary Figure 3 and Supplementary Table 11).

Analyses of incident diseases showed, for both cancer and CVD
incidence, a limited attenuation of the effect of the BHS and system-
specific sub-scores when adjusting for education (Fig. 2DE, Supple-
mentary Tables 12�13). Stronger effect attenuations were observed
when BMI was included in the model, particularly for CVD incidence.
None of the BHS and system-specific sub-scores were associated with
cancer incidence in the fully adjusted models. In contrast, and espe-
cially amongst women, we observed stronger effects of BHS on CVD
incidence. Fully adjusted HRs were 1.11 [1.09�1.12], and 1.11
[1.09�1.14] in men and women respectively, and were greater than
effect size estimates of each system-specific sub-score, including
metabolic (HR 1.09 [1.08�1.10] and 1.09 [1.08�1.11]), cardiovascular
(HR 1.04 [1.04�1.05] and 1.04 [1.03�1.05]), and inflammatory scores
(1.03 [1.02�1.03] and 1.02 [1.01�1.03]).

Further adjusting our survival models for ethnicity (Supplemen-
tary Figure 4) identified exactly the same associations and did not
change the effect size estimates.

Sensitivity analyses considering principal components scores
instead of our composite scores did not affect our conclusions (Sup-
plementary Figures 5�6 for mortality and incidence, respectively).

Schoenfeld residuals plots (Supplementary Figures 7�8 for mor-
tality and incidence analyses, respectively) did not indicate violation
of the proportionality assumption.

Education and socially patterned exposures

Survival models including education as the independent variable
showed, in both men and women and across all five health outcomes,
(i) higher HRs for the low education group, and (ii) a stronger effect in
men for all health outcomes except CVD incidence (Fig. 3). Strong
effect attenuation was observed, irrespective of gender and disease
outcome, in the model including lifestyle behaviours, while the inclu-
sion of the BHS in the model yielded a limited attenuation of the HRs.
In the fully adjusted model, education was significantly associated
with CVD incidence in both genders and all education groups
(HR = 1.17 [1.11�1.23]; 1.14 [1.05�1.23] for intermediate education
in men and women, respectively; 1.24 [1.16�1.32]; 1.18 [1.07�1.30]
for low education in men and women respectively), in men only with
all-cause mortality (HR = 1.44 [1.32�1.57], and 1.16 [1.08�1.25] for
low and intermediate education) and cancer mortality (HR = 1.40
[1.24�1.57], and 1.12 [1.01�1.23] for low and intermediate educa-
tion), in men only for the lower education group with cancer inci-
dence (HR = 1.11 [1.07�1.16]), and in women only for the lower
education group with CVD mortality (1.70 [1.07�2.68]).

Mendelian randomisation

The GWAS of the BHS identified 172 genetic variants within auto-
somes which we used as instrumental variables in a one-sample MR
analysis (Supplementary Table 14). These explained 2.0% of the vari-
ance of the BHS. Genetically predicted BHS (Table 3) was significantly
associated with CVD incidence (Base model, HR = 1.31, p-
value < 10�10) but not with other outcomes. In order to account for a
potential pleiotropic pathway via education we performed MVMR
adjusting for genetically predicted education, where the effect of the
BHS was not attenuated (HR = 1.30, p-value < 10�9). This suggests
that the link between the BHS and CVD incidence is independent of
education. Sensitivity analyses with different parameters for the
selection of instrumental variables yielded highly consistent results
(Supplementary Table 15).



