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Abstract 
 

 

Interrupted time series (ITS) is a quasi-experimental design for evaluating the effect of 
an intervention or treatment by comparing the outcome trajectory over time before and 
after initiation of the intervention. ITS became popular for evaluating interventions at 
the population level (e.g. policies); thus, the development of statistical methods was 
mainly orientated to modelling population-level data. This thesis aims to explore the 
issues that emerge when population-level ITS analyses are applied to incomplete 
individual-level data in health research, proposing alternative analysis methods.  
 
First, I performed a scoping review to demonstrate how the issues of missing data at the 
individual level have rarely been addressed in most recent ITS studies. Despite its 
limitations, complete case analysis is the most frequently used method for handling 
missing data. Individual-level data are usually transformed into population-level time-
specific summaries before fitting ITS models. This method can lead to bias. Mixed effect 
models (MEM) can solve this, but my review demonstrates few studies have done so in 
the past. 
 
I then fitted MEM to study body weight gain induced by the initiation of antipsychotics 
using an ITS design on electronic health records. MEM allowed fully observed 
covariates to inform the implicit imputation of the outcome. ITS facilitated new clinical 
evidence: in the long-term, typical patients do not lose the weight they gained during 
the first six weeks of treatment. However, the MEM alone was not ideal for handling 
missing covariates (i.e. dosage). 
 
Thereafter, I used simulation studies to evaluate the performance of aggregate-level 
segmented regression (SR), MEM and multilevel multiple imputation (MI-JOMO) for 
handling data missing at random (MAR) in ITS analysis. I showed that the aggregate-
level SR can over or underestimate the ITS effect. MEM is effective for handling 
outcomes MAR, but it should be combined with MI-JOMO when covariates are also 
MAR. 
 
Finally, I applied MEM with MI-JOMO to assess how dose and age modify the 
antipsychotic-induced weight gain. Interaction terms in MEM helped to evaluate 
differences in weight trajectories over time between groups by dose or age, using MI-
JOMO for handling missing dose. Clinically, older people’s weight is less affected by the 
initiation of antipsychotic treatment than younger people’s. 
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Impact Statement 
 

In health research, there is an approach commonly used to evaluate how an 
intervention (e.g. a new health policy) or a treatment (e.g. a drug) can impact on a 
health outcome of interest (e.g. change in body weight ). This approach is called 
interrupted time series (ITS) analysis and involves the use of observational outcome 
data before and after the initiation of the intervention. If the health outcome changes in 
the after-period, this change can be attributed to the intervention evaluated. 

The ITS analysis requires some statistical tools for ensuring the validity of its 
conclusions. These tools have been gradually improved since the past century. 
However, these tools have not been designed to address the missing data issues that 
routinely collected data usually bring (e.g. digital data from primary care). In other 
words, to use the standard statistical methods for ITS analysis can lead to wrong 
conclusions when incomplete individual-level data is analysed, which is often the case 
in current health research.          

In my thesis, I formally evaluated this problem and studied alternative statistical tools 
for performing valid ITS analyses when researchers face these missing data issues. For 
doing the evaluation, I used data from the UK primary care system to investigate the 
weight gain induced by second-generation antipsychotics (SGA) (i.e. an unhealthy side 
effect). This applied research helped me to build a practical solution in a real-life 
research situation. Methodologically, I proposed a two-step statistical procedure to 
perform ITS analyses with missing data. Clinically, I found that people prescribed SGA 
usually do not lose the weight they gained in the first 6 weeks, that high doses of SGA 
can induce more weight in the short and long-term, and that older people’s weight is 
less affected by SGA than younger people’s. These clinical conclusions were possible 
thanks to the new procedure for ITS analysis I proposed here.  

The methodological contribution is going to impact the field of health research. The 
research community have now a new alternative to perform ITS analyses with routinely 
collected data, an alternative that is easy to use and has been tested with simulations 
and real-life data (ensuring its validity and usefulness). Now, more clinical research on 
individual-level treatments will be possible, even when missing data issues are present 
(a common scenario). Moreover, I am starting the conversation on why these 
alternative tools should be preferred over classical ITS tools when individual-level data 

is available. This conversation 1 will lead to new methodological researches in ITS 
analysis that will be beneficial even beyond the health research field; for example, in 
economic and social research. 

The clinical contribution will impact directly on medical practice. Patients and doctors 
will benefit with new relevant information when decisions on SGA prescriptions are 
taken. Doctors will better balance the pros and cons when prescribing SGA high or low 
doses. Guidelines of weight control for patients treated with SGA will be adapted to the 
new knowledge about differences between older and younger patients.  

1 This thesis has already led to several presentations, publications and grant funded projects, which are visible in 
Appendix 10.5 
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1 
1. GENERAL OVERVIEW 

General Overview 

 

 

 

 

 

1.1. Background and motivation 

 

Interrupted time series (ITS) is a quasi-experimental design, recognised as one of the 

most robust alternatives for evaluating an intervention effect when randomised 

experiments are not feasible [1,2]. The idea behind ITS is relatively simple: each 

individual can serve as its control. If the studied outcome was recorded many times 

before and after the initiation (baseline) of the intervention to be evaluated; then, the 

pre-baseline outcome trajectory over time can work as a control of the post-baseline 

trajectory. Difference between the two trajectories represents the effect of the 

intervention and is adjusted for time-independent confounders by design. More 

sophisticated versions of ITS can help to control for observed time-dependent 

confounders [3] but, with no randomisation, any unobserved confounding remains 

uncontrolled. 

 

As with other quasi-experimental designs described and studied in classic literature [2], 

ITS designs were not restricted to evaluate interventions applied either at the 

population or individual level (although tended to be used with population-level 

summary data). It implies that the same internal validity described above can be 

reached whether the intervention studied is, for example, a policy or a medical 

treatment. For policies, all individuals share the same starting date of intervention and 

similar exposure to other variables that are common at the population level (e.g. season 

of the year). For medical treatments, people have different starting dates of intervention 

and less similarity regarding those factors that vary at the population level. In both 

cases, policies and treatments, ITS analyses can be performed by using individual-level 

1.1 Background and motivation 
1.2 Aims 
1.3 Outline of subsequent chapters 
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data, although the conclusions derived from these analyses are always at population-

level (i.e. the difference in population trajectories). For policies, it is also possible to 

perform ITS analyses with population-level data only.  

 

Early access to population-level data have contributed to the evaluation of 

interventions at the population level (e.g. policies) with ITS designs; thus, the 

development of the ITS statistical methods was mainly orientated to model population-

level data. Since ITS designs were born in social sciences in the middle of the 20th 

century, early ITS studies focused on evaluating educational or economic interventions 

applied at the population level [2]. In these studies, population-level data were enough 

to reach valid conclusions, although with significant – and sometimes downplayed – 

assumptions regarding the underlying individual-level data (e.g. missing data). The 

population was usually seen and treated as though it was made up of the same 

individuals over time, and the statistical analysis performed accordingly. Segmented 

regression with ordinary least squares was initially used to model ITS with population-

level data. Other statistical methods for time-series analysis, such as autoregressive 

integrated moving average (ARIMA) or Fourier analysis, helped to solve key analysis 

issues such as autocorrelation and seasonality 2. More sophisticated statistical tools 

were gradually developed to handle other methodological issues (including missing 

data) 3, but always for modelling population (or sub-population) level data.       

 

Access to individual-level data of better quality is rapidly increasing, and there may be a 

renewed interest (e.g. routinely collected data). Nevertheless, when data are routinely 

collected, they often come with missing values 4 that traditional ITS methods are not 

designed to handle. In such a context, contemporary researchers often aggregate the 

individual-level data available in order to perform the ITS analysis with the population-

level statistical tools they trust [4]. Without guidelines or studies describing the 

consequences that aggregating data with missing values can have on the validity of ITS 

analyses, the scientific community continued to use traditional statistical tools. 

 

2 These methodological issues will be explained in Chapter 2. 
3 I will mention these statistical tools in Chapter 2.  
4 Population level data frequently have missing values as well, but this is hidden in population summaries and 
obvious with individual data. 
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One of the primary purposes of this thesis is to unveil the problems that emerge when 

population-level ITS analyses are applied to incomplete individual-level data and to 

propose alternative analysis methods.         

 

The motivation for this PhD stems from the need to address specific clinical problems, 

such as the impact of initiation of antipsychotic medication on short and long-term 

changes in body weight. While it has been demonstrated in randomised clinical trials 

that initiation of antipsychotic medication can substantially increase body weight over 

a short time [5], far less is known about the long-term effects of antipsychotic treatment 

initiation. I chose to examine this question by using electronic health records from UK 

primary care; records that include longitudinal data from clinical care. After some 

consideration, I decided to use the ITS design. I gradually realised that most of the ITS 

literature and guidelines are focused on the population-level approach [6,7], giving little 

attention to the evaluation of individual-level interventions with electronic health 

records. I also realised that electronic health records I was exploring came with 

different missing data issues that were challenging and should be treated with caution. 

With no specific literature available, I had to start methodological research to inform 

my approach for missing data handling.  

 

I explored mixed effect models (MEM) as the first option to handle missing outcomes in 

ITS when analysing the antipsychotic-induced weight gain with electronic health 

records. This method helped to avoid any data aggregation, for example, across patients 

within the same time point or across close time points in an artificial time window. 

However, for fitting MEM all the cases with missing covariates had to be removed 

(complete case analysis), thus it was worth to explore other methods to recover 

information from lost cases and avoid any potential source of bias. Therefore, I decided 

to explore how multilevel joint modelling multiple imputation (MI-JOMO) might be 

used to deal with missing covariates when fitting MEM. I did this while keeping the 

attention on the clinical problems that motivated my PhD, ensuring that my 

methodological research was always connected with the improvement of the analysis of 

clinical questions.  
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1.2. Aims 

 

The overall aim of this PhD thesis was to evaluate methods for missing data handling 

when the ITS approach is applied in data at the patient level and to implement the best 

of these methods in the analysis of health outcomes from large primary care databases. 

 

The specific objectives were to: 

 

1. Explore current practices in missing data handling for ITS studies, focusing on how 

often missing data were considered and, if so, how they were evaluated, reported and 

handled. 

2. Apply an ITS design with MEM, as an alternative to the aggregate-level SR analysis, 

to model the effect of antipsychotic drug treatment initiation on weight change in 

general population data, in order to evaluate the potential and limitations of MEM. 

3. Evaluate the performance of ITS analysis methods such as aggregate-level SR, MEM 

and MI-JOMO for handling missing data on health outcomes and baseline covariates 

for studying the effects of any treatment initiation, via simulation studies. 

4. Apply MI-JOMO with MEM to model the antipsychotic-induced weight change in 

>40 years old population data by using an ITS design, focusing on the evaluation of how 

sex, age and dose may modify weight trajectories. 
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1.3. Outline of subsequent chapters 

 

Chapter 2 introduces the topics of ITS designs and electronic health records (EHR). The 

ITS design is mainly described from the population-level approach, mentioning the 

standard statistical tools available and how methodological issues can be handled with 

these tools or design extensions. EHR are individual-level data which is routinely 

collected for administrative or patient management purposes.  I summarise the main 

features of EHR, paying special attention to the missing data issues. In particular, I 

describe the dataset I used during my PhD, taken from The Health Improvement 

Network database, also known as THIN data. I end the chapter by briefly explaining 

some implications of performing ITS studies with EHR.  

 

Chapter 3 gives a general overview of the missing data problem, using examples from 

THIN data. A general explanation of the missing data mechanisms and the common 

problems linked to missing data are also given. After summarising main issues related 

to missing data, I explain the multiple imputation (MI) approach in detail. Congeniality 

between the substantive and imputation models and its relevance to ITS analysis is 

described in detail. Finally, I explain how MI-JOMO and MEM help to handle missing 

values in individual-level datasets.    

 

Chapter 4 demonstrates how the issues of missing data have rarely been addressed in 

most recent ITS studies performed with individual-level data. Despite its limitations, 

complete case analysis is the most frequently used method for handling missing data. 

Individual-level data are usually transformed into population-level data before fitting 

ITS models; for example, averaging the outcome at each time point (‘averaging-step’) 

before fitting a segmented regression (‘aggregate-level’ SR). I also confirmed that very 

few studies had applied MEM in the past. As MI-JOMO has only been developed 

recently, it has not been applied before in ITS studies.   

 

Chapter 5 describes an application of MEM to the study of antipsychotic-induced 

weight gain by using the ITS design on electronic health records. MEM allowed fully 

observed covariates and partially observed outcomes to inform the implicit imputation 

of missing outcomes at the individual level. However, I detected that the sole use of 
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MEM is not ideal when covariates are missing (e.g. dose of medication). ITS facilitated 

new clinical evidence, especially in the long-term. Thus, I demonstrate that typical 

patients do not lose -in the long term - the weight they gained during the first six weeks 

of antipsychotic treatment.  

 

Chapter 6 evaluates – via simulation studies – the performance of different types of 

methods for handling data missing at random (MAR) in ITS studies (aggregate-level SR, 

MI-JOMO and MEM). I showed that the averaging-step biases ITS estimates when data 

are MAR at the individual level. The aggregate-level SR can over- or underestimate the 

ITS effect, depending on how the missingness mechanism is operating. MEM are 

efficient and valid for handling outcomes MAR but must be combined with MI-JOMO 

when covariates are missing. 

 

Chapter 7 describes an application of MEM with MI-JOMO to assess how dose and age 

modify the antipsychotic-induced weight gain. Interaction terms in MEM helped to 

evaluate differences in weight trajectories over time between groups by dose or age. 

MEM was combined with MI-JOMO for handling missing values of dose. Again, this 

provided new clinical evidence; for example, that older patients’ weight is less affected 

by first olanzapine prescription compared to younger people. 

 

Chapter 8 presents a discussion of the thesis. I begin by summarising the thesis findings 

study by study. I discuss overall the key findings and reflect on the methodological and 

clinical implications. I also reflect on the strengths and limitations of the thesis and 

describe future work (related to this thesis) and end with a conclusion.   
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2.1. Interrupted Time Series (ITS) 
 

2.1.1. Introduction to Interrupted Time Series  

 

Interrupted Time Series (ITS) is a quasi-experimental approach for evaluating how an 

intervention can affect an outcome of interested [2]. ITS requires various outcome 

measurements before and after the intervention initiation for drawing their trajectory 

change overtime. Pre-intervention trajectory serves as a control of the post-intervention 

trajectory, and the difference between trajectories is the estimated intervention effect 

[6]. 

 

For modelling a time series in a population, we need the outcome to be sequentially 

measured over time and – typically – with equal intervals between measurements [6]. 

Conceptually, ITS estimates the underlying trend behind the observed outcomes, 

detecting an ‘interruption’ of this trend at a predefined time-point (e.g. when the 

intervention starts) (Figure 2.1.). Hypothetically, if the intervention did not occur, the 

trend observed before intervention should continue similarly after the intervention 

initiation, serving as ‘counterfactual’ for the actual trend observed since the 

2.1 Interrupted Time Series (ITS) 
2.1.1 Introduction to ITS 
2.1.2 Statistical analysis for ITS 
2.1.3 Methodological issues in ITS 

2.2 Electronic Health Records (EHR) 
2.2.1 Introduction to EHR 
2.2.2 Issues about data recording in primary care 
2.2.3 The Health Improvement Network 

2.3 ITS and EHR 
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intervention starts. The central assumption for attributing any trend ‘interruption’ to 

the sole intervention is that any potential confounder must be stable over-time (time-

invariant covariates) [3]. 

 

Figure 2.1 represents an example where lines describe outcome trajectory: β1 line 

represents the pre-intervention trend, β2 line represents the post-intervention trend, 

and dash lines -as an extension of the β1 line- represents the theoretical ‘counterfactual’ 

for the post-intervention trend.  

 

Figure 2.1 Visual representation of a single ITS design 

 

 

For any ITS study, we need the pre-intervention and intervention periods to be clearly 

differentiated. At the population level, this is not always an easy task since some 

interventions can have different phases to be ‘completed’ or uncontrolled time 

variability of the valid starting point for each individual of the population. Nevertheless, 

such issues can be handled by appropriately defining ‘impact models’ [8] or modelling 

trajectories at the individual level (see chapters 5, 6 and 7), respectively. An impact 

model describes how the outcome could be affected by an intervention; for example, if 
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there is an abrupt change at the time of intervention (i.e. intercept change) followed by 

a trajectory over time that is different from the pre-treatment trajectory (i.e. slope 

change). An impact model is appropriately defined if it incorporates available evidence 

on the studied effect (e.g. from clinical trials) and how the intervention has been 

applied (e.g. duration). In practice, the impact model helps to draft a basic ITS shape 

(e.g. defining inflexion points) before performing the ITS analysis itself. Different 

feasible impact models can be contrasted during the ITS analysis, but all of them should 

be proposed before the analysis and based on a rationale [8].     

 

ITS outcomes can be continuous, counts or binary variables [7]. For example, it is 

common to see outcome prevalence (proportions) to be calculated at each time point 

and then used to draw the ITS trends over time. Although there is not a minimal fixed 

number of data points recommended for ITS [6], it is essential to take into 

consideration both the shape of the trend and the statistical power. Estimating linear 

trends requires fewer observations than estimating non-linear trends. Power increases 

with the number of measurement times as well as if these measurement times are 

equally distributed before and after the initiation of an intervention [9].  

                    

2.1.2. Statistical analysis for ITS 
 

Standard ITS analyses (i.e. population summary level analysis) use segmented 

regression models [6,7]. Having an outcome 𝑌i observed at each time point of the 

period ′𝑡𝑖𝑚𝑒𝑖 (−𝑘 ≤ 𝑖 ≤ 𝑘)’ for which an intervention has started at 𝑡0, the trajectory 

of 𝑌i can be modelled by:     

           

         [Equation 2.1] 

𝑌𝑖 =  𝛽0 + 𝛽1𝑡𝑖𝑚𝑒𝑖 × 1[𝑡𝑖𝑚𝑒𝑖 < 0] + 𝛽2𝑡𝑖𝑚𝑒𝑖 × [𝑡𝑖𝑚𝑒𝑖 ≥ 0] + 𝜀𝑖 

𝜀𝑖 ∼ 𝑁(0,𝜎2), 

 

where i denotes the follow-up time, and 1[ ] is an indicator for the event in square 

brackets. This model can be represented by Figure 2.1, where β1 represents the pre-

intervention trajectory, β2 the trajectory after the initiation of intervention, and β0 the 
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average 𝑌i when the intervention started (𝑡0). Parameters are usually estimated by 

maximum likelihood estimators, like for any generalised linear model (GLM) [6], 

although ITS is not inherently linked to maximum likelihood estimation. The use of 

GLM facilitates modelling different type of outcomes (continuous, counts, binary) with 

a similar segmented and – commonly – linear prediction component on the right of the 

equation. These GLM type models only include population-level fixed effects; thus, no 

random intercept and slopes at the individual level are considered in standard 

guidelines for ITS [6]. The implications of this restriction are shown and discussed in 

different sections of the thesis, but mainly in Chapter 6.        

 

The selection of impact model is a crucial step in ITS statistical analysis. As mentioned 

above, impact models define the type of effect we are expecting on the outcome due to 

the intervention [8]. [Equation 2.1] is the simplest impact model in ITS, which reflects 

only an immediate change in the outcome trajectory. As a slightly more complex 

example, the impact model can specify that the intervention will have a huge and quick 

impact on the outcome in a relatively short time, and later the outcome will change 

gradually in the long-term (Figure 2.2) (e.g. as in Chapter 5). In such an impact model, 

we would want to define not two but three slopes of change over time (β1 as pre-

intervention, β2 as short-term impact, and β3 as long-term impact). The selection of an 

impact model is theory-based; thus, it should be based on substantive knowledge of the 

research topic. In practice, this implies that the overall shape of the outcome change 

over time (i.e. number of slopes and their time-point of origin in linear trajectories) 

should be defined before any statistical analysis. If there is no robust background to 

support the models, alternatives are to use external data for defining the intervention 

[10], to perform some sensitivity analyses [8] or just initial exploratory studies (e.g. 

identify change points [11]). In particular, sensitivity analysis can be useful when 

different theories explain the same studied effect; thus, different feasible models or 

assumptions can be tested (e.g. diverse ranges of outcomes or lag periods for the 

intervention effect) [8]. If non-linear trajectories could best explain smoother effects, 

non-linear models can be contrasted against linear models with visual tools or goodness 

of fit tests. However, enough and reliable data points should be used for avoiding 

overfitting and non-replicable results. 
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 Figure 2.2 Visual representation of a single ITS design with three slopes 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

2.1.3. Methodological issues in ITS 
 

As any other observational design, ITS approach relies on assumptions that are hard to 

verify in practice or that raise issues requiring special statistical treatment. There are at 

least three well-studied sources of bias in the literature that need to be considered in 

ITS studies: seasonality, autocorrelation and time-varying confounding.  

 

Seasonality describes a pattern where outcomes over time follow wave trajectories, with 

consecutive crests and troughs separated by similar intervals. This wave pattern can 

overlap an underlying outcome trend which is linear or non-linear. In population-level 

data, where time variable is usually calendar time (e.g. weeks, months or years), wave 

patterns can be associated with events that are regular at specific weeks or months (e.g. 

winter or summer time). Seasonality is a problem in short-term ITS when a higher 

proportion of some specific weeks/months are overrepresented (e.g. summer months), 

leading to biased estimates. Consecutive months within a wave section are more 

correlated than non-consecutive months from other wave sections, which brings issues 

such as autocorrelation or overdispersion. Seasonality can be assessed visually or tested 

with autocorrelation functions or partial autocorrelation functions [12]. Adjustment for 
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seasonality can be achieved by using a covariate, seasonal ARIMA (autoregressive 

integrated moving average) [13], splines or Fourier terms (pairs of sine and cosine 

functions) [14].        

 

Autocorrelation (or serial correlation) is common in longitudinal data and means that 

consecutive outcome measurements are more correlated than non-consecutive 

measurements. This occurs because ITS is intended to take measurements from the 

same units over time. Segmented regression with GLM or OLS assumes that all these 

consecutive measurements are independent, which is violated in ITS data (both at the 

population or individual level). When individual data is available, mixed effect models 

can address the within-individual correlation over time, controlling the autocorrelation 

problem. In the second study (Chapter 5), I show an application of these models. At the 

population level, autocorrelation can be assessed by plotting the residuals, using a 

partial correlation function or running formal tests (e.g. Breusch-Godfrey [15]). For 

controlling autocorrelation in time series, a factor that explains the autocorrelation (e.g. 

seasonality) can be included in the model as a predictor, or other methods such ARIMA 

can also be applied [16]. 

 

Time-varying confounders are not controlled by ITS design, which is particularly 

problematic in long-term studies. If there are only time-invariant confounders, the 

‘counterfactual’ of the intervention period – which is an extension of the pre-

intervention trend – is by definition unconfounded because the confounders will be 

identical for the pre-and post-intervention periods, making a comparison between 

intervention and its ‘counterfactual’ valid for conclusions about the intervention effect. 

However, in many observational scenarios, it is not unusual to have confounders that 

change over time, especially in long periods of observation (e.g. years). If the time-

varying confounder has been identified and recorded, it can be included as a covariate 

in the segmented regression model for control purposes. There are other options. For 

example, given a population that has received the intervention, we can match a similar 

population and observe it during the same period and use it as a control group. This 

design is known as Controlled Interrupted Time Series (CITS) [3,6]. In terms of analysis, 

we can either model each group separately or fit just one single model. One single 

model can include indicator variables for de control or the intervention series as 

interaction terms which allows for formal group comparisons. If we decided to model 
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ITS separately, the interpretation is mainly descriptive. For ITS results in the control 

group that mirrors results from the intervention group, it is more likely that outcome 

changes are attributable to the intervention [3]. In the final thesis study (Chapter 7), I 

will go into further details on interaction models for ITS studies with electronic health 

records, which is relevant to the control of time-varying confounders. 

 

In this section, I have summarised the key characteristics of the ITS design. ITS is a 

robust quasi-experimental alternative when randomisation is not an option, which can 

control for any time-invariant confounder and observed time-variant confounders. ITS 

design preserves its internal validity, whether the intervention evaluated is applied at 

the population or individual level. Most statistical tools have been designed to model 

ITS with population-level data. These traditional tools and more complex ITS designs 

help to account for methodological issues such as autocorrelation, seasonality and 

time-variant confounders. However, there are no standard practices on how to handle 

missing data for individual-level data in ITS studies. 

 

In health research, access to individual-level data for research purposes is becoming 

widespread due to the increased access to routinely collected data. Electronic Health 

Records (EHR) are an excellent example of data that are useful for health research in 

general, and ITS studies in particular. In the next section, I make an introduction to 

EHR, describing some issues about data recording. Later on, I explain some advantages 

and disadvantages of using EHR for ITS studies. 
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2.2. Electronic health records (EHR) 
 

2.2.1. Introduction to EHR 
 

Electronic health records (EHR) are data routinely obtained from patients or the 

general population and stored in a digital format. EHR are largely used as a source of 

data in health research in Asia [17], Europe and the US [18]; while in Latin America [19] 

and Africa [20], EHR are an emerging alternative due to the early development of their 

health informatics systems. EHR are usually longitudinal at the individual level and can 

be collected from different care settings (and sometimes linked between them). For 

example, hospitals, insurance companies, health surveys, health devices and 

applications, and others. In this thesis, I focus my attention on EHR from the UK 

primary care. 

 

Primary care in the UK is free for all and is provided in a national network of general 

practices (GPs). Each person must register in the GP closest to their home in order to 

receive medical attention and regular health monitoring (e.g. receive opportune 

vaccination or regular prescription of contraceptives). In the UK, more than 95% of the 

population are registered in a GP [21]. 

  

EHR in primary care are recorded when patients receive treatment by general 

practitioners or other primary care staff, as well as phone and online consultations [22]. 

In the UK, there are three main sources of primary care EHR: QRESEARCH  [23], the 

Clinical Practice Research Datalink (CPRD) [24] and The Health Improvement Network 

(THIN) [25–27], which are all primary care databases. Typically, these EHR includes 

demographical information (e.g. Townsend score 5, age and sex), diagnostics and 

symptoms (e.g. diabetes, schizophrenia or hypertension), treatment and drug 

prescriptions (e.g. contraceptives), laboratory results (e.g. HbA1c or cholesterol), 

lifestyle information (e.g. smoking status) and other health indicators which are 

relevant for health research (e.g. blood pressure or weight).  

 

5 Townsend score is a measure of material deprivation based on four indicators: unemployment, non-car 
ownership, non-home ownership and household overcrowding. It can be measured for a population living in a 
specific area, then easily connected to patients’ ZIP codes. In THIN data, Townsend scores are given in quintiles 
(Q1-Q5), from the least to the most deprived.   
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For most of EHR, available data allows retrospective cohorts at the individual level. For 

example, it is possible to identify patients’ demographic variables together with health 

indicators that change over time, such as weight, drinking or smoking status. Specific 

clinical symptoms or diagnostics can be identified by using the Read Code System, a 

hierarchical classification of symptoms and diagnoses [28]. Drug treatment prescribed 

to patients is also easy to identify by using the BNF or ATC coding systems, a 

comprehensive and organised list of pharmaceutical drugs [29]. Prescription codes 

usually come with extra information about date and dosage, facilitating patient follow 

up and the longitudinal analysis. Some databases also provide the opportunity to link 

those patient records with additional relevant data. For example, CPRD can be linked to 

hospital data, allowing to detect relevant episodes in the history of primary care 

patients, such as major surgeries or highly specialised medical attention and treatment.  

  

2.2.2. Issues about data recording in primary care 
 

In the UK, the evolution of EHR quality included progressive initiatives for improving 

data collection. In 1995, the NHS established a contract between the government and 

GP’s centred on financial compensation for registering new patients from target groups 

(e.g. aged over 75 years), as well as for providing them with standard services. In 

practical terms, the agreement implied that “the patient records” were vital for giving 

that standard service and having a proof of the provided attention. That strategy proved 

to be useful for recruiting patients and collecting relevant information but was not cost-

effective [30]. In 2004, the General Medical Services (GMS) created the Quality and 

Outcomes Framework (QOF) –which is defined as “an annual reward and incentive 

program” - in order to improve the quality of the delivery of primary medical services 

[31]. The QOF helps to focus the work of NHS employees on a set of measurable 

achievements, which implies rigorous monitoring of selected health indicators with 

public health significance. In practice, QOF monitors people with certain chronic 

conditions, and they are more likely to have health indicators recorded on a regular 

basis, whereas people without these conditions are less likely to have health indicators 

recorded on a regular basis [32]. It makes the handling of the missing data complex, so 

statistical methods such as multiple imputation should be considered [32]. 

 

31 
 



Missing data is a common problem with EHR, mainly because the original data are not 

collected for scientific research. In the UK, the National Health Service (NHS) got the 

mission of being able to provide to patients their health profile (with information about 

diagnostics, prescriptions, and others) and health care interactions, all in real-time, by 

2020 [33]. All their efforts are focused on the goal of making the NHS “paper-free at the 

point of care” by the same year. In those circumstances, missing data can be generated 

when: i) a value was not measured by health care staff, ii) was measured, but not 

recorded, or iii) was measured, but recorded wrongly (so it would have to be omitted in 

its later analysis) 6. In these scenarios, missing data may have a higher impact on the 

research, which is based on this data rather than the clinical and administrative use. 

 

2.2.3. The Health Improvement Network (THIN) 
 

The Health Improvement Network is one of the largest sources of longitudinal 

electronic health records in the UK.  It has good data quality and is roughly 

representative of the UK population [27]. The data are collected via the In Practice 

Systems (IPS) called Vision GP. Data from Vision GP system run regularly in the GP´s 

systems and is sent to Cegedim, the owners of THIN, who then supply this data to 

IQVIA under license. After anonymising data, IQVIA provides and supports access to 

this data for health research. The data that I have used from THIN for this PhD has data 

from 2003 and to  January 2017, including data from 15.6 million of patients, of which 3 

million are active patients from 711 practices and can be prospectively followed [34]. 

There are different quality markers for THIN data. The acceptable computer usage 

(ACU) which is defined as “the year in which a general practice was continuously 

entering on average at least two therapy records, one medical record and one additional 

health data record per patient per year” [35]. Likewise, there is a quality marker for 

acceptable mortality reporting (AMR) which indicates when GP’s mortality records are 

consistent with the official national statistics [36]. Moreover, it has been shown that 

THIN is roughly representative at the national level in terms of demographics, 

deprivation and chronic diseases [27].  

 

  

6 In most missing data definitions [53], a value that never was intended to be recorded is not considered missing 
data. 
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2.3. ITS and EHR 
  

Since its origins, the ITS design has mainly been applied to evaluate interventions with 

population-level data. For example, to assess the discontinuity of national or regional 

prevalence trajectories over time before and after the evaluated intervention. The 

prevalence at each time point is usually aggregated at convenient time units (e.g. 

monthly or annually). In the past, the individual-level data that generated those 

prevalence numbers were not accessible, challenging to obtain or – in many cases – not 

considered relevant for the standard ITS analysis. In the ITS approach, population-level 

interventions can be studied with population-level data directly [2,6]. However, in 

recent years,  individual-level data has become available in some settings  [37]. In such 

context, ITS studies are increasingly being applied in health research based on data 

routinely collected at the individual level [4], including EHR. EHR can provide data for 

evaluating both individual- and population-level interventions by using the ITS design. 

As I explained above, EHR come with missing data issues that need to be considered 

before performing any ITS analysis. In this thesis, I explore methods for handling 

missing data in EHR when ITS design is applied to the study of individual-level 

interventions.        

 

The use of EHR in ITS studies brings advantages and disadvantages to be considered. 

On the positive side, EHR improve the amount of longitudinal data available. Access to 

EHR helps to improve the statistical power by increasing the number of observations at 

each time point [38], which, in typical ITS population-level data, can be as small as one 

(e.g. when data brings many observation time points). However, the advantage of using 

EHR comes with a cost: missing data issues. ITS usually request the outcome regularly 

recorded at each time point, but this is hard to achieve in most observational data such 

as EHR. Often, researchers tend to handle this problem by aggregating all the available 

outcome data in some sort of time windows (e.g. months or years), but usually ignoring 

the potential consequences of this operation when data are missing. Missing data can 

affect ITS estimates in many ways, as I will show throughout the thesis. Lopez-Bernal et 

al. [6] recommend to assess any change in data collection recording; for example, 

missing data proportion changing over time. Particularly, when the data collection 

patterns change at the time the intervention initiates, ITS analysis could lead to biased 

results [2].  
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Since these missing data issues associated with data routinely collected are widespread 

and relevant for ITS studies, I will give an introduction in the next Chapter 3 and 

examine this in further detail in Chapter 6.    
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3.1. Missing data 
 

3.1.1. Missing data in THIN 
 

As any other longitudinal electronic health record which has mainly an administrative 

and management purpose, THIN presents issues with missing data. More general 

demographics data, such as age, sex or Townsend (deprivation index), usually do not 

represent a significant problem [39,40]. However, other variables such as ethnicity are 

poorly recorded, and its practical use in statistical analyses requires particular caution 

[32]. Anthropometric and behavioural measures like weight, height, smoking status [41] 

and alcohol consumption [42] also present different patterns and volumes of missing 

data. However, the cumulative recording can partially solve the missing data problem 

for some of them (i.e. the height is relatively stable over time and can be passively 

imputed after the age of 18-20 years). Statistical analysis with health outcomes like 

blood pressure [43], diabetes [44], cholesterol [45], and body mass index [46] is also 

challenging due to missing data [32]. 

 

  

3.1 Missing data 
3.1.1 Missing data in THIN 
3.1.2 Missing data mechanisms 
3.1.3 Issues linked to missing data 

3.2 Multiple Imputation (MI) 
3.2.1 Introduction to MI 
3.2.2 Rubin’s rules for MI inference 
3.2.3 Compatible substantive and imputation models 
3.2.4 Joint modelling imputation for ITS 
3.2.5 Substantive-Model Compatible Joint Modelling for ITS 

3.3 Restricted maximum likelihood for ITS 
3.4 Missing data handling in ITS with EHR 
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Table 3.1 presents a summary of missing data percentages in THIN data, for crucial 

variables that will be included in most analyses thorough the thesis (especially Chapters 

5, 6 and 7). With a few exceptions, all these variables have >11% of missing values. In 

these cohorts, smoking and drinking status are less affected by missing data (<20%), 

while other health indicators such as systolic blood pressure or cholesterol have in 

general >30% of missing data. Particular attention should be paid to the first dose, 

which is never <25% and can be up to 40% missing. This variable is central in the study 

of antipsychotic-induced weight gain (the clinical topic of this thesis); thus, in Chapter 

7 I will apply the approach validated in Chapter 6 to handle missing data in the first 

dose.   

 

Bodyweight represents a particular challenge. Table 3.1 shows >40% of missing data of 

weight at baseline, making hard any ITS analysis stratified by weight at baseline. In 

Chapter 5, I show how to address this problem by fitting mixed-effects models in ITS 

designs. Nevertheless, weight is also the outcome of interest, adding new challenges to 

missing data handling. Since THIN data is routinely collected, weight records are 

irregularly recorded in each patient history. It means that, for any time-window defined 

for the ITS analysis (e.g. week or month), the same patients are not going to be visible 

in all the time-windows. Table 3.2 describes that, for 8 years of observation (416 weeks), 

the median number of weight records is around 9 (interquartile range around 10). 

However, the total amount of available outcome data is enough to try alternative ITS 

models (see Chapters 5, 6 and 7). ). Figure 3.1 shows the missing data distribution of the 

outcome before and after initiation of antipsychotic treatment. It demonstrates that, 

close to treatment initiation, there are more weight records, but these records become 

n ( % ) n ( % ) n ( % ) n ( % ) n ( % ) n ( % )
Smoking Status 591 ( 11.8 ) 686 ( 15.3 ) 1386 ( 11.4 ) 973 ( 12.4 ) 472 ( 9.2 ) 490 ( 11.5 )
Drinking Status 598 ( 12.0 ) 876 ( 19.5 ) 1511 ( 12.4 ) 1136 ( 14.5 ) 398 ( 7.7 ) 518 ( 12.2 )
Height 1786 ( 35.7 ) 1481 ( 32.9 ) 4665 ( 38.4 ) 2832 ( 36.2 ) 2021 ( 39.2 ) 1439 ( 33.9 )
SBP 1659 ( 33.2 ) 2099 ( 46.7 ) 3601 ( 29.6 ) 2631 ( 33.7 ) 1280 ( 24.8 ) 1484 ( 34.9 )
LDL-Cholesterol 1901 ( 38.0 ) 1757 ( 39.1 ) 4783 ( 39.4 ) 2797 ( 35.8 ) 1792 ( 34.8 ) 1544 ( 36.3 )
HDL-Cholesterol 1459 ( 29.2 ) 1385 ( 30.8 ) 3596 ( 29.6 ) 1995 ( 25.5 ) 1307 ( 25.4 ) 1089 ( 25.6 )
First Dose 1369 ( 27.4 ) 1138 ( 25.3 ) 4865 ( 40.0 ) 3164 ( 40.5 ) 1735 ( 33.7 ) 1396 ( 32.9 )
Body Weight * 2156 ( 43.1 ) 1858 ( 41.3 ) 5540 ( 45.6 ) 3438 ( 44.0 ) 2389 ( 46.4 ) 1771 ( 41.7 )
(*) Body weight has been calculated as the average of the wieght records available up to 12 months before 
treatment initiation. As sex, age, deprivation (Townsend) and Diabetes Diagnostic were fully observed in the 
dataset. SBP = systolic blood pressure; THIN = The Health Improvement Network.

Men
N=5004     
(52.7%)

N=4495 
(47.3%)

N=12149 
(60.9%)

N=7816 
(39.1%)

N=5153     
(54.8%)

N=4248 
(45.2%)

Table 3.1. Missing data in relevant variables for the cohorts of Olanzapine, Quetiapine and Risperidone, stratified 
by sex. 

Variable in    
THIN data

OLANZAPINE (N=9499) QUETIAPINE (N=19965) RISPERIDONE (N=9401)
Women Men Women Men Women
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progressively less frequent after the initiation date. This distribution and the pattern of 

missing data visible in Figure 3.1 were carefully considered in the simulation study of 

this thesis (Chapter 6), as well as the percentage of missing data described above 

(Tables 3.1 and 3.2) and the associations found in Chapter 5 (see also relevant equations 

for the data-generation mechanism in Chapter 6).  

 

 

 

 

Figure 3.1 Distribution and patterns of weight records in THIN data 

 

 

 

 

 

 

 

 

 

 

  

n median iqr n median iqr n median iqr
Male 6360 4 5 6950 4 5 13387 8 7

Female 11269 6 8 10786 5 7 22159 10 11
Male 14100 5 7 11923 5 5 26100 9 10

Female 27174 6 8 23880 5 7 51205 10 11
Male 7333 5 6 6328 4 5 13766 8 9

Female 11138 6 7 9353 5 6 20597 10 10

Olanzapine 

Quetiapine 

Risperidone

iqr = interquartile range

Drug Cohort Sex

Number of weight records (n)                                         
before and after treatment initiation

4 years before 4 years after 8 years (total)

Table 3.2. Number of weight records for the cohorts of Olanzapine, Quetiapine and 
Risperidone, stratified by sex. 

q y
-2000-1000010002000

 ( y )

The histogram above summarises all weight records of the olanzapine cohort (N=9499). 
In the grey figure on the right, each black dot is a weight record while each row is a 

person followed over 8 years (4 years before and after treatment initiation). Time (days) 
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It is worth mentioning that, when a complete case analysis is considered, the combined 

effect of missing data in outcome and covariates reduces the sample size to extreme 

levels. That is one of the key reasons why developing effective and efficient alternatives 

to handle missing data is so essential in these situations.  
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3.1.2. Missing data mechanisms 
 

Missing data have a cause, a generation mechanism that can be more stochastic or 

more systematic. Initially described by Rubin [47], in general, three generic 

mechanisms can cause missing data: missing completely at random (MCAR), missing at 

random (MAR) and missing not at random (MNAR).  

 

To clarify what these mechanisms are, I will use an explanation slightly adapted from 

van Buuren [48]. Let us say that we have a matrix X with the shape n x p, where n is the 

number of individuals and p the number of variables. Then denote Xobs as those with 

observed values in the data matrix and Xmiss otherwise. The matrix R will reproduce the 

same structure than X, but with rij=0 when the value is missing and rij=1 otherwise. 

Graphically, an example of both matrixes could be: 

𝑋 = �
15 22

4
 
 3

10 51
34

 
 49

� 𝑅 = �
1 1
0 1

 0
 1

1 1
0 1

 0
 1

� 

Finally, let 𝜑 denotes the parameters of the missing data model, which is Pr (𝑅 =

0|𝑋𝑜𝑏𝑠,𝑋𝑚𝑖𝑠𝑠,𝜑). Then, the data in X is MCAR if: 

Pr(𝑅 = 0|𝑋𝑜𝑏𝑠,𝑋𝑚𝑖𝑠𝑠,𝜑) = Pr (𝑅 = 0| 𝜑)   [Equation 3.1] 

Here, the probability of being missing does not depend on the observed or unobserved 

data; it just depends on φ. A different mechanism is MAR, which occurs if: 

Pr(𝑅 = 0|𝑋𝑜𝑏𝑠,𝑋𝑚𝑖𝑠𝑠,𝜑) = Pr (𝑅 = 0| 𝑋𝑜𝑏𝑠,𝜑)   [Equation 3.2] 

Here, the distribution of the missing values is conditioned on observed data; in other 

words, missingness does not depend on unobserved variables given observed variables. 

Finally, a definition of MNAR is:    

Pr(𝑅 = 0|𝑋𝑜𝑏𝑠,𝑋𝑚𝑖𝑠𝑠,𝜑) = Pr(𝑅 = 0|𝑋𝑜𝑏𝑠,𝑋𝑚𝑖𝑠𝑠,𝜑)  [Equation 3.3] 

Here, the probability of being missing is also related to missing values, making complex 

any empirical verification (which is also the case for MAR). We could test the 

hypotheses H0: MAR and H0: MNAR only if we knew the values of Xmiss which, by 

definition, we do not know. That is why MAR and MNAR are just assumed based on 
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both the identified associations – recognised on the dataset – and previous knowledge7. 

Missing data mechanisms have direct implications on statistical analyses and inferences 

[48]. In the next section, I will examine part of those implications.    

 

3.1.3. Issues linked to missing data 
 

Some specific issues arise from missing data handling related to bias, inefficiency and 

power. Both the estimates and standard errors can be biased when the missing data is 

not completely at random (not MCAR) [49]. For example, let us say that we want to 

analyse a dataset from primary care that contains data of body weight and sex of 

registered persons. We are interested in calculating the overall average weight in a 

specific month (e.g. January), but we have missing data issues on weight. In general, 

there are at least three possible consequences related to the mechanisms described 

above: 

• First, if the weight records are missing completely at random (MCAR), there will 

be no bias on the calculated average, so any deviation from the true value (i.e. 

parameter) will be non-systematic.    

• Second, if the weight records are missing in a higher proportion for men, then 

we can say that weight records are missing at random (MAR) on sex. Since we 

know that men weigh -on average – more than women, we expect a biased 

overall average estimate from the observed records (i.e. a systematic deviation 

from the true value).    

• Third, if the weight records from patients with the lowest weight are missing, 

then we are facing a missing not at random mechanism (MNAR) because the 

missingness depends on unobserved weight values. In this circumstance, we 

expect the overall average estimate to be biased (again, a systematic deviation 

from the true value).  

In general, methods for handling missing data can provide unbiased estimates (i.e. valid 

inferences) in the second scenario (MAR) but doing so in the third scenario (MNAR) is 

harder to achieve. This example with cross-sectional data can be extended to 

longitudinal data analysis, with similar issues and solutions linked to missing data. 

 

7 Sometimes we can go one step further and compare the actual values of the observed data to external data 
sources which may give an indication on whether the data are MAR or MNAR. 
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The inefficiency is related to a common practice called listwise deletion or complete 

case analysis (CCA), where all cases (subjects) with a gap in any variable -relevant to the 

analysis - are dropped. That procedure can severely reduce the sample size, especially in 

longitudinal studies [50], and much useful information is simply lost from the dataset. 

Listwise deletion produces unbiased estimates when missing values are completely at 

random [48], but always implies a sacrifice of statistical precision and power [51].             

 

3.2. Multiple Imputation (MI) 
 

3.2.1. Introduction to MI 
 

Conceived initially by Rubin [52], MI was the natural development of single imputation 

strategies. From the very basic mean imputation to the more sophisticated stochastic 

regression imputation, simple imputations had an intrinsic limitation: a fixed imputed 

value always omits a critical source of variability, the uncertainty (we do not know the 

actual value we missed). Rubin solved this issue after proposing to use more than one 

fixed value for filling each missing data gap. That strategy helps us to preserve the 

uncertainty of missing data in the inferences made. 

 

MI method has three steps: 1) to generate m datasets with imputations; 2) to perform 

the estimation of the parameter from each m dataset generated; 3) to summarise each 

of the m estimates in just one estimate, following Rubin’s rules [53] (see below). Figure 

3.1 illustrates the principles of MI: 
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Figure 3.2 Visual representation of the multiple imputation procedure 
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3.2.2. Rubin’s rules for MI inference 
 

The combined estimate shown in Figure 3.1, as well as its standard error, can be 

obtained after using two formulas named as Rubin’s rules [50]. If k is the index for 

imputed datasets (k=1, 2, …, K): 

i) The combined estimate averages the m separate estimates: 

 

𝛽̂𝑀𝐼 = 1
𝑚
∑ 𝛽̂(𝑘)𝑚
1      [Equation 3.4] 

 

ii) Combined variance estimate: 

𝑉�𝑀𝐼 = 𝑉 + �1 + 1
𝑚
�𝐵    [Equation 3.5] 

Where: 

𝑉� = � 𝑉(𝑘)
𝑚

1
/𝑚 

𝐵� =  � �𝛽̂(𝑘) − 𝛽̂(𝑀𝐼)�
2

/(𝑚− 1)
𝑚

1
 

Original dataset with 
gaps 

Step 1: generate 
various datasets 

with single 
imputations (m=4) 

Step 2: perform 
estimation from 
each dataset 

Step 3: summarise in 
just one estimate 

using Rubin’s rules 
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B is called the between-imputation variance. Confidence intervals and test statistics are 

performed under the assumption that (𝛽̂𝑀𝐼 − 𝛽)/√𝑉𝑀𝐼 has either t or standard normal 

distribution. These rules can be extended to the estimation of multiple parameters, as 

explained elsewhere [53]. 

 

3.2.3. Compatible substantive and imputation models 
 

In MI, there are ‘imputation’ and ‘substantive’ models. The substantive model “is the 

analysis procedure if there had been no missing data” [54]. The imputation model may 

be used to impute missing values on any studied variable. Ideally, the imputation model 

should be compatible with the substantive model for Rubin’s rules to provide valid 

estimates. The two models are termed ‘compatible’ if there is a joint model which yields 

the imputation and substantive models as conditionals. The simplest example 8 can 

help to illustrate what compatibility means. An outcome Y (fully observed) and a 

covariate X (incomplete) follow a bivariate normal distribution: 

�𝑌𝑋�~𝐵𝑉𝑁 ��
𝜇𝑌
𝜇𝑋� ,�

𝜎𝑌2 𝜌𝜎𝑌𝜎𝑋
𝜌𝜎𝑌𝜎𝑋 𝜎𝑋2

�� 

The substantive model (linear regression of Y on X) can be derived as a conditional 

distribution from the joint distribution: 

𝑌|𝑋~𝑁�𝜇𝑌 + 𝜌
𝜎𝑌
𝜎𝑋

(𝑋 − 𝜇𝑋),𝜎𝑌2(1− 𝜌2)� 

This is, E(Y|X) is a linear function of X with slope 𝜌 𝜎𝑦
𝜎𝑥

 . Similarly, the imputation model 

for X (linear regression of X on Y) can be derived as a conditional distribution: 

 

𝑋|𝑌~𝑁�𝜇𝑋 + 𝜌
𝜎𝑋
𝜎𝑌

(𝑌 − 𝜇𝑌),𝜎𝑋2(1− 𝜌2)� 

Then, the imputation and substantive models are compatible. Compatibility ensures 

that, with large m, inference on MI data approximates a bivariate normal model for X,Y 

estimated by maximum likelihood [55].  

8 Example given by Tra My Pham in the UCL course ‘Missing data and multiple imputation for cross-sectional and 
longitudinal data’. 
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In practice, perfect compatibility is hard to achieve, and some flexibility is usually 

needed. There has been a long debate about how incompatible models can lead to 

subtle deficiencies of Rubin’s variance estimator [53]. Nevertheless, there are two broad 

forms of incompatibility to consider [55]:  1) if the imputation model wrongly omits a 

variable, then the analysis is typically biased; but 2) if the imputation model rightly 

includes one or more extra-variables, then the analysis can be benefited by bias 

correction. Carpenter and Kenward [53] make an extensive discussion on the topic and 

conclude convenience of including right extra-variables. These extra variables, called 

auxiliary variables, are those not included in the substantive model but associated with 

X and explicative of its missingness. Thus, an imputation model should include all 

variables (including interactions, non-linearities, and random effects) from the 

substantive model plus other optional auxiliary variables that could be relevant for the 

imputations of X. Under MAR assumptions, auxiliary variables can help to improve 

precision and reduce bias.  

  

3.2.4. Joint modelling imputation for ITS 
 

In ITS performed with individual-level data, to make the imputation and substantive 

models compatible is not straightforward. For example 9, we can expand [Equation 2.1] 

by adding two fixed effects, X1 and X2 (time-invariant covariates at treatment 

initiation), as well as a random intercept (𝑢0𝑗) and two random slopes (𝑢1𝑗  𝑢2𝑗), as 

follows: 

[Equation 3.6] 

𝑌ij =  𝛽0 + 𝑢0𝑗 + �𝛽1 + 𝑢1𝑗�𝑡𝑖𝑚𝑒𝑖𝑗 × 1�𝑡𝑖𝑚𝑒𝑖𝑗 < 0� + (𝛽2 + 𝑢2𝑗)𝑡𝑖𝑚𝑒𝑖𝑗

× �𝑡𝑖𝑚𝑒𝑖𝑗 ≥ 0� + X1𝑗 + X2𝑗 + ϵ𝑖𝑗 

�
𝑢0𝑗
𝑢1𝑗
𝑢2𝑗

� ∼ 𝑁�
0
0
0

,𝛴𝑢�               𝜖𝑖𝑗 ∼ 𝑁(0,𝜎𝑒2), 

 

This is the substantive model of scientific interest, which is a mixed-effects model that 

suits an ITS design. Y, X1 and X2 are continuous variables each containing some missing 

9 I am adapting the very good explanation from Quartagno and Carpenter [58] to the specific case of ITS designs. 
This example gives some technical details for the application of MI-JOMO which will be useful in Chapters 6 and 7. 
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values (an issue typical in EHR). To solve the missing data issue on Y, X1 and X2, we 

could assume a trivariate normal joint model for the three variables:  

 

     [Equations 3.7] 

 

𝑌𝑖,𝑗

= 𝛼0 + (𝜃0)𝑡𝑖𝑚𝑒𝑖𝑗 × 1�𝑡𝑖𝑚𝑒𝑖𝑗 < 0� + (𝜔0)𝑡𝑖𝑚𝑒𝑖𝑗

× �𝑡𝑖𝑚𝑒𝑖𝑗 ≥ 0� + 𝑣0,𝑗 + 𝑒0,𝑖,𝑗 

𝑋1,𝑗 = 𝛼1 + 𝑣1,𝑗 + 𝑒1,𝑗 

𝑋2,𝑗 = 𝛼2 + 𝑣2,𝑗 + 𝑒2,𝑗 

 

�
𝑣0,𝑗
𝑣1,𝑗
𝑣2,𝑗

� ∼ 𝑁(𝟎,𝛀𝒖)             �
𝑒0,𝑖,𝑗
𝑒1,𝑗
𝑒2,𝑗

� ∼ 𝑁(𝟎,𝛀𝒆) 

 

Note that because X1 and X2 are time fixed, then time is not included in as predictor of 

the imputation model of X1 and X2. This model [Equation 3.7] can be fitted with a 

standard Gibbs sampler for generating m complete datasets. Thus, [Equation 3.6] can 

be fitted in each of the m datasets, and the estimates of interest (usually 𝛽1 and 𝛽2) can 

be summarised by applying Rubin’s rules. However, the imputation model [Equation 

3.7] is not compatible with the substantive model [Equations 3.6] since it does not 

include the random effects (i.e. the conditional distribution of Y given X1 and X2 

derived from [Equation 3.7] is not [Equation 3.6].  

 

3.2.5. Substantive Model Compatible Joint Modelling MI for ITS 
 

The substantive model compatible joint modelling multiple imputation (MI-JOMO) is a 

novel solution for imputing missing values [56–58], that is well suited for  ITS studies 

performed with individual-level data. MI-JOMO is an imputation method that assumes 

a joint multilevel multivariate normal model for the partially observed data. Broadly, 

MI-JOMO applies a Bayesian approach to factorise the joint distribution in two terms: a 
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joint model for the covariates of the analysis model and a conditional model for the 

outcome given the covariates. MI-JOMO defines an imputation model compatible with 

[Equation 3.6] by factorising the joint distribution of the three variables (𝑌i,j 𝑋1,j 𝑋2,j) in 

two terms: 1) a joint model for the covariates and 2) a conditional model for the 

outcome given the covariates:       

 

[Equation 3.8] 

[Subcomponent 3.8.1]          

𝑋1,𝑗 = 𝛼1 + 𝑣1,𝑗 + 𝑒1,𝑗 

𝑋2,𝑗 = 𝛼2 + 𝑣2,𝑗 + 𝑒2,𝑗 

�
𝑣1,𝑗
𝑣2,𝑗

� ∼ 𝑁(𝟎,𝛀𝒖)             �
𝑒1,𝑗
𝑒2,𝑗

� ∼ 𝑁(𝟎,𝛀𝒆) 

[Subcomponent 3.8.2]  

𝑌ij =  𝛽0 + 𝑢0𝑗 + �𝛽1 + 𝑢1𝑗�𝑡𝑖𝑚𝑒𝑖𝑗 × 1�𝑡𝑖𝑚𝑒𝑖𝑗 < 0� + (𝛽2 + 𝑢2𝑗)𝑡𝑖𝑚𝑒𝑖𝑗

× �𝑡𝑖𝑚𝑒𝑖𝑗 ≥ 0� + X1𝑗 + X2𝑗 + ϵ𝑖𝑗 

�
𝑢0𝑗
𝑢1𝑗
𝑢2𝑗

� ∼ 𝑁�
0
0
0

,𝛴𝑢�               𝜖𝑖𝑗 ∼ 𝑁(0,𝜎𝑒2), 

 

As before, a standard Gibbs sampler is needed to create m different imputed datasets. 

To perform the imputations of the covariates (X1,𝑗 X2,𝑗), an additional Metropolis-

Hastings10 step within the Gibbs sampler is needed. These imputations are drawn from 

a proposal distribution, and the Metropolis ratio (which takes into account the 

substantive regression model for Y) defines acceptance probabilities. With a 

symmetrical proposal distribution, the Metropolis ratio is equal to the likelihood of the 

model with the new proposed imputed value divided by the likelihood of the model 

with the previous imputed value. This iterative procedure forces the conditional model 

in [Equations 3.8] to be congenial with the substantive model [Equation 3.6]. The 

method can be readily extended to include interactions and non-linearities in the 

10 The Gibbs sampler is a special case of the Metropolis-Hastings (MH) sampler, set up so that each proposal is 
accepted. The software uses a Gibbs sampler with additional MH steps to handle categorical data through the 
latent normal model. 
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conditional model of the outcome given the covariates in [Equations 3.8, 

Subcomponent 3.8.2]. This is an important feature that allows ITS studies to include 

other characteristics; for example, adding a control group (for which interactions are 

useful) or making the change over time smoother (non-linearity).       

 

3.3. Restricted Maximum Likelihood for ITS 
 

In practice, MI-JOMO can be very useful for handling missing covariates (e.g. X1,𝑗 X2,𝑗) 

in ITS studies performed with individual-level data. On the other hand, it can be 

computationally inefficient for imputing outcome values (𝑌ij) that are missing due to 

the irregular recording over time that is expected in EHR. However, since MI-JOMO is 

compatible with the mixed-effects model of interest [Equation 3.6], it can be used for 

imputing missing covariates only. On the m datasets imputed by MI-JOMO, now 

containing covariates fully observed, the [Equation 3.6] can be fitted using a Restricted 

Maximum Likelihood (REML) estimator. REML implicitly imputes outcome values (𝑌ij), 

simplifying the overall procedure (i.e. no explicit multiple imputation of the outcome is 

needed). Then, Rubin’s formulas will allow summarising the final ITS estimates of 

interest. 

 

Since REML is closely related to the maximum likelihood (ML) estimator, I will first 

explain how ML makes the implicit imputations and then the difference between REML 

and ML. 

 

In a dataset with an outcome 𝑌ij irregularly recorded over time, ML estimator will use 

all the available data to identify the population parameters with the highest probability 

of producing the sample data [59].  It means that the estimator does not discard 

individuals with incomplete 𝑌ij. For doing this, ML assumes a multivariate normal 

distribution and computes the log-likelihood of each individual j as follows: 
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[Equation 3.9] 

𝑙𝑜𝑔𝐿𝑗 = −
𝑘𝑗
2

log(2𝜋) −
1
2

log|Σ| −
1
2

(𝑌𝑗 − 𝜇)𝑇Σ−1(𝑌𝑗 − 𝜇) 

 

where 𝑘𝑗 is the number of observed scores for individual j, 𝑌j is the vector of observed 

values over time, and 𝜇 and Σ are estimates of the population mean vector and 

covariance matrix (at a particular computational cycle), respectively. We can easily 

calculate the marginal likelihood of each individual’s observed data, from the fully 

likelihood [Equation 3.9], and use this to include their observed data in the analysis. 

Based on [Equation 3.9], the estimation process is mainly driven by:   

[Equation 3.10] 

(𝑌𝑗 − 𝜇)𝑇Σ−1(𝑌𝑗 − 𝜇) 

 

[Equation 3.10] quantifies the standardised distance between an individual’s observed 

outcome value and the parameter estimates. A small distance (i.e. a high log-likelihood 

value) results when an individual’s outcome value is close to the outcome mean. As 

ordinary least squares estimation does, ML estimator finds the parameter estimates that 

minimise the sum of all the individual standardised distances to the data. This final 

likelihood is calculated by aggregating all individual log-likelihood values across the 

complete sample, as follows: 

[Equation 3.11] 

𝑙𝑜𝑔 𝐿 = � log𝐿𝑗 

 

Commonly, ML uses an iterative optimisation algorithm that repeatedly tests different 

parameter values (i.e. a modified Newton-Raphson algorithm in Stata), until it locates 

the estimates that maximise the log-likelihood [Equation 3.11].  

 

The final (overall) log-likelihood come from [Equation 3.11], but the key of missing data 

handling relies on the way data from each individual is analysed by [Equation 3.9]. In 

this equation, the data and parameter vectors belong to the same individual. This 
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individual contribution to the log-likelihood is calculated with all the available outcome 

data at the individual level, meaning the number of outcome values and the pattern of 

its missingness can vary across individuals. 

 

This estimation process based on individual likelihoods does not explicitly impute the 

missing values but borrows information from the observed outcome values [59]. For 

example, given the multivariate normal distribution assumption, an individual with 

high outcome values at previous time points will be more likely to have high outcome 

values in latter time points. If these latter points are missing data, the observed values 

and the normality assumption will be enough to compensate the information lost. 

There is no explicit imputation in this process, but to reach consistent results, the 

multivariate normality assumption is essential [59].    

 

The REML is a particular form of ML  that uses a likelihood function calculated on a 

transformed dataset. First, the algorithm generates contrasts of the outcome (linear 

combination of variables whose coefficients add up to zero) that do not depend on the 

fixed effects but instead depend on the variance components to be estimated. Then, the 

likelihood is calculated from the probability distribution of the contrasts. The 

procedure of computing individual likelihood, and then adding all of them into an 

overall likelihood, is similar to ML. The justification for REML is that having used the 

dataset of contrasts, it can produce unbiased estimates of variance and covariance 

parameters, for many models, which ML cannot do in general.   

 

ML estimates of variance components tend to be biased downward because they do not 

incorporate the degrees of freedom used by REML to estimate the fixed effects. On the 

other hand, likelihood-ratio (LR) tests based on ML are correct, whereas, with REML, 

the LR-test can only compare models with similar fixed-effects specifications [60]. 
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3.4. Missing data handling in ITS with EHR 
 

In this chapter, I reviewed how missing data is a real problem in electronic health 

records (e.g. THIN data) and three generic mechanisms that can explain missingness 

(MCAR, MAR and MNAR). In the analysis, some issues on validity and efficiency can 

emerge with data MAR or MNAR, so they need special handling. Complete case analysis 

can provide unbiased estimates in some cases, but with the risk of losing a large 

amount of data (e.g. in longitudinal studies). Conversely, multiple imputation (MI) can 

provide valid inferences -without sacrificing data - when the imputation model is 

compatible with the substantive model. For ITS performed with individual-level data, 

the compatibility is not easy to achieve due to the necessity of including random 

intercepts and slopes. If the data is MAR in the outcome only, the implicit imputation 

performed by REML provides valid inferences in an efficient manner. If the data is MAR 

on covariates, the substantive model compatible joint modelling multiple imputation 

(MI-JOMO) is a novel a flexible method that can provide valid inferences.  

 

In Chapter  5, I will show an application of ITS analysis with mixed-effects models 

(MEM with REML estimator). In Chapter 6, I will test an efficient way to combine MI-

JOMO with MEM in ITS analysis. In Chapter 7, I will show an application of the two-

step procedure (MI-JOMO plus MEM) to handle missing data in ITS with individual-

level data. Before doing all these, I will review how this missing data problem is 

addressed in recent ITS studies on health topics, in the next Chapter 4.      
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4 
4. CURRENT PRACTICES IN MISSING DATA HANDLING FOR INTERRUPTED TIME SERIES STUDIES: A SCOPING REVIEW 

 Current practices in missing data handling for 

Interrupted Time Series studies: A scoping review  

 

 

 

 

 

 

 

 

 

4.1. Introduction 

 

Interrupted time series (ITS) is a widely used quasi-experimental approach that 

evaluates the potential impact of an intervention over time, using longitudinal data [6]. 

ITS is becoming more widespread in health research in the last decade [7,61]. The use of 

observational patient-level data is also more frequent in ITS  [7,62–64], but routinely 

collected health data usually bring missing data issues [32]. Hudson et al. [7] detected 

that only 5% of the ITS studies in healthcare reported how missing data were handled. 

Current recommendations in the ITS literature [6] focus the attention on 

autocorrelation, seasonality and sample size as potential sources of bias, whereas little 

advise is given on reporting and handling of missing data.  

 

Missing data management and statistical analysis can be crucial for any ITS study. In a 

preliminary search [7,62–64], I have identified two practices among researchers that 

could affect the validity of ITS estimates. First, before any statistical analysis, 

researchers opt to aggregate individual-level data into population-level data. For 

example, they average all the available outcome values at each predefined time point 

4.1 Introduction 
4.2 Objectives 
4.3 Methods 

4.3.1 Inclusion and exclusion criteria 
4.3.2 Search strategy 
4.3.3 Data extraction and analysis 

4.4 Results 
4.5 Discussion 
4.6 Summary 
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(e.g. month) and use these averages as population-level outcome values in the 

subsequent time-series analyses. I call this the ‘averaging-step’ and, as I will explain 

later, this can lead to bias in the ´aggregate-level´ data analysis. Second, researchers are 

using statistical tools/approaches for modelling these aggregate-level data (e.g. ARIMA) 

that have not been designed to account for missing data at the individual level.  

 

ITS guidelines recommend controlling for other potential confounders, such as 

autocorrelation or seasonality, using tools designed for population-level analyses and 

ignoring the missing data problem at the individual level [6]. Autocorrelation, whereby 

two consecutive data points can be more correlated with each other, could appear 

smaller than it is if there are different people at different time-points (i.e. missing 

outcome records). Then, missing data will impact on the trajectories estimates. 

Seasonality, which is defined by cyclic patterns on the outcome over time at 

population-level, can also be distorted by unseasonal missing data patterns at 

individual-level. Thus, traditional approaches to control for seasonality could be 

insufficient as well.  

 

Four systematic reviews exploring methodological characteristics of health research 

with ITS designs have been performed in the past [4,7,61,65]. They have contributed to 

detecting gaps in reporting and the use of standard ITS analyses. However, these 

studies did not focus on the particular problem of applying these standards (mainly 

designed for population-level data [6]) to the analysis of individual-level records with 

missing values. In particular, the missing data issues related to the averaging-step and 

the selected statistical approach have been ignored by previous methodological or 

review studies of ITS.  

 

I decided to look further into the practices in missing data handling and analysis that 

are prevalent in the ITS literature; particularly, how researchers are addressing the 

problem of having missing data at the individual level. Thus, I conducted a scoping 

review.  
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4.2. Objectives  

 

The general aim was to determine the current practices in missing data handling for 

interrupted time series studies performed for health research. Particularly, I was 

interested in those studies that had access to individual-level data. For achieving this 

aim, I reviewed ITS investigations on health topics to:   

 

1. Determine the data management strategies and statistical analysis performed in 

these studies 

2. Determine how often missing data were considered and, if so, how they were 

evaluated, reported and handled in the analysis 

 

4.3. Methods 

 

I performed this study following the steps previously specified in a scoping review 

protocol (see Appendix 4A), and paying attention to standard recommendations from 

the PRISMA Extension for Scoping Reviews [66]. ‘Scoping reviews’ are alternatives to 

systematic reviews, especially suitable for investigating more general questions such as 

common practices in research [67]. For that reason, scoping reviews usually omit any 

critical appraisal within the reviewed articles, do not assess the risk of bias across the 

studies, and should not end with meta-analyses [68]. 

  

4.3.1. Inclusion and exclusion criteria 

 

I included studies of ITS that assessed any intervention relevant to health care (e.g. 

policies or programs), with no restrictions on participants, the language of publication 

or the type of outcome. I excluded grey literature (e.g. government reports), systematic 

reviews, meta-analyses, randomised controlled trials, protocols, editorials, letters to 

editors, retraction papers, methodological studies, studies with no access to individual-

level data, and studies that used Google Trends data only. Studies whose full text was 

not available -after trying several avenues - were also excluded. The access to 

individual-level data was verified in the methods section of each article, usually in the 

subsection describing the settings, sample or population studied (e.g. if they reported 
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data routinely collected from patients). If the authors did not describe their data as 

individual-level data, then the article was excluded. 

 

4.3.2. Search strategy 

 

I used the MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed 

Citations and Daily database (Ovid version) on 8 February 2020, to identify ITS studies 

published from 01 January 2019 to 31 December 2019. Search strategies utilised a 

combination of free-text terms and subject headings, and co-authors were consulted for 

the revision of search terms. The search strategy was reviewed by an information 

specialist from the UCL Library. Details of the search strategy are in Appendix 4B. 

 

I performed the automatic search with the Ovid tool, removed duplications using 

EndNote, and screened titles and abstracts manually by the search for inclusion. My 

colleague Frank Peralta (FP) double assessed 10% of same titles and abstracts and, if we 

were in agreement, I would proceed to screen using a full-text version of the 

publications. FP also assessed 10% of the full-text and, in the absence of disagreement; I 

would proceed to randomly select 60 publications for final data extraction, using a 

random number generator with Stata. A third colleague was available to help in any 

disagreement at any stage of this process, whenever it was needed. 

 

4.3.3. Data extraction and analysis  

 

Data extraction form (Appendix 4C) was reviewed and validated by the co-authors and 

the information specialist from the UCL Library. From the 60 selected publications, 5 

full-text original articles were randomly selected and were reviewed by FP and myself 

independently. If there were no disagreements, I would proceed to review the other 

fifty-five articles.   
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Data extracted from the articles can be categorised into three topics: 

i. General characteristics of the ITS studies: first author, journal, country, 

study design (e.g. ITS, controlled ITS), participants, type of intervention, level of 

intervention (e.g. country, hospital), most granulated cluster available (e.g. 

hospital, individual-level) and longitudinal follow-up (e.g. prospective cohort or 

panel). 

ii. Data management and statistical analysis: data source, linked data, outcome 

type (e.g. continuous, proportion), number of time points, time point unit, 

averaging-step (yes/no), statistical model (e.g. ARIMA, mixed-effects models), 

confounder reported (yes/no) and confounder adjusted for (yes/no), 

autocorrelation (considered, tested with, concluded by test, controlled by), 

seasonality (considered, tested with, concluded by test, controlled by), time-

dependent variable (considered, handled by) and other methodological issues 

(considered, handled by). It is important to clarify the averaging-step definition, 

which is “the step from which the outcome analysed at the population level is 

the average of all more granulated outcome data (e.g. individual-level data) at 

each time-point defined for the ITS (e.g. one average outcome for each week)”.      

iii. Missing data reporting and handling: missing data considered (yes/no), 

proportion reported, the missing data mechanism (considered and reported), 

the method for handling missing data (considered, reported) and sensitivity 

analysis (considered, reported). 

I based the data extraction on the primary outcome, or the first outcome mentioned if 

the authors did not set a primary outcome.  

 

I summarised data using descriptive statistics (numbers and percentages or median, 

inter-quartile range, minimum and maximum values). Some cross-tabulations of 

frequencies were used when needed, and these are reported as supplementary material.  
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4.4. Results 

 

The search strategy identified 732 titles and abstracts from Medline Ovid (Figure 4.1). 

After removing two duplicates, I excluded 209 titles and abstracts that did not meet the 

inclusion criteria, leaving 521 full-text studies to be checked for eligibility. From this 

full-text selection, I excluded 180, most of them having unclear or no access to 

individual-level data (104). After exclusion, 341 articles were suitable for the final 

screening; thus, I randomly selected 60 of them, and the list of these studies is provided 

in the Appendix 4D. Since there were no disagreements during the screening and data 

extraction process,  FP and I only double assessed 10% of the full-text copies.     
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Figure 4.1. PRISMA diagram for the scoping review 

 

 

 

Most of the 60 studies were from the US (n=28, 47%), the UK (n=7, 12%) or Canada 

(n=4, 7%) (Table 4.1). Only two studies (3%) were not labelled as interrupted time series 

studies, although they used an ITS design (they described themselves as segmented 

regression analyses). 48 (80%) studies using a single-ITS approach (i.e. no control 

group, see Chapter 2 for a more detailed description), whereas 10 (17%) applied a more 

sophisticated Controlled-ITS design [3]. Patients were the most prevalent participants 

(n=38, 63%), followed by health personnel (n=6, 10%) or general population (n=4, 7%). 

Policies (n=16, 27%), programs (n=14, 23%) and focused interventions (n=15, 25%) were 

the most common interventions evaluated in the ITS studies. Frequently, these 

interventions were applied at a hospital (n=18, 30%) or country level (n=17, 28%). 

Although all these studies (n=60, 100%) had access to individual-level data, due to the 

Records from automatic search in Medline
(n=732)

Records after duplicates removed
(n=730)

Full-text articles assessed for elegibility
(n=521)

Articles suitable for this study
(n=341)

Excluded from full-text revision (n=180):
* unclear or no access to individual-level 

data (n=104)
* not ITS study (n=52)
* protocols/brief reports (n=16)
* Google Trends data (n=5)
* not a full-text article (n=3)

Excluded from titles and abstracts revision
(n=209)

Articles included in the study
(n=60)

Excluded by random selection
(n=281)
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nature of the studied ITS outcome (e.g. number of new patients before and after the 

intervention), only 32 (53%) could have followed/analysed the ITS outcome at an 

individual-level (i.e. repeated measures of the ITS outcome within individuals). 

However, other less granulated clusters could have been followed over time, for 

example, hospitals (n=13, 22%), hospital units (n=3, 5%), health facilities (n=3, 5%) or 

GPs (n=3, 5%) (i.e. ITS with multiple groups). A cross-table between the level of 

intervention and more granulated clusters available is in Appendix 4E. This provides an 

approximation of how often a researcher could move from modelling population ITS 

trajectories with population-level data points (i.e. only one ITS outcome average at each 

time-point), to model same trajectories with more granulated data, which was also 

available (e.g. individual- or hospital-level data for being modelled with mixed effects or 

GEE models). The longitudinal follow-up of the data collected for all these ITS studies 

was mostly retrospective and was available at individual-level (n=25, 42%) or other less 

granulated cluster levels (n=21, 35%).             

 

Table 4.1. Characteristics of the included interrupted time series 
studies (N=60)   

    n (%) 
Country of Study   

 
Australia            1 (1.7) 

 
Bangladesh 1 (1.7) 

 
Brazil 2 (3.3) 

 
Cambodia 1 (1.7) 

 
Canada 4 (6.7) 

 
China 2 (3.3) 

 
France 2 (3.3) 

 
Germany 1 (1.7) 

 
Israel 1 (1.7) 

 
Italy 1 (1.7) 

 
Japan 1 (1.7) 

 
Malawi 1 (1.7) 

 
Netherlands 1 (1.7) 

 
Rwanda 1 (1.7) 

 
Saudi Arabia 1 (1.7) 

 
South Korea 1 (1.7) 

 
Spain 2 (3.3) 

 
Switzerland 1 (1.7) 

 
UK 7 (11.7) 

 
USA 28 (46.7) 

Study Design   

 
CITS 10 (16.7) 

 
ITS 48 (80) 

 
SR 2 (3.3) 

Participants   

 
Children 3 (5) 
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Firefighters 1 (1.7) 

 
general population 4 (6.7) 

 
health personnel 6 (10) 

 
health personnel & patients 6 (10) 

 
insured women 1 (1.7) 

 
Medications 1 (1.7) 

 
Patients 38 (63.3) 

Type of Intervention   

 
guideline/protocol/sound publication or evidence 9 (15) 

 
focused intervention 15 (25) 

 
Policy 16 (26.7) 

 
Program 14 (23.3) 

 
relevant or historic event 3 (5) 

 
Treatment 3 (5) 

Level of Intervention   

 
cities, group of 1 (1.7) 

 
city/district 3 (5) 

 
Country 17 (28.3) 

 
Hospital 18 (30) 

 
hospitals, group of 8 (13.3) 

 
individual-level 2 (3.3) 

 
state/province/county 10 (16.7) 

 
fire departments 1 (1.7) 

Most Granulated Cluster Available   

 
GP 3 (5) 

 
District 2 (3.3) 

 
fire department 1 (1.7) 

 
group of patients (by Dx) 1 (1.7) 

 
health facility 3 (5) 

 
Hospital 13 (21.7) 

 
hospital unit 3 (5) 

 
Household 1 (1.7) 

 
individual-level 32 (53.3) 

 
Medications 1 (1.7) 

Longitudinal Follow-up   

 
prospective cohort (individuals) 8 (13.3) 

 
prospective panel (cluster) 6 (10) 

 
retrospective cohort (individuals) 25 (41.7) 

 
retrospective panel (cluster) 21 (35) 

 SR: segmented regression; ITS: interrupted time series: CITS: controlled 
interrupted time series; GP: general practice; Dx: diagnostic 

 

In most studies, data were routinely collected (n=46, 77%) which is often includes 

missing data, since the data collection procedures were not designed for an ITS study or 

even for any research (e.g. ITS outcomes were not collected at similar intervals across 

patients; such as weight measurement may have been taken at different times) (Table 

4.2). Data collected were not usually linked to external data (n=10, 17%). The most 

common ITS outcome type was proportions (n=39, 65%) and the most usual unit of the 

follow-up time was a month (n=36, 60%). The median number of time-points used in 

the ITS analysis was 38 (IQR=55). The averaging-step was performed in 47 (78%) of the 
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studies. One example of the averaging step was performed by Close et al [69]. They 

averaged the number of stroke admissions per practice per month (73 practices 

observed from 2011 to 2018), for modelling the ITS on the aggregated data (i.e. one 

average point at each month). The most typical statistical models were the segmented 

regression (SR) fitted with ordinary least square estimators (SR-OLS, n=23, 38%) or with 

maximum likelihood type estimators (SR with generalised linear models or SR-GLM, 

n=15, 25%). A cross-table between averaging-step and statistical model is available in 

Appendix 4F, showing how researchers combine them in standard ITS studies. 