Fig. 2. Hazard ratio from the proportional hazard Cox model relating (A) all cause, (B) cancer and (C) cardiovascular mortality, cancer (D), and CVD (E) incidence and the Biological
Health Score (BHS, red), the metabolic (blue), the cardiovascular (green), the inflammatory (purple), the kidney (orange), and the liver (grey) sub-scores. Hazard ratios are expressed
as a risk change per 0.1 increase in the score. Results are presented for men (left) and women (right) and for the unadjusted model, for models sequentially adjusted for education
group, lifestyle behaviours (smoking, physical activity, and alcohol consumption), BMI and medical status (number of comorbidities and treatments).
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Education, BHS, health behaviours and CVD incidence prediction

We found that education was modestly predictive of CVD inci-
dence (Fig. 4C = 0.54), and both BHS (C = 0.58) and health behaviours
(C = 0.59) showed stronger predictive performances. Performances
only marginally improved by adding education into the model
including BHS and behaviours (C = 0.59 for both models). Combining
the BHS and behaviours in the models yielded a C-statistic of 0.60,
and the model including the BHS, behaviours, and education a C-sta-
tistic of 0.61. Unadjusted models including age as predictor showed
stronger performances (C-statistics > 0.68) and were indicative of a
marginal effect of the BHS over chronological age that was indepen-
dent of education and health behaviours.
Discussion

The UK Biobank cohort is one of few datasets combining informa-
tion on time-resolved social factors and exposures, multiple bio-
markers measurements, and reliable health outcomes and therefore
offers unique opportunities to investigate the link between (i) social
factors, (ii) biology, and (iii) chronic disease mortality and incidence.
Our Biological Health Score (BHS) used measurements of 13 bio-
markers in 366,748 UK-Biobank participants who were free of cancer
and CVD at enrolment.

Descriptive analyses showed a strong education gradient in the
BHS that was not fully explained by later-in-life socially patterned
behaviours and exposures, which emphasises the ability of such



Men Women A
ll−cau

se m
o

rtality
C

an
cer m

o
rtality

C
V

D
 m

o
rtality

C
an

cer In
cid

en
ce

C
V

D
 In

cid
en

ce

1 2 3 1 2 3

+ BHS

+ Medical

+ BMI

+ Behaviours

Education

+ BHS

+ Medical

+ BMI

+ Behaviours

Education

+ BHS

+ Medical

+ BMI

+ Behaviours

Education

+ BHS

+ Medical

+ BMI

+ Behaviours

Education

+ BHS

+ Medical

+ BMI

+ Behaviours

Education

HR

Education
Low
Intermediate

Fig. 3. Hazard ratio from the proportional hazard Cox model relating all-cause, cancer, and cardiovascular mortality, cancer and cardiovascular disease incidence, and education
level (considering the high education group as reference). Results are presented for men (left) and women (right) and for the unadjusted model, and for models sequentially
adjusted for behaviours and lifestyle (smoking, physical activity, and alcohol consumption), BMI, comorbidities and treatments, and BHS.

8 M. Chadeau-Hyam et al. / EClinicalMedicine 29�30 (2020) 100658
composites score to capture, in adulthood, features of social embodi-
ment that could not be captured by established health risk factors.

Our survival analyses were supportive of an association between
the BHS and all system-specific sub-scores, except the kidney score,
on all-cause, cancer and CVD mortality. The BHS and system-specific
sub-scores were associated with a small increase in cancer incidence
and a much larger increase in CVD incidence.
Table 3
Results from the two-step least squares Mendelian randomisatio
portional hazard Cox model from a regression of the instrumenta
ity, and cancer and CVD incidence. Hazard Ratios (HRs) are exp
value assessing if the causal effect is different from 0. We presen
10 principal components capturing the latent structure of the UK
tionally adjusted for education. Results from the multivariable M
10 first principal components capturing the latent structure of th