Confounding was reported in 41 (68%) of studies, but researchers adjusted for 

confounding in just 33 (55%) studies. 

 

Table 4.2. Data and statistical analyses of the included interrupted 
time series studies (N=60)   

    n (%) 
Data Source   

 
collected for the study (prospective) 14 (23.3) 

 
routinely collected (retrospective) 46 (76.7) 

Linked Data   

 
No 50 (83.3) 

 
Yes 10 (16.7) 

Outcome Type   

 
Continuous 10 (16.7) 

 
Count 11 (18.3) 

 
Proportion 39 (65) 

Time Points Number   

 
median (IQR) 38 (55) 

 
Minimum 6  

 
Maximum 1217  

Time Points Unit   

 
Day 3 (5) 

 
half-year 1 (1.7) 

 
Month 36 (60) 

 
quarter year 8 (13.3) 

 
two-month 1 (1.7) 

 
Week 5 (8.3) 

 
Year 6 (10) 

Averaging-step   

 
No 11 (18.3) 

 
Yes 47 (78.4) 

 
Unclear 2 (3.3) 

Statistical Model   

 
ARIMA 7 (11.7) 

 
Joint-point (Exploratory Method) 1 (1.7) 

 
SR-GEE 7 (11.6) 

 
SR-GLM 15 (25) 

 
SR-GLS 1 (1.7) 

 
SR-OLS 23 (38.3) 

 
Mixed Effects (random intercept only) 4 (6.7) 
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Mixed Effects (random intercept & slopes) 2 (3.3) 

Confounder Reported   

 
No 19 (31.7) 

 
Yes 41 (68.3) 

Confounder Adjusted   

 
No 27 (45) 

 
Yes 33 (55) 

  
 

Many researchers considered the autocorrelation problem (n=41/60, 68%) (Table 4.3). 

However, descriptions about how they tested and handled autocorrelation were 

sporadic. For example, 1/3 of them did not report the test they applied -if so- for 

evaluating autocorrelation (n=13/41, 32%). This was different for those who worked with 

individual-level data and fitted GEE or mixed-effects models, reporting within-

individual correlation by design (n=11/41, 27%), since they did not usually address the 

autocorrelation problem at the population-level. Among those who identified 

autocorrelation issues in their data (n=36/41, 88%), the use of Newey-West standard 

errors (n=7/36, 19%) or autoregressive errors terms (n=8/36, 22%) was preferred.  

 

The seasonality issue was considered in about 1/3 of the studies (n=19/60, 32%) and, in 

most cases, it was not formally tested (n=14/19, 74%). Even in those studies with 

observation periods >1 year (n=52/60, 87%), seasonality was considered in a similar 

proportion (n=17/52, 33%). Regardless of the use of a formal test - graphical inspection 

may have been used, but not described - 18/19 (95%) concluded seasonality effects and 

did something to control for it. The most popular way to control for seasonality 

(n=12/18, 67%) was to include covariates of time (e.g. dummy variables of months) in 

the ITS models.  

 

Most studies (n=49/60, 82%) considered time-dependent confounding could not be 

handled by a single ITS design [3]. However, more than 2/3 of the studies only reported 

the problem as a limitation (n=34/49, 70%), whereas less than 1/4 (n=10/49, 20%) used a 

control group to address the limitation 11. Other methodological issues related to the 

ITS design were also considered (n=25/60, 42%), using sensitivity analyses to evaluate 

the impact of these issues on the results (n=6/25, 24%). For example, sensitivity 

analyses were used by extracting groups of patients in order to understand whether 

11 I explain how this limitation is addressed by including a control group in Chapter 2. 
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unmeasured events - potentially experienced by some groups - could affect the ITS 

outcome trajectories (n=3/25, 12%). Likewise, sensitivity analyses were applied to 

contrast the pre-selected ITS impact model [6,8] against other feasible models (n=3/25, 

12%). 

 

Table 4.3. Reporting and handling of methodological issues in the 
included interrupted time series studies (N=60)   

    n (%) 
Autocorrelation - Considered (n=60)   

 
No 19 (31.7) 

 
Yes 41 (68.3) 

Autocorrelation - Tested With (n=41)   

 
Breusch-Godfrey 2 (4.9) 

 
Cumby-Huizinga 1 (2.4) 

 
Durbin-Watson 8 (19.5) 

 
within-individual correlation by design 11 (26.8) 

 
autocorrelation function 3 (7.3) 

 
autocorrelation probability 2 (4.9) 

 
not specified 13 (31.7) 

 
residuals examination 1 (2.4) 

Autocorrelation - Concluded by Test (n=41)   

 
No 5 (12.2) 

 
Yes 36 (87.8) 

Autocorrelation - Controlled by (n=36)   

 
Cochrane- Orcutt 1 (2.8) 

 
GEE models 6 (16.7) 

 
Newey-West standard errors 7 (19.4) 

 
Prais-Winsten 2 (5.6) 

 
Autoregressive error term 8 (22.2) 

 
Mixed-models 5 (13.9) 

 
Not specified 7 (19.4) 

Seasonality - Considered (n=60)   

 
No 41 (68.3) 

 
Yes 19 (31.7) 

Seasonality - Tested With (n=19)   

 
Dickey-Fuller 1 (5.3) 

 
autocorrelation/partial autocorrelation function 2 (10.5) 

 
no formal test 14 (73.7) 

 
not possible (short period) 1 (5.3) 

 
regression diagnosis test 1 (5.3) 

Seasonality - Concluded by Test (n=19)   

 
No 1 (5.3) 

 
Yes 18 (94.7) 

Seasonality - Controlled by (n=18)   

 
ARIMA parameter 1 (5.6) 

 
covariate in the model 12 (66.7) 

 
Decomposition 1 (5.6) 

 
not handled (reported as a limitation) 2 (11.1) 

 
seasonal ARIMA 2 (11.1) 

Time-Dependent Variable - Considered (n=60)   

 
No 11 (18.3) 
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Yes 49 (81.7) 

Time-Dependent Variable - Handled by (n=49)   

 
control group 10 (20.4) 

 
control outcome 1 (2) 

 
covariate (exploration) 1 (2) 

 
covariate in the model 3 (6.1) 

 
reported as a limitation, not handled 34 (69.4) 

Other Issues - Considered (n=60)   

 
No 35 (58.3) 

 
Yes 25 (41.7) 

Other Issues - Handled by (n=25)   

 
Bonferroni adjustment (p values) 1 (4) 

 
adjusted for survey design 1 (4) 

 
aggregate ecological design (reported as a limitation) 1 (4) 

 
confounders not controlled (reported as a limitation) 1 (4) 

 
minimize immortal time bias 1 (4) 

 
non-stationary (ARIMA controlled) 2 (8) 

 
overdispersion evaluation (Poisson models) 2 (8) 

 
secular trends (reported as a limitation) 2 (8) 

 
sensitivity analysis (extracting patients) 3 (12) 

 
sensitivity analysis (impact model) 3 (12) 

 
sensitivity analysis (various) 6 (24) 

 
sub-group analysis 2 (8) 

  
 

Sensitivity analyses were used to evaluate missing data in two studies only (n=2/60, 3%) 

(Table 4.4). In one study, they compared results from multiple imputation by chained 

equations against results from complete case analysis (CCA). In the other study, they 

compared results from using a missing data category -for variables with missing data – 

against results from CCA. In general, only 13/60 studies (22%) reported issues related to 

missing data, with considerable variability across the proportion of missing values 

reported. Although many studies worked on retrospectively collected data (n=46/60, 

77%) (Table 4.2), with an irregular recording expected for any outcome at the individual 

level (n=32/60, 53%) (Table 4.1), only one study (n=1/13, 8%) explicitly reported this 

problem (missing data on the ITS outcome <60%) (Table 4.4). 

 

Only two studies (n=2/60, 3%) considered the missing data mechanisms and their 

implications on the analysis, reporting missing at random (MAR) and missing not at 

random (MNAR) as potential mechanisms behind their missing values (Table 4.4). 

About ¼ of the studies reported the method used for handling missing data, CCA being 

the most popular (n=14/16, 87%). Interestingly, in 2/6 investigations using mixed-effects 

models, researchers recognised the boundaries of these models in handling missing 

data on the ITS outcome.         
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Table 4.4. Reporting and handling of missing data issues in the included interrupted time 
series studies (N=60)   

    n (%) 
Missing Data - Considered (n=60)   

 
No 47 (78.3) 

 
Yes 13 (21.7) 

Missing Data - % Reported (n=13)   

 
% not reported, but declared as an issue to be solved 2 (15.4) 

 
covariates <30% / outcome <50% 1 (7.7) 

 
covariates at baseline (<1% each, not combined) 1 (7.7) 

 
covariates at baseline (<10% each, not combined) 2 (15.4) 

 
covariates at baseline (<2%, flow chart) 1 (7.7) 

 
covariates at baseline (<25% each, not combined) 1 (7.7) 

 
covariates at baseline (<25%, flow chart) 1 (7.7) 

 
covariates at baseline (<30% each, not combined) 1 (7.7) 

 
covariates at baseline (<5%, flow chart) 1 (7.7) 

 
outcome <60% 1 (7.7) 

 
smoking (one case), but reporting outcome irregular recording as a problem 1 (7.7) 

Missing Data Mechanism - Considered (n=60)   

 
No 58 (96.7) 

 
Yes 2 (3.3) 

Missing Data Mechanism - Reported (n=2)   

 
MAR 1 (50) 

 
MNAR 1 (50) 

Method for Handling Missing Data - Considered (n=60)   

 
No 44 (73.3) 

 
Yes 16 (26.7) 

Method for Handling Missing Data - Reported (n=16)   

 
Complete Case Analysis (CCA) 14 (87.4) 

 
Mixed intercept model for handling missing outcomes 1 (6.3) 

 
Mixed intercept and slope model for handling missing outcomes 1 (6.3) 

Sensitivity Analysis for Missing Data Mechanism - Considered (n=60)   

 
No 58 (96.7) 

 
Yes 2 (3.3) 

Sensitivity Analysis for Missing Data Mechanism - Reported (n=2)   

 
comparing results from MICE versus CCA 1 (50) 

 
comparing results from using a 'missing data category' versus CCA 1 (50) 

MICE: multiple imputation by chained equations; MAR: missing at random; MNAR: missing no at 
random 
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4.5. Discussion 

 

I identified at least five methodological issues directly associated with missing data 

handling in ITS studies. First, many studies have been using the averaging-step for 

summarising the ITS outcome at each time point, even if they had the opportunity of 

modelling the outcome with longitudinal individual-level data directly (or at least with 

data more granulated than the population level). Second, analysis tools for population-

level data (e.g. aggregate-level SR) were preferred over analysis tools for individual-level 

data (e.g. mixed-effects models). The first and second have implications regarding bias 

when data are missing, as I will explain in the next paragraphs and throughout the 

thesis. Third, missing data on covariates at baseline are commonly handled with CCA, 

losing valuable information and potentially leading to bias if ITS estimates are adjusted 

for these covariates. Fourth, seasonality and other time-dependent confounders are 

barely controlled and, when they are, missing data implications were typically ignored. 

Finally, missing data reporting is absent in most of ITS studies and further reflections 

on the potential consequences of missing data mechanisms, and the subsequent 

selection of best methods to handle missing values, are very rare in this type of studies.    

 

The averaging step forces the data missing at the individual level to -artificially - 

disappear at the population level, generating the false impression of an issue controlled. 

For example, if the outcome data are missing at random conditional on a fully-observed 

covariate at the individual level, and we calculate a simple average across subjects at 

each time point, the covariate that explains the outcome missingness will become 

unobserved at the aggregate level (e.g. if there are more missing data on the outcome 

on men than on women and a general outcome average –not weighted by sex- is 

calculated). Therefore, the mechanism will be missing not at random at the aggregate 

level. This is a potential source of bias that none of the 60 studies I reviewed has 

mentioned as a limitation. The data used in ITS studies are mostly retrospective (i.e. 

routinely collected); often, the expected amount of missing data on the outcome is 

high. This is particularly important for ITS designs, for which it is expected to have the 

outcome regularly measured at each time point [2]. With many outcome gaps due to 

irregular recording, researchers commonly select convenient periods as units of time 

(e.g. months) and average all the available records to set a unique outcome value for 

each time point/unit. All this with no significant reflection on the missing not at 
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random consequence explained above. Modelling the ITS at the individual level could 

be a better option (e.g. using mixed-effects models) but, as I confirmed in this review, 

this is not a common practice. I demonstrate how to use individual-level models with 

missing outcomes in Chapter 5 and provide a more detailed explanation of the issues 

associated with the averaging-step in Chapter 6.      

 

The frequent use of the averaging-step seems to be related to the standard use of fixed-

effect models which is abundant in the ITS literature and guidelines [6,7]. Before 

becoming popular in health research, ITS approach became very common in the 

evaluation of policies or national level interventions, for example, in economic or 

education research [2]. In these interventions, the ITS outcome at the population level 

(e.g. published annual national prevalence over long periods) was enough to model the 

time series; thus, the individual-level data behind the national figures were not required 

or even considered. At the population level, fixed-effects models such as segmented 

regression with ordinary least square or generalised linear models took place as the 

standard practice recommended by the ITS guidelines [6]. At the same time, other 

statistical tools for handling issues related to time series (e.g. autocorrelation or 

seasonality) were designed as complement or extension of these models [16]. In recent 

decades, access to massive individual-level data -of good quality - started to be more 

universal [37]. Regardless of this progress, the standard ITS recommendations are still 

the same: they are based on modelling population-level outcomes ignoring any 

potential missing data at the individual level. Researchers would have seen the 

averaging-step like an intuitive way to adapt the -now more available - individual-level 

data into the population-level data that guidelines teach to model [6]. With no 

methodological studies on the consequences of the averaging-step or recommendations 

from the ITS guidelines on how to handle missing data [61], researchers do not have 

sufficient information of the existence of the issue such that they would be motivated to 

improve practice.           

 

Most researchers handle missing data on confounders at baseline by using complete 

case analysis (CCA), taking similar actions when modelling interaction terms in CITS 

studies, but again without major reflections on the implications. For example, if an 

observation was dropped by the CCA, the final ITS estimates could reduce precision or 

be biased. Every time an individual record is omitted due to missing data on a covariate, 
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we are losing not only sample size but also some outcome records as well. If the records 

with missing covariates contain a systematically high or low range of outcome values, 

and we drop these observations, then the average from CCA at each time point could be 

biased. Further, if this bias differs across time-points, then estimators of trajectories will 

themselves be biased. I have confirmed that the most popular method for handling 

missing data in the reviewed studies was CCA. Even among those studies not reporting 

the method used, but in which the ITS effect estimated was controlled for baseline 

confounders at the aggregate level, it seems likely that CCA was the selected procedure. 

Only one study reported the use of multiple imputation and used the standard chained 

equation method (MICE) [48]. This method brings congeniality problems when it is 

applied to multilevel data (e.g. individual follow up, and adjusting for a dummy month 

variable at an aggregate level to control for seasonality) [55]. Reaching a congenial 

imputation model is more complicated for MICE when researchers need to introduce 

time-variant confounders or interaction terms in the models, both expected steps in 

many CITS studies [3]. For these more complex scenarios, multilevel multiple 

imputation methods are preferred [56] due to their flexibility to introduce interaction 

terms and confounders at different levels. I demonstrate the advantage of using 

multilevel multiple imputation in Chapter 6 and provide an example of its application 

for interaction models in Chapter 7.      

 

Seasonality and other time-dependent confounders are barely controlled in ITS studies 

and, when they are, missing data implications are typically ignored. Following an 

averaging-step procedure, the missing data at the individual level can affect the way the 

seasonality is observed at the aggregate level, for example, if the missingness proportion 

is not equal across seasons. Since the preferred method to control for seasonality seems 

to be to include a dummy variable of time in the models (e.g. month), the control will 

still incorporate noise from the points describing the seasonality at the aggregate level. 

Using mixed-effects to model the ITS with individual-level data, the seasonality could 

be controlled by specifying the structure of residual errors (i.e. when the intervention is 

applied at the population level). Under missing at random assumption, these mixed 

effect models provide unbiased estimates [70]. However, this or similar control 

alternatives have not been reported by any of the studies included in this review.      

 

67 
 



In ITS studies, there is a lack of missing data reporting, and further reflections on the 

potential consequences of missing data mechanisms and on the best methods to handle 

missing values are needed. Previous reviews have found an even lower proportion of 

missing data reporting [7], which indicates this gap is in the ITS literature. Only one 

study among all reviewed made some reflection about how a potential MNAR 

mechanism could affect its results [71]. However, no sensitivity analysis was performed 

by any study - to consider the impact that a possible MNAR mechanism could have on 

the final estimates [72], at least when individual-level data was available. Considering 

that most of the ITS studies are performed retrospectively (routinely collected data), 

the control that researchers can have on missing data is minimal; thus, a thorough 

evaluation/reflection on the missingness mechanisms is the only action that is viable in 

practice. After such an evaluation, the selection of the optimal method to handle 

missing values can be best informed, leading to more appropriate alternatives than 

CCA, which is almost never supported by a rationale in the ITS studies reviewed.  

 

In general, study findings are consistent with those reported by other previous reviews. 

As I did, Polus et al. [65] identified that some ITS studies do not use the ITS label (e.g. 

one study could report using a segmented regression without mentioned they applied 

an ITS design). Polus et al. [65] concluded that not having that label could be an 

indicator of ignoring the study design characteristics of the ITS approach, leading 

researchers to a deviation from the standard ITS practice. From sixteen ITS studies 

published between 1976 and 2011, they found five with no statistical models and zero 

studies using mixed-effect models. My review focused on sixty publications from 2019, 

finding only six studies using mixed-effects models. This combined evidence tells us 

that researchers’ preferences have not changed dramatically during the last decade. 

Jandoc et al. [61], who reviewed ITS studies in drug utilization published between 1984 

and 2013, found that >92% of data sources were administrative data (routinely 

collected). As they reported a similar proportion of routinely collected data as me, I 

externally confirmed that the missing data prevalence for ITS is still a problem. They 

also found that, in two hundred studies reviewed, segmented regression (e.g. OLS or 

GLM) and ARIMA models were the most used by researchers, also reporting no use of 

mixed effect models. Hudson et al. [7] reported that continuous ITS outcomes were 

more frequent, whereas I found that proportion was the most common. Differences 

seem to come from the way Hudson would have typified the outcomes. For them, the 

outcome type would have been defined by the model used (e.g. if researchers fitted and 
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ordinary least square (OLS) model, then the outcome should be typified as continuous). 

However, taking into account that an averaging-step typically preceded the outcome 

modelling, the ITS outcome should be typified considering this step in order to detect 

other methodological problems. For example, when researchers calculate a proportion 

by using the number of events at each time point and then model the time series with 

this longitudinal set of aggregate-level proportions, they could be still using OLS 

models. Observations from my study confirm this approach is not atypical. Even if 

researchers use aggregate-level data - which should be avoided when outcome data are 

missing - the use of a model appropriate for the outcome type is always strongly 

recommended. More recently, Turner et al. [4] identified that individual-level outcomes 

of one type (e.g. binary) are often aggregated in population-level outcomes of another 

type (e.g. proportion, counts, rates and continuous), underusing individual-level 

analysis options (e.g. mixed-effects models). These findings confirm mine about data 

aggregation and analysis choices but also unveil how data manipulation before the 

statistical analysis occurs in many ways that can be affected by missing data at the 

individual level. 

         

I recognise some strengths and limitations in this scoping review. On the strengths 

side, I followed standard recommendations for performing and reporting scoping 

reviews [66]. It is the first time that the missing data handling in ITS studies has been 

revised and analysed as the main aim of a review. The selected studies come from 

diverse countries and journals, and the results of this review are consistent with others 

reported in close studies [4,7,61,65], what is a good indicator of external validity. Among 

limitations, I only included data for one year (2019) but, considering outputs from 

previous investigations, there is no reason to believe that including years would have 

changed the conclusions. I could have missed some publications in the search process 

due to inconsistency in ITS studies reporting or the use of just one database (Medline). 

However, there are no strong reasons to believe that the review representativeness has 

been compromised due to these factors. I analysed a random sample from the 

population of publications (60/341) meaning my estimates vary about the population 

value. Then, although some information about missing data handling in ITS studies 

could have been omitted, the overall image of the problem studied here is still 

consistent. 
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In conclusion, I have confirmed that missing data reporting and handling in the most 

recent interrupted time series studies performed for health research was rarely 

performed. Researchers do not tend to evaluate the potential consequences of missing 

data mechanisms on their ITS estimates; their selection of proper methods for missing 

data handling is thus poorly reflected and informed. The complete case analysis is the 

most commonly applied method, but the control for confounders or interaction terms 

can be severely affected by its use. The averaging-step is also a widespread practice that 

can affect the validity of the ITS estimates when data are missing.  To overcome these 

actual limitations, it is essential to include recommendations for missing data handling 

in ITS guidelines, as well as the exploration of mixed-effects models and multilevel 

multiple imputation as more efficient analysis alternatives in new methodological and 

applicative studies.  
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4.6. Summary 

 

Interrupted time series (ITS) is a widely used quasi-experimental approach that is 

becoming more widespread in health research to answer causal questions with 

observational data. Current recommendations in ITS guidelines focus the attention on 

autocorrelation, seasonality and sample size as potential sources of bias, whereas little 

is advised on missing data reporting and handling. Therefore, issues associated with 

aggregate-level analysis and complete case analysis –both potential sources of bias 

when data are MAR- seem to be common practices in ITS studies. The study aimed to 

review recent ITS investigations on health topics for determining 1) the data 

management strategies and statistical analysis performed in these ITS studies; and 2) 

how often missing data were considered and, if so, how they were evaluated, reported 

and handled. 

 

I performed a scoping review following standard recommendations from the PRISMA 

Extension for Scoping Reviews. I included all studies of ITS that assessed any 

intervention relevant to health care (e.g. policies or programs) published in 2019 with 

abstracts visible in Medline. The initial search detected 732 publications, which I 

systematically debugged and from which I finally selected 60 to collect data about 1) 

general characteristics of the ITS studies, 2) data management and statistical analysis 

and 3) missing data reporting and handling. 

 

In the 60 ITS studies, the averaging-step and the subsequent aggregate-level SR were a 

widespread practice, bringing potential issues when data are missing. They applied the 

averaging-step, even if they had the opportunity of modelling the outcome with 

longitudinal individual-level data directly (or at least with data more granulated than 

the population level). As I will discuss through the next thesis chapters, the averaging-

step transform data MAR into data MNAR (see Chapter 6 especially). This is a potential 

source of bias that none of the reviewed studies reported as a limitation, showing that 

researchers are in general not aware of the MNAR issue associated with this process. 

The data used in ITS studies are mostly retrospective (i.e. routinely collected); 

therefore,  missing data on the outcome is often high. This is particularly important for 

ITS designs, for which it is expected to have the outcome regularly measured at each 

time point. With many outcome gaps due to irregular recording, researchers select time 
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periods as units of time (e.g. months) and average all the available records to set a 

unique outcome value for each time point/unit. All this is done with no significant 

reflection on the MNAR issue that can induce bias. The common use of the averaging-

step with individual-level data MAR motivated my exploration of better analysis 

alternatives for handling missing data in ITS studies (i.e. MEM in the next chapter).     

   

Missing data are poorly evaluated and reported in ITS studies, and statistical methods 

applied as standard are not robust against missing data issues. This study and other 

independent reviews have confirmed that missing data reporting is rare, suggesting that 

all the potential consequences of missing data on ITS estimates are unknown or at least 

undervalue by researchers. For example, the complete case analysis (CCA) is the most 

used method for handling missing data, but it can lead to biased and/or less precise 

estimates. Every time an individual record is erased due to missing data on a covariate, 

the researcher is losing not only sample size but also some outcome records as well. If 

the records with missing covariates contain a systematically high or low range of 

outcome values, and they drop these observations, then the average from CCA at each 

time point could be biased. Further, if this bias differs across time-points, then 

estimators of trajectories will themselves be biased. Better options for handling missing 

covariates such as multiple imputation (MI) has rarely been applied, and the only study 

that used MI did not consider a multilevel approach. I will evaluate MI-JOMO against 

other methods in Chapter 6 and show its potential for handling missing values on 

interaction terms in Chapter 7. 

 

Before evaluating these alternatives on missing data handling for ITS analysis 

performed with individual-level data, in Chapter 5, I will start exploring the 

applicability of MEM. MEM can help to handle missing outcomes at the individual-

level, avoiding any averaging-step and the potential bias issues associated with this 

when data are MAR. I will build most of the examples in the rest of the thesis based on 

the next application in Chapter 5. 
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5 
5. AN APPLICATION OF INTERRUPTED TIME SERIES WITH MIXED EFFECTS MODELS. 

An application of Interrupted Time Series  
with Mixed Effects Models  

 

 

 

 

 

 

 

 

 

5.1. Introduction 

 

Overweight and obesity is a worldwide problem that impacts severely on population 

health [73]. Since the prevalence of overweight and obesity is higher in individuals with 

severe mental illnesses than in the general population [74,75], their risk of harmful 

consequences is also higher [76,77]. Individuals with severe mental illnesses are more 

susceptible to developing metabolic syndrome, type-2 diabetes mellitus [78] and 

cardiovascular diseases [76,79], leading to a higher risk of death. Adults with 

schizophrenia have 3.5 times the mortality risk than the general population, with 

cardiovascular diseases as the most common cause [76,80]. Notably, Lahti et al. 

demonstrated that the risk of death is higher in women than in men with schizophrenia 

[81], suggesting that differences between sexes need to be further investigated.  

 

Second-generation antipsychotics (AP) are a known cause of weight gain [5,82]. Some 

evidence suggests that women gain more weight than men during AP treatment [83]. 

One study suggested that women have five times the odds of increasing body mass 

index (BMI) compared with men after two years or more [84]. Twenty-nine per cent of 

women treated with clozapine gained ≥20% of their baseline body weight after two 
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5.3.1 Data source 
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5.3.3 Variables and measurements 
5.3.4 Statistical analysis  

5.4 Results 
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years of follow up, in contrast to 13% of men [85]. Other studies have demonstrated 

similar differences between men and women [86,87]. However, most of these studies 

are based on small sample sizes of less than 200 individuals, and most do not 

distinguish between short and long-term weight gain associated with antipsychotic 

treatment.   

 

Weight gain after initiation of antipsychotic treatment may also depend on body weight 

when treatment is initiated. Thus, Gebhardt et al. found that low body mass index 

(BMI) before first AP treatment predicted a faster increment of BMI after treatment 

initiation [87], and a similar conclusion was reached by Najar et al. [86]. On the other 

hand, there is limited information about how doses of antipsychotic treatment are 

associated with weight gain [5]. 

 

Interrupted time series (ITS) design provides a flexible framework for analysing the 

weight gain associated with the initiation of antipsychotic treatment in observational 

data [2,6]. By using electronic health records (EHR), it is possible to follow patients 

weight trajectories before and after antipsychotic treatment initiation and detect 

changes in these trajectories. This is possible for short and relatively long periods of 

observation, which is an advantage when clinical trials are not feasible [1]. ITS can also 

be modelled for analysing weight change given a specific dose or sex. Despite these 

advantages, EHR bring missing data issues that standard ITS tools (e.g. aggregate-level 

segmented regression) are not designed to address (see Chapters 2 and 3). However, 

modelling ITS with mixed effect models (MEM) is a flexible approach that can 

efficiently overcome common missing data problems in EHR.  

 

5.2. Objectives  

 

The study aim was to investigate the change in body weight of patients initiated with 

high or low doses of the three most commonly prescribed second-generation 

antipsychotics (olanzapine, risperidone and quetiapine) by using the ITS approach.  

The specific objectives were:  

 

74 
 



1) Clinically: to evaluate the short- and long-term change in body weight in men 

and women upon initiation of AP; whether this is different for low and high 

doses; and whether low body weight at treatment initiation had the highest 

weight gain. 

2) Methodologically: to apply the ITS approach with mixed effect models (MEM) 

for handling missing data in longitudinal weight records.   

 

5.3. Methods 

 

5.3.1 Data source 
 

I used anonymised, longitudinal patient records from The Health Improvement 

Network (THIN), a database that comprises information from UK primary care 

electronic health records from general practices as described in Chapter 2.  

  

5.3.2 Study population 
 

At the individual level, I included all patients aged between 18 and 99 years at the date 

they started their first treatment with one of the following three antipsychotics 

olanzapine, risperidone or quetiapine; between 1 January 2005 and 31 December 2015. I 

included patients with a diagnosed psychiatric disorder (schizophrenia, bipolar 

disorder, other non-affective psychoses, borderline personality disorder, anxiety, 

depression or dementia) who had at least one further prescription of the same AP 

within three months after the first prescription. I judged that these individuals were 

more likely to have initiated treatment than those with a single prescription. Patients 

who had been initiated on more than one type of AP were excluded (including 

switchers). A few individuals had no records of the year of birth, sex or social 

deprivation records and were thus excluded from my study. Likewise, I excluded 

individuals with no available data 12 months before the date of initiation of 

antipsychotic treatments since they may have initiated antipsychotic treatment 

elsewhere. 
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5.3.3 Variables and measurements 
 

The exposure of interest was the initiation of olanzapine, risperidone or quetiapine 

treatment. These are often used for the treatment of severe mental illnesses including 

psychoses, schizophrenia and bipolar disorders. In the Neuroscience-based 

Nomenclature olanzapine is a dopamine and serotonin receptor antagonist, risperidone 

is a dopamine, serotonin and norepinephrine receptor antagonist, and quetiapine is a 

dopamine and serotonin receptor antagonist and norepinephrine reuptake inhibitor 

[88]. The outcome was body weight, measured in kilograms. The main covariates were 

sex (women/men) and first prescribed dose of AP (hereafter called ‘first dose’). All AP 

reported first doses in milligrams, but I used the dose-equivalence approach of Woods 

[89] for defining cut-off points of low/high first dose: ≤5 mg for olanzapine, ≤75 mg for 

quetiapine and ≤2 mg for risperidone. Using the "2 mg of haloperidol equals 100 mg of 

chlorpromazine" convention as a reference, Woods (2003) explored available evidence 

for identifying the minimum effective dose across olanzapine, quetiapine and 

risperidone, defining this dose equivalence. The first dose is a good predictor of all 

subsequent doses prescribed during treatment; thus, over time, patients usually stay in 

a dose range close to the first dose they were prescribed (see Appendix 5A). I also 

retrieved information on age, height, social deprivation (Townsend score 1-5, from least 

to most deprived), smoking and drinking status, having a type-2 diabetes mellitus 

diagnosis, systolic blood pressure (SBP), low-density lipoprotein cholesterol (LDL-

cholesterol) and high-density lipoprotein cholesterol (HDL-cholesterol), recorded 

within the first year before initiation of treatment. If there were multiple measures 

during that year, I kept the record closest to AP treatment initiation. All the variables 

passed a data cleaning before the statistical analysis (e.g. removing impossible weight 

values). This information served mostly for sample characterization; only sex, age, type-

2 diabetes mellitus diagnosis and social deprivation were fully observed.  

 

5.3.4 Statistical analysis 
 

I used an interrupted time series approach [6] to analyse weight change over time, with 

one model for each of the three AP initiation cohorts by sex (six models in total, one 

per drug per sex). I modelled weight change over time using continuous linear splines 

with random intercept and slopes models (unstructured covariance, restricted 

76 
 



maximum likelihood), from which three slopes of weight change were estimated for 1) –

4 years to baseline (pre-treatment), 2) baseline to +6 weeks (short-term), 3) +6 weeks to 

+4 years (long-term). Differences between slopes served to describe weight change after 

AP treatment initiation, both crude and adjusted for age and social deprivation. The 

correlation between average weight at baseline (intercept) and short-term gradient of 

change (short-term slope) was estimated, as it provided an estimate for whether 

individuals with lower weight at baseline gain more or less weight after AP treatment 

initiation than individuals with higher body weight. Negative correlations mean that 

individuals with low weight gain more weight during the short-term period and vice 

versa. The primary analysis was performed after stratifying each of cohorts according to 

low/high first dose. This was to examine whether the gradient of weight change after 

treatment initiation varies between low/high first doses of AP. For all these models, the 

Intraclass Correlation Coefficient (ICC) was reported. I assumed weight records were 

missing at random within strata, conditional on observed weights so that modelling the 

observed data over time provides unbiased estimates [48]. I also assumed weight was 

missing at random on dose, so the complete case analysis performed for dose provides 

unbiased estimates [49]. The model assessment included evaluation of residuals and 

visual exploration of average and individual trajectories. Although the chosen impact 

model (linear splines with knots at baseline and +6weeks) was informed by both the 

clinical criteria and evidence [5], I also performed a sensitivity analysis following the 

suggestions from Lopez Bernal et al. [6]. This sensitivity analysis consisted of 

comparing the preferred linear spline model against another feasible impact model, a 

restricted cubic spline model (knots again at baseline and +6 weeks), using graphical 

and analytical tools (see Appendix 5B). Estimates are given with 95% confidence 

intervals. All the statistical analyses were performed using Stata 15 for Windows [90].  
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5.4. Results 

 

In total, I included 16,559 men and 22,306 women in the study. The median number ± 

interquartile range of weight measurements within individual trajectories over 8 years 

of observation were 6±7 and 8±10 (olanzapine cohorts), and 7±8 and 8±9 (quetiapine 

and risperidone cohorts) for men and women respectively. Characteristics of the 

individuals are summarised in Table 5.1. On average, at the initiation of treatment, men 

were younger than women prescribed olanzapine (men=47.5 years ±17.8 SD, 

women=54.0 years ±19.5 SD) and risperidone (men=56.6 years ±22.1 SD, women=64.5 

years ±21.8 SD), but were of similar age in the quetiapine cohort (men=56.5 years ±20.7 

SD, women=56.1 years ±22.1 SD). On average, men were prescribed a higher dose of 

olanzapine (+1mg), quetiapine (+10mg) and risperidone (+0.3mg) than women (see 

Table 5.1). 
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Table 5.1. Baseline characteristics of patients using Olanzapine, Quetiapine or Risperidone (3 retrospective cohorts), by sex.  

  

OLANZAPINE (N=9499) QUETIAPINE (N=19965) RISPERIDONE (N=9401) 

Women Men Women Men Women Men 
N=5004 (52.7%) N=4495 (47.3%) 

 
N=12149 (60.9%) N=7816 (39.1%) 

 
N=5153 (54.8%) N=4248 (45.2%) 

 n ( % ) n ( % ) n ( % ) n ( % ) n ( % ) n ( % ) 
Age (years)                

 
              

 
              

 
 18-29 608 ( 12.2 ) 859 ( 19.1 ) 1646 ( 13.5 ) 919 ( 11.8 ) 436 ( 8.5 ) 628 ( 14.8 ) 

 30-39 791 ( 15.8 ) 860 ( 19.1 ) 1842 ( 15.2 ) 1083 ( 13.9 ) 481 ( 9.3 ) 593 ( 14.0 ) 

 40-49 906 ( 18.1 ) 948 ( 21.1 ) 2173 ( 17.9 ) 1440 ( 18.4 ) 642 ( 12.5 ) 647 ( 15.2 ) 

 50-59 777 ( 15.5 ) 720 ( 16.0 ) 1481 ( 12.2 ) 1031 ( 13.2 ) 529 ( 10.3 ) 477 ( 11.2 ) 

 60-69 669 ( 13.4 ) 504 ( 11.2 ) 1027 ( 8.5 ) 763 ( 9.8 ) 514 ( 10.0 ) 411 ( 9.7 ) 

 70-79 659 ( 13.2 ) 382 ( 8.5 ) 1313 ( 10.8 ) 1173 ( 15.0 ) 818 ( 15.9 ) 627 ( 14.8 ) 

 80-89 485 ( 9.7 ) 198 ( 4.4 ) 2011 ( 16.6 ) 1190 ( 15.2 ) 1257 ( 24.4 ) 721 ( 17.0 ) 

 90-99 109 ( 2.2 ) 24 ( 0.5 ) 656 ( 5.4 ) 217 ( 2.8 ) 476 ( 9.2 ) 144 ( 3.4 ) 

 missing 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 

 total (n) 5004 ( 100.0 ) 4495 ( 100.0 ) 12149 ( 100.0 ) 7816 ( 100.0 ) 5153 ( 100.0 ) 4248 ( 100.0 ) 

Towsend                
 

              
 

              
 

 Least deprived 913 ( 18.2 ) 674 ( 15.0 ) 2067 ( 17.0 ) 1388 ( 17.8 ) 966 ( 18.7 ) 692 ( 16.3 ) 

 2 970 ( 19.4 ) 725 ( 16.1 ) 2101 ( 17.3 ) 1394 ( 17.8 ) 936 ( 18.2 ) 746 ( 17.6 ) 

 3 1032 ( 20.6 ) 888 ( 19.8 ) 2797 ( 23.0 ) 1618 ( 20.7 ) 1166 ( 22.6 ) 907 ( 21.4 ) 

 4 1117 ( 22.3 ) 1070 ( 23.8 ) 2799 ( 23.0 ) 1709 ( 21.9 ) 1119 ( 21.7 ) 971 ( 22.9 ) 

 Most deprived 972 ( 19.4 ) 1138 ( 25.3 ) 2385 ( 19.6 ) 1707 ( 21.8 ) 966 ( 18.7 ) 932 ( 21.9 ) 

 missing 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 



 total (n) 5004 ( 100.0 ) 4495 ( 100.0 ) 12149 ( 100.0 ) 7816 ( 100.0 ) 5153 ( 100.0 ) 4248 ( 100.0 ) 

Smoking Status                
 

              
 

              
  ex-smoking 845 ( 16.9 ) 855 ( 19.0 ) 2339 ( 19.3 ) 2135 ( 27.3 ) 1057 ( 20.5 ) 1133 ( 26.7 ) 

 non-smoking 2437 ( 48.7 ) 1427 ( 31.7 ) 5634 ( 46.4 ) 2738 ( 35.0 ) 2838 ( 55.1 ) 1609 ( 37.9 ) 

 smoking 1131 ( 22.6 ) 1527 ( 34.0 ) 2790 ( 23.0 ) 1970 ( 25.2 ) 786 ( 15.3 ) 1016 ( 23.9 ) 

 missing 591 ( 11.8 ) 686 ( 15.3 ) 1386 ( 11.4 ) 973 ( 12.4 ) 472 ( 9.2 ) 490 ( 11.5 ) 

 total (n) 5004 ( 100.0 ) 4495 ( 100.0 ) 12149 ( 100.0 ) 7816 ( 100.0 ) 5153 ( 100.0 ) 4248 ( 100.0 ) 
Drinking Status              

            
             non-drinking 2492 ( 49.8 ) 1460 ( 32.5 ) 5754 ( 47.4 ) 2788 ( 35.7 ) 2911 ( 56.5 ) 1653 ( 38.9 ) 

 ex-drinking 869 ( 17.4 ) 869 ( 19.3 ) 2388 ( 19.7 ) 2200 ( 28.1 ) 1064 ( 20.6 ) 1151 ( 27.1 ) 

 drinking 1045 ( 20.9 ) 1290 ( 28.7 ) 2496 ( 20.5 ) 1692 ( 21.6 ) 780 ( 15.1 ) 926 ( 21.8 ) 

 missing 598 ( 12.0 ) 876 ( 19.5 ) 1511 ( 12.4 ) 1136 ( 14.5 ) 398 ( 7.7 ) 518 ( 12.2 ) 

 total (n) 5004 ( 100.0 ) 4495 ( 100.0 ) 12149 ( 100.0 ) 7816 ( 100.0 ) 5153 ( 100.0 ) 4248 ( 100.0 ) 
Diabetes Diagnostic             

            
             no 4357 ( 87.1 ) 3986 ( 88.7 ) 10276 ( 84.6 ) 6367 ( 81.5 ) 4147 ( 80.5 ) 3446 ( 81.1 ) 

  yes 647 ( 12.9 ) 509 ( 11.3 ) 1873 ( 15.4 ) 1449 ( 18.5 ) 1006 ( 19.5 ) 802 ( 18.9 ) 
  missing 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 

 total (n) 5004 ( 100.0 ) 4495 ( 100.0 ) 12149 ( 100.0 ) 7816 ( 100.0 ) 5153 ( 100.0 ) 4248 ( 100.0 ) 
Height (m)              

            
             mean (sd) 1.6 ( 0.1 ) 1.8 ( 0.1 ) 1.6 ( 0.1 ) 1.7 ( 0.1 ) 1.6 ( 0.1 ) 1.7 ( 0.1 ) 

  missing 1786 ( 35.7 ) 1481 ( 32.9 ) 4665 ( 38.4 ) 2832 ( 36.2 ) 2021 ( 39.2 ) 1439 ( 33.9 ) 

 total (n) 5004 ( 100.0 ) 4495 ( 100.0 ) 12149 ( 100.0 ) 7816 ( 100.0 ) 5153 ( 100.0 ) 4248 ( 100.0 ) 
SBP (mmHg)              

            
             mean (sd) 129.2 ( 16.2 ) 130.7 ( 14.6 ) 129.5 ( 14.7 ) 131.2 ( 13.3 ) 131.3 ( 15.8 ) 131.3 ( 14.4 ) 

  missing 1659 ( 33.2 ) 2099 ( 46.7 ) 3601 ( 29.6 ) 2631 ( 33.7 ) 1280 ( 24.8 ) 1484 ( 34.9 ) 

 total (n) 5004 ( 100.0 ) 4495 ( 100.0 ) 12149 ( 100.0 ) 7816 ( 100.0 ) 5153 ( 100.0 ) 4248 ( 100.0 ) 
LDL-Cholesterol (mmol/L)               

 
              

 
              

  mean (sd) 3.3 ( 1.1 ) 3.3 ( 1.1 ) 3.3 ( 1.1 ) 3.1 ( 1.1 ) 3.3 ( 1.1 ) 3.1 ( 1.1 ) 
  missing 1901 ( 38.0 ) 1757 ( 39.1 ) 4783 ( 39.4 ) 2797 ( 35.8 ) 1792 ( 34.8 ) 1544 ( 36.3 ) 

 total (n) 5004 ( 100.0 ) 4495 ( 100.0 ) 12149 ( 100.0 ) 7816 ( 100.0 ) 5153 ( 100.0 ) 4248 ( 100.0 ) 
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HDL-Cholesterol (mmol/L)               
 

              
 

              
 

 mean (sd) 1.6 ( 0.5 ) 1.3 ( 0.4 ) 1.5 ( 0.5 ) 1.3 ( 0.5 ) 1.5 ( 0.6 ) 1.3 ( 0.5 ) 
  missing 1459 ( 29.2 ) 1385 ( 30.8 ) 3596 ( 29.6 ) 1995 ( 25.5 ) 1307 ( 25.4 ) 1089 ( 25.6 ) 

 total (n) 5004 ( 100.0 ) 4495 ( 100.0 ) 12149 ( 100.0 ) 7816 ( 100.0 ) 5153 ( 100.0 ) 4248 ( 100.0 ) 
First Dose (mg)                

 
              

 
              

 
 mean (sd) 6.2 ( 4.6 ) 7.5 ( 4.9 ) 84.9 ( 111.9 ) 95.3 ( 129.0 ) 1.3 ( 1.1 ) 1.6 ( 1.4 ) 
  missing 1369 ( 27.4 ) 1138 ( 25.3 ) 4865 ( 40.0 ) 3164 ( 40.5 ) 1735 ( 33.7 ) 1396 ( 32.9 ) 

 total (n) 5004 ( 100.0 ) 4495 ( 100.0 ) 12149 ( 100.0 ) 7816 ( 100.0 ) 5153 ( 100.0 ) 4248 ( 100.0 ) 
Body Weight (kg) *               

 
              

 
              

 
 mean (sd) 69.7 ( 17.2 ) 81.1 ( 17.5 ) 73.3 ( 18.3 ) 82.5 ( 18.0 ) 70.1 ( 18.2 ) 81.6 ( 18.7 ) 
  missing 2156 ( 43.1 ) 1858 ( 41.3 ) 5540 ( 45.6 ) 3438 ( 44.0 ) 2389 ( 46.4 ) 1771 ( 41.7 ) 

 total (n) 5004 ( 100.0 ) 4495 ( 100.0 ) 12149 ( 100.0 ) 7816 ( 100.0 ) 5153 ( 100.0 ) 4248 ( 100.0 ) 
(*) Body weight has been calculated as the average of the wieght records available up to 12 months before treatment initiation. 
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In the short (<6 weeks) and long term (≥6 weeks to ≤4 years), individuals treated with 

any of the three AP drugs gained weight, especially those patients prescribed 

olanzapine. Pre-treatment weight change was negligible for quetiapine (women and 

men) and risperidone (men only) cohorts, and slightly negative for the rest of cohorts. 

In the short-term after olanzapine initiation, men’s weight increased by 0.569 kg/week 

(3.4 kg over the first six weeks) and women’s weight increased by 0.382 kg/week (2.3 kg 

over the first six weeks) (Table 5.2 and Appendix 5C). Individuals initiated on 

quetiapine and risperidone also gained weight shortly after initiation of treatment, but 

to a lesser extent (Table 5.2 and Appendix 5C, and Figure 5.1). Individuals continued to 

gain weight after six weeks, but at a slower rate than the first six weeks. For example, 

for women initiated on olanzapine, long-term weight gain was estimated to be 0.014 

kg/week (0.7 kg per year) (Table 5.2, Appendix 5C, and Figure 5.1).  Women who were 

initiated on olanzapine were in general slightly lighter (69.7 kg) than women initiated 

on risperidone (73.3 kg) and quetiapine (70.1 kg), but there was not much difference for 

the men (weight at baseline, see Table 5.1 and Appendix 5C). Women who had a lower 

weight before initiation of olanzapine gained more weight in the short term than 

women who had a higher weight (correlation between intercept and slope=-0.068, 

95%CI: -0.121 to -0.014); a similar effect was observed for men (correlation between 

intercept and slope=-0.050, 95%CI: -0.113 to +0.014) (Appendix 5C).  

  



Table 5.2. Expected weight gain for an average patient prescribed a particular antipsychotic, stratified by dose and sex. 

Drug Sex N* Dose** 

Weight gained 
during short-time 

(0-6 weeks) in 
Kilograms 

95% CI 
Weight gained during 
long-time (6weeks - 

4 years) in Kilograms 
95% CI 

Total                       
weight 
gained 

OLANZAPINE      
(N=9,499) 

Women 

5004 Overall 2.3 
 

(1.9 to 2.7) 
 

2.8 
 

(2.2 to 3.5) 
 

5.1 

2535 Low 1.9 
 

(1.4 to 2.4) 
 

2.5 
 

(1.6 to 3.3) 
 

4.4 

1100 High 3.2 
 

(2.4 to 4.0) 
 

2.9 
 

(1.6 to 4.2) 
 

6.1 

Men 

4495 Overall 3.4 
 

(3.0 to 3.8) 
 

1.7 
 

(0.9 to 2.4) 
 

5.1 

1887 Low 2.6 
 

(2.0 to 3.2) 
 

1.9 
 

(0.8 to 3.0) 
 

4.5 

1470 High 4.5 
 

(3.6 to 5.3) 
 

1.4 
 

(0.2 to 2.7) 
 

5.9 

QUETIAPINE     
(N=19,965) 

Women 

12149 Overall 1.2 
 

(1.0 to 1.5) 
 

1.1 
 

(0.6 to 1.6) 
 

2.3 

5372 Low 0.7 
 

(0.3 to 1.0) 
 

0.9 
 

(0.1 to 1.6) 
 

1.6 

1912 High 2.3 
 

(1.6 to 2.9) 
 

1.6 
 

(0.4 to 2.7) 
 

3.9 

Men 

7816 Overall 0.8 
 

(0.4 to 1.1) 
 

0.7 
 

(0.1 to 1.3) 
 

1.5 

3326 Low 0.5 
 

(0.0 to 0.9) 
 

-0.7 
 

(-1.8 to 0.3) 
 

-0.3 

1326 High 1.6 
 

(0.9 to 2.4) 
 

1.0 
 

(-0.3 to 2.2) 
 

2.6 

RISPERIDONE    
(N=9,401) Women 

5153 Overall 0.9 
 

(0.5 to 1.3) 
 

0.7 
 

(-0.1 to 1.5) 
 

1.6 

3102 Low 1.0 
 

(0.5 to 1.4) 
 

0.1 
 

(-0.9 to 1.1) 
 

1.1 
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316 High 1.1 
 

(-0.7 to 2.9) 
 

3.5 
 

(1.0 to 5.9) 
 

4.6 

Men 

4248 Overall 1.1 
 

(0.6 to 1.5) 
 

1.4 
 

(0.4 to 2.4) 
 

2.5 

2411 Low 1.0 
 

(0.4 to 1.7) 
 

1.1 
 

(-0.3 to 2.6) 
 

2.2 

441 High 1.9 
 

(0.5 to 3.3) 
 

1.4 
 

(-0.7 to 3.5) 
 

3.3 

(*) Overall estimates come from Table S2 (N=38,865) and low/high dose estimates come from Table S3 (N=25,198). N from Table S2 < N from Table S3 due to missing data on dose. 

(**) Cut off point for low/high dose was: ≤5 mg for Olanzapine, ≤75 mg for Quetiapine and ≤2 mg for Risperidone.  
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The weight gain in individuals who were initiated on a high dose of AP was greater than 

those initiated on a low dose. When olanzapine was initiated at high dose (>5mg), 

women gained +0.534 kg/week (+3.2kg over 6 weeks) and men +0.743 kg/week (+4.5kg 

over 6 weeks) compared with a low-dose gain of +0.314 kg/week (+1.9kg over 6 weeks) 

for women and +0.425 kg/week (+2.6kg over 6 weeks) for men (Table 5.2 and Appendix 

5D). The short-term effect of initiation of quetiapine was also more substantial for 

those given high doses (>75mg) (women +2.3kg and men +1.6kg, both over 6 weeks) 

than given low doses (women +0.7kg and men +0.5kg, both over 6 weeks). However, 

there was a relatively small difference for those initiated on risperidone low doses 

(≤2mg) (+1.0kg over 6 weeks for both women and men) and high doses (women +1.1kg 

and men 1.9kg, both over 6 weeks). In the short-term, those given low doses of 

olanzapine tended to gain more weight as their weight at baseline was lower (women: 

correlation between intercept and slope=-0.155, 95%CI: -0.230 to -0.078; men: 

correlation between intercept and slope=-0.135, 95%CI: -0.235 to -0.033). 
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Figure 5.1. Changes in body weight over time before and after treatment initiation by drugs and sex. 

 

 

 

Cumulative weight gain in the long-term was particularly high in patients prescribed 

olanzapine but, for any drug, on average, people did not lose the extra weight they 

gained during the short-term (Table 5.2 and Appendix 5D). For example, after four 

years from the first olanzapine prescription, a  woman typically gained 2.3kg (short-

term, 95%CI: 1.9kg-2.7kg) + 2.8kg (long-term, 95%CI: 2.2kg-3.5kg) = 5.1kg (total) and a 

typical man gained 3.4kg (short-term, 95%CI: 3.0kg-3.8kg) + 1.7kg (long-term, 95%CI: 

0.9kg-2.4kg) = 5.1kg (total) of AP induced extra-weight. The prescribed dose of 

olanzapine was also critical, particularly for women in the long-term. For example, 

given a low dose (<5mg), women gained 1.9kg + 2.5kg = 4.4kg after four years; given a 

high dose (>5mg), women gained 3.2kg + 2.9kg = 6.1kg. A similar impact of higher doses 

was observed for quetiapine and risperidone (Table 5.2 and Appendix 5D). 
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MEM approach worked well in general (i.e. estimation process was not slow, there were 

no convergence issues), but I lost a fraction of data when included a covariate with 

missing values in the analysis (i.e. dose). Comparing sample sizes from Appendices 5C 

and 5D, Figure 5.2 shows data lost involved in the CCA performed for generating Table 

5.2.  

 

Figure 5.2. Participants removed from the olanzapine, quetiapine and risperidone cohorts due to 
missing data on dose, for performing complete case analysis (CCA). 

 

 

  

Olanzapine 
Cohort 

N=9,499 
(100%) 

Removed = 
2,507 

(26.4%)   

N=6,992 
(CCA sample) 

Quetiapine 
Cohort 

N=19,965 
(100%) 

Removed = 
8,029 

(40.2%)  

N=11,936 
(CCA sample) 

Rispeidone 
Cohort 

N=9,401 
(100%) 

Removed = 
3,131 

(33.3%)  

N=6,270 
(CCA sample) 
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5.5. Discussion 

 

This retrospective cohort study reports data from patients seen in primary care, before 

and after AP treatment initiation. Pre-treatment weight change was insignificant or 

slightly negative for all cohorts during 4 years before baseline. Individuals starting 

treatment with any AP gained weight on average, especially those patients prescribed 

olanzapine. Weight gain was much more rapid in the short-term than in the long-term. 

People who were initiated on high dose AP experienced much greater absolute weight 

gain than those initiated on low dose AP. Cumulative weight gain during the long-term 

was particularly high in individuals treated with olanzapine but, for all AP’s, people 

typically never lost the extra weight they gained during the first 6 weeks of AP 

treatment. MEM worked well for the ITS analyses, but I lost between 26% and 40% of 

cases in the ITS analysis stratified by dose due to missing values on dose (i.e. complete 

case analysis). 

 

Previous studies have suggested that olanzapine is associated with a large short-term 

weight gain, whereas risperidone and quetiapine have a moderate effect on weight [5]. 

In the long-term, contrary to one previous finding [91], I found that weight gain did not 

stabilize during 4 years of follow up. However, my finding of the long-term effect of 

weight gain is consistent with previous studies by Bushe et al. [92] and Osborn et al. 

[82], but I can quantify the effect more accurately. Previous research has suggested 

women’s weight is more affected by AP exposure [83]; however, I found that only 

olanzapine (in the long-term) and quetiapine (in the long- and short-term) induced 

more weight gain in women. Since my study population is a mixture of naïve and 

recurrent antipsychotic consumers, short and long-term weight gain in olanzapine 

naïve individuals and long-term weight gain in risperidone naïve individuals can be 

higher than the weight gain reported here [5]. Risperidone seemed to be associated 

with higher weight gain in men than women both in the short and long-term, and men 

prescribed olanzapine gained more weight in the short-term. Regarding the dosage, one 

recent study reanalysed results of 14 clinical trials to explore variations in weight gain 

across doses of olanzapine and risperidone [93]. Their conclusions about olanzapine are 

consistent with my results; that the excess risk of at least 7% weight gain is 16.1% for low 

doses (0-10 g chlorpromazine equivalent dose) and 46.8% for high doses (0-20 g 

chlorpromazine equivalent dose). They could not be conclusive about the effects of 
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risperidone as they showed only a trend in weight gain; however, this trend is in line 

with my findings. Some advantages from my original study are: 1) I added similar 

information about quetiapine, I 2) observed longer periods of weight change (4 years) 

and 3) analysed information at individual-level from cohorts with more than 38,000 

patients in total.               

 

MEM presented advantages over the standard ITS approach, but some disadvantages 

due to a missing covariate were faced. Conversely to the standard ‘aggregate-level’ 

segmented regression (Section 2.1.2), no averaging-step was needed for fitting MEM. 

This implies not only a more efficient way to analyse the data (i.e. I did not lose 

information by averaging the outcome in artificial time-windows) but also a preferable 

approach by modelling individual-level data instead of time-point averages. For fully 

observed covariates, MEM estimator (REML, Section 3.3) is unbiased under MAR 

assumptions [70]. Moreover, MEM model variances directly (also see Section 3.3) 

allowing to evaluate the association between weight at baseline (random intercept) and 

short-term weight gain (beta 2) in a single ITS model. Nevertheless, the solely MEM 

approach to handle missing covariates is the complete case analysis, reducing the 

precision of estimates (i.e. bigger standard errors). Assuming weight is MAR on dose -

which is not a bold assumption -, the risk of bias is relatively low. However, for a more 

complex scenario of two or more missing covariates, the complete case analysis can be 

inviable in practice. That is a crucial reason for exploring alternatives that assist in the 

handling of missing covariates (i.e. Chapter 6).           

 

Among its strengths, this study presents evidence from a large sample (N>38,000) of 

people prescribed antipsychotic medications, taken from a population which is broadly 

representative of the UK [27]. Patients prescribed antipsychotics are often treated for 

long periods, and so quantifying the risk of long-term side effects is particularly 

important. Clinical trials often fail to do this because of their short durations and much 

smaller sample size, so my study provides a necessary long-term perspective. I applied 

an analysis approach that has not been used previously in assessing AP induced weight 

gain. The approach utilises all individual weight records at their time of measurement, 

therefore avoiding the loss of information seen in previous studies which categorise 

outcomes or use period means or incidence rates as summary measures [5,82]. My 

longitudinal model-based approach also accounts for missing weight records – 
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assuming weight recording is missing at random within strata, conditional on observed 

weight measurements [94] – while incorporating informative pre-baseline weight data. 

From this method, I expect unbiased estimates if data were missing at random [50], a 

property that is not ensured by analyses applied elsewhere [82,92]. Following standard 

recommendations [6], I guaranteed good statistical power by having equal periods of 

observation before and after baseline, and large sample size. Additional analyses 

showed that my proposed linear spline models were very similar to the restricted cubic 

splines models (Appendix 5B), and for primary analysis, I used the former as its 

interpretation is more straightforward.  

 

This study does have several potential limitations. Information on possible time-varying 

confounders (for example, symptoms level or illness severity) was not included; 

however, it is reasonable to assume limited variation from patients’ baseline values for 

unmeasured confounders. Treatment initiation has been defined using the first 

prescription date in general practice; but, for some individuals, the first prescription 

date might occur while the individual is under the care of secondary care mental 

services (these data are not recorded in primary care). However, it is most likely these 

patients have a first prescription date very close to the one in primary care; thus, no 

major impact on estimates is expected. I did not control for drugs prescribed to reduce 

antipsychotic-induced weight gain, or for multiple prescriptions of other drugs that 

could potentially affect weight as well. However, I know that drugs prescribed for 

ameliorating weight gain would only reduce the estimate of the real weight gain of the 

target population; thus, I am not overestimating the weight gain effect. I did not assess 

weight gain associated with other antipsychotic medications as there were not enough 

data on them, but the three drugs included in this study are the most commonly 

prescribed antipsychotic medications in the UK [95] and have previously been 

associated with weight gain [82]. The weight gain trajectories I described are averages; 

thus, they should be interpreted as typical patient trajectories. In practice, individual 

patients’ weight gain will vary from these average trajectories. However, the first weeks 

of treatment are critical for everyone. Finally, I did not control the number of 

prescriptions beyond the second prescription (treatment duration), meaning that 

studied patients can include those treated for long periods, those treated sporadically, 

just for a short period, or those who did not adhere to treatment regularly. This lack of 

control may reduce my long-term estimates of weight gain, but – given the evidence 
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about dosage – I anticipate that patients exposed to AP on a regular basis and for long 

periods will have larger estimates of long-term weight gain.  

 

In conclusion, over 4 years, olanzapine treatment was associated with the highest 

increase in weight, with around 6 kg for those on a high dose and 4.5 kg for those on a 

low dose. The weight gain was less dramatic for individuals treated with quetiapine and 

risperidone. In general, in the long-term (i.e. up to 4 years), individuals did not lose the 

weight gained during the first 6 weeks of treatment. Doctors and patients may want to 

take the issue of a substantial weight gain into consideration when making decisions on 

the initiation of antipsychotic treatments, and doctors should prescribe the lowest 

effective dose to balance mental health benefits, weight gain and other adverse effects. 

MEM are useful to model ITS with missing outcomes, but a new alternative should be 

explored for handling missing covariates. 
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5.6. Summary 12 

 

Second-generation antipsychotics (AP) are a known cause of weight gain. However, 

most previous studies are based on small sample sizes, and most do not distinguish 

between short and long-term weight gain associated with antipsychotic treatment. On 

the other hand, there is limited information about how doses of antipsychotic 

treatment are associated with weight gain. Interrupted time series (ITS) design provides 

a flexible framework for analysing the antipsychotic-induced weight gain in 

observational data. Despite this advantage, observational data bring missing data issues 

that standard ITS tools (e.g. aggregate-level segmented regression) are not designed to 

address. However, modelling ITS with mixed effect models (MEM) is a flexible 

approach that could efficiently overcome the problem.  

 

The objectives were: 1) Clinically: to investigate the change in body weight of patients 

initiated with high or low doses of the three most commonly prescribed second-

generation antipsychotics, and 2) Methodologically: to apply MEM for handling missing 

data in longitudinal weight records. In total, I included 16,559 men and 22,306 women 

in the study. 

 

Olanzapine was associated with the highest increase in weight, in the short and long 

term, and higher doses were associated with higher weight gain. For example, when 

women were prescribed olanzapine at high dose, they gained 3.2kg on average during 

the first 6 weeks and a total of 6.1kg at the end of the 4 years observation period. A low 

dose was associated with 1.9kg of weight gain in the first 6 weeks and a total of 4.4kg in 

the long-term period (4 years). For any second-generation antipsychotic, the weight 

gain remained in the long-term; thus, on average, patients never lost the weight they 

gained during the first 6 weeks of treatment.  

  

MEM was a functional analysis tool for the ITS design, but it was not efficient for 

handling missing covariates. Fully observed covariates helped to inform the implicit 

imputation of the outcome at individual-level made by the Restricted Maximum 

12 This study has been published as an original article. Please, see Appendix 10.5 for details. 
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Likelihood (REML) estimator of MEM. Under MAR assumptions, MEM provide 

unbiased estimates. MEM can produce additional information that standard ITS 

methods are not able to do. For example, MEM helped to investigate the association 

between weight at baseline (random intercept) and short-term weight gain (beta 2) 

within a single ITS design. This would not be possible directly from standard ITS 

regression models (e.g. aggregate-level segmented regression). However, MEM can only 

handle missing covariates by listwise deletion, which results in a reduction of the 

precision and potential problems with bias.  

 

In the next Chapter 6, I explore other choices for handling missing covariates, such as 

multilevel multiple imputation, and formally compare MEM and the aggregate-level 

segmented regression for handling missing outcomes, via simulations.   
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6 
6. EVALUATING METHODS FOR MISSING DATA HANDLING IN INTERRUPTED TIME SERIES ANALYSIS VIA SIMULATION STUDIES 

 Evaluating methods for missing data handling in 
Interrupted Time Series analysis  

via simulation studies  
 

 

 

 

 

 

 

 

 

 

 

 

6.1. Introduction 

 

Interrupted time series (ITS) is a widely used quasi-experimental approach that 

evaluates the potential impact of an intervention over time, using longitudinal 

observational data [6]. It has frequently been used to evaluate intervention effects in 

longitudinal population studies; for example, to evaluate the impact of policies and 

social interventions on clusters, such as districts, cities and countries [96,97]. While ITS 

comes from social science literature, it is becoming more widespread in health research 

[7,61]. ITS may be used to address causal questions that are not feasible for a 

randomised controlled trial, but with stronger assumptions [1]. The methodology for 

the analysis of ITS studies is well developed [3,6,8], and typically uses segmented 

regression (SR) analysis [7,61]. Given a time point, for example, the initiation of 

treatment, we may observe a change in the values of a variable before and after that 

time point, and then compare the trajectories of change at the intervention. The pre-

treatment trajectory is regarded as the control ‘period’ and the post-treatment 

6.1 Introduction 
6.2 Objectives 
6.3 Motivating example: ITS for the effect of antipsychotics on weight 

6.3.1 Data and first analysis 
6.3.2 Imposed missing data and second analysis 
6.3.3 Results 

6.4 Simulation study 
6.4.1 Simulation design  
6.4.2 Simulation results 

6.5 Discussion 
6.6 Summary 
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trajectory as the intervention ‘period’, so that each individual acts as their own control. 

The difference between mean trajectories at the intervention time is then used to 

estimate the effect of the intervention [6]. 

 

In SR analysis, when individual-level data are available, a typical approach is to average 

the data at each of the predefined time points/units (e.g. months or years) and then 

model the time series over these time points [4,7]. In other words, all outcome variable 

measurements available from individuals are averaged at each time point, and then 

these averages are used as population-level data for performing the SR analysis. This 

approach is reasonable if the same people provide data at each time point, but in 

observational data, this is rarely the case. For example, in clinical practice, younger 

women are more likely than younger men to have weight recorded when they consult 

their family physician (general practitioner) [32]. In other words, the distribution of 

missing data in weight depends on the individual's sex, so weight is missing at random 

(MAR) given sex. The same will apply to other partially observed outcomes that are 

MAR. With such data, the average points will be biased – and so will the intercept of 

the trajectories estimated by SR models – because they will include more measurements 

from women than men, and women will typically weigh less than men. Moreover, if the 

proportion of women and men with observed weight varies at each time point, the 

slope of the trajectories can also be biased. 

 

Figure 6.1 presents a scenario where weight is constant over time for all individuals (half 

men, half women; men weigh 85kg, and women weigh 55kg, resulting in an overall 

average of 70kg). In this scenario, all individuals have a weight measurement at 

treatment initiation (t=0), but at different time points before and after treatment 

initiation the relative proportion of women and men with a weight record varies due to 

missing data. The average observed weight at each time point becomes biased, 

providing a false impression of weight change over time. Thus, the ‘aggregate-level’ SR 

analysis performed with averages calculated at predefined time points can produce 

biased estimates due to missing data. 
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Figure 6.1. Real weight trajectory (circle/solid line) and observed weight trajectory (diamond/dash line) following the 
averaging-step with different proportion of women and men observed at each time point in a recreated scenario. 

 

 

An alternative approach to the ‘aggregate-level’ SR analysis is to use mixed models, 

which are based on individual-level data, avoiding the averaging-step described above. 

Formally, these mixed models are also segmented models, but they include random 

intercept and slopes (random effects) that cannot be included by the ‘aggregate-level’ 

SR models due to the averaging-step. Mixed models estimate identical linear 

trajectories to ‘aggregate-level’ SR models under perfect balance (when all individuals 

are included at each time point). However, in contrast to ‘aggregate-level’ SR models, 

the mixed model approach can provide unbiased estimates when data in the outcome 

variable are MAR [70]. Following the same example as before, a mixed model directly 

uses weight measurements taken at different time points from the same individual and 

models the population trajectory based on all individual trajectories, taking account of 

the longitudinal correlation. Thus, no initial averaging-step at each time point is 

needed. If individuals have missing weight records over time, the mixed model 

approach implicitly imputes those missing values (see Section 3.3 for details), meaning 
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that observations from all individuals – even those with just one record over time – 

contribute to the analysis. 

  

Despite these advantages, mixed models cannot automatically handle missing data in 

the covariates, and individuals with covariates missing are by default omitted from 

regression analyses in all standard software packages. One way to address this issue is 

to use multilevel multiple imputation (MMI) for missing covariate data in conjunction 

with mixed models. MMI generates multiple datasets with missing covariate values 

replaced by imputed values (drawn from the conditional predictive distribution of the 

missing data given the observed data). Then, MMI fits the substantive model of interest 

in each imputed dataset and, in the final step, combines the model estimates into an 

overall estimate, taking into account variation within and between the imputed 

datasets [98] (see sections 3.2.3 to 3.2.5 for details). In this setting, the substantive 

model fitted at the second step is a mixed model. 

 

In this study, I demonstrate how standard ITS analysis, based on average estimates at 

each predefined time point, gives biased results when data are MAR. Subsequently, I 

illustrate how the use of mixed models, with or without MMI of individual data, avoids 

this bias. 

 

6.2. Objectives 

  

The study objectives are 1) to examine the potential problems arising from the 

‘aggregate-level’ SR analysis when outcome data are missing, evaluating mixed models 

as an alternative approach; 2) to compare the performance of mixed models with and 

without MMI for handling missing data on covariates. 

  

The rest of Chapter 6 is structured as follows. In Section 6.3, I present a motivating 

example of ITS to estimate the effect of initiating antipsychotic drugs (olanzapine) on 

weight gain, showing that the standard approach of aggregating the data and then 

using SR gives clinically different results to using mixed models (with and without 

MMI). Section 6.4 presents a simulation study, which demonstrates that this difference 
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is because the standard ‘aggregate-level’ approach is biased when data are MAR. I 

conclude in Section 6.4 by discussing the practical and methodological implications of 

my findings.  

 

6.3. Motivating example: ITS for the effect of antipsychotics on weight. 

        

In this motivating example, as well as in the later simulation study, I focus on assessing 

estimators for the regression coefficients of pre- and post-treatment weight trajectories. 

6.3.1 Data and first analysis 

I used data from The Health Improvement Network (THIN) database, which includes 

electronic health records from ~12 million individuals registered with 711 UK general 

practices [99]. In the UK, more than 95% of people are registered with a general 

practice (GP), and THIN is roughly representative of the general population [27]. THIN 

data include demographics (e.g. sex, age, social deprivation) and clinical records (e.g. 

drug treatments, diagnoses, health outcomes). In this study, I only included data from 

general practices that met quality criteria for computer usage [35] and whose reported 

mortality rate is consistent with national statistics [36]. 

  

The substantive model is similar to the one I fitted in Chapter 5. I performed an ITS 

analysis to investigate the long-term effects of the initiation of antipsychotic drug 

treatment on people’s body weight. It is known that specific antipsychotic treatments 

are likely to increase body weight substantially over a relatively short period [5], but 

there is less information on potential long-term effects [100]. In this study, the exposure 

of interest was the initiation of olanzapine (a second-generation antipsychotic), and the 

outcome was body weight (in kilograms). I modelled the development of weight over 

time using linear splines with two knots. In other words, my model estimated how 

weight changed in three time periods: 1) pre-treatment: from 4 years before treatment 

initiation up to treatment initiation; 2) short-term: from treatment initiation to 6 weeks 

(short-term), and 3) long term:  from 6 weeks to 4 years post-treatment. I adjusted for 

sex, age (in years) and smoking (smoker vs non-smoker), all at the initiation of 

treatment. I included individuals who were aged between 18 and 99 years, with data 

available between 1st January 2005 and 31st December 2015, and who initiated their first 
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olanzapine treatment within this period. All had a diagnosed psychotic disorder before 

treatment initiation and at least one further prescription of olanzapine within three 

months following the first prescription. I included this criterion as there may some 

individuals who received just one prescription, but never used the medication. 

However, if they had at least two prescriptions, it seems more likely that they initiated 

treatment. I excluded individuals who initiated other antipsychotics than olanzapine, as 

well as those with no available data for 12 months before the treatment initiation. 

 

In addition to the inclusion and exclusion criteria given above, I restricted the data to 

those with complete data on sex, age and smoking at treatment initiation. As this is 

observational data, weight measurements did not follow any fixed schedule. For 

example, if we look for a weight measurement every two weeks for every individual, we 

will find that >90% of weight measurements are missing.  In other words, the weight 

has been irregularly recorded over the observation period (416 weeks), as it is expected 

for most electronic health records (see Section 2.2). 

  

Centring each patient’s follow-up time (in weeks) at their treatment initiation, I fitted 

the following mixed model to these data: 

[Equation 6.1] 

𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗 = 𝛽0 + 𝑢0𝑗 + �𝛽1 + 𝑢1𝑗�𝑡𝑖𝑚𝑒𝑖𝑗 × 1�𝑡𝑖𝑚𝑒𝑖𝑗 < 0�+ �𝛽2 + 𝑢2𝑗�𝑡𝑖𝑚𝑒𝑖𝑗 ×

�0 ≤ 𝑡𝑖𝑚𝑒𝑖𝑗 ≤ 6� + �𝛽3 + 𝑢3𝑗�𝑡𝑖𝑚𝑒𝑖𝑗 × �𝑡𝑖𝑚𝑒𝑖𝑗 > 6�+ ϵij,  

  

�

𝑢0𝑗
𝑢1𝑗
𝑢2𝑗
𝑢3𝑗

� ∼ 𝑁�
0
0
0
0

,𝛴�;                𝜖𝑖𝑗 ∼ 𝑁(0,𝜎2), 

 

where i denotes the follow-up time and j denotes the patient, and 1[ ] is an indicator for 

the event in square brackets. I then fitted the same model adjusting for sex, age and 

smoking at treatment initiation (as fixed effects). These mixed intercept and slope 

models were fitted by Restricted Maximum Likelihood, and hereafter I call them just 

mixed-effects models (MEM). 
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I also fitted an ‘aggregate-level’ SR model by averaging available weight records at each 

time point (across-individuals average), and then fitting the standard regression version 

of [Equation 6.1] – i.e. omitting the person-specific random effects-. Because this model 

is fitted to data aggregated over individuals, no adjustment for sex, age or smoking was 

possible. 

  

Finally, I fitted a similar model, but now weighting by the inverse of the number of 

bodyweight values observed at each time point. I called this model the ‘aggregate-level’ 

SR-W1, which may help to improve standard errors by including a more accurate 

sample size information at each time-point. 

 

These models were used to examine the issues arising from the ‘aggregate-level’ SR 

analysis when outcome (weight measurements) data are missing, which was part of the 

first study objective. 

 

6.3.2 Imposed missing data and second analysis 

 

For my second objective, I wanted to explore the issues arising from covariate data 

missing at treatment initiation. Therefore, I intentionally set smoking records MAR on 

sex, and increased the amount of missing data on weight MAR on sex, to explore later 

the potential differences between estimates from complete case analysis (removing 

cases with smoking missing) and MMI (preserving those cases and imputing smoking). 

This controlled missing data generation scenario was used to evaluate all analysis 

methods: ‘aggregate-level’ SR, ‘aggregate-level’ SR-W1, MEM, and MMI followed by a 

mixed-effects model (MI-JOMO with MEM). 

 

In detail, I set weight values MAR dependent on sex and time from treatment initiation, 

so that a fraction of observed data was similar to that shown in Figure 6.1. Besides, I set 

smoking MAR on sex, randomly removing 80% of records from men and 20% from 

women. Both missing mechanisms are described in detail in Appendix 6A.  
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In the subsequent analyses, I first fitted the same MEM [Equation 1] to the incomplete 

data, adjusting for covariates (complete case analysis). Then, I used a substantive-

model-compatible joint-modelling multilevel multiple imputation (MI-JOMO) [56] to 

impute the missing smoking values and fitted the same substantive model (MEM 

adjusted) to each imputed data set and combined the results using Rubin’s rules. I 

generated 20 imputed datasets with MI-JOMO, and I used a burn-in of 1000 iterations 

and then a further 1000 iterations between each imputation. I name this model MI-

JOMO with MEM. 