Base model Ba

b HR p-value b

All-cause mortality 0.03 1.03 6.09 £ 10�01 0.00
Cancer mortality �0.01 0.99 8.91 £ 10�01 �0.04
CVD mortality 0.12 1.12 4.43 £ 10�01 0.10
Cancer incidence 0.01 1.01 6.29 £ 10�01 0.01
CVD incidence 0.27 1.31 3.32 £ 10�11 0.26
These findings are consistent with results of previous studies that
linked markers of inflammation [25] or broader physiological scores
[26�31] and all-cause mortality. Unlike some other studies [32], our
work was statistically powered to identify effects of markers of bio-
logical ageing and cause-specific mortality. Several studies have
established a link between physiological markers and incidence of
ischaemic heart disease [33], depressive symptoms [34], functional
n approach. Causal effects (b) were estimated using a pro-
lly explained BHS against all-cause, cancer and CVD mortal-
ressed for a 0.1 increase in the score, and we report the p-
t estimates for the model adjusted for age, sex and the first
Biobank population (Base model), and for the model addi-
endelian randomisation were adjusted for age, sex and the
e UK Biobank population.

se model + Education Base model + ^Education

HR p-value b HR p-value

1.00 9.39 £ 10�01 0.02 1.02 7.33 £ 10�01

0.96 5.61 £ 10�01 �0.02 0.98 8.14 £ 10�01

1.11 5.16 £ 10�01 0.11 1.11 4.82 £ 10�01

1.01 7.33 £ 10�01 0.01 1.01 6.68 £ 10�01

1.30 3.18 £ 10�10 0.27 1.30 1.23 £ 10�10
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Fig. 4. Distribution of individual probabilities from Cox proportional hazards using (i) Education, (ii) the BHS, (iii) Health behaviours (BMI, smoking, alcohol consumption, and phys-
ical activity), (iv) Education and Health behaviours, (v) BHS and Health behaviours, (vi) BHS and Education, and (vii) BHS, Education and Health behaviours as predictors of CVD inci-
dence. Models were all adjusted for reported medical status (number of co-morbidities and medical treatments). Results are presented for non-cases (in blue) and cases (in red). In
the model only including Education as predictor, the survival probability is discrete and has one value for each education group. The corresponding distribution is represented as a
horizontal histogram showing the survival probability for the low (lightest tint), intermediate (medium tint), and high (solid colour) education group. Predictive performances of
the models are summarised by their mean (and 2.5th 97.5th percentile confidence interval) of the Harrell’s C-statistic for the age adjusted survival model (using age as timescale).
We also report the Harrell’s C-statistic for the model using time since enrolment as timescale and include age as predictor in all models. Results are presented for each model (X
axis) in men and women separately.
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decline [8], and type-2 diabetes [35]. In the present study we were
able, for the first time, to investigate the association between BHS
and cancer and CVD incidence in the same population, and our results
are supportive of a possible causal association with CVD incidence.

We identified a strong social gradient in the scores leading to
higher biological risk in individuals with a lower education, which
Box 1. UK-Biobank biomarke
could not be fully explained by (socially patterned) behaviours and
exposures [11]. Our analyses suggest that the effects of the scores on
the incidence of cardiovascular disease and cancer and mortality
from all, cardiovascular and cancer causes were only moderately
affected by the inclusion of education in the model. In comparison,
there was greater attenuation from the inclusion of lifestyle
rs and BHS Calculation.



10 M. Chadeau-Hyam et al. / EClinicalMedicine 29�30 (2020) 100658
behaviours in the analyses of mortality and of BMI for disease inci-
dence. In contrast to education, these factors are proximal to the
measurement of the biochemical markers that make up the BHS, sug-
gesting that proximal rather than earlier life factors play a more
important role in the associations between the BHS score and biologi-
cal risk.

We also identified an adverse effect of lower education on all five
health outcomes consistent with previous studies. These were all
strongly attenuated upon adjustment for lifestyle behaviours and to a
lesser extent by the BHS.

Taken together, our results first suggest that the BHS has a stron-
ger effect than each of its constituent biomarkers, and is able to cap-
ture features of the social embodiment that are independent of later-
in-life health risk factors, as well as biological effects of more proxi-
mal behaviours and health risk factors. As such, our study emphasizes
its ability to measure biological ageing. We find that education and
the BHS capture different (largely independent) facets of socially pat-
terned behaviours and biological information associated with disease
risk. Our Mendelian randomisation results were indicative of a poten-
tial causal link between the BHS and CVD incidence, independent of
education.