 

Lastly, I fitted the ‘aggregate-level’ SR and ‘aggregate-level’ SR-W1 models. Full details 

and codes for all models are given in Appendix 6A. 

 

6.3.3 Results 

 

Overall, there were 6,522 individuals with at least one weight measurement and 

complete age, sex or smoking status data. Of these 2,954 (45.3%) were men and 3,568 

(54.7%) were women. On average, there were 4.8 (sd 5.5) weight records per person 

over the observation period. Individuals were aged 50.2 (sd 18.9) years on average, and 

2,658 (40.8%) reported being current smokers.   

 

There were substantial differences between estimates derived from MEM and SR (Table 

6.1, section ‘THIN: Data Fully Observed’). For example, the short-term weight change 

(beta2) was 0.462kg/week from MEM (adjusted) and 0.816kg/week and 0.807kg/week 

from SR and SR-W1, respectively. Likewise, pre-treatment and long-term periods, 

weight change rates from SR and SR-W1 were more than double the MEM estimates. In 

general, all estimates of weight change from SR analyses were higher in magnitude than 

those from MEM, which also implies a more substantial ITS treatment effect.   

 

After further removal of weight records, 6,181 individuals remained with one or more 

weight records. There were 4.3 (sd 5.3) average weight records per person over the 
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observation period. The average age was 50.6 (sd 19) years, and 2,613 (42.3%) were men. 

After the removal of smoking records at baseline, there were only 3,379 individuals with 

a record of their smoking status and 1,188 (35.2%) of them were current smokers. 

 

In general, estimates from MEM with and without MI-JOMO were similar for pre-

treatment and long-term effects, and both close to those estimated under MEM with 

full data. However, the MI-JOMO with MEM for short-term were closest to those 

estimated under MEM with full data (Table 6.1). ITS estimates from SR differed 

substantially from the estimates from MEM with and without MI-JOMO (Table 6.1, 

Figure 6.2), with SRs reporting a weight pre-treatment (beta1) and long-term 

trajectories (beta3) closer to zero. For SR-W1, the long-term treatment effect was 

similar to the MEM estimates, while the estimates of the short-term effects (beta2) were 

much higher than MEM estimates. For both the SR and SR-W1 models, pre-treatment 

and long-term effects were also different when fitted to data with and without imposed 

missing values. 

 

The immediate treatment effect, estimated as the difference between the negative and 

positive trajectories before and after olanzapine initiation, was highest for the SR 

approach (Table 6.1 and Figure 6.2). For example, the SR-W1 method suggested a 

cumulative short-term weight gain of 4.72kg, a long-term of 2.13kg, and a total of 

6.85kg. In contrast, the estimates based on MEM with MI-JOMO (short-term=2.47kg, 

long-term=2.46kg, total=4.93kg) and without MI-JOMO (short-term=2.75kg, long-

term=2.70kg, total=5.45kg) were less for the short-term and the total accumulated (see 

95% CI in Appendix 6B).  

 

In summary, an individual data model such as MEM [Equation 1] produced notably 

different results from SR models with ‘aggregate-level’ data. Further, if covariate values 

are MAR, use of MI-JOMO can recover information by bringing individuals with these 

missing covariates back into the analysis, avoiding potential bias and increasing 

precision. By contrast, the often-used ‘aggregate-level’ SR analysis cannot adjust for 

covariates and appears to be biased when weight data are MAR (depending on time and 

covariates). This may often be the case when analysing health care records.    
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Table 6.1. Estimated weight change over time before and after olanzapine treatment initiation from the example in section 2, which also describes the various analysis methods.   

 

 

 

 

Beta SE p Beta SE p Beta SE p Beta SE p Beta SE p Beta SE p Beta SE p Beta SE p
t1 [β1] -0.0051 0.0012 <0.001 -0.0058 0.0012 <0.001 -0.0158 0.0030 <0.001 -0.0193 0.0030 <0.001 -0.0075 0.0017 <0.001 -0.0082 0.0013 <0.001 0.0008 0.0035 0.826 -0.0045 0.0032 0.158
t2 [β2] 0.4642 0.0289 <0.001 0.4617 0.0289 <0.001 0.8160 0.0875 <0.001 0.8071 0.0871 <0.001 0.4116 0.0412 <0.001 0.4576 0.0303 <0.001 0.7994 0.0998 <0.001 0.7863 0.0943 <0.001
t3 [β3] 0.0127 0.0015 <0.001 0.0125 0.0015 <0.001 0.0246 0.0032 <0.001 0.0279 0.0036 <0.001 0.0121 0.0021 <0.001 0.0133 0.0017 <0.001 0.0043 0.0036 0.234 0.0105 0.0044 0.017
sex [β4] * * * -12.9299 0.4173 <0.001 * * * * * * -13.7330 0.8075 <0.001 -13.1364 0.4471 <0.001 * * * * * *
age [β5] * * * 0.9498 0.0589 <0.001 * * * * * * 0.8276 0.0832 <0.001 0.9126 0.0614 <0.001 * * * * * *
age2 [β6] * * * -0.0096 0.0005 <0.001 * * * * * * -0.0085 0.0007 <0.001 -0.0093 0.0006 <0.001 * * * * * *
smoking [β7] * * * -3.8524 0.4382 <0.001 * * * * * * -3.6762 0.6304 <0.001 -3.7532 0.5992 <0.001 * * * * * *
intercept [β0] 73.5754 0.2630 <0.001 62.2883 1.5107 <0.001 75.0677 0.3688 <0.001 75.4822 0.3542 <0.001 66.4391 2.2499 <0.001 63.8191 1.6031 <0.001 71.7488 0.4207 <0.001 72.3779 0.3749 <0.001
Beta estimates are in kilograms. THIN=The Health Improvement Network Database, MAR=missing at random, SR='aggregate-level' segmented regression, SR-W1='aggregate-level' segmented regression weighted with the inverse of the number of observed 
weight records at each time point, MEM=random intercept and slope model with restricted maximum likelihood and unstructured covariance matrix, MI-JOMO= joint modelling multiple imputation using a similar MEM model, t1 = time before treatment initiation 
(209 weeks), t2 = short-term after treatment initiation (6 weeks), t3 = long-term after treatment initiation (203 weeks).
On the right side of this table, sample size between MEM and MI-JOMO differs due to missing data on smoking at baseline. 

Estimate SR-W1

(N=6,181 - weight 
records=26,880) (N=418) (N=418)

MEM (Adjusted)

(N=6,522 - weight 
records=31,153)

(N=6,522 - weight 
records=31,153) (N=418)

THIN: Data Fully Observed THIN: Data with weight records MAR on sex and time,                                                                                 
and smoking records MAR on sex and time.

MI-JOMO with MEM 
(Adjusted) SR SR-W1

(N=418) (N=3,379 - weight 
records=16,709)

MEM (Unadjusted) MEM (Adjusted) SR
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Figure 6.2. Estimated weight trajectories before and after initiation of olanzapine treatment, from the data 
in Section 2 (motivating example). Circles are weight averages at each time point, dashed line – SR 

model fitted to these averages; solid line – model [Equation 1] fitted to the raw data by MEM. 
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6.4. Simulation study 

 

I now report the results of a simulation study, based on the motivating clinical example 

and designed to evaluate the performance of SR and MEM (with and without MMI) 

under controlled conditions. I am adding to this evaluation another method called 

Prais-Winsten regression, which is similar to SR but is recommended by ITS guidelines 

to account for autocorrelation at the aggregate level [6]. In particular, I wish to 

determine whether the differences between the various analysis methods are due to the 

way they handle missing data. 

 

6.4.1 Simulation design 

 

6.4.1.1 Study model 
 

For the simulation study, I designed an ITS dataset where the treatment of interest was 

the initiation of antipsychotic treatment, and I examined the change in body weight (in 

kilograms) over time. The covariates were sex, age (years) and smoking status (yes/no), 

measured at initiation of treatment. The ITS impact model [8] is a linear weight 

trajectory whose slope changes only once –  at treatment initiation – i.e. slightly simpler 

than my previous example. I included five time-units before and five after treatment 

initiation. I modelled the evolution of weight over time using two continuous linear 

splines, jointing at treatment initiation. For the simulation study design, I followed the 

ADEMP approach (defining aims, data‐generating mechanisms, estimands, methods, 

and performance measures) recommended by Morris et al [101]. 

 

6.4.1.2 Data generation  
 

 

Each simulated dataset with 1,000 observations was generated as follows: 

1 Sex was generated as a random variable from a Bernoulli distribution with 

probability 0.5. 
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2 For each individual, weight observation times were fixed at the same 11 equally 

spaced times between -5 and +5, i.e. centred at treatment initiation, which is at time 

0.  

3 Weight was generated from the following random intercept and slopes model:    

[Equation 6.2] 

 

𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗 = 75 + 𝑢0𝑗 + �−0.5 + 𝑢1𝑗�𝑡𝑖𝑚𝑒𝑖𝑗 × 1�−5 ≤ 𝑡𝑖𝑚𝑒𝑖𝑗 < 0� + �3.4 +

𝑢2𝑗�𝑡𝑖𝑚𝑒𝑖𝑗 × �0 ≤ 𝑡𝑖𝑚𝑒𝑖𝑗 ≤ 5� + 10 ∗ 𝑠𝑒𝑥𝑖 + 𝜀𝑖𝑗 ,     

  

�
𝑢0𝑗
𝑢1𝑗
𝑢2𝑗

� ∼ 𝑁 �
0
0
0

,
5
0
0

0
1.1
−.7

0
−.7
1.1

�;                𝜀𝑖𝑗 ∼ 𝑁(0,2), 

 

where i denotes the follow-up time and j denotes the patient, and 1[ ] is an indicator for 

the event in square brackets. We referred to this as ‘Data Generation Mechanism Base’ 

(DGM-base). I also generated data from DGM-extended covariates:  

   [Equation 6.3] 

 

𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗 = 75 + 𝑢0𝑗 + �−0.5 + 𝑢1𝑗�𝑡𝑖𝑚𝑒𝑖𝑗 × 1�−5 ≤ 𝑡𝑖𝑚𝑒𝑖𝑗 < 0� + �3.4 +

𝑢2𝑗�𝑡𝑖𝑚𝑒𝑖𝑗 × [0 ≤ 𝑡𝑖𝑚𝑒𝑖𝑗 ≤ 5] + 10 ∗ 𝑠𝑒𝑥𝑖 + 0.05 ∗ 𝑎𝑔𝑒𝑖 − 0.0005 ∗ 𝑎𝑔𝑒𝑖2 + 2.5 ∗

𝑠𝑚𝑜𝑘𝑖𝑛𝑔𝑖 + 𝜀𝑖𝑗.          

 

Age was generated as a random variable from a normal distribution with mean 45 and 

sd 10. Smoking was binary and generated as follows:  

 

𝑙𝑜𝑔𝑖𝑡�𝑃(𝑠𝑚𝑜𝑘𝑖𝑛𝑔𝑖 = 1)� = −2 + 1.5 ∗ 𝑠𝑒𝑥𝑖 + 0.04 ∗ 𝑎𝑔𝑒𝑖 − 0.0005 ∗ 𝑎𝑔𝑒𝑖2. 

   

Having generated the full data, I made observations missing using two missing data 

mechanisms: 
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1. MAR-1: starting with the fully observed weight variable at treatment initiation 

(𝑡0), pre and post-treatment initiation values of weight at times 𝑡0±𝑗 were set to 

missing (𝑗 = 1,2,3,4,5) dependent on the individual’s sex. For the missing 

sequence, pre-treatment setting of missing values was reverse-sequential 

(𝑡−1, 𝑡−2, 𝑡−3, 𝑡−4, 𝑡−5) and post-treatment setting was forward-sequential 

(𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5). For both directions (±𝑗) of MAR-1 mechanism, I defined the 

probability of being missing by: 

   

𝑙𝑜𝑔𝑖𝑡 �𝑃�𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗 = 𝑚𝑖𝑠𝑠𝑖𝑛𝑔�� = −2.5 + 5 ∗ 𝑠𝑒𝑥𝑖, 

 

shaping the patterns of missing weight data and setting more weight records 

being observed for women than men. Both patterns and the proportion of 

missing values are available in Figures 6.3 and 6.4. MAR-1 was applied to data 

generated under DGM-base only. 

 

2. MAR-2: similar to MAR-1, but now the probability of weight being missing also 

depends on the individual’s random intercept, age and smoking. As the random 

intercept is unobservable (as smoking will partially be), this mechanism is a mix 

between MAR and MNAR (missing not at random). Moving away from 

treatment initiation (in both directions), the probability of weight being missing 

is monotonically given by: 

   

𝑙𝑜𝑔𝑖𝑡 �𝑃�𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗 = 𝑚𝑖𝑠𝑠𝑖𝑛𝑔��

= −0.25− 2 ∗ 𝑢0𝑗 − 1.5 ∗ 𝑠𝑒𝑥𝑖 − 0.05 ∗ 𝑎𝑔𝑒𝑖 + 0.0005 ∗ 𝑎𝑔𝑒𝑖2

− 1.5 ∗ 𝑠𝑚𝑜𝑘𝑖𝑛𝑔𝑖, 

    

where -0.25 helped to shape the overall proportion of missing data over time; -

1.5 set more weight records to be observed for men (only for explicative 

purposes); -2 set more weight records to be observed for individuals who are 

heavier at treatment initiation; -0.05 and 0.0005 set more missing data for 

younger individuals, and -1.5 set more weight records to be observed for 

smokers. I also set  about 30% of smoking values to be missing with probability:  
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𝑙𝑜𝑔𝑖𝑡�𝑃(𝑠𝑚𝑜𝑘𝑖𝑛𝑔𝑖 = 𝑚𝑖𝑠𝑠𝑖𝑛𝑔)� = −3 + 3 ∗ 𝑠𝑒𝑥𝑖 − 0.01 ∗ 𝑎𝑔𝑒𝑖 + 0.0003 ∗ 𝑎𝑔𝑒𝑖2, 

  

MAR-2 was applied to data from DGM-extended-covariates only. For both described 

mechanisms (MAR-1 and -2), the proportion of missing weight data in the simulated 

sample was set to approximately 60% of individuals. In the other 40% of the data, I set 

only one weight record per individual at any time point, setting more individuals with 

only one weight record at treatment initiation (MAR dependent on the treatment 

initiation). This additional mechanism sought to emulate the missing data proportions 

and patterns seen in the clinical data used for the illustrative example (Figures 6.3 and 

6.4). 

 

I simulated 1,000 full datasets for each of the two scenarios, and then applied the 

missing data mechanisms to obtain the partially observed data.  

 

Figure 6.3 shows an example (one simulation) of the missing data patterns generated by 

the MAR-1 mechanism, and another example for the MAR-2 mechanism. Figure 6.4 

shows the distribution of weight records over time for the same mechanisms. It is 

visible how these mechanisms reproduced similar characteristics of real data (i.e. THIN 

data, see Figure 3.1 as a reference), in terms of outcome distribution over time and 

missing outcome patterns.   
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Figure 6.3. Missing data patterns in an example of MAR-1 and another example of MAR-2 datasets. 
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 In the grey area, each black rectangle is a weight record, each row is a person (1000 in total) 

followed over 11 time points (columns). 
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Figure 6.4. Missing data distributions in an example of MAR-1 and another example of MAR-2 datasets 
(N=1000).  
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6.4.1.3 Analysis methods evaluated 
 

I analysed the full and partially observed data using each of the following six methods 

(see summary in Appendix 6C):  

1) SR: this averaged observed individual weight measures at each time point 

and then fits a linear regression on time (maximum likelihood estimator), 

with a knot at zero. 

2) SR-W1: (weighted SR version 1) similar to SR but weighted by the inverse of 

the number of observed weight records at each time point.  

3) SR-W2: (weighted SR version 2) similar to SR-W1 but the number of 

observed weight records – used for weighting – were counted at each time 

point by sex and age. I categorised age using its quartiles (before averaging). 

When smoking data were incomplete, smoking was not included as a 

covariate for SR-W2. 

4) Prais-Winsten: regression similar to SR but adjusted for serial correlation at 

the aggregate level by assuming errors that follow a first-order 

autoregressive process [102], an approach typically used in ITS analysis for 

controlling the autocorrelation issue [6]. 

5) MEM: I fitted the data generating model [Equations 2 and 3] using 

Restricted Maximum Likelihood with an unstructured covariance matrix for 

the random effects.  

6) MI-JOMO (with MEM): I first imputed the missing covariate values, using 

multilevel substantive-model-compatible joint modelling multiple 

imputation, with the JOMO package in R. As described in [57,103] this 

imputes missing values consistent with the substantive model [Equation 

6.1]. It does this by factorising the joint model into a joint model for the 

covariates and a conditional model for the outcome given the covariates. 

Then, the estimation and imputation process allows compatibility between 

the imputation and analysis models (MEM in this case), even with 

longitudinal data [57] (see sections 3.2.3 to 3.2.5 for details). I used 5 

imputations and 1000 iterations (before the first, and between each 

subsequent imputation) to impute the missing covariate smoking status. I 

did not impute the missing weight, as (in the absence of auxiliary variables) 

no information can be recovered by doing this. Thus, outcome was implicitly 

imputed when 5 MEM were fit (one per each imputed dataset). Rubin’s rules 
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summarise these estimates. Note that standard fully conditional 

specification [48] is not evaluated because it is inappropriate for handling 

the irregular observation times I expect in real longitudinal data. I only used 

MI-JOMO in the MAR-2 scenario. 

  

6.4.1.4 Estimands and performance measures 
 

I focused on the slope estimates (true values: 𝑡𝑖𝑚𝑒𝑏𝑒𝑓𝑜𝑟𝑒: 𝛽1 = −0.05 and 

𝑡𝑖𝑚𝑒𝑎𝑓𝑡𝑒𝑟: 𝛽2 = 3.4) from all methods evaluated in both MAR scenarios (MAR-1 and 

MAR-2), by examining the bias, empirical standard error, model-based standard error 

and confidence interval coverage [101].  

 

6.4.2 Simulation results  

 

In the first scenario (DGM-base), all SR methods were biased except when data were 

fully observed (Table 6.2). However, the coverage of these methods was low (<61%) due 

to their small model-based standard errors, even the weighted methods (SR-W1 and SR-

W2) and the method adjusted for serial correlation (Prais-Winsten). Conversely, MEM 

provided reasonably good coverage for 𝛽1 and  𝛽2 (>94%) for unbiased estimates.  

 

Where weight was missing based on sex only (MAR-1), MEM showed unbiased results 

and the best coverage (≥95%). SR and SR-W1 produced biased estimates for both pre- 

and post-treatment initiation slopes, showing the highest model-based standard errors. 

Because the missingness mechanism depended on sex, and women weighed less than 

men, the preliminary data aggregation step in SR and SR-W1 biased the estimated 

slopes (see example in Figure 6.5, MAR-1). The SR bias was corrected using inverse-

probability weights based on sex (SR-W2), but coverage was low (<74%) due to too-

small model-based standard errors. The Prais-Winsten was not successful in correcting 

the SR bias since it does not incorporate information on missing data at the individual-

level as SR-W2 does. 
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In the second scenario (DGM-extended-covariates), with full data, all methods were 

unbiased (Table 6.2). MEM provided the best coverage for 𝛽1 and  𝛽2 (>95%), followed 

by SR-W2 (>90%). Although with unbiased estimates, SR, SR-W1 and Prais-Winsten 

provided low coverage (<55%) due to their small model-based standard errors. SR, SR-

W1 or Prais-Winsten cannot provide different averages by sex and age at each time 

point, which can be provided by SR-W2. Having more variability at each time point 

produced higher – and more realistic – standard errors from SR-W2.  

 

On the other hand, with missing values in weight and smoking status (MAR-2), MI-

JOMO had the best performance. MEM showed more reduced performance after all 

covariates were included in the imputation and study models and there were missing 

smoking data, producing slightly biased estimates and low coverage (<79%). In the 

same scenario, MI-JOMO performed better than MEM, providing less biased estimates, 

closer values of empirical and model-based standard errors, and higher coverage 

(>87%). For both methods, we should consider that there is some residual bias because 

of the dependence of observation of weights on the random intercepts. While the 

results in the bottom half of Table 6.2 show this resulted in a bias in the MI-JOMO 

analysis, this was not severe, and the resulting inferences were still usable. Conversely, 

SR, SR-W1, SR-W-2 and Prais-Winsten performed extremely poorly, showing large bias 

and low coverage (<18%). 

 

The ‘aggregate-level’ SR analysis biased the slope trajectories in different directions, 

which I illustrated by the simulations (Figure 6.5). 
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Table 6.2. Simulation results. 

 

Data 
Generation 
Mechanism 

(DGM) 

Missin
g data 
Mecha
nism 

Estimand 
True 

Parameter 
Value 

Method 

Simulated Data                                                                                        
(time points=11; individuals=1000; 

replications=1000) 

Bias 
Empirical 
Standard 

Error 

Model-
based 

Standard 
Error 

Coverage 

DGM-base 

Data 
fully 

obser
ved 

β1          
(before 

treatment 
initiation 
slope)  

-0.5 

MEM -0.0004 0.0356 0.0343 94.3 

SR -0.0004 0.0356 0.0134 52.4 

SR-W1 -0.0004 0.0356 0.0111 42.7 

SR-W2 -0.0004 0.0356 0.0165 57.5 

Prais-
Winsten  -0.0004 0.0356 0.0105 41.4 

β2             
(after 

treatment 
initiation 
slope)     

3.4 

MEM 0.0006 0.0345 0.0343 95.2 

SR 0.0006 0.0345 0.0134 52.6 

SR-W1 0.0006 0.0345 0.0114 44.5 

SR-W2 0.0006 0.0345 0.0164 60.5 

Prais-
Winsten  0.0006 0.0345 0.0105 42.3 

MAR-
1          

(weigh
t                    

MAR                      
on                       
sex                             

only) 

β1          
(before 

treatment 
initiation 
slope) 

-0.5 

MEM 0.0014 0.0523 0.0535 95.7 

SR 0.3761 0.0682 0.2388 88.6 

SR-W1 0.5801 0.0724 0.3113 64.9 

SR-W2 0.0010 0.0591 0.0381 72.2 

Prais-
Winsten  0.3690 0.0679 0.1795 40.1 

β2             
(after 

treatment 
initiation 
slope) 

3.4 

MEM -0.0003 0.0529 0.0534 95.0 

SR -0.3748 0.0719 0.2388 87.1 

SR-W1 -0.5786 0.0755 0.3117 66.8 

SR-W2 -0.0002 0.0606 0.0380 73.7 

Prais-
Winsten  -0.3682 0.0718 0.1795 40.9 

DGM-
extended-
covariates 

Data 
fully 

obser
ved 

β1          
(before 

treatment 
initiation 

-0.5 

MEM 0.0000 0.0340 0.0343 95.1 

SR 0.0000 0.0340 0.0134 53.6 

SR-W1 0.0000 0.0340 0.0112 47.0 
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slope)  SR-W2 0.0000 0.0340 0.0316 90.3 

Prais-
Winsten  0.0000 0.0340 0.0106 43.1 

β2             
(after 

treatment 
initiation 
slope)     

3.4 

MEM -0.0001 0.0336 0.0343 96.0 

SR -0.0001 0.0336 0.0134 54.0 

SR-W1 -0.0001 0.0336 0.0113 44.7 

SR-W2 -0.0001 0.0336 0.0315 90.1 

Prais-
Winsten  -0.0001 0.0336 0.0106 43.5 

MAR-
2          

(weigh
t MAR 

on 
sex, 
age, 
and 

smoki
ng 

(smoki
ng 
has 

missin
g 

data)) 

β1          
(before 

treatment 
initiation 
slope) 

-0.5 

MEM -0.0649 0.0884 0.0674 78.7 

MI-
JOMO -0.0335 0.0691 0.0697 88.7 

SR -0.4535 0.0709 0.1954 17.6 

SR-W1 -0.5963 0.0765 0.2605 11.3 

SR-W2 -0.5385 0.0667 0.0872 0.0 

Prais-
Winsten  -0.4515 0.0708 0.1565 1.4 

β2             
(after 

treatment 
initiation 
slope) 

3.4 

MEM 0.0652 0.0883 0.0674 76.2 

MI-
JOMO 0.0333 0.0698 0.0685 87.7 

SR 0.4513 0.0724 0.1954 17.9 

SR-W1 0.5941 0.0780 0.2609 13.7 

SR-W2 0.5367 0.0672 0.0874 0.0 

Prais-
Winsten  0.4495 0.0724 0.1565 2.3 

MAR=missing at random, SR='aggregate-level' segmented regression, SR-W1='aggregate-level' segmented regression 
weighted with the inverse of the number of observed weight records at each time point, SR-W2= similar to SR-W1 but the 
number of observed weight records were counted by each time point, sex and age group (quintiles), MEM=random intercept and 
slope model with restricted maximum likelihood and unstructured covariance, MI-JOMO=substantive model compatible joint 
modelling multiple imputation using a similar MEM model, Prais-Winsten= 'aggregate-level' Prais-Winsten regression. 
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Figure 6.5. Weight trajectories from a simulated dataset in which weight is fully observed (circles and solid lines) or missing at random (diamonds and dashed lines). 
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6.5 Discussion 

 

ITS provides a conceptually attractive approach for assessing the impact of treatments 

because each individual acts as their own control. However, its innate strength, leading 

to its increasing use [61], raises important questions about how to handle missing data 

appropriately. As my example illustrates, incomplete outcome data (in this case, 

weight) is an intrinsic feature of this kind of study because the underlying observational 

data do not follow any pre-planned schedule. This means that, at any specific time, the 

marginal distribution of the response is unlikely to be representative of the underlying 

population. 

 

The results of my studies demonstrate that the ‘aggregate-level’ approach will generally 

be biased when individual-level data are missing at random (MAR). Indeed, the 

motivating example shows this bias could lead to a substantial exaggeration of the 

actual effect of the studied intervention. In the example, the difference between pre- 

and immediate post-treatment weight change (biased slopes) increases the overall 

effect attributed to olanzapine. However, it is not always possible to determine the 

direction of bias. This is because the direction of the average-points bias depends on 

how the covariate is associated with the missingness of weight records. Even when the 

‘aggregate-level’ SR analysis does not bring about a bias issue, these results highlight 

that the precision is inaccurate as the standard errors for this method are typically 

grossly underestimated. 

 

When data are missing-at-random at the individual level, averaging before SR means 

that data are missing-not-at-random at the cluster level. This leads to the bias observed 

for the ‘aggregate-level’ SR analysis. For example, in the MAR-1 mechanism, ‘aggregate-

level’ SR analysis loses the information about the distribution of weight records that are 

MAR on sex at each time point, due to the averaging-step. Thus, sex becomes 

unobservable at the ‘aggregate-level’, making weight records MNAR on sex at this level 

and biasing the subsequent analysis using those averages. As I demonstrated in the 

same simulation study, this issue could be handled by including sex in the averaging-
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step (SR-W2). However, in practice, any version of SR-W2 will be hard to apply since 

other covariates are typically incomplete as well. 

 

A natural alternative to the ‘aggregate-level’ analysis is to model the individual patient 

data explicitly. When the reason for outcome data being observed depends principally 

on time (e.g. before and after treatment initiation), underlying patient characteristics 

(e.g. sex, age) and observed outcomes (e.g. observed weights), the unseen values are 

plausibly MAR. In this setting, the simulation results demonstrate that a carefully 

formulated longitudinal model provides a practical approach for improved inference. 

 

Longitudinal models should be specified carefully to include covariates predictive of 

both the outcome and the chance of observing it, which are vital for avoiding bias. 

Where it is not desired – or appropriate – to include some such variables in the 

substantive analysis, an MMI approach should be considered, where these variables are 

included as auxiliary variables. Care should also be taken to model the longitudinal 

correlation of the outcome appropriately, as this is particularly important for missing 

data, as well as to use the observed rather than expected information for likelihood-

based models. In particular, having random intercepts alone, or having uncorrelated 

random intercepts and slopes, should be avoided (see Appendix 6D for other practical 

suggestions) [56]. If data at the individual level are not available, and the researcher 

suspects that a strong MAR mechanism affect the outcome points over time (e.g. 

averages or rates), the issue should be stated as a limitation as recommended in 

reporting guidelines [104,105]. 

 

Study results show that MMI provides a practical approach for handling missing 

covariates in the analysis. When performing MMI, it is essential to both use an 

approach that appropriately takes account of the multilevel structure and uses an 

approach that is compatible with the substantive model (which here includes splines 

for the effect of time). The JOMO package in R has the flexibility to do both.  

  

I set the example and simulations with averages of a continuous variable, but a similar 

problem can happen with other types of outcomes. Rates (proportions), another 
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common ITS outcome [7], can also be biased when outcome data are MAR at the 

individual level. For example, if the numerator of the rate (the events) is higher in 

women than men, and the missingness process generates more missing records for 

women, the rate will be underestimated at the ‘aggregated-level’ (e.g. at time points, 

hospitals or districts). The ITS analysis will use those rates as consecutive points, 

biasing the estimated trajectories. Similar reasoning can be applied to binary and count 

ITS outcomes. Even using other recommended analysis methods than SR, such as 

ARIMA models [6], the bias problem will remain in the ‘aggregate-level’ used for the 

time series. Although I did not formally evaluate these alternative methods, some 

reflections can be enlightened by the study findings. In the aggregate-level approach, 

ARIMA models will be fitted after the averaging-step; therefore, the ITS will be based 

on population-level average points already biased. Other options useful for individual-

level data, such as generalised estimated equations (GEE) can be applicable. However, 

because they are moment based estimates, precisely like the aggregate data analysis, its 

estimates will be biased unless data are missing completely at random [106,107].  

 

This is the first time that this averaging-step problem for MAR data has been studied 

with simulations and real data. Study results will help to guide future ITS researches. I 

focused my study on the situation when data are missing at random. However, I am 

aware there may be other scenarios where data missing not at random (MNAR) could 

bias estimates. For example, if weight is only recorded for those with a high or low 

weight. This scenario goes beyond the scope of this thesis, but in practice, when a 

strong MNAR mechanism is suspected, a sensitivity analysis is possible using a pattern 

mixture approach [53,72]. Although I designed the data-generation mechanism to 

approximate the associations and missing data patterns that are visible in routinely 

collected data (i.e. THIN data), the complexity of real data is always hard to reproduce. 

Thus, the simulation is a simplified reproduction of reality, imposing some limits to its 

external validity (as with any simulation study). In practice, simulations demonstrated a 

serious issue with analyses that use an averaging step. Researchers can trust in the 

performance of MEM and MMI for handling missing data in standard ITS studies [6], 

assuming data are MAR at the individual level. For more sophisticated analyses to be 

valid (e.g. in controlled ITS designs), these methods should work well as long as the 

substantive models can be correctly specified as mixed-effects models, while keep 

similar missing data assumptions.  
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In conclusion, the segmented regression using averaged data points can over or 

underestimate the effect evaluated in interrupted time series analyses, when performed 

on outcome data missing at random at the individual level. However, such a problem 

can be addressed by using mixed models. If there are also covariates missing at random, 

mixed models can be combined with multilevel multiple imputation and provide 

unbiased results.  
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6.6 Summary 13 

 

Interrupted time series (ITS) is a widely used quasi-experimental approach that 

evaluates the potential impact of an intervention over time, using longitudinal 

observational data. In ITS on individual-level data, it is a common practice to average 

the outcome of interest at each time point, and then fit an ‘aggregate-level’ segmented 

regression (SR). This procedure can lead to biased estimates if data are missing at 

random (MAR) at the individual level. Alternative mixed effect models (MEM) can 

avoid average the outcome by modelling longitudinal individual-level data directly. 

However, MEM can be inefficient for handling missing covariates; thus, other 

alternatives such as multilevel multiple imputation (MI-JOMO) need further 

exploration. In this chapter, I compared all these methods by an illustrative example 

and a simulation study.   

 

In the illustrative example, I found substantial differences between estimates derived 

from MEM and aggregate-level SR. For example, short-term weight change (𝛽2) was 

0.462kg/week from MEM and 0.816kg/week from aggregate-level SR. Likewise, in pre-

treatment and long-term periods, weight change rates from aggregate-level SR were 

more than double the MEM estimates. In general, all estimates of weight change from 

aggregate-level SR analyses were higher in magnitude than those from MEM, which 

also implies a more substantial ITS treatment effect. To investigate my hypothesis that 

the aggregate-level SR was producing biased results, I used a set of contextually 

informed simulation studies. 

 

Simulation results confirmed that the averaging-step causes bias in ITS estimates when 

data are MAR at the individual level. This occurs because taking averages of individual-

level data before SR means that data at the cluster level are missing not at random. I 

also confirmed that the aggregate-level SR can over or underestimate the ITS effect. 

Nevertheless, it is not always possible to determine the direction of bias, because the 

direction of bias at each average-point depends on how the covariate is associated with 

the outcome missingness. Even when the ‘aggregate-level’ SR analysis does not cause 

any bias, results from simulations highlight that the precision is smaller as the standard 

13 This study has been accepted for publication as an original article. Please, see Appendix 10.5 for details. 
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errors for this method are typically grossly underestimated. Avoiding the averaging-step 

and using MEM is recommended for handling missing values in the outcome. 

 

For handling values MAR in covariates, MEM must be combined with MI-JOMO to 

obtain less biased estimates. I found that the most efficient way to do it is a two-steps 

process. First, missing values on covariates need to be multiply imputed, considering a 

model that is consistent with the substantive models. MI-JOMO allows us to complete 

this task efficiently. Then, MEM should be estimated using all the multiple imputed 

datasets, and multiple results can be summarised using Rubin´s rules. Simulation study 

results confirm the estimator based on MI-JOMO followed by a MEM is unbiased when 

data at individual-level is MAR.  

 

Imputation of covariates with missing records could also help in the evaluation of 

interaction terms, useful for comparison between trajectories of different sub-groups 

and further CITS studies. In the next Chapter 7, I explore how MEM with MI-JOMO can 

help to handle missing data in ITS studies when evaluating variables that could modify 

outcome trajectories overt time. 
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7 
7. AN APPLICATION OF MULTILEVEL MULTIPLE IMPUTATION TO INTERRUPTED TIME SERIES ANALYSIS 

An application of Multilevel Multiple Imputation 
to Interrupted Time Series analysis  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.1 Introduction 

 

Second-generation antipsychotics increase the weight of patients in the first weeks of 

treatment [5]. In the long term, the evidence is more scarce, though some research has 

recently appeared addressing this [82,92,100]. Olanzapine is the antipsychotic that has 

been shown to induce more weight gain across the studies, in both the short and long 

term. Risperidone and quetiapine also increase weight, but less than olanzapine; and 

the weight gain for these seems to be more pronounced in the short than in the long 

term [100]. Most studies have examined people prescribed antipsychotics in general 

(>18 years with any diagnosis) [5] or with specific mental health conditions (e.g. >65 

years with dementia) [108]. In the latter review (i.e. for people with dementia), the 

evidence was quite heterogeneous, reporting from no weight change to significant 
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weight gain (or reduced weight loss) due to second-generation antipsychotics. The 

designs of the reviewed studies were also heterogeneous (e.g. different sample sizes or 

comparison groups), and most were performed during short terms (<3 months). In 

older people, evidence from longer terms is needed since this population experience a 

natural weight loss over time that younger people typically do not experience.      

 

There is a gap in the literature on antipsychotic-induced weight gain in older people 

(>65 years) with any diagnosis, alone or in comparison with younger people [91]. Since 

older adults are likely to have lower basal metabolism [108], it is possible that second-

generation antipsychotics may have a different impact on weight in older adults. In 

young adults, starting treatment with low weight can lead to more rapid weight gain 

[86,87], but this effect has not been thoroughly studied in the older population. This 

knowledge has important clinical implications, especially for informing how 

prescriptions in older patients can affect their healthy weight [109].   

 

We also need a better understanding of the potential modifying effect of sex and dose 14 

on antipsychotic-induced weight gain. Evidence of the weight gain differences between 

women and men comes from short-term clinical trials (typically <1 year) [110] and some 

observational studies [82,100]. Evidence of the role that dosage plays in weight gain is 

scarcer, but I recently explored this question with observational data (Chapter  5) [100]. 

Nevertheless, further evaluation of the modifying effects of sex and dose will improve 

our knowledge in this area. In the absence of long-term randomised clinical trials, 

observational data can have long enough follow-up and enough patients to be powered 

to detect effect modification [1]. Interrupted Time Series (ITS) allow estimation of 

causal relationships in observational data by comparing outcome trajectories before 

and after treatment initiation, by using regression models, as shown in Chapter 6. Given 

the initiation of a particular antipsychotic treatment, the differences in weight change 

trajectories between men and women, or between low or high dose, can be evaluated 

with interaction term in ITS regression models [2,3].     

 

14 Although dose is not a modifying effect formally speaking (it can be seen as levels of the exposure), I am keeping 
this terminology through the chapter to facilitate the narrative, which is centred in the evaluation of effect 
modification. 
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Observational datasets usually contain missing values that need to be handled 

appropriately for ITS models to provide unbiased and efficient estimates. In Chapter 6, I 

showed that Mixed Effects Modelling (MEM) is a valid tool for handling ITS analysis 

with outcome data missing at random in individual-level data (e.g. electronic health 

records). I also demonstrated how MEM, in combination with multilevel multiple 

imputation (i.e. MI-JOMO), provides unbiased and more efficient estimates when 

covariates are incomplete. Now, I will apply MEM with MI-JOMO to handle missing 

data in the ITS regression models with interaction terms in order to evaluate the 

modifying effects of age, sex and dose.    

 

7.2 Objectives 

 

The overall aim was to investigate how the sex, age at treatment initiation and the 

prescribed dose may impact weight change induced by olanzapine, risperidone and 

quetiapine in patients aged 40 to 89 years. 

  

The specific objectives were: 

 

1. Clinical: To evaluate the weight trajectories before and after initiation of 

antipsychotic treatment in ITS analysis and examine whether sex, age and dose 

may independently modify these trajectories. 

 

2. Methodological: To apply MEM in combination with MI-JOMO to handle missing 

data when these trajectories and the mentioned modifying effects are modelled. 
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7.3 Methods 

 

7.3.1 Data source 
 

I used anonymised, longitudinal patient records from The Health Improvement 

Network (THIN), a database that comprises information from UK primary care 

electronic health records from general practices as described in Chapter 2.  

  

7.3.2 Study population 
 

At the individual level, I included all patients aged between 40 and 89 years at the date 

they started their first treatment with olanzapine, risperidone or quetiapine; between 1 

January 2007 and 31 December 2017. I did not include patients ≥90 years to ensure a 

plausible positivity assumption (e.g. observed low/high dose vary within all subgroups 

by age) [111]. Although the main interest was in people aged 60 years or more, I included 

younger people (40-60 years) to be able to detect differences across ages. All patients 

had a diagnosed psychiatric disorder (schizophrenia, bipolar disorder, other non-

affective psychoses, borderline personality disorder, anxiety, depression or dementia) 

and at least one additional prescription of the same antipsychotic (AP) within three 

months after the first prescription. The idea is that people with additional prescriptions 

were more likely to have initiated treatment than those with a single prescription. 

Patients were excluded if they initiated on more than one type of AP (including 

switchers) at any time, as well as if they had no records of the year of birth, sex or social 

deprivation. Likewise, I excluded individuals with no available data at any point during 

the 12 months before the date of treatment initiation to avoid the potential impact of 

unrecorded prescription of other antipsychotics. 

 

7.3.3 Variables and measurements 
 

The exposure of interest was the initiation of olanzapine, risperidone or quetiapine 

treatment. The outcome was the change in body weight, measured in kilograms. The 

main covariates were sex (women/men), age (40-49, 50-59, 60-69, 70-79, 80-89 years) 

and first prescribed dose of AP. All AP reported the first doses in milligrams, but I used 
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the dose-equivalence approach of Woods [89] explained in Chapter 5 (section 5.3.3). As 

I explained in the same chapter, the first dose is a good predictor of subsequent doses 

prescribed during treatment. For descriptive purposes, I also retrieved information on 

height, social deprivation (quintiles of Townsend score 1-5, from least to most 

deprived), smoking and drinking status, having a type-2 diabetes mellitus diagnosis, 

systolic blood pressure (SBP), low-density lipoprotein cholesterol (LDL-cholesterol) and 

high-density lipoprotein cholesterol (HDL-cholesterol); recorded within the first year 

before initiation of treatment. If there were multiple measures during that year, I kept 

the record closest to AP treatment initiation. All the variables passed a data cleaning 

before the statistical analysis (e.g. removing impossible weight records). 

 

7.3.4 Statistical analysis 
 

I used an interrupted time series approach [6] to analyse weight change over time 

within three AP initiation cohorts, during four years before and four years after 

treatment initiation. Weight trajectories over time were modelled by using continuous 

linear splines with random intercept 15 and slopes (unstructured covariance for the 

random intercept and slopes, restricted maximum likelihood), from which three slopes 

of weight change were estimated for: 1) –4 years to baseline (pre-treatment), 2) baseline 

to +6 weeks (short-term), 3) +6 weeks to +4 years (long-term).  

 

Figure 7.1 provides a graphical representation of the main model, as well as the long-

term effect size (θ) that the ITS design helps to visualise:  

  

15 The intercept (time zero) is at treatment initiation. 
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Figure 7.1. Visualization of the model estimates and the long-term ITS effect size 

The model is similar to those fitted in Chapter 5 [100] although in this study, the target 

population is different (40-89 years) and some extra effects are evaluated 16: 

a) Interaction between sex and time (for each slope) adjusted for age and social 

deprivation at treatment initiation (all variables fully observed). Slopes of 

weight change were also estimated separately for each group by sex. 

b) Interaction between age (categorised) and time (each slope) unadjusted and 

adjusted for sex, social deprivation and dose (unique covariate with missing 

values). Slopes of weight change were also estimated for each group by age 

category separately.        

c) Interaction between dose and time (each slope) unadjusted and adjusted for 

sex, age and social deprivation. Slopes of weight change were also estimated for 

each group by dose (low/high) separately. 

d) Short-term weight change (0-6 weeks) within subgroups by dose and age 

categories were estimated from similar MEMs.       

 

16 I call them ‘model type’ (a), (b), (c) or (d) in Section 7.4 on study results. 
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Data used in (a) did not involve incomplete covariates, only missing outcomes, which 

were handled by using MEM. For models in (b), missing dose values were handled by 

complete case analysis (CCA); and for models in (c), missing dose values were handled 

by MI-JOMO 17. For models in (d) -and the descriptive cross-tabulation of age 

categories against dose -, I used CCA.   

 

I assumed weight records were missing at random within covariate strata, conditional 

on observed weights. In THIN data, weight records before and after treatment initiation 

help to inform the implicit imputation made by MEM 18, assuming these records are 

associated with missing values of weight in the same trajectory. Under this assumption, 

modelling the observed data over time provides unbiased estimates [48]. I also assumed 

that weight was MAR on dose;  thus, the complete case analysis I performed provides 

unbiased estimates [49].  

 

Parameter estimates are reported with 95% confidence intervals. All the statistical 

analyses were performed using Stata 15 for Windows [90] and R for windows [56,112].     

  

17 I used substantive-model compatible MI-JOMO to impute consistent with the interaction with partially observed 
dose. For more details about how MI-JOMO is compatible with the substantive ITS models (MEM), please see 
Section 3.2.  
18 See Section 3.3 for more details. 
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7.4 Results 

 

7.4.1 Cohort characteristics 
 

I included data from a total of 29,039 patients during the 8 years of follow-up 19, in the 

cohorts of olanzapine (n=6,776), quetiapine (n=14,970) and risperidone (n=7,293). A 

total of 155,175 weight records were available for that period, 35,299 for olanzapine, 

81,131 for quetiapine and 38,745 for risperidone cohorts. Across the cohorts, patients 

were mainly women (>55%), younger if they were prescribed olanzapine, and older if 

they were women and prescribed risperidone (Table 7.1). Non-drinkers and non-

smokers were more prevalent among women (≈52%) than men (≈37%), and diagnoses 

with type-2 diabetes mellitus were slightly less prevalent in women (≈19%) than men 

(≈22%). Systolic blood pressure was similar across cohorts (mean≈130, standard 

deviation(sd)≈15 mmHg). Low-density lipoprotein (LDL) cholesterol (mean≈3.3, sd≈1.1 

mmol/L) and high-density lipoprotein (HDL) cholesterol (mean≈1.5, sd≈0.6 mmol/L) 

were slightly higher in women for all cohorts. For men, the first dose of olanzapine 

(mean=7.1, sd=4.8 mg), quetiapine (mean≈81.5, sd≈112.7 mg) and risperidone (mean≈1.4, 

sd≈1.3 mg) was on average higher than for women. Weight reported at treatment 

initiation is similar across cohorts, but this is just due to missing weight records (>42% 

across cohorts), which is corrected in latter tables (e.g. when MEM and MI-JOMO are 

used). 

 

In general, high doses 20 were less prevalent in older patients, for all drugs (Table 7.2). 

For example, for people aged 40-49 years and who were prescribed olanzapine, 854 

(43%) were on low dose and 614 (31%) on high dose, whereas people aged 80-89 years 

were 472 (62%) on low dose and 58 (8%) on high dose. Missing values of dose were 1853 

(27%) for olanzapine, 6020 (40%) for quetiapine and 2532 (35%) for risperidone.  

  

19 From the index date (antipsychotic treatment initiation), 4 years before and 4 years after.  
20 For details on how high/low doses were defined, please see the dose-equivalence approach of Woods explained 
in Chapter 5 (Section 5.3.3). 
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Table 7.1. Baseline characteristics of people using olanzapine, quetiapine and risperidone treatment by sex.  

Characteristic 

OLANZAPINE                                    
(N=6,776) 

QUETIAPINE                                    
(N=14,970) 

RISPERIDONE                                  
(N=7,293) 

Female Male Female Male Female Male 

N=3,803 (56.1%) N=2,973 (43.9%) 

 

N=8,765 (58.6%) N=6,205 (41.4%) 

 

N=4,127 (56.6%) N=3,166 (43.4%) 

 n ( % ) n ( % ) n ( % ) n ( % ) n ( % ) n ( % ) 
Age (years)               

 
              

 
              

 
 

40-49 973 ( 25.6 ) 1007 ( 33.9 ) 2379 ( 27.1 ) 1598 ( 25.8 ) 668 ( 16.2 ) 685 ( 21.6 ) 

 
50-59 847 ( 22.3 ) 773 ( 26.0 ) 1664 ( 19.0 ) 1174 ( 18.9 ) 549 ( 13.3 ) 516 ( 16.3 ) 

 60-69 736 ( 19.4 ) 540 ( 18.2 ) 1125 ( 12.8 ) 844 ( 13.6 ) 558 ( 13.5 ) 456 ( 14.4 ) 

 70-79 717 ( 18.9 ) 423 ( 14.2 ) 1429 ( 16.3 ) 1280 ( 20.6 ) 926 ( 22.4 ) 688 ( 21.7 ) 

 80-89 530 ( 13.9 ) 230 ( 7.7 ) 2168 ( 24.7 ) 1309 ( 21.1 ) 1426 ( 34.6 ) 821 ( 25.9 ) 

 Missing 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 

 total (n) 3803 ( 100.0 ) 2973 ( 100.0 ) 8765 ( 100.0 ) 6205 ( 100.0 ) 4127 ( 100.0 ) 3166 ( 100.0 ) 

Townsend               
 

              
 

              
 

 Least deprived 730 ( 19.2 ) 483 ( 16.2 ) 1573 ( 17.9 ) 1170 ( 18.9 ) 804 ( 19.5 ) 562 ( 17.8 ) 

 2 808 ( 21.2 ) 548 ( 18.4 ) 1636 ( 18.7 ) 1204 ( 19.4 ) 803 ( 19.5 ) 621 ( 19.6 ) 

 3 778 ( 20.5 ) 615 ( 20.7 ) 1980 ( 22.6 ) 1294 ( 20.9 ) 949 ( 23.0 ) 667 ( 21.1 ) 

 4 825 ( 21.7 ) 672 ( 22.6 ) 1963 ( 22.4 ) 1334 ( 21.5 ) 855 ( 20.7 ) 693 ( 21.9 ) 

 Most deprived 662 ( 17.4 ) 655 ( 22.0 ) 1613 ( 18.4 ) 1203 ( 19.4 ) 716 ( 17.3 ) 623 ( 19.7 ) 

 Missing 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 

 total (n) 3803 ( 100.0 ) 2973 ( 100.0 ) 8765 ( 100.0 ) 6205 ( 100.0 ) 4127 ( 100.0 ) 3166 ( 100.0 ) 

Smoking Status               
 

              
 

              
  ex-smoking 737 ( 19.4 ) 750 ( 25.2 ) 1927 ( 22.0 ) 2008 ( 32.4 ) 963 ( 23.3 ) 1036 ( 32.7 ) 
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 non-smoking 1927 ( 50.7 ) 1036 ( 34.8 ) 4322 ( 49.3 ) 2306 ( 37.2 ) 2295 ( 55.6 ) 1236 ( 39.0 ) 

 Smoking 746 ( 19.6 ) 799 ( 26.9 ) 1596 ( 18.2 ) 1219 ( 19.6 ) 521 ( 12.6 ) 554 ( 17.5 ) 

 Missing 393 ( 10.3 ) 388 ( 13.1 ) 920 ( 10.5 ) 672 ( 10.8 ) 348 ( 8.4 ) 340 ( 10.7 ) 

 total (n) 3803 ( 100.0 ) 2973 ( 100.0 ) 8765 ( 100.0 ) 6205 ( 100.0 ) 4127 ( 100.0 ) 3166 ( 100.0 ) 
Drinking Status             

            
             non-drinking 1975 ( 51.9 ) 1052 ( 35.4 ) 4419 ( 50.4 ) 2355 ( 38.0 ) 2349 ( 56.9 ) 1276 ( 40.3 ) 

 ex-drinking 744 ( 19.6 ) 749 ( 25.2 ) 1968 ( 22.5 ) 2042 ( 32.9 ) 973 ( 23.6 ) 1060 ( 33.5 ) 

 Drinking 660 ( 17.4 ) 666 ( 22.4 ) 1462 ( 16.7 ) 1032 ( 16.6 ) 512 ( 12.4 ) 500 ( 15.8 ) 

 Missing 424 ( 11.1 ) 506 ( 17.0 ) 916 ( 10.5 ) 776 ( 12.5 ) 293 ( 7.1 ) 330 ( 10.4 ) 

 total (n) 3803 ( 100.0 ) 2973 ( 100.0 ) 8765 ( 100.0 ) 6205 ( 100.0 ) 4127 ( 100.0 ) 3166 ( 100.0 ) 
Diabetes Diagnostic             

            
             No 3198 ( 84.1 ) 2469 ( 83.0 ) 7082 ( 80.8 ) 4778 ( 77.0 ) 3176 ( 77.0 ) 2393 ( 75.6 ) 

  Yes 605 ( 15.9 ) 504 ( 17.0 ) 1683 ( 19.2 ) 1427 ( 23.0 ) 951 ( 23.0 ) 773 ( 24.4 ) 
  Missing 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 0 ( 0.0 ) 

 total (n) 3803 ( 100.0 ) 2973 ( 100.0 ) 8765 ( 100.0 ) 6205 ( 100.0 ) 4127 ( 100.0 ) 3166 ( 100.0 ) 
Height (m)             

            
             mean (sd) 1.6 ( 0.1 ) 1.7 ( 0.1 ) 1.6 ( 0.1 ) 1.7 ( 0.1 ) 1.6 ( 0.1 ) 1.7 ( 0.1 ) 

  Missing 1428 ( 37.5 ) 1043 ( 35.1 ) 3503 ( 40.0 ) 2291 ( 36.9 ) 1622 ( 39.3 ) 1179 ( 37.2 ) 

 total (n) 3803 ( 100.0 ) 2973 ( 100.0 ) 8765 ( 100.0 ) 6205 ( 100.0 ) 4127 ( 100.0 ) 3166 ( 100.0 ) 
SBP (mmHg)             

            
             mean (sd) 132.9 ( 15.5 ) 132.4 ( 14.7 ) 131.8 ( 14.1 ) 131.7 ( 13.1 ) 133.0 ( 15.2 ) 132.3 ( 14.4 ) 

  Missing 1157 ( 30.4 ) 1009 ( 33.9 ) 2302 ( 26.3 ) 1556 ( 25.1 ) 895 ( 21.7 ) 769 ( 24.3 ) 

 total (n) 3803 ( 100.0 ) 2973 ( 100.0 ) 8765 ( 100.0 ) 6205 ( 100.0 ) 4127 ( 100.0 ) 3166 ( 100.0 ) 
LDL-Cholesterol 
(mmol/L)               

 
              

 
              

  mean (sd) 3.4 ( 1.2 ) 3.3 ( 1.1 ) 3.3 ( 1.1 ) 3.2 ( 1.1 ) 3.3 ( 1.1 ) 3.1 ( 1.1 ) 
  Missing 1071 ( 28.2 ) 787 ( 26.5 ) 2505 ( 28.6 ) 1620 ( 26.1 ) 1146 ( 27.8 ) 833 ( 26.3 ) 

 total (n) 3803 ( 100.0 ) 2973 ( 100.0 ) 8765 ( 100.0 ) 6205 ( 100.0 ) 4127 ( 100.0 ) 3166 ( 100.0 ) 
HDL-Cholesterol 
(mmol/L)               

 
              

 
              

 
 mean (sd) 1.6 ( 0.5 ) 1.3 ( 0.5 ) 1.5 ( 0.6 ) 1.3 ( 0.6 ) 1.5 ( 0.6 ) 1.3 ( 0.5 ) 
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  Missing 706 ( 18.6 ) 492 ( 16.5 ) 1575 ( 18.0 ) 956 ( 15.4 ) 738 ( 17.9 ) 503 ( 15.9 ) 

 total (n) 3803 ( 100.0 ) 2973 ( 100.0 ) 8765 ( 100.0 ) 6205 ( 100.0 ) 4127 ( 100.0 ) 3166 ( 100.0 ) 
First Dose (mg)               

 
              

 
              

 
 mean (sd) 6.0 ( 4.5 ) 7.1 ( 4.8 ) 76.9 ( 103.6 ) 81.5 ( 112.7 ) 1.2 ( 1.0 ) 1.4 ( 1.3 ) 
  Missing 1058 ( 27.8 ) 795 ( 26.7 ) 3479 ( 39.7 ) 2541 ( 41.0 ) 1448 ( 35.1 ) 1084 ( 34.2 ) 

 total (n) 3803 ( 100.0 ) 2973 ( 100.0 ) 8765 ( 100.0 ) 6205 ( 100.0 ) 4127 ( 100.0 ) 3166 ( 100.0 ) 
Body Weight (kg)               

 
              

 
              

 
 mean (sd) 70.2 ( 16.6 ) 82.1 ( 16.6 ) 73.5 ( 17.9 ) 82.9 ( 17.5 ) 70.4 ( 17.6 ) 82.0 ( 17.9 ) 
  Missing 1699 ( 44.7 ) 1269 ( 42.7 ) 4093 ( 46.7 ) 2822 ( 45.5 ) 1938 ( 47.0 ) 1432 ( 45.2 ) 

 total (n) 3803 ( 100.0 ) 2973 ( 100.0 ) 8765 ( 100.0 ) 6205 ( 100.0 ) 4127 ( 100.0 ) 3166 ( 100.0 ) 
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Table 7.2. Low/High dose and age category in olanzapine, quetiapine and risperidone cohorts. 

Age versus Dose 
Low Dose High Dose Missing Dose Overall 

n   %   n   %   n   %   n   %   

Olanzapine 

Age                                 
40-49 854 ( 43.1% ) 614 ( 31.0% ) 512 ( 25.9% ) 1980 ( 100.0% ) 
50-59 668 ( 41.2% ) 497 ( 30.7% ) 455 ( 28.1% ) 1620 ( 100.0% ) 
60-69 621 ( 48.7% ) 305 ( 23.9% ) 350 ( 27.4% ) 1276 ( 100.0% ) 
70-79 665 ( 58.3% ) 169 ( 14.8% ) 306 ( 26.8% ) 1140 ( 100.0% ) 
80-89 472 ( 62.1% ) 58 ( 7.6% ) 230 ( 30.3% ) 760 ( 100.0% ) 

Overall 3280 ( 48.4% ) 1643 ( 24.2% ) 1853 ( 27.3% ) 6776 ( 100.0% ) 

Quetiapine 

Age                                 
40-49 1377 ( 34.6% ) 948 ( 23.8% ) 1652 ( 41.5% ) 3977 ( 100.0% ) 
50-59 1057 ( 37.2% ) 637 ( 22.4% ) 1144 ( 40.3% ) 2838 ( 100.0% ) 
60-69 924 ( 46.9% ) 303 ( 15.4% ) 742 ( 37.7% ) 1969 ( 100.0% ) 
70-79 1519 ( 56.1% ) 137 ( 5.1% ) 1053 ( 38.9% ) 2709 ( 100.0% ) 
80-89 1979 ( 56.9% ) 69 ( 2.0% ) 1429 ( 41.1% ) 3477 ( 100.0% ) 

Overall 6856 ( 45.8% ) 2094 ( 14.0% ) 6020 ( 40.2% ) 14970 ( 100.0% ) 

Risperidone 

Age                         
40-49 749 ( 55.4% ) 212 ( 15.7% ) 392 ( 29.0% ) 1353 ( 100.0% ) 
50-59 572 ( 53.7% ) 144 ( 13.5% ) 349 ( 32.8% ) 1065 ( 100.0% ) 
60-69 625 ( 61.6% ) 71 ( 7.0% ) 318 ( 31.4% ) 1014 ( 100.0% ) 
70-79 989 ( 61.3% ) 27 ( 1.7% ) 598 ( 37.1% ) 1614 ( 100.0% ) 
80-89 1364 ( 60.7% ) 8 ( 0.4% ) 875 ( 38.9% ) 2247 ( 100.0% ) 

Overall 4299 ( 58.9% ) 462 ( 6.3% ) 2532 ( 34.7% ) 7293 ( 100.0% ) 
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7.4.2 Differences by sex 
 

Given a treatment of olanzapine, short-term weight gain was less pronounced in 

women (model type (a), see Table 7.3). This is seen in the interaction term between 

sexes estimated as βwomen*t2=-0.1440 kg/week (95%CI:-0.2510 to -0.0371). On the other 

hand, there was no difference between men and women for short term weight gain for 

quetiapine (βwomen*t2=-0.0187 kg/week; 95%CI:-0.0553 to 0.0926) or risperidone 

(βwomen*t2=-0.0301 kg/week; 95%CI:-0.1355 to 0.0753).  There were minor differences 

between sexes on the long-term weight gain for olanzapine (βwomen*t3=0.0056 kg/week; 

95%CI: 0.0003 to 0.0108) and quetiapine (βwomen*t3= 0.0040 kg/week; 95%CI: -0.0002 to 

0.0082). Estimates of weight trajectories within women and men are provided 

separately in Table S3 (Appendix 7A). 
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Table 7.3. ITS models with interaction between sex and time for the olanzapine, quetiapine and risperidone cohorts.  

Weight Trajectories 
by SEX 

Olanzapine Quetiapine Risperidone 

(women=3,803; men=2,973; combined=6,776) (women=8,765; men=6,205; combined=14,970) (women=4,127; men=3,166; combined=7,293) 

Beta 95% CI p Beta 95% CI p Beta 95% CI p 

t1 (-4 years to 0 weeks) -0.0120 ( -0.0153 to -0.0088 ) <0.001 -0.0098 ( -0.0120 to -0.0077 ) <0.001 -0.0096 ( -0.0124 to -0.0067 ) <0.001 

t2 (0 weeks to 6 weeks) 0.4455 ( 0.3646 to 0.5264 ) <0.001 0.1014 ( 0.0441 to 0.1588 ) 0.001 0.0974 ( 0.0170 to 0.1779 ) 0.018 

t3 (6 weeks to 4 years) 0.0067 ( 0.0027 to 0.0107 ) 0.001 -0.0002 ( -0.0035 to 0.0032 ) 0.917 0.0024 ( -0.0023 to 0.0071 ) 0.315 

Women -12.08 ( -13.02 to -11.14 ) <0.001 -12.97 ( -13.62 to -12.32 ) <0.001 -11.71 ( -12.60 to -10.82 ) <0.001 

women*t1 -0.0029 ( -0.0071 to 0.0014 ) 0.187 0.0013 ( -0.0015 to 0.0041 ) 0.372 -0.0036 ( -0.0073 to 0.0002 ) 0.062 

women*t2 -0.1440 ( -0.2510 to -0.0371 ) 0.008 0.0187 ( -0.0553 to 0.0926 ) 0.621 -0.0301 ( -0.1355 to 0.0753 ) 0.575 

women*t3 0.0056 ( 0.0003 to 0.0108 ) 0.039 0.0040 ( -0.0002 to 0.0082 ) 0.064 -0.0012 ( -0.0073 to 0.0049 ) 0.696 

Intercept 82.03 ( 73.35 to 90.71 ) <0.001 88.76 ( 82.73 to 94.78 ) <0.001 86.59 ( 77.98 to 95.19 ) <0.001 

ITS=interrupted time series. All estimates are adjusted for age and deprivation. Intercept was set at the very beginning of the observation period. Units: time in weeks and weight in kg (i.e. t1, t2 an t3 are in kg/weeks). 
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7.4.3 Differences by age 
 

Given a treatment of olanzapine, short-term weight gain was much less pronounced for 

older people than younger people (model type (b), see Table 7.4). Thus, the modifying 

effect of age was confirmed even after adjusting for sex, social deprivation and dose. In 

the short term, the weight gain was highest in younger people ( 40-49 years: βt2=0.6294 

kg/week; 95%CI: 0.5120 to 0.7469) and diminished progressively for people older at 

treatment initiation (50-59 years: βt2=0.4685 kg/week; 60-69 years: βt2= 0.2467 

kg/week; 70-79 years: βt2= 0.0865 kg/week; 80-89 years: βt2= -0.0416 kg/week) (Figure 

7.2 and Appendix 7B). All the interaction terms between age and short-term time 

(age*t2) confirmed this trend (Appendix 7B). 

 

Similar short-term trends were observed for quetiapine and risperidone cohorts 

(Appendices 7C and 7D respectively). 

 

For the long-term, the modifying effect of age on weight gain was weak for olanzapine 

(Table 7.4). A difference was visible: the long-term rate of weight gain was higher for 

younger people of 40-49 years (βt2= 0.0108 kg/week; 95%CI:0.0056 to 0.0161), 50-59 

years (βt2=0.0135 kg/week; 95%CI: 0.0080 to 0.0189) and 60-69 years (βt2=0.0102 

kg/week; 95%CI: 0.0027 to 0.0176) when were compared against older people of 70-79 

years (βt2=0.0006 kg/week; 95%CI: -0.0070 to 0.0082) and 80-89 years (βt2=-0.0021 

kg/week; 95%CI: -0.0106 to 0.0063) (Figure 7.2 and Appendix 7B).  

 

A more explicit modifying effect in the long-term was verified for users of quetiapine 

and risperidone (Appendices 7C and 7D, respectively). 
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Table 7.4. ITS models with interaction between age and time for the olanzapine cohort.  

Weight Trajectories by 
AGE (Complete Case 

Analysis) 

Olanzapine 
Unadjusted Adjusted 

(combined=6,776)                                                                                    
(40-49 years=1,980; 50-59 years=1,620; 60-69 years=1,276; 70-79 

years=1,140; 80-89 years=760) 

(combined=4,923)                                                                                 
(40-49 years=1,468; 50-59 years=1,165; 60-69 years=926; 70-79 

years=834; 80-89 years=530) 

Beta 95% CI p Beta 95% CI p 
t1 (-4 years to 0 weeks) -0.0017 ( -0.0059 to 0.0025 ) 0.424 -0.0002 ( -0.0051 to 0.0046 ) 0.930 
t2 (0 weeks to 6 weeks) 0.6399 ( 0.5405 to 0.7394 ) 0.000 0.6478 ( 0.5346 to 0.7610 ) 0.000 
t3 (6 weeks to 4 years) 0.0096 ( 0.0050 to 0.0143 ) 0.000 0.0101 ( 0.0048 to 0.0154 ) 0.000 
age ref ref 

50-59 -0.1296 ( -1.4932 to 1.2339 ) 0.852 0.6778 ( -0.8439 to 2.1996 ) 0.383 
60-69 -2.8110 ( -4.2496 to -1.3723 ) 0.000 -0.9582 ( -2.5668 to 0.6503 ) 0.243 
70-79 -4.1645 ( -5.6312 to -2.6978 ) 0.000 -2.1086 ( -3.7563 to -0.4609 ) 0.012 
80-89 -8.9634 ( -10.6556 to -7.2711 ) 0.000 -6.0138 ( -7.9581 to -4.0695 ) 0.000 

age*t1 ref ref 
50-59 -0.0089 ( -0.0150 to -0.0029 ) 0.004 -0.0133 ( -0.0204 to -0.0063 ) 0.000 
60-69 -0.0102 ( -0.0164 to -0.0040 ) 0.001 -0.0120 ( -0.0192 to -0.0048 ) 0.001 
70-79 -0.0241 ( -0.0303 to -0.0178 ) 0.000 -0.0230 ( -0.0302 to -0.0158 ) 0.000 
80-89 -0.0238 ( -0.0312 to -0.0164 ) 0.000 -0.0261 ( -0.0347 to -0.0174 ) 0.000 

age*t2 ref ref 
50-59 -0.1843 ( -0.3292 to -0.0394 ) 0.013 -0.1789 ( -0.3443 to -0.0135 ) 0.034 
60-69 -0.4248 ( -0.5767 to -0.2729 ) 0.000 -0.4153 ( -0.5879 to -0.2427 ) 0.000 
70-79 -0.5284 ( -0.6877 to -0.3692 ) 0.000 -0.5617 ( -0.7440 to -0.3794 ) 0.000 
80-89 -0.7440 ( -0.9483 to -0.5397 ) 0.000 -0.7545 ( -0.9852 to -0.5238 ) 0.000 

age*t3 ref ref 
50-59 0.0027 ( -0.0042 to 0.0095 ) 0.446 0.0036 ( -0.0042 to 0.0114 ) 0.367 
60-69 0.0017 ( -0.0056 to 0.0091 ) 0.643 -0.0004 ( -0.0088 to 0.0081 ) 0.934 
70-79 -0.0047 ( -0.0129 to 0.0035 ) 0.262 -0.0099 ( -0.0192 to -0.0006 ) 0.038 
80-89 -0.0122 ( -0.0237 to -0.0008 ) 0.037 -0.0113 ( -0.0242 to 0.0016 ) 0.086 

intercept 77.8 ( 76.9 to 78.7 ) 0.000 84.09 ( 82.51 to 85.67 ) 0.000 
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ref=reference group. ITS=interrupted time series. All estimates come from mixed-effects models (restricted maximum likelihood and unstructured covariance matrix), adjusted for sex, social 
deprivation (Townsend) and first dose when indicated. The intercept was set at the very beginning of the observation period. Units: time in weeks and weight in kg (i.e. t1, t2 and t3 are in kg/weeks). 
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Figure 7.2. Pre-treatment, short and long-term weight trajectory by age group for the olanzapine cohort. 
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7.4.4 Differences by dose 
 

Given a treatment of olanzapine, short-term weight gain was more pronounced for 

people prescribed a high dose (model type (c), see Table 7.5). Thus, the modifying effect 

of dose was confirmed even after adjusting for sex, age and social deprivation. In the 

short term, the weight gained by those prescribed low dose was 0.3113 kg/week (95%CI: 

0.2433 to 0.3793); whereas the weight gained by patients prescribed high dose was 

0.4517 kg/week (95%CI: 0.3548 to 0.5487) (Appendix 7E). Hence, over six weeks, those 

on low dose gained 1.9kg, whereas those on high dose gained 2.7kg.  

 

Similar short-term trends were observed for quetiapine but not for risperidone cohorts 

(Appendices 7F and 7G respectively). 

 

For the long-term, the modifying effect of dose was confirmed in the quetiapine group 

(Appendix 7F). For low dose, the average weight change was minimal (0.0006 kg/week; 

95%CI: -0.0020 to 0.0032), equivalent to 0.1kg over 202 weeks (from week 6 to 4 years). 

For high dose, the weight change was 0.0061 kg/week (95%CI: 0.0020 to 0.0102), 

equivalent to 1.2kg over 202 weeks (Figure 7.3 and Appendix 7F).   

 

A lack of long-term modifying effect of dose was observed for olanzapine (Table 7.5) 

and risperidone (Appendix 7G). 
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Table 7.5. ITS models with interaction between dose and time for the olanzapine cohort. 

Weight Trajectories 
by DOSE 

Olanzapine 
Unadjusted Adjusted (CCA) Adjusted (MI-JOMO) 

(total=6,776)                                                                        
(low-dose=3,280; high-dose=1,643; missing dose=1,853; 

combined=4,923) 

(total=6,776)                                                                        
(low-dose=3,280; high-dose=1,643; missing dose=1,853; 

combined=4,923) 
(total=6,776)                                                                       

(low-dose=4,403; high-dose=2,323; combined=6,776) 

Beta 95% CI p Beta 95% CI p Beta 95% CI p 

t1 (-4 years to 0 weeks) -0.0133 ( -0.0163 to -0.0104 ) 0.000 -0.0138 ( -0.0167 to -0.0108 ) 0.000 -0.0144 ( -0.0171 to -0.0117 ) 0.000 
t2 (0 weeks to 6 weeks) 0.2896 ( 0.2152 to 0.3639 ) 0.000 0.2914 ( 0.2172 to 0.3656 ) 0.000 0.3100 ( 0.2415 to 0.3786 ) 0.000 
t3 (6 weeks to 4 years) 0.0095 ( 0.0057 to 0.0132 ) 0.000 0.0093 ( 0.0055 to 0.0130 ) 0.000 0.0097 ( 0.0062 to 0.0131 ) 0.000 
high-dose 4.0634 ( 2.8449 to 5.2820 ) 0.000 0.8732 ( -0.3106 to 2.0570 ) 0.148 0.8529 ( -0.6017 to 2.3075 ) 0.246 
high-dose*t1 0.0014 ( -0.0039 to 0.0066 ) 0.615 0.0012 ( -0.0041 to 0.0065 ) 0.650 0.0018 ( -0.0033 to 0.0070 ) 0.481 
high-dose*t2 0.2182 ( 0.0900 to 0.3463 ) 0.001 0.2117 ( 0.0837 to 0.3396 ) 0.001 0.1496 ( 0.0250 to 0.2742 ) 0.019 
high-dose*t3 0.0006 ( -0.0056 to 0.0068 ) 0.858 0.0007 ( -0.0055 to 0.0069 ) 0.834 0.0005 ( -0.0056 to 0.0065 ) 0.883 
intercept 74.3 ( 73.6 to 75.0 ) 0.000 80.39 ( 70.28 to 90.50 ) 0.000 96.47 ( 86.31 to 106.62 ) 0.000 

ITS=interrupted time series. All estimates come from mixed-effects models (restricted maximum likelihood and unstructured covariance matrix), and were adjusted for sex, social deprivation (Townsend) and age when indicated. Missing 
dose was handled with complete case analysis (CCA) and multilevel multiple imputation (MI-JOMO). Results from both methods are visible in the table. The intercept was set at the very beginning of the observation period. Units: time in 
weeks and weight in kg (i.e. t1, t2 and t3 are in kg/weeks). 
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Figure 7.3. Pre-treatment, short and long-term weight trajectory by low/high dose for the quetiapine cohort. 
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7.4.5 Differences by age and dose 
 

Figure 7.4 (drawn by using estimates from model type (d)) shows that short-term 

weight gain is almost zero or even negative in the oldest group (80-89 years) prescribed 

olanzapine, which is very different from the weight gain experienced by younger people 

(40-49 years). Likewise, differences in short-term weight gain between low/high doses 

are more evident in younger people.  

 

Figure 7.4. Short-term (6 weeks) weight gain (kg) across subgroups by age and dose for the olanzapine cohort  
(Note: for this figure lines do not represent individual follow up). 
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7.4.6 ITS effect sizes 
 

Figure 7.5  (drawn by using estimates from Appendix 7C) helps to illustrate how the 

expected or ´natural´ weight gain (β1) can be contrasted against the observed weight 

gain after treatment initiation (β3) to estimate the effect size in the long-term (attribute 

of the ITS design exposed in Figure 7.2). Figure 7.5 shows that, on average, -0.0231 

kg/week of weight change would be expected in people aged 80-89 years if no 

quetiapine treatment would have been prescribed (dashed line). The observed weight 

change after treatment initiation was -0.0157 kg/week; thus, the long-term effect size of 

quetiapine is -0.0157 +0.0231=0.0074 kg/weeks.  

 

Figure 7.5. Visualization of the model estimates and the long-term ITS effect size for persons aged 80-89 years 

prescribed quetiapine 

 

 

  

70
75

80
85

w
ei

gh
t (

kg
)

-200 -100 0 100 200
weeks

145 
 



Table 7.6 shows the ITS effect size of the same second-generation antipsychotics 

(olanzapine, quetiapine, risperidone) on weight change in the long-term (β3-β1) 

modified by age. The table in Appendix 7I shows similar ITS effect sizes for subgroups 

by age and dose (for olanzapine only). 
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Table 7.6. ITS effect size of second-generation antipsychotics on weight change in the LONG-TERM, modified by  age. 

Antipsychotic Age 
(years) 

pre-treatment 
(β1) 

long-term 
(β3) 

ITS 
effect 
size 

(β3-β1) 

modifying effect 

age*t1 (pre-treatment) age*t3 (long-term) 

Β 95% CI p β 95% CI p 

Olanzapine 

40-49 0.0000 0.0108 0.0109 ref ref 
50-59 -0.0138 0.0135 0.0272 -0.0133 ( -0.0204 to -0.0063 ) 0.000 0.0036 ( -0.0042 to 0.0114 ) 0.367 
60-69 -0.0123 0.0102 0.0225 -0.0120 ( -0.0192 to -0.0048 ) 0.001 -0.0004 ( -0.0088 to 0.0081 ) 0.934 
70-79 -0.0231 0.0006 0.0237 -0.0230 ( -0.0302 to -0.0158 ) 0.000 -0.0099 ( -0.0192 to -0.0006 ) 0.038 
80-89 -0.0267 -0.0021 0.0245 -0.0261 ( -0.0347 to -0.0174 ) 0.000 -0.0113 ( -0.0242 to 0.0016 ) 0.086 

Quetiapine 

40-49 0.0096 0.0025 -0.0071 ref ref 
50-59 -0.0022 0.0049 0.0071 -0.0115 ( -0.0170 to -0.0060 ) 0.000 0.0027 ( -0.0044 to 0.0098 ) 0.464 
60-69 -0.0089 0.0005 0.0095 -0.0183 ( -0.0243 to -0.0124 ) 0.000 -0.0012 ( -0.0090 to 0.0066 ) 0.755 
70-79 -0.0178 -0.0078 0.0100 -0.0268 ( -0.0322 to -0.0213 ) 0.000 -0.0085 ( -0.0169 to 0.0000 ) 0.050 
80-89 -0.0231 -0.0157 0.0074 -0.0322 ( -0.0375 to -0.0269 ) 0.000 -0.0190 ( -0.0281 to -0.0099 ) 0.000 

Risperidone 

40-49 0.0094 0.0097 0.0003 ref ref 
50-59 -0.0051 0.0056 0.0107 -0.0140 ( -0.0222 to -0.0059 ) 0.001 -0.0038 ( -0.0140 to 0.0064 ) 0.466 
60-69 -0.0085 0.0010 0.0094 -0.0173 ( -0.0253 to -0.0094 ) 0.000 -0.0068 ( -0.0173 to 0.0036 ) 0.201 
70-79 -0.0177 -0.0032 0.0144 -0.0262 ( -0.0334 to -0.0190 ) 0.000 -0.0120 ( -0.0231 to -0.0009 ) 0.033 
80-89 -0.0212 -0.0259 -0.0047 -0.0300 ( -0.0370 to -0.0231 ) 0.000 -0.0361 ( -0.0482 to -0.0240 ) 0.000 

ref=reference group. ITS = interrupted time series. In this approach, the long-term effect size can be estimated by the difference between pre-treatment trajectory (beta 1) and long-term post-treatment trajectory (beta 3). Units: time in 
weeks and weight in kg (i.e. betas are in kg/weeks).  
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7.4.7 Missing data 
 

The consequences of missing data were different, depending on the analysis performed. 