We found that the BHS captured disease-relevant features of bio-
logical ageing that were not related to chronological age. Age-
adjusted predictive performances of the BHS in predicting CVD inci-
dence were comparable to those of health behaviours and of a poly-
genic risk score recently developed and tested in the same study
population [36]. We found that combining health behaviours, the
BHS and, to a lesser extent, education, improves CVD incidence pre-
diction, therefore supporting their complementarity.

Our study benefited from the size and quality of UK Biobank,
which includes hundreds of thousands of individuals, followed-up
and validated clinical data from registries enabling the investigation
of cause-specific mortality (up to thousands of deaths) and incidence
(up to tens of thousands of incident cases). Data also include bio-
markers capturing features of biological ageing and genotype data
enabling causal assessment through instrumental modelling. We
selected participants who were free of cancer and CVD at enrolment,
limiting the risk of reverse causality. Moreover, UK biobank includes
genetic information on the participants, which allowed us to triangu-
late the evidence using a one-sample MR analysis.

The UK Biobank dataset has been reported to suffer from a
healthy-volunteer selection bias [37], which hampers the generalis-
ability of our findings: we may have over- or under-estimated the
true effect sizes. In addition, previous studies have shown that the
UK Biobank study population over-represented participants of white
background. The resulting small number of observations in non-
white participants precluded us from running stratified analyses on
each ethnic group separately. The models adjusted for ethnicity
showed very limited attenuation of effect size estimates. However,
these should be considered with caution due to under-representation
of ethnic minorities in our study population.

We considered a broad definition for cancer across multiple sites.
The clinical heterogeneity across cancer types and sites may, together
with the lower cancer incidence in the UK Biobank study compared
to the general population [37], help explain why our results are
weaker for cancer outcomes than for CVD.

Our focus on education as a proxy-measure for socio-economic
position allowed us to examine in detail the association between
education and health through the BHS. However, education captures
only part of the complex social and structural factors that may be
embodied over the life course. Future analyses using other measures
of socio-economic position at the individual or aggregate level (e.g.
Townsend index) would provide additional insight into embodiment
processes.

The BHS was calculated based on 13 biomarkers covering five
physiological systems. Although system-specific sub-scores and the
BHS were normalised such that their value did not depend on the
number of biomarkers they included, we cannot exclude the possibil-
ity that weaker associations involving systems with fewer bio-
markers (e.g. kidney) may simply reflect a more imprecise
description of the system. Sensitivity analyses using PCA scores as an
unsupervised alternative to the BHS yielded similar conclusions, sug-
gesting that the original construct of the score relying on biomarker
dichotomisation did not affect the health-relevance of the score.
However, effect-size estimates were smaller, which can be attributed
to a scaling effect and to the proportion of variance explained by the
first principal component, which ranged from 16 to 60% of the total
variance of the biomarkers.

Throughout our analyses, the effect of the BHS was stronger than
that of any of the system-specific sub-scores. This supports the use of
a multisystem score such as the BHS that is able to capture comple-
mentary health-relevant information from each system. We included
external cause mortality in our analyses as a negative control and
found no association with the BHS and sub-scores. We cannot
exclude that this lack of association may to some extent reflect the
relatively lower statistical power (N = 315 deaths) for this outcome.

Overall, we found that increased values of the BHS were associ-
ated both with elevated mortality and CVD and cancer incidence. We
show that this role is independent of (i) education as a marker of
social determinants of health, and (ii) established (and potentially
socially patterned) health risk factors.

In conclusion, we have shown that biological age, as measured by
the BHS, is socially patterned and captures features of early life social
embodiment. Independently of education, it complements health
behaviours to better predict CVD incidence. Understanding the alter-
native mechanisms linking biological ageing markers, social determi-
nants and adverse health outcomes, independently of behaviours,
should be a research priority to identify novel targets for future policy
interventions.
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