For analyses with fully observed covariates, for example, in Table 7.5 (model type (c)), it 

was visible how the estimates of weight trajectories (t1, t2, t3) and their interaction with 

dose (dose*t1, dose*t2, dose*t3) changed whether the model was unadjusted or adjusted 

(both with CCA). Part of this difference could be due to the fact that the missing 

weights are more plausibly MAR when we condition/adjust for the additional covariates 

(i.e. sex, social deprivation and age). For analyses with partially observed covariates (i.e. 

dose), analysis after imputation with MI-JOMO gave different estimates to CCA (both 

with MEM) and narrowed the 95% confidence intervals (or produced smaller standard 

errors). Here the difference can be due to the inclusion of the imputed covariate values 

and an intrinsic limitation of multiple imputation I discuss in the next chapter.  

 

7.4.8 Summary of key results 
 

A summary of the results on modifying effects analysis reported in tables 7.3, 7.4 and 7.5 

(model types (a), (b) and (c)) is available in Table 7.7. This summary is useful for 

starting the next discussion on key study findings. For clinical purposes, the Table in 

Appendix 7H summarises the cumulative weight change (in kg) for short (6 weeks) and 

long-term periods (from 6 weeks to 4 years).  

  

148 
 



  

Table 7.7. Summary table of the modification effects of sex, age and dose on antipsychotic induced weight change 

Modifying 
effect of Antipsychotic 

Does it modify 
the 

antipsychotic-
induced weight 

change? 

Type of modifying effect 

short-
term 

long-
term short-term long-term 

Sex 

olanzapine yes yes, but 
weakly 

weight gain is more severe 
in men 

weight gain is more severe in 
women 

quetiapine no yes, but 
weakly no effect weight gain is more severe in 

women 
risperidone no no no effect no effect 

Age 

olanzapine yes yes, but 
weakly 

weight gain is more severe 
in younger people 

weight gain is more severe in 
younger people 

quetiapine yes yes 
weight gain is more severe 

in younger people 
weight gain is more severe in 

younger people 

risperidone yes yes 
weight gain is more severe 

in younger people 
weight gain is more severe in 

younger people 

Dose 

olanzapine yes no 
weight gain is more severe 

when a high dose is 
prescribed 

no effect 

quetiapine yes yes   
weight gain is more severe 

when a high dose is 
prescribed 

weight gain is more severe 
when a high dose is prescribed  

risperidone no no no effect no effect 
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7.5 Discussion 

 

Sex, age and dose modify the weight change associated with specific second-generation 

antipsychotics in patients ≥40 years (see a summary in Table 7.7). In general, women 

gain weight with a higher rate than men in the long-term, but with a lower rate in the 

short-term. In the short and long-term, a higher dose of any antipsychotic is mostly 

associated with a higher rate of weight gain. Antipsychotic-induced weight gain has a 

lower rate in older people, in the short a long-term. In the short term, differences in 

weight gain between low/high dose are more evident in younger people. For any age, 

the long-term ITS effect size usually reflects a consistent weigh gain that would not 

occur in the absence of an antipsychotic prescription. Interaction terms in MEM 

facilitated the evaluation of differences in weight trajectories over time between groups 

by age, sex and dose. MEM was combined with MI-JOMO for handling missing values 

of dose, but with some limitations discussed close to the end of this section.  

 

Sex and dose have been studied before as modifiers of antipsychotic-induced weight 

gain, but not via a formal evaluation of the interaction effect in ITS models.  It has been 

reported before that men tend to gain more weight than women, in the short-term, 

when prescribed olanzapine or risperidone [91]. I found in a previous study (Chapter 5) 

[100] an apparent difference between men and women for olanzapine, which was less 

evident for risperidone. Both differences indicated more weight gain for men. In this 

study, the evaluation of the interaction term allowed to formally compare weight 

change trajectories of women and men ≥40 years, for which olanzapine is the only drug 

that produces a weight gain that is modified by sex. In the long term, the rate of weight 

gain after treatment initiation was minimal [100]; thus, the comparison between sexes is 

not straightforward. Here, I identified a weak interaction effect suggesting that women 

prescribed olanzapine (on average, 2.5kg for women versus 1.3kg for men) and 

quetiapine (on average, 0.8kg for women versus -0.1kg for men) may gain more weight 

than men in the long-term. Regarding dose, a higher short-term weight gain for 

patients consuming high doses of olanzapine has been found elsewhere [93,100] and 

confirmed here, using a formal interaction evaluation. This exploits an advantage of 

using ITS models on electronic health records for evaluating modifying effects, namely 

that they have a markedly higher number of weight records over long-term periods (e.g. 

4 years), relative to typical randomised clinical trials.  
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The modifying effect of age in the antipsychotic weight trajectories is evident in the 

short-term, but in the long-term should be analysed considering the ITS effect size (i.e. 

pre versus post-treatment initiation weigh trajectory). An early study with olanzapine 

and risperidone reported that younger patients gained more weight in the short-term 

[110]. More recently, Yeung et al. [113] reported weight gain in older people treated with 

olanzapine, but a weight loss in older people treated risperidone, both in short- to 

medium-term. In the present study, I found an effect modification of age in the short-

term. For example, patients aged between 60-69 years gain 1.5kg on average during the 

first 6 weeks of treatment, but people aged between 70-89 gain almost no weight during 

the same period with olanzapine treatment. I also found that long-term weight gain is 

less pronounced in older people compared to younger people. Nevertheless, to better 

understand the real long-term impact of these antipsychotics, the natural age-related 

loss of weight should also be considered. In ITS designs, the pre-treatment trajectory 

provides an approximation of the natural weight loss 21; thus, the difference between 

this trajectory and the post-treatment long-term trajectory is informative as a measure 

of the effect size (see Figures 7.2 and 7.5) [6]. As is visible in Table 7.6, the effect size is 

positive (weight gain) and similar across many age groups, and only quetiapine for 

younger people and risperidone for older people led to weight loss. The result of this 

analysis suggests the antipsychotic treatment may prevent weight loss for elderly 

patients. In older people, natural weight loss can be a risk factor; thus, some doctors 

have suggested prescribing small doses of olanzapine in short periods to avoid this 

weight loss in patients with severe mental illness [109]. The results from the present 

study give an approximation of the potential impact of this recommendation 22. The 

results in this chapter suggest that, even with low doses of olanzapine, the natural 

weight loss in older people can be controlled for long-term periods (Appendix 7I).   

 

21 In the long-term, some minor difference could be expected between the pre-treatment and the natural trajectory 
that is inferred for the treatment period (as an extension of the pre-treatment trajectory). For example, pre-treatment 
weight trajectory of a woman from her 76 years to her 80 years is not exactly the same than the natural weight 
trajectory she would have had between her 80 years to her 84 years (counterfactual). However, using as reference 
the pre-treatment trajectories of the next more aged sub-group (see Table 7.6), it is easy to approximate that the 
(potential) difference would slightly increase the effect size estimated. 
22 This is a controversial topic among clinicians. In the US, antipsychotic medication in older people has a black box 
warning due to increased risks of death [141]. In the UK, antipsychotics in dementia should also be used with 
caution [142], although many people are prescribed them. 
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MEM models are useful for handling irregularly observed outcomes (which may be 

viewed as missing as they do not follow any regular measurement schedule) for 

evaluating ITS effects. In the evaluation of dose, it is notable how the estimated weight 

trajectories and the interaction between dose and time — both using a complete 

records analysis — changed when the MEM model was adjusted for covariates (with 

CCA). There are two explanations for the observed difference: (i) that covariate 

adjustment (even if there are no missing outcomes) could change effect estimates (this 

could even happen if it were a randomised study) and (ii) that covariate adjustment 

could change estimates because it makes more plausible the assumption that outcomes 

are MAR given covariates in the model (i.e. covariates inform the outcome implicit 

imputation). Both are likely to be happening to some extent, and it is not easily possible 

to say which is the greater effect. Although in ITS the time-invariant covariates (e.g. 

sex) are expected to be controlled by design [2], in observational studies like this one, 

these covariates also need to be included in the estimation of ITS effects with MEM. I 

have previously demonstrated that MEM with fully observed covariates makes bias 

correction to CCA when the probability of being missing depends on observed values of 

covariates (conclusion from the previous simulation study, Chapter 6).   

 

MI-JOMO is useful for handling missing covariates in models with interaction terms, 

but the approach has a minor limitation. For models with dose missing, MI-JOMO 

reported different estimates than MEM and narrowed the 95% confidence intervals (or 

produced smaller standard errors). Interestingly, the estimates of long-term weight 

change varied just slightly across unadjusted and adjusted models (with CCA or MI-

JOMO). As the simulation study showed in Chapter 6, we expect that MI-JOMO will 

provide less biased and more efficient estimates when adjusting for covariates with 

missing values. However, for evaluating interactions with imputed categorical 

covariates (i.e. dose: low/high), each imputation from MI-JOMO can produce a 

different distribution of new values per each dataset (i.e. the number of patients in each 

dose group varies across multiply imputed datasets). This difference can bias the 

variance estimates from Rubin´s formula (Section 3.2.2). This limitation is minor in the 

sense that it is the variance and not the point estimate that can be biased. Indeed, the 

limitation is inherent to any multiple imputation method applied for evaluating this 

type of interaction. 
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Some strength and limitations are inherent to this study. It is the first time that the 

modifying effect of age on the antipsychotic-induced weight change has been studied, 

which contributes to the evidence base informing prescription guidance, particularly 

for older patients. The present study improves on previous shorter-term studies 

[110,113], by using larger sample size and including many more weight records over time 

to draw weight trajectories. However, in contrast to randomised controlled trials, I was 

unable to perform formal comparisons among antipsychotics. The comparisons would 

be valid if age, sex and deprivation were the only variables affecting treatment 

decisions 23, but it is likely that a number of additional confounders remain unadjusted 

for. Nevertheless, since the relative weight gain for the different treatments in the short 

term is similar to randomised trials’, there is a reasonable justification for saying that 

longer-term differences between treatments, estimated from the ITS analysis, have a 

strong causal basis. Long-term trajectories of weight change could be affected by other 

factors such as competing risk 24, treatment duration [91] or other medications [114] not 

included in this study. However, these factors are most likely to have a greater impact 

on long-term estimates and less impact on the short-term effects. Not everyone had 

treatment during all the four years of follow up. Nevertheless, my goal was to show 

doctors the long-term consequences of the pragmatic treatment policy ‘starting 

treatment with second-generation antipsychotics’, whether patients stop or continue 

this treatment during the next four years. Finally, potential deviations from the MAR 

assumption of weight are possible; for example, that GPs are more likely to monitor and 

record weight more frequently if it there is a visible (or patient-reported) change (i.e. 

MNAR mechanism). MNAR evaluation and handling goes beyond the scope of this 

thesis; thus, this remains an open question for future research (I will return to this 

point in Section 8.5).     

 

The study findings have implications for future clinical research and practice. From 

previous studies, we know that second-generation antipsychotics (SGA) are associated 

with mortality in older people [115], and randomised clinical trials show them to be 

associated with cerebrovascular events in dementia [116]. Generally, it is considered that 

23 For example, olanzapine prescription is usually avoided if the patient is overweight. Instead, these patients are 
commonly prescribed low doses of quetiapine or risperidone. This selection criterion adds heterogeneity between 
drug cohorts (i.e. outcome at baseline and unmeasured confounders), making a formal comparison hard to achieve. 
Therefore, all my conclusions about interaction effects are conditioned to a “given prescription” for people as 
described in each cohort.  
24 Especially mortality (i.e. patient must survive to have a weight). I will come back to the attrition problem latter in 
Section 8.4. 
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part of the risk of SGA is on cardiovascular risk via weight gain. However, this cannot 

be the case in older people. There must be other direct pathways to cardiovascular risk 

increases which do not act via weight gain, which is a relevant topic for future research. 

For future clinical practice, dietary recommendations that are valid for people prescribe 

SGA at any age must be different for older people. New versions of dietary guidelines 

for older patients can be initially informed by the observed weight trajectories I have 

shown here. 

 

In conclusion, I found that sex, age and dose do modify the weight change induced by 

specific second-generation antipsychotics in patients aged ≥40 years.  In general, weight 

gain is more severe for women than men in the long-term but less severe in the short-

term. In the short and long-term, a higher dose is mostly associated with a higher rate 

of weight gain. Antipsychotic-induced weight gain is less severe in older people, in the 

short a long-term. In particular, the effect modification due to age has important 

clinical implications for informing prescriptions in older patients. MEM combined with 

substantive-compatible model MI-JOMO has been useful for handling missing 

covariates in models with interaction terms. 
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7.6 Summary 

 

Second-generation antipsychotics increase the weight of patients in the first weeks of 

treatment, but their long-term effects on patient´s weight have not been thoroughly 

studied. There is also a gap in the literature on antipsychotic-induced weight gain in 

older people, alone or in comparison with younger people. A better understanding of 

how sex and dose can modify the antipsychotic-induced weight gain is needed as well. 

Interrupted Time Series (ITS) design applied to routinely collected data is a powerful 

approach for answering these questions if individual-level missing data (i.e. the 

irregular weight measurement schedule and missing covariates) are appropriately 

handled.  

 

The study had two objectives: 1) (clinical) to evaluate the weight trajectories four years 

before and four years after treatment initiation of antipsychotic treatment, and how 

age, sex and dose independently modify these trajectories; 2) (methodological) to show 

how mixed-effect modelling (MEM), in conjunction with multilevel multiple 

imputation (MI-JOMO), can be used to handle missing data when these trajectories and 

the mentioned modifying effects are modelled.  

 

I observed a total of 29,039 patients during the 8 years of follow-up, in the cohorts of 

olanzapine (n=6,776), quetiapine (n=14,970) and risperidone (n=7,293). Patients were 

mainly women (>55%) aged between 40 and 89 years. In the short term (6 weeks), older 

patients’ weight was less affected by the first antipsychotic prescription compared to 

younger people. Given a specific antipsychotic prescription, the weight of women and 

men are affected differently in the short and long-term. High doses are also associated 

with more weight gain in people >40 years. Moreover, there is strong evidence of how 

antipsychotic-induced weight gain is different between younger and older persons. 

These findings need to be considered in future guidelines for prescribing second-

generation antipsychotics in clinical practice. From the methodological side, interaction 

terms in MEM facilitated the evaluation of differences in weight trajectories over time 

between groups by age, sex or dose; handling missing data efficiently when combined 

with MI-JOMO. 
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In conclusion, MEM alone or combined with MI-JOMO are useful tools for handling 

missing data in ITS studies evaluating modifying effects with individual-level data. 

Clinically, age, sex and dose modify the weight change induced by specific second-

generation antipsychotics in patients aged 40-89 years. My findings about differences 

by age in the antipsychotic-induced weight gain will inform treatment decision making 

and support dietary recommendations, especially for the elderly population.  
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8.1. Summary of thesis 

 

The motivation for this PhD stems from the need to address specific clinical problems, 

such as the impact of initiation of antipsychotic medication on short and long-term 

changes in body weight. While it has been demonstrated in randomised clinical trials 

that initiation of antipsychotic medication can substantially increase body weight over 

a short period, far less is known about the (arguably more important) long-term effects 

of antipsychotic treatment initiation. I chose to examine this question by using 

electronic health records from UK primary care. The records take the form of 

longitudinal data from clinical care. After some consideration, I chose to use the 

interrupted time series (ITS) design, which is a quasi-experimental design evaluating 

the effect of an intervention or treatment by comparing the outcome trajectory over 

time before and after initiation of the intervention [6]. Initially, ITS were used for 

evaluating interventions at the population level (e.g. policies); thus, the development of 

8.1 Summary of thesis 
8.1.1 Current practices in missing data handling for interrupted time 

series studies: a scoping review 
8.1.2 An application of interrupted time series with mixed-effects 

models 
8.1.3 Evaluating methods for missing data handling in interrupted 

time series analysis via simulation studies 
8.1.4 An application of multilevel multiple imputation to interrupted 

time series analysis 
8.2 General discussion 
8.3 Implications 

8.3.1 Methodological implications 
8.3.2 Clinical implications 

8.4 Strengths and Limitations  
8.5 Future work 
8.6 Conclusions 
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statistical methods was mainly orientated to model population-level data [2]. However, 

extensive routinely collected data such as electronic health records allow applications of 

the ITS modelling of individual-level data, with all the advantages this brings. 

Furthermore, the modelling of individual-level data provides an opportunity to address 

the issue of missing data which traditional ITS methods are not designed to address.  

 

In Chapter 4, I showed that the issues of missing data have rarely been addressed in 

most recent ITS studies with individual-level data. Despite its limitations, complete 

case analysis (CCA) is the most used method for handling missing data. Furthermore, I 

found that individual-level data are usually transformed into population-level data 

before fitting ITS models; for example, averaging the outcome at each time point 

(‘averaging-step’) before fitting a segmented regression (‘aggregate-level’ SR). I also 

confirmed that, to date, very few studies had applied mixed-effect modelling (MEM) for 

individual-level ITS data. Multilevel multiple imputation (i.e. MI-JOMO) was developed 

in 2015 and has not been used to impute missing data in this context. 

 

I applied MEM to study antipsychotic-induced weight gain using the ITS design on 

electronic health records (Chapter 5). MEM allowed fully observed covariates and 

partially observed outcomes to inform the implicit imputation of missing outcomes at 

the individual level. This assumes that missing outcome data are missing at random 

(MAR). However, I found that relying on MEM is not ideal when covariates are missing 

(e.g. dose of medication). Therefore, I evaluated MEM combined with MI-JOMO for 

handling missing covariates, in the next study. From the clinical point of view, this ITS 

study facilitated new clinical evidence in the long-term. Thus, I could demonstrate that 

typical patients do not lose the weight they gained during the first six weeks of 

antipsychotic treatment. 

 

Thereafter, I evaluated - via simulation studies - the performance of different types of 

methods for handling missing outcome or covariate data in ITS, assuming the data are 

MAR (Chapter 6). Specifically, I explored aggregate-level SR, MI-JOMO and MEM. I 

showed that the averaging-step biases ITS estimates when data were MAR at the 

individual level. The aggregate-level SR can over- or underestimate the ITS effect, 

depending on how the missingness mechanism is operating. MEMs are efficient and 

valid for handling outcome data that are MAR but must be combined with MI-JOMO 

when covariates are also MAR. 
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Finally, I applied MEM with MI-JOMO to assess how dose and age modify the 

antipsychotic-induced weight gain (Chapter 7). Interaction terms in MEM helped to 

evaluate differences in weight trajectories over time between groups by dose or age. 

MEM was combined with MI-JOMO for handling missing values of dose. Again, the ITS 

approach provided new clinical evidence; for example, that older patients’ weight is less 

affected by first olanzapine prescription compared to younger people. 

 

Findings from the thesis are described in more detail in the next sub-sections. Then, I 

provide a broader discussion of my findings (Section 8.2) and explain their major 

methodological and clinical implications (Section 8.3). I also consider the strengths and 

limitations inherent to the thesis (Section 8.4) and the direction of future research 

(Section 8.5). Finally, I present my overall conclusions (Section 8.6). 

 

8.1.1. Current practices in missing data handling for interrupted time series 

studies: a scoping review 

 

In Chapter 4, I reviewed recent ITS investigations of health topics to understand 1) the 

data management strategies and statistical analysis performed in these ITS studies; and 

2) how often missing data were considered and, if so, how they were reported and 

handled. 

 

Many studies have been using the averaging-step for summarising the ITS outcome at 

each time point, preferring analysis tools designed for modelling population-level data 

(e.g. aggregate-level SR) over analysis tools for individual-level data (e.g. mixed-effects 

models). The averaging-step was utilised in 47/60 (78%) of the studies. The most typical 

statistical models were the segmented regression (SR) fitted with ordinary least square 

estimators (SR-OLS, n=23, 38%) or with maximum likelihood type estimators (SR with 

generalised linear models or SR-GLM, n=15, 25%). Although all these studies (n=60, 

100%) had access to individual-level data, due to the nature of the studied ITS outcome 

(e.g. number of new patients before and after the intervention), only 32 (53%) could 

have followed/analysed the ITS outcome at an individual-level (i.e. repeated measures 

of the ITS outcome within individuals). However, other less granulated clusters could 

have been used for the analyses, for example, hospitals (n=13, 22%), hospital units (n=3, 
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5%), health facilities (n=3, 5%) or GPs (n=3, 5%) (i.e. ITS with multiple groups). This 

provides an approximation of how often a researcher could move from modelling ITS 

trajectories with population-level data points (i.e. only one ITS outcome average at each 

time-point) to model same trajectories with more granulated data, which were also 

available (e.g. individual- or hospital-level data for being modelled with MEM).  

 

In ITS studies, the aggregate-level SR analysis was bringing potential issues when data 

are missing. As I have discussed throughout the thesis, the averaging-step transforms 

data that are MAR into data MNAR (see Chapter 6 for a detailed discussion). This is a 

potential source of bias that none of the reviewed studies reported as a limitation, 

showing that researchers are in general, not aware of the implications of cross-

averaging the longitudinal data. The data used in ITS studies are mostly retrospective 

(i.e. routinely collected); therefore, the expected proportion of missing data on the 

outcome is usually high (i.e. due to irregular recording). This is particularly important 

for ITS designs, for which it is expected to have the outcome regularly measured at each 

time point. With many outcome gaps due to irregular recording, researchers select time 

windows as units of time (e.g. months) and average all the available records to set a 

unique outcome value for each time point/unit. All this is done with no significant 

reflection on how the MNAR issue related to data aggregation can induce bias. The 

widespread and uncritical use of the averaging-step with individual-level data MAR 

motivated my exploration of better analysis alternatives for handling missing data in 

ITS studies (i.e. MEM in chapter 5).     

   

Missing data are poorly evaluated and reported in ITS studies, and statistical methods 

applied as standard are not designed for handling missing data issues. This study and 

other independent reviews have confirmed that missing data are rarely reported, which 

is consistent with researchers being unaware of the potential consequences of missing 

data and the statistical methods that could help to address this. For example, the 

complete case analysis (CCA) is the most used method for handling missing data, but it 

can lead to biased and less precise estimates. Every time an individual record is omitted 

due to missing data on a covariate, the researcher is reducing not only sample size but 

also losing some outcome records as well. If the records with missing covariates contain 

a systematically high or low range of outcome values, and they drop these observations, 

then the average from CCA at each time point could be biased. Further, if this bias 
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differs across time-points, then estimators of trajectories will themselves be biased. 

Alternative options for handling missing covariates such as multiple imputation (MI) 

have rarely been applied. Only relatively recently multilevel MI methods have become 

widely available. With multilevel methods such as MI-JOMO, it is possible not only to 

address the missing data problem on covariates but also to do this in a way that is 

consistent with interaction terms. Models with interaction terms are common in 

Controlled ITS (CITS) studies; thus, any broad MI solution should consider including 

these terms in the imputation models in order to ensure consistency with substantive 

models. MI-JOMO has flexibility for allowing interaction terms in MEM, as well as for 

handling missing covariates. That is why I evaluated MI-JOMO against other methods 

in Chapter 6 and showed its potential for handling missing values on interaction terms 

when examining impacts of initiation antipsychotic treatments in Chapter 7. 

 

8.1.2. An application of interrupted time series with mixed-effects models 

 

In Chapter 5, I applied MEM as an alternative to the aggregate-level SR to evaluate 

weight trajectories before and after antipsychotic treatment initiation when applying 

the ITS approach. My aims were: 1) Clinically: to investigate the change in body weight 

of patients initiated with high or low doses of the three most commonly prescribed 

second-generation antipsychotics, and 2) Methodologically: to apply MEM for handling 

missing data in longitudinal weight records.   

 

The results showed olanzapine was associated with the highest increase in weight, in 

the short and long term, and higher doses were associated with an increased rate of 

higher weight gain. For example, the models showed a typical woman with a first 

prescription of olanzapine is expected to gain 2.3kg (95% CI: 1.9-2.7) in the first 6 weeks 

and 2.8kg (95% CI: 2.2-3.5) in the remaining 4 years of the follow-up period. When 

women were prescribed olanzapine at high dose (>5 mg), they were expected to gain 

3.2kg (95% CI: 2.4-4.0) on average during the first 6 weeks and 2.9kg (95% CI: 1.6-4.2) at 

the rest of the 4 years observation period. A low dose was associated with 1.9kg (95% CI: 

1.4-2.4) of weight gain in the first 6 weeks and 2.5kg (95% CI: 1.6-3.3) in the rest of the 

long-term period (up to 4 years). For all second-generation antipsychotics, weight gain 

remained in the long-term; thus, on average, in the follow-up period, patients never lost 

the weight they gained during the first 6 weeks of treatment. This evidence has direct 
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implications for clinical practice. It suggests doctors and patients may want to take the 

issue of a substantial weight gain into consideration when making decisions on the 

initiation of antipsychotic treatments, and doctors should prescribe the lowest effective 

dose to balance mental health benefits, weight gain and other adverse effects. 

  

Mixed-effects models brought several advantages when used for ITS analysis. First, fully 

observed covariates helped to increase the plausibility of the MAR assumption for the 

irregularly observed weight measurements (unobserved weights can be viewed as 

‘missing’ when compared with the ideal, regular weight measurement schedule). MAR 

assumes that, given covariates, the distribution of observed and missing weights over 

time is the same. Therefore, assuming the model is correct (or practically so), every 

time the outcome is MAR on these fully observed covariates, MEM will provide 

unbiased estimates 25. As seen in Chapter 6, this is an advantage over the standard 

methods for ITS analysis, which make much less plausible assumptions about the 

‘missing’ weight data. Moreover, MEM can produce additional information that 

standard ITS methods are not able to do. For example, MEM helped to investigate the 

association between weight at baseline (random intercept) and short-term weight gain 

(beta 2) within a single ITS design. This would not be possible directly using standard 

ITS regression models. Instead, we would need the estimation of more than one ITS of 

weight (i.e. one ITS per each group by weight at baseline, which is hard to achieve in 

EHR due to the high proportion of missing weight at baseline). All the advantages of 

MEM can be preserved even when the proposed ITS model is contrasted against other 

plausible ITS impact models (e.g. sensitivity analysis against non-linear trends over 

time).  

 

However, MEM can only handle missing covariates by listwise deletion, which results in 

a reduction of the precision and potential problems with bias, mainly when the 

probability of missing covariates is associated with the outcome. In other words, MEMs 

handle missing covariates by CCA only, which, in routinely collected data, can also 

severely reduce the sample size affecting the standard errors. I recognised this 

limitation here, during the study of MEM as an alternative ITS method, motivating me 

to explore other choices like multiple imputation in Chapter 6. Based on my findings, in 

25 Indeed, this property justifies adjust for covariates in ITS analysis with individual-level data, even if the covariate 
is time-invariant. 
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Chapter 7, I reported a further study showing the potential of MEM and MI-JOMO for 

handling missing data in a more complex ITS design.        

 

8.1.3. Evaluating methods for missing data handling in interrupted time series 

analysis via simulation studies 

 

In Chapter 6, I performed an illustrative example where I contrasted the aggregate-level 

segmented regression (SR), MEM and MI-JOMO for the first time, showing their 

different behaviour, and the different results they give when handling missing values in 

same ITS study. I then executed a formal comparison of these methods via simulation 

studies. My aims were: 1) to examine the potential problems arising from the aggregate-

level SR analysis when outcome data are missing, evaluating mixed models as an 

alternative approach; 2) to compare the performance of MEM with and without MI-

JOMO for handling missing data on covariates. 

 

In the illustrative example, I found substantial differences between estimates derived 

from MEM and aggregate-level SR. For example, short-term weight change (𝛽2) was 

0.462kg/week from MEM and 0.816kg/week from aggregate-level SR. Likewise, in pre-

treatment and long-term periods, weight change rates from aggregate-level SR were 

more than double the MEM estimates. In general, all estimates of weight change from 

aggregate-level SR analyses were higher in magnitude than those from MEM, which 

also implies a more substantial ITS treatment effect. To investigate my hypothesis that 

the aggregate-level SR was producing biased results, I used a set of contextually 

informed simulation studies. 

 

Simulation results confirmed that the averaging-step causes bias in ITS estimates when 

data are MAR at the individual level. This occurs because taking averages of individual-

level data before SR means that data at the cluster level are missing not at random. I 

also confirmed that the aggregate-level SR can over or underestimate the ITS effect. 

Nevertheless, it is not always possible to determine the direction of bias, because the 

direction of bias at each average-point depends on how the covariate is associated with 

the weight records missingness. Even when the ‘aggregate-level’ SR analysis does not 

cause any bias, results from simulations highlight that the precision is smaller as the 

standard errors for this method are typically grossly underestimated. Avoiding the 
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averaging-step and using MEM is recommended for handling missing values in the 

outcome. 

 

For handling values MAR in covariates, MEM must be combined with MI-JOMO to 

obtain less biased estimates. I found that the most efficient way to do it is a two-steps 

process. First, missing values on covariates need to be multiply imputed, considering a 

model that is consistent with the substantive models. MI-JOMO allows us to complete 

this task efficiently. Then, MEM should be estimated using all the multiple imputed 

datasets, and multiple results can be summarised using Rubin´s rules. Simulation study 

results confirm the estimator based on MI-JOMO followed by a MEM is fairly unbiased 

when data at individual-level is MAR.  

 

Imputation of covariates with missing records could also help in the evaluation of 

interaction terms, useful for comparison between trajectories of different sub-groups 

and further CITS studies. In Chapter 7, I explored how MEM with MI-JOMO can help to 

handle missing data in ITS studies, evaluating variables that could modify outcome 

trajectories overt time. 

 

8.1.4. An application of multilevel multiple imputation to interrupted time 

series analysis 

 

In Chapter 7, I applied MEM combined with MI-JOMO to handle missing data in an ITS 

study that evaluates how certain variables modify the antipsychotic-induced weight 

gain in people aged ≥40 years. The main aims were: 1) Clinical: to evaluate the weight 

trajectories before and after treatment initiation of antipsychotic treatment in ITS 

analysis and examine how sex, age and dose may independently modify these 

trajectories; and 2) Methodological: to apply MEM in combination with MI-JOMO to 

handle missing data when these trajectories and the mentioned modifying effects are 

modelled. 

 

The results showed that age, sex and dose modify the weight change induced by specific 

second-generation antipsychotics in patients aged ≥40 years. Given an olanzapine 
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prescription, short-term weight gain is lower in women, but long-term weight gain is 

higher. Olanzapine-induced short-term weight gain is less severe for those older at 

baseline. A similar trend was observed for quetiapine and risperidone. All these ITS 

estimates have been adjusted for sex, deprivation and dose. When evaluating the 

interaction between dose and time, I found that higher doses of olanzapine and 

quetiapine are associated with more short-term weight gain. Higher doses of quetiapine 

are also associated with more long-term weight gain. 

 

MEM alone or combined with MI-JOMO are useful tools for handling missing data in 

ITS studies evaluating modifying effects with individual-level data. Interaction terms in 

MEM facilitated the evaluation of differences in weight trajectories over time between 

groups by age, sex or dose. MEM was combined with MI-JOMO for handling missing 

values of dose, improving precision by recovering cases that are lost with MEM alone.  
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8.2. General Discussion 

 

Other authors have researched missing data methods associated with general time 

series. Early work by Dunsmuir and Robinson [117] proposed a method for estimating 

time series models when the outcome has been collected irregularly (missing outcome 

at some time points). The method was focused on modelling population-level data; for 

example, levels of air pollution in a city. Later on, different methods to handle missing 

data in time series were compared via simulation studies: deletion, mean imputation, 

mean imputation using adjacent observations, and maximum likelihood (ML) 

estimation [118]. They found ML to be the most accurate method 26, but again when 

modelling data at the population level only. In 2010, Honaker and King [119] proposed a 

method for multiple imputation of population-level data that allowed smooth time 

trends and accounted for correlations within populations (e.g. countries) and shared 

same time points. Other newer methods included a single imputation of missing values 

in time series by using information from previous similar time series [120]; a machine 

learning algorithm (Generative Adversarial Networks) that works on multivariate time 

series for predicting most accurate imputation values [121]; and another method with a 

similar multivariate purpose but using a Bayesian framework [122]. These useful 

investigations demonstrate that attention to the missing data problem in time series 

analysis was, as expected, on the population-level data. No previous investigation has 

covered the specific topic of missing data handling of individual-level data for ITS 

studies. 

 

There are other methods than MI-JOMO that could be applied in ITS analysis with 

individual-level data, but with different limitations. Multiple imputation by full 

conditional specification (FCS) [48] could be a good option for relatively short 

observation periods. However, it could fail to converge in long-term data (e.g. due to 

the large number of parameters to be estimated per each iteration). The two-fold 

conditional specification algorithm can reduce convergence issues by using shorter 

cycles (i.e. fewer parameters per iteration by setting consecutive short time windows) 

[123,124]. However, in general, FCS-type algorithms only allow imputation of two-level 

multilevel data with no non-linear effects or interactions (i.e. in ITS, data must be 

26 They generated 100 time points with 50 different conditions (including % missing data, levels of slope and levels 
of autocorrelation) as time-series datasets for the evaluation. They did not replicate these samples. 
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reshaped into a wide format with time points as variables). Whenever the substantive 

model needs to be more complex (e.g. adding more levels or interaction terms), 

achieving congeniality with FCS becomes harder. Moreover, FCS and two-fold 

conditional specification need to create artificial blocks of time (i.e. that will be 

variables in the wide-format dataset) for which the outcome value will be typically 

represented by a summary measure (e.g. an average). This averaging-step can introduce 

bias even with individual-level data MAR (Chapter 6). MI-JOMO overcomes these 

limitations and has shown to be as good as -or better than - other methods for handling 

missing values in the longitudinal analysis [125,126]. 

 

Some researchers have paid particular attention to the consequences of using aggregate 

data in ITS analyses. Gebski et al. [127] identified that standard aggregate-level SR could 

ignore informative heterogeneity; for example, when hospital units have different 

intercept and slopes but their data are aggregated at hospital level and analysed with 

fixed-effect models. They proposed a method where the intercept and slopes are pooled 

from these units, and then the overall effect is calculated by using inverse variance 

weights in a two-stage meta-analysis approach 27. Taljaard et al. [128] recognised that 

aggregating data could reduce statistical power, but focused the attention on the cluster 

levels (e.g. hospital units) and not on the individual level (e.g. patients). Motivated by 

similar concerns about heterogeneity, Fretheim et al. [129] performed a sensitivity 

analysis comparing their standard ITS estimates against those obtained from a GEE 

model using individual-level data and controlling for clusters (i.e. sites). Since they only 

focused on controlling for heterogeneity, they were not aware on the missing data issue 

that GEE is not able to address 28 (major differences between GEE and aggregate-level 

SR estimators would not be expected because both methods are similarly biased when 

data are MAR). In an extensive piece of work, Ewusie [130] proposed a method that 

incorporates sites and individual weights in the estimator used to fit segmented 

regressions, but again focusing on solving the heterogeneity problem while omitting 

any reflection on missing data. Results from Chapter 6 (Simulation Study) showed that 

a similar weighting procedure could reduce bias only when all covariates are fully 

observed, which is rare in observational data. Recently, Beard et al [131] recognised the 

27 However, they concluded that “Where feasible… if there is strong evidence of heterogeneity between the units, 
an analysis incorporating a random effect for units may be appropriate”, giving an early recognition to the potential 
of MEMs. 
28 I explain this in the discussion of Chapter 6.  
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link between aggregate data and missing data, and how it can bias ITS estimates, but 

provided very general recommendations on missing data handling and did not perform 

any formal evaluation of the methods suggested.  

 

The above paragraphs bring out the novelty of the approach developed in this thesis. 

Lessons learned from Chapter 4 (Scoping Review) confirm that these issues represent a 

real problem in the ITS literature, ensuring the relevance of the solutions I have 

identified. 

 

8.3. Implications 

 

This thesis involved a mix of methodological and applied research. Although all studies 

have a methodological component, chapters 4 (Scoping Review) and 6 (Simulation 

Study) are more methodologically orientated, whereas chapters 5 (Application of MEM) 

and 7 (Application of MI-JOMO) show how the studied methods may be applied to 

answer clinical questions using ITS designs. In the following sections, I explain the 

methodological and clinical implications of the central thesis findings.   

 

8.3.1. Methodological Implications 

 

The critical methodological findings from this thesis are (a) avoid aggregate-level ITS 

analysis of individual patient data; (b) use mixed effect models instead, and (c) handle 

missing values on covariates by multiple imputation, taking care that the imputation is 

consistent with the mixed effect model being used for the primary analysis. 

  

Beginning with (a), observational ITS studies of the type focussed on in this thesis do 

not collect the outcome (here, weight) according to any regular schedule. Therefore, 

the averaging step (ignoring any covariates) can introduce bias (more weights may be 

observed when weight is high or low) and lead to misleading standard errors (because 

averages of different numbers of observations have different standard errors). Thus, 

averaging-step should be avoided. Unfortunately, the aggregate-level analysis that 

follows the averaging-step is widespread in ITS studies. This aggregate-level analysis 
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assumes that the average at each time point includes outcome records from same - or 

exchangeable – people. However, that is a bold assumption in many studies, which 

violation can bias ITS intercepts and slopes if the proportion of MAR covariates changes 

across time points. The recommendation to avoid the averaging-step is relevant not 

only for ITS but also for time series in general. 

 

Therefore, moving to (b), it follows that in ITS studies with routinely collected data, 

individual-level data analysis should be preferred over population-level data analysis. 

Most popular statistical methods in ITS have been designed for modelling population-

level data, mainly ignoring the issues of having missing data at the individual level. 

Conversely, statistical tools such as MEM can model individual-level data directly but 

under a more plausible MAR assumption. In particular, MEMs are recommended over 

other individual-level analysis such as GEEs, because they are unbiased under MAR 

assumption. By its implicit outcome imputation, MEMs allow to easily handle the 

problem of irregular recording (which is typically expected in routinely collected data), 

avoiding the generation of any artificial time window. Moreover, the generalised linear 

mixed models (GLMM) facilitates the study of other ITS outcomes such as counts or 

proportions. By defining an appropriate correlation structure, MEM also allows 

controlling for autocorrelation, which is one of the critical issues in ITS analysis. 

Another advantage of MEMs is that we can explicitly model the variance 

(heterogeneity). It allows exploring questions like how the ITS outcome variability 

change with age, sex, and other variables, or how the intercept at treatment initiation 

(e.g. weight at baseline) covariates with the magnitude of immediate change (e.g. 𝛽2 as 

the rate of short-term weight change). In sum, MEMs bring an excellent platform for 

modelling ITS trajectories on individual-level data directly. 

 

Turning to (c), MI-JOMO is an excellent choice for handling covariates MAR when it is 

used consistently with the substantive model that, in ITS with individual-level data, 

should be a MEM. In practice, this is not a hard task because of the flexibility of MI-

JOMO to incorporate any MEM structure (e.g. more than two levels, interaction or non-

linear terms). Moreover, MI-JOMO can include auxiliary variables (i.e. not included in 

the substantive model) to improve the precision and reduce bias. Both MEM and MI-

JOMO are also good choices for handling missing data in more sophisticated ITS 

designs (e.g. Controlled ITS). For example, Controlled ITS can be analysed by fitting 
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MEM with interaction terms (substantive model), while MI-JOMO allows imputation of 

covariates by using an imputation model that is consistent with the substantive model. 

In summary, for ITS studies applied on observational data at the individual level – that 

usually bring missing values – the modern preference among analysts should be 

orientated towards the use of alternative methods such as MEM and MI-JOMO. 

 

Therefore, supported by the results presented in this thesis, I recommend that in future 

for ITS analyses when working with individual-level data with missing data issues: 

• Avoid the averaging-step in ITS analyses  

• Consider fit MEM with this type of data, especially for handling outcome values 

due to irregular recording.  

• Consider using MI-JOMO for imputing covariates data MAR to reduce the risk 

of bias.  

 

These recommendations should be given consideration in future guidelines about ITS 

studies. Currently, there is a significant effort to boost better practices in ITS studies for 

health research. Differences between the ideal and actual practices in analysis and 

reporting have recently been criticised [4,7,61,65], emphasising the lack of attention to 

the missing data problem [7,61]. This gap remains in modern ITS studies because most 

popular tutorials and guidelines [2,3,6,132] do not pay sufficient attention to the scopes 

of the missing data issue, or bring special recommendations on how to solve it. This 

thesis has generated a new understanding of an essential issue in ITS analysis based on 

individual-level data, a methodological knowledge that will be very useful for future 

health research.  

 

8.3.2. Clinical Implications 

 

The clinical implications of my research related to how second-generation 

antipsychotics plays a role in the long-term effects on weight. First, typical patients 

never lose the weight they gained during the first 6 weeks of treatment, which makes 

the decision to initiate treatment for doctors and patients complex. Currently, when a 

patient is overweight or obese at treatment initiation, doctors try to avoid the 

prescription of olanzapine due to its known effect on weight [95]. Nevertheless, 
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risperidone and quetiapine also increase the patient´s weight – although less severely –. 

However, the induced weight gain varies across dose as well, with higher doses 

associated with more weight gain. It means that the weight gain accumulated in the 

long-term can be similar for a woman prescribed a low dose of olanzapine, and for 

another woman prescribed a high dose of risperidone. The clinical prescribing decision 

should, therefore, consider both dose and drug type.  Doctors should balance the long-

term benefits and harms of both drug type and dose when deciding the best treatment 

together with their patients.              

 

Before this thesis, it was unclear how the antipsychotic-induced weight gain was also an 

issue in older people. In this thesis, I demonstrated that the effect of antipsychotic 

initiation varies by age and was more pronounced in younger than older people. 

Specifically, in people aged 80 years or more, weight tends to stabilise after 

antipsychotic prescription. Thus, the natural weight loss that characterises this age in 

life –and brings some additional risks to older people – is less likely for elderly patients 

that need an antipsychotic prescription. Enlightened by this evidence, nutrition 

recommendations that usually come with the initiation of second-generation 

antipsychotics for the general population should be adapted for older people.          

 

All these new clinical findings have been possible due to the use of ITS design. 

However, there is still further potential by the more widespread adoption of the 

approach I have used to model patient-level data. Most ITS researches in health topics 

focus on evaluating population-level interventions [61], but the ITS approach is also 

beneficial for assessing individual-level interventions (e.g. Chapters 5 and 7) when 

randomisation is not a feasible option [2,133]. Future clinical research can find in the 

ITS design with routinely data a fruitful approach to investigate a new type of 

treatments, therapies and programs applied at the patient level.  
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8.4. Strengths and Limitations 

 

To the best of my knowledge, in the ITS literature, it is the first time that the issues 

about missing data have been formally assessed with simulation studies. I have 

demonstrated alternative methods of analysis that are not only better at handling 

missing data than the popular aggregate-level SR but also easy to use. I have started the 

conversation on why researchers should prefer statistical methods for individual-level 

data analysis instead of traditional ITS analysis tools designed for modelling 

population-level data, when the former data is available and face missing data issues. In 

a world where production and access to routinely collected data are ever-growing, the 

more general use of such as methods seems to be the future. 

   

Nevertheless, these methods are not free of some limitations, but more applied and 

methodological research can be promoted to understand these better.  

 

Lack of detailed information around prescription initiation can affect the consistency of 

the ITS treatment initiation point and data across patients. It happens because primary 

care databases only report the primary care prescribing, while some patients might be 

initiated treatment from secondary care. For example, at the specialist level (e.g. 

additional prescription or nutritional indications), in the hospital (e.g. special 

medication for emergency episodes) or pharmacy (i.e. when patients get the medication 

effectively). The impact of this is difficult to evaluate, but it is particularly crucial for 

short-term estimates. In the future, it may be possible to link primary and secondary 

prescribing data, but currently, there are few such data sources available.   

 

There is some possible residual confounding in the single ITS design, especially for 

long-term estimates. Time-variant confounders are not controlled by single ITS, but a 

Controlled ITS (CITS) design [3] can help to control for observed confounders. For 

example, multiple prescriptions in older patients can also be explicative of weight 

change (e.g. drugs other than antipsychotics). The application of a CITS design can be 

the next step for research on antipsychotic-induced weight gain in the long-term.   
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Selective attrition is another potential issue in ITS with individual-level data, especially 

in older people. For example, attrition due to death (i.e. no imputation should be done 

after the date of death), leaving the GP or moving to a care home (i.e. the assumption of 

no association between these changes and the studied outcome could be substantial in 

some cases). When a MEM is fitted, attrition can be a source of bias due to the implicit 

imputation made by REML (see Chapter 3, Section 3.3). This is an issue that can be 

more or less severe, depending on the population and outcome studied. Although some 

sensitivity analysis could be performed, for example comparing estimates from those 

with and without attrition in more restrictive observation periods, further 

methodological research may be needed in order to find more efficient ways to tackle 

the problem. 

   

Finally, I have some concerns about the accuracy of Rubin’s variance formulas when 

multiple imputation (MI) is applied on covariates that define groups for interaction 

models (e.g. dose in Chapter 7). MI will provide an unequal number of groups across 

imputations, potentially leading to bias in Rubin´s variance formula. Although there are 

other alternative approaches (e.g. Reiter’s rules, Robins and Wang’s rules, or Bootstrap 

MI), this is a problem that certainly needs further research [134].  
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8.5. Future work 

 

In the future, it would be relevant to adapt analysis tools for evaluating the impact of 

MNAR scenarios in ITS analysis with individual-level data. A version of the Delta 

Method applied for RCTs [53,72] could be applied for ITS studies to evaluate potential 

deviations from the MAR assumption (i.e. towards MNAR), but other alternatives such 

as mean score are also promising [135]. The main challenge is to propose a sensitivity 

analysis procedure that can be valid and efficient for a two-step method which 

applies explicit multiple imputation of covariates (MI-JOMO) followed by implicit 

imputation of the missing outcomes (MEM). There is no standard procedure for doing 

this kind of sensitivity analysis, then further methodological research is needed.  

 

Solutions for the selective attrition problem and for improving variance estimates in ITS 

performed with individual-level data are also needed. I suggest to start exploring the 

sensitivity analysis approach described in the previous Section 8.4, in an applicative 

paper, in order to understand -with more detail - the impact of attrition due to death in 

clinical data (e.g. weight change due to antipsychotics in later life). For the variance 

estimates problem (i.e. from Rubin’s formula), I recommend starting with a simulation 

study evaluating under which conditions the combined MI-JOMO plus MEM approach 

could lead to bias in ITS studies. In practice, some conditions could be more protective 

against biased variances (e.g. small differences across imputed datasets). After the first 

explorations, both problems will likely need further theoretical research (e.g. how an 

alternative ML type estimator can overcome the selective attrition problem), but the 

exploration itself can provide a more sharped and manageable image of these problems. 

 

New applications of the approach I studied in my thesis can be performed by exploring 

new clinical and more complex questions. For example, the question of how weight 

trajectories induced by antipsychotics explain future cardiovascular (CVD) events in the 

long-term can be answered by an extension of my applied research but using joint 

modelling instead. Thus, it would be possible to estimate the association between 

antipsychotic treatment initiation and weigh change over time (what I have done 

already) by fitting a MEM jointly with a time-to-event model that explains the 

association between weight trajectories and CVD outcomes. Since this type of study 
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requires very long-term periods of observation (i.e. 10 years), key time-dependent 

confounders, and the use of a more sophisticated CITS design should be considered. In 

such as investigation, the missing data issue becomes more complicated since data may 

not only be incomplete for covariates at treatment initiation and the first outcome 

(weight change) but also on the final outcome (CVD event) and time-dependent 

confounders 29. It means that the substantive model becomes more complex, and the 

imputation model must, therefore, reflect this complexity to be congenial 30.  

 

A future work that I consider essential is to write a tutorial for handling missing values 

in ITS analyses applied to individual-level data. The tutorial could include details from 

my PhD study as well as from the future work I described above. Some topics should be 

central in this tutorial; for example, (i) the use of MEM and MI-JOMO on different ITS 

impact models and outcomes (e.g. counts and proportions), (ii) sensitivity analysis for 

plausible MNAR scenarios in ITS modelling with MI-JOMO plus MEM, and practical 

warnings about (iii) selective attrition and MEM estimator, and (iv) accuracy of 

variance estimates when MI-JOMO is applied. It could be written in an easy-to-read 

manner to be published in a journal of epidemiology or medical statistics and linked to 

an interactive website (e.g. with videos and forums) for promoting active learning 31.  

 

Finally, an alternative version of the ITS approach proposed in this thesis can be 

developed on the Bayesian framework. Informative priors could help to simultaneously 

improve imputations, inferences and predictions if the MMI-plus-MEM analysis is 

performed as a fully Bayesian procedure. For example, explicit imputation of covariates 

by MMI (congenial with MEM) can be affected by severe non-normality [126]. In some 

scenarios, the informative priors combined with the observed likelihood (i.e. posterior 

distribution) can provide more realistic parameters estimates for the imputation 

models, improving imputations in consequence. If the substantive MEM model is also 

Bayesian, the posterior distribution can be more accurate for the estimation of the ITS 

parameters. Moreover, fitting Bayesian MEM can help to improve individual-level 

predictions, which is an expected use for many ITS models (e.g. classical forecasting, 

29 Handling missing data in time-dependent confounding in ITS studies is a further thesis in itself; thus, it will 
probably be interesting for a future doctoral or post-doctoral researcher. 
30 I have recently obtained funding from NIHR to explore how the methods I studied in my thesis can be extended to 
ensure proper imputations as well as other alternatives designed for handling missing data in joint modelling [50]. 
31 The team of www.missingdata.org.uk are kindly willing to host this website when ready. 
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but now improved with individual-level information). In principle, MEM overcome the 

limitation of aggregate-level SR models for producing individual-level predictions, by 

including random intercepts and slopes. In the frequentist approach, MEM standard 

errors can be improved by bootstrapping [136], but this resampling technique is 

computationally inefficient with large datasets (e.g. primary care data). Alternatively, 

standard errors can be improved with Bayesian inference [137], and the uncertainty of 

predictions quantified. Model error -also called structural error - defines most of 

prediction uncertainty [138], and structural errors can be represented and quantified 

(e.g. generating probabilistic weights [139]), together with MEM parameters, in the 

Bayesian framework. Finally, the Generalised Linear Mixed Models (GLMM) can also be 

fitted as Bayesian models [140]. GLMM handle other types of outcomes which are 

typical in ITS studies (e.g. proportions or counts) [7], avoiding data aggregation while 

keeping the advantages of using random intercepts and slopes. Most of these Bayesian 

tools need further development or formal evaluation for informing future applications 

in ITS studies with individual-level missing data.  
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8.6. Conclusions 

 

Antipsychotic dose and type play a key role in patient’s weight gain, in the short and 

long term. The clinical prescribing decision should, therefore, consider both dose and 

drug type when initiating treatment. Doctors should balance the long-term benefits 

and harms of both drug type and dose when deciding the best treatment together with 

their patients. Antipsychotic-induced weight gain varies substantially with age. 

Enlightened by this evidence, nutrition recommendations that usually come with the 

initiation of second-generation antipsychotics for the general population should be 

adapted for older people.          

 

For ITS performed with missing data at individual-level, the averaging-step in the ITS 

analysis should be avoided. MEM provides unbiased estimates if the outcome is MAR, 

but its validity and precision can be reduced if covariates are also missing. In such 

cases, MEM can be combined with MI-JOMO in a two-step process to handle data MAR 

effectively. These methods have shown to be effective for the evaluation of clinical 

treatment at individual-level and can be easily extended to other types of ITS studies. 

These findings show clearly that statistical methods for modelling individual-level data 

should be the standard approach, and that population-level approaches (especially 

when applied to individual-level data) should no longer be used.  
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10. APPENDICES 
 

10.1. Appendices of Chapter 4 

 

10.1.1. Appendix 4A: Scoping review protocol (PROSPERO format) 

1. Title: Current practices in missing data handling for interrupted time series: a scoping review 
2. General Language: English 
3. Start: Feb 05, 2020 
4. Early Termination Date: Mar 05, 2020 
5. Review Stage: In progress 
6. Named Contact 

Juan Carlos Bazo-Alvarez 
7. Named Contact Email 

juan.alvarez.16@ucl.ac.uk 
juan.bazo.a@gmail.com 

8. Address 
Research Department of Primary Care and Population Health 
Upper Third Floor 
UCL Medical School (Royal Free Campus) 
Rowland Hill Street 
London 
NW3 2PF 

9. Contact Telephone Number 
+44 07376076260 

10.  Organizational Affiliation of the Review 
1. Department of Primary Care and Population Health, University College London (UCL), London, 

United Kingdom. 
2. Instituto de Investigación, Universidad Católica Los Ángeles de Chimbote, Chimbote, Peru. 
3. MRC Clinical Trials Unit at UCL, London, United Kingdom. 
4. Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, United 

Kingdom. 
5. Department of Clinical Epidemiology, Aarhus University, Denmark. 

11. Members 
Juan Carlos Bazo-Alvarez1,2, Tim P Morris3, James R Carpenter3,4, Irene Petersen1,5 

12. Financing 
JCB is sponsored by FONDECYT-CONCYTEC (grant contract number 231-2015-FONDECYT). TPM and 
JRC are supported by the Medical Research Council (grant numbers MC_UU_12023/21 and 
MC_UU_12023/29). The study sponsors only had a funding role in this research. Thus, researchers will 
work with total independence from their sponsors. 

13. Conflicts of Interest 
None 

14. Collaborators 
Frank Peralta 

15. Review Questions 
In health care studies using the interrupted time series (ITS) approach: 

1. How are the data management and statistical analysis? 
2. How researchers report and handle the main methodological issues of ITS statistical analysis?  
3. If so, how is missing data reported and handled?  

16. Search  
We will use the MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations and 
Daily database (Ovid version) in February 2020 for finding ITS studies published in 2019. Search 
strategies will use a combination of free text terms and subject headings, and authors will be consulted 
for inclusion of appropriate terminology. Where appropriate, the validated filters will be used for limiting 
searches to interrupted time series designs. The search strategy will be reviewed by an information 
specialist using the Peer Review checklist of electronic search strategies. Studies whose full-text is not 
available will not be included. Current version of the search strategy is in the appendix.  

17. URL to Search for the Strategy  
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See section 27 and Appendix 4For details on the search strategy. 
 

18. Study Condition or Domain 
Evidence of reporting missing data handling procedures in healthcare studies using the interrupted time 
series approach. 

19. Participants 
We will include all original ITS studies with a minimum of two data points before and after the initiation of 
a healthcare intervention (e.g. programs, policies, or educational interventions). Systematic reviews, 
meta-analysis, RCTs or studies that did not use and ITS-type analysis will be excluded. Studies with no 
access to individual-level data will be excluded as well. There will be no restrictions on participants, 
language of study, or the type of outcome. 

20. Intervention  
This is not applicable to the present systematic review as it focuses on missing data handling in 
interrupted time series studies that evaluate healthcare interventions. 

21. Comparator 
This is not applicable to the present systematic review as it focuses on missing data handling in 
interrupted time series studies that evaluate healthcare interventions. 

22. Types of Studies to be Included 
See section 19. 

23. Context 
None 

24. Outcomes 
We will extract data from the studies consisted of: 

• General Information: 
o Author 
o Year 
o DOI 
o Definition of study design (e.g. ITS, before-and-after) [study label] 
o Country of study  
o Study objectives (population, intervention and the outcomes of interest) 
o Type of intervention (e.g. policy, program, treatment)  
o Level of intervention (e.g. individual, hospital, district, country) 
o Participants (e.g. patients, doctors)  

• Data handling and statistical analysis (research question #1): 
o Data source (e.g. prospective, routinely collected) 
o Type of outcome (e.g. continuous, count, binary) 
o The number of data points collected pre-and post-intervention and the unit (e.g. week, 

month, year) 
o Averaging-step at each time point (for individual level data only: yes/no) 
o Main statistical model/tool (e.g. segmented regression, mixed models, other) 

• Methodological issues -reporting and handling- (research question #2): 
o Autocorrelation 
o Seasonality 
o Time-varying confounders 
o Others 

• Missing data handling reported (yes/no) (research question #3): If yes, we will extract: 
o Missing data proportion reported (yes/no; if yes, % reported) 
o Missing data mechanism reported (yes/no; if yes, which one was declared) 
o Missing data handling method applied (yes/no; if yes, which method was applied) 
o Sensitivity analysis for missing data assumption (yes/no; if yes, which analysis was 

performed) 
We will base data extraction on the primary outcome and if no defined primary outcome is reported, we 
will use the first reported outcome. 

25. Timing and Effect Measures 
This is not applicable to the present systematic review as it focuses on missing data handling in 
interrupted time series studies that evaluate healthcare interventions. 

26. Additional Result 
None. 

27. Data Extraction (Selection and Coding) 
After the search and selection of articles, all titles will be treated by the Rayyan program; a list will be 
created and duplicates removed. Review process will be carried out by two reviewers A and B, with the 
support of a third person C for disagreements (names to be defined). Reviewer A will screen titles and 

189 
 



abstracts identified by the search for inclusion. Reviewer B will assess 10% of the titles and abstracts 
and, if there are no disagreements, then reviewer A would proceed to single screening. Full-text copies 
for all the potential studies will be obtained and assessed for inclusion by A, with B double assessing 10% 
of them. Full-text review and data extraction will be done using an Excel template. In this systematic 
review, data on outcomes (section 24) will be extracted using a data collection sheet. Studies will be 
collected in any language, excluding those studies that do not have the full-text. All the excluded studies 
will be listed and enumerated indicating the reason for their exclusion. 

28. Assessment of Risk of Bias 
As a methodological study, risk of bias assessment was not performed on individual studies. 

29. Strategy for Data Synthesis 
We will summarize data using descriptive statistics (numbers and percentages or median, 25th, and 75th 
centile). Some graphs could be included to facilitate the communication of specific results. 

30. Subgroup or Set Analysis 
A sub-group analysis will be performed between studies with or without access to individual level data. In 
particular, we are interested in i) missing data methods applied (if so); ii) statistical models applied; iii) 
whether an averaging-step was performed before statistical models fitted (when individual level data were 
available).   

31. Type or Method of Revision  
Scoping review 

32. Language 
English 

33. Country 
UK 

34. Other Registration Details 
None 

35. Protocol URL  
(to be defined) 

36. Dissemination Plans 
The results will be incorporated in a PhD thesis and later published in a scientific journal. Presentations 
will be made at an epidemiology congress.  

37. Keywords 
Interrupted Time Series Analysis; Segmented Regression; Missing Data; Multiple Imputation. 

38. Details of any other Existing Revisions 
No other existing reviews were reported in PROSPERO with similar goals. Hudson et al [7] published a 
similar study, but using 2015 data and with different objectives. We are using a similar research strategy. 

39. Status of the Current Revision 
Ongoing 

40. Additional Information 
None 

41. Details 
None 

42. References 
Hudson J, Fielding S, Ramsay CR. Methodology and reporting characteristics of studies using interrupted time 
series design in healthcare. BMC Med Res Methodol 2019;19:137. https://doi.org/10.1186/s12874-019-0777-x. 
 
Appendix: Search strategy 
1. Interrupted Time Series Analysis/ 
2. interrupted time series.tw,kw. 
3. (segmented adj3 regression).tw,kw. 
4. arima.tw,kw. 
5. autoregressive integrated moving average.tw,kw. 
6. 1 or 2 or 3 or 4 or 5 
7. limit 6 to yr="2019" 
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10.1.2. Appendix 4B: Search strategy 

Interrupted Time Series Analysis/ 

interrupted time series.tw,kw. 

(segmented adj3 regression).tw,kw. 

arima.tw,kw. 

autoregressive integrated moving average.tw,kw. 

1 or 2 or 3 or 4 or 5 

limit 6 to yr="2019" 
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10.1.3. Appendix 4C: Data extraction form 

 
DATA COLLECTION FORM – SCOPING REVIEW 

(only headers, no boxes) 
1. General Information 

1.1. Publication ID 
1.2. EndNote Record Number 
1.3. Author 
1.4. Year 
1.5. Journal 
1.6. DOI 
1.7. Definition of study design (e.g. ITS, before-and-after) 
1.8. Country of study 
1.9. Study objectives  

1.9.1. Study population 
1.9.2. Study intervention 
1.9.3. Study outcome 

1.10. Type of intervention (e.g. policy, program, treatment) 
1.11. Level of intervention (e.g. individual, hospital, district, country) 
1.12. Participants (e.g. patients, doctors)   

1.12.1. Study unit of analysis 
1.12.2. Study minimum available cluster 
1.12.3. Study longitudinal follow up 

 
2. Data handling and statistical analysis (research question #1)  

2.1. Data source (e.g. prospective, routinely collected) 
2.2. Data linked? (yes/no) 
2.3. Type of outcome (e.g. continuous, count, binary)  
2.4. Data points over time  

2.4.1. Number of data points 
2.4.2. Data points unit (e.g. week, month, year) 

2.5. Averaging-step at each time point (for individual level data only: yes/no) 
2.6. Main statistical model/tool (e.g. segmented regression, mixed models, other) 
2.7. Confounders  

2.7.1. Confounders reported (yes/no) 
2.7.2. Confounders adjusted for 

2.8. Autocorrelation  
2.8.1. Autocorrelation reported (yes/no) 
2.8.2. Autocorrelation handled with 

2.9. Seasonality  
2.9.1. Seasonality reported (yes/no) 
2.9.2. Seasonality handled with 

2.10. Time-varying confounders  
2.10.1. Time varying confounder reported (yes/no) 
2.10.2.  Time varying confounder handled with 

2.11. Others methodological issues  
2.11.1. Others reported (yes/no) 
2.11.2. Others handled with 

 
3. Missing data handling reported (yes/no) If yes, we will extract:  

3.1. Missing data proportion reported  
3.1.1. Missing data reported (yes/no) 
3.1.2. Missing data proportion (% reported) 

3.2. Missing data mechanism reported  
3.2.1. Missing data mechanism reported (yes/no) 
3.2.2. Which missing data mechanism (MAR, MCAR, MNAR) 

3.3. Missing data handling method applied 
3.3.1. Missing data method applied (yes/no) 
3.3.2. Which missing data method (CCA, MI, others) 

3.4. Sensitivity analysis for missing data assumption 
3.4.1. Missing data sensitivity analysis reported (yes/no) 
3.4.2. Which missing data sensitivity analysis (delta method, others) 

 
4. Especial notes 
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10.1.4. Appendix 4D: List of the 60 selected publications 

Table 4D. List of the finally selected publications from 2019 for the scoping review (N=60)   

# 1st Author  Journal Country Study 
Type Population Intervention Type 

1 Acquisto  American Journal of Health-System Pharmacy USA ITS health personnel program 
2 Adeleke  Open Heart UK ITS patients program 
3 Agarwal  JAMA Network Open USA ITS patients policy 
4 Akazawa  Open Forum Infectious Diseases Japan ITS patients program 
5 Annear  BMJ Global Health Cambodia ITS patients policy 
6 Arruda  American Journal of Infection Control Brazil ITS patients intervention 
7 Barnes  American Journal of Cardiology USA ITS patients guideline/protocol/sound published evidence 
8 Barrio  International Journal of Drug Policy Spain CITS patients policy 
9 Belle  Clinical Nutrition Switzerland SR patients treatment 

10 Berdahl  Journal of General Internal Medicine USA ITS patients policy 
11 Besen  Revista Brasileira de Terapia Intensiva Brazil ITS patients guideline/protocol/sound published evidence 
12 Bruckner  International Journal of Epidemiology France CITS patients relevant or historic event 
13 Bui  Journal of Safety Research USA ITS firefighters intervention 
14 Carlos  Journal of the American College of Radiology USA ITS insured women policy 
15 Close  BMJ Open UK CITS health personnel policy 
16 Flick  AIDS Malawi ITS health personnel intervention 
17 Garriga  BMJ Open UK ITS patients program 
18 Gould  Surgery USA CITS patients policy 
19 Grout  Academic pediatrics USA ITS patients intervention 
20 Guan  BMJ Open China CITS medications policy 
21 Haakenstad  Preventive Medicine USA ITS patients policy 
22 Hallgren  Behavior Therapy USA ITS patients treatment 
23 Hecker  American Journal of Infection Control USA ITS patients treatment 
24 Heinsbroek  BMJ Open UK ITS patients intervention 
25 Holmberg  Resuscitation USA CITS patients guideline/protocol/sound published evidence 
26 Holroyd  BMC Geriatrics Canada ITS patients program 
27 Horng  JAMA Network Open USA ITS patients intervention 
28 Ismail  BMC Nephrology 

Saudi 
Arabia ITS patients intervention 
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29 Jhuang  Scientific Reports China ITS general population policy 
30 Kim  Environment International South Korea CITS general population policy 
31 Lichtl  BMJ Open Germany SR patients intervention 
32 Liu  Canadian Journal of Cardiology Canada ITS patients program 
33 Lu  Preventive Medicine USA ITS patients policy 
34 Majka  American Journal of Medical Quality USA ITS health personnel & patients intervention 
35 Mamun  Canadian Journal of Public Health Canada ITS health personnel & patients program 
36 Marincowitz  BMJ Open UK ITS patients guideline/protocol/sound published evidence 
37 Martin  European Journal of Human Genetics UK ITS general population guideline/protocol/sound published evidence 
38 Merola  Hospital Pharmacy USA ITS health personnel intervention 
39 Miller  Postgraduate Medical Journal UK ITS health personnel intervention 
40 Miller  Journal of Urban Health USA ITS patients program 
41 Ouldali  JAMA Pediatrics France ITS children program 
42 Parchman  Annals of Family Medicine USA CITS health personnel & patients guideline/protocol/sound published evidence 
43 Parekh  Value in Health USA ITS patients policy 
44 Petruzzo  Multiple Sclerosis and Related Disorders Italy ITS patients guideline/protocol/sound published evidence 
45 Qato  JAMA Network Open USA CITS patients relevant or historic event 
46 Ramaswamy  JAMA Network Open USA ITS patients program 
47 Ranapurwala  Pain Medicine USA ITS patients program 
48 Ribera  BMJ Open Spain ITS patients guideline/protocol/sound published evidence 
49 Ross  Journal of the International AIDS Society Rwanda ITS patients policy 
50 Roychoudhury  Pediatric Neurology Canada ITS patients program 
51 Sadan  Injury Israel ITS health personnel & patients intervention 
52 Schwartz  Clinical Infectious Diseases Bangladesh CITS children intervention 
53 Shah  Journal of Surgical Education USA ITS health personnel intervention 
54 Singer  JAMA Network Open USA ITS patients policy 
55 Smith  Journal of Pediatric Health Care USA ITS health personnel & patients program 
56 Sugg  Preventive Medicine Reports USA ITS general population relevant or historic event 
57 Tufts  HPB USA ITS patients intervention 
58 Tyler  Hospital Pediatrics USA ITS patients guideline/protocol/sound published evidence 
59 Van Seben  BMJ Open Netherlands ITS health personnel & patients program 
60 Wassie  Public Health Nutrition  Australia  ITS children policy 
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10.1.5. Appendix 4E: Cross-table between level of intervention and more 

granulated clusters 

 

Table 4E. Cross-table between level of intervention and more granulated clusters 
available (N=60)   

 

Minimal Available Cluster (More Granulated) 

 

Level of Intervention 
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cities, group of 0 0 0 0 1 0 0 0 0 0 1 

city/district 1 1 0 0 0 1 0 0 0 0 3 

country 0 0 0 0 2 4 0 1 9 1 17 

hospital 0 0 0 1 0 2 2 0 13 0 18 

hospitals, group of 1 0 0 0 0 1 1 0 5 0 8 

individual-level 0 0 0 0 0 0 0 0 2 0 2 

state/province/county 1 1 0 0 0 5 0 0 3 0 10 

three fire departments 0 0 1 0 0 0 0 0 0 0 1 

Total 3 2 1 1 3 13 3 1 32 1 60 
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10.1.6. Appendix 4F: Cross-table between averaging-step and statistical model 

 

Table 4F. Cross-table between main statistical model and averaging-step (N=60)   

Main Statistical Model Averaging-step 
no unclear yes Total 

ARIMA 0 0 7 7 
Jointpoint (Exploratory Method) 0 1 0 1 
SR-GEE 5 0 2 7 
SR-GLM 1 0 14 15 
SR-GLS 0 0 1 1 
SR-OLS 0 1 22 23 
mixed effects (random intercept only) 1 0 1 2 
mixed effects (random intercept & slopes) 4 0 0 4 
Total 11 2 47 60 
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10.2. Appendices of Chapter 5 

 

10.2.1 Appendix 5A: Visualization of antipsychotic dose over time 
 

The next figure provides a visual approximation on how stable a first prescription of 

antipsychotic can be over time. I modelled trajectories of log-dose of olanzapine over 24 

consecutive prescriptions for each of 7 groups differentiated by first dose (from the 

lowest in blue to the highest in orange, see legend below). Solid lines are average 

trajectories predicted from mixed effects models. Magenta weighted circles represent a 

cohort of 50 patients randomly selected from the magenta group (15.1mg-20mg). Bigger 

circles represent more persons from these 50 patients. It is visible that dose 

prescriptions of most of these patients stayed close to the first dose prescription that 

defined the magenta group, during the 24 first prescriptions. A similar pattern was 

confirmed across different doses and antipsychotic drugs.    
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197 
 



10.2.2 Appendix 5B: Visual comparison between linear splines and 
restricted cubic models 

 

Figure 5B. Visual comparison off linear splines models with restricted cubic models of changes in body 
weight over time before and after treatment initiation, by drug and sex. 
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10.2.3 Appendix 5C: Changes in weight by sex 
 

Table 5C. Changes in body weight over time before and after treatment initiation, by sex 

 

 

  
weight 

change 
(kg/week)

( ) p
weight 

change 
(kg/week)

( ) p
weight 

change 
(kg/week)

( ) p
weight 

change 
(kg/week)

( ) p

pre-baseline -0.007 ( -0.010 to -0.005 ) <0.001 -0.007 ( -0.010 to -0.005 ) <0.001 -0.006 ( -0.009 to -0.003 ) <0.001 -0.006 ( -0.009 to -0.003 ) <0.001
post short-term 0.383 ( 0.321 to 0.446 ) <0.001 0.382 ( 0.319 to 0.444 ) <0.001 0.570 ( 0.499 to 0.641 ) <0.001 0.569 ( 0.498 to 0.640 ) <0.001
post long-term 0.014 ( 0.011 to 0.017 ) <0.001 0.014 ( 0.011 to 0.017 ) <0.001 0.009 ( 0.005 to 0.012 ) <0.001 0.008 ( 0.005 to 0.012 ) <0.001

weight at baseline (kg) 68.4 ( 67.8 to 69.0 ) <0.001 64.6 ( 62.9 to 66.3 ) <0.001 81.2 ( 80.6 to 81.8 ) <0.001 78.0 ( 76.3 to 79.7 ) <0.001
correlation** -0.040 ( -0.092 to 0.013 ) -0.068 ( -0.121 to -0.014 ) -0.047 ( -0.110 to 0.016 ) -0.050 ( -0.113 to 0.014 )

N (% ) N= 5004 ( 52.7% ) N= 4495 ( 47.3% )
pre-baseline -0.002 ( -0.004 to 0.000 ) 0.025 -0.002 ( -0.004 to 0.000 ) 0.030 -0.002 ( -0.004 to 0.000 ) 0.022 -0.003 ( -0.005 to -0.001 ) 0.008

post short-term 0.204 ( 0.161 to 0.247 ) <0.001 0.205 ( 0.162 to 0.248 ) <0.001 0.127 ( 0.076 to 0.179 ) <0.001 0.126 ( 0.074 to 0.177 ) <0.001
post long-term 0.006 ( 0.003 to 0.008 ) <0.001 0.005 ( 0.003 to 0.008 ) <0.001 0.004 ( 0.001 to 0.007 ) 0.006 0.003 ( 0.000 to 0.007 ) 0.025

weight at baseline (kg) 70.9 ( 70.5 to 71.3 ) <0.001 70.8 ( 69.6 to 71.9 ) <0.001 83.2 ( 82.7 to 83.7 ) <0.001 82.9 ( 81.5 to 84.3 ) <0.001
correlation** 0.013 ( -0.020 to 0.046 ) -0.022 ( -0.055 to 0.011 ) 0.042 ( -0.005 to 0.088 ) 0.012 ( -0.035 to 0.060 )

N (% ) N= 12149 ( 60.9% ) N= 7816 ( 39.1% )
pre-baseline -0.008 ( -0.010 to -0.005 ) <0.001 -0.008 ( -0.010 to -0.005 ) <0.001 -0.004 ( -0.007 to -0.001 ) 0.004 -0.004 ( -0.007 to -0.002 ) 0.002

post short-term 0.155 ( 0.091 to 0.220 ) <0.001 0.147 ( 0.083 to 0.211 ) <0.001 0.186 ( 0.110 to 0.262 ) <0.001 0.180 ( 0.104 to 0.256 ) <0.001
post long-term 0.004 ( 0.000 to 0.008 ) 0.060 0.003 ( -0.001 to 0.007 ) 0.089 0.008 ( 0.003 to 0.013 ) 0.001 0.007 ( 0.002 to 0.012 ) 0.004

weight at baseline (kg) 68.8 ( 68.2 to 69.3 ) <0.001 70.1 ( 68.2 to 72.0 ) <0.001 81.9 ( 81.3 to 82.6 ) <0.001 80.1 ( 78.2 to 82.1 ) <0.001
correlation** 0.001 ( -0.050 to 0.052 ) -0.025 ( -0.077 to 0.027 ) 0.040 ( -0.024 to 0.104 ) 0.014 ( -0.051 to 0.079 )

N (% ) N= 5153 ( 54.8% ) N= 4248 ( 45.2% )

(**) Correlation between weight at baseline and weight change in the post short-term.

95%  CI 95%  CI95%  CI 95%  CI

OLANZAPINE      
(N=9499)

QUETIAPINE     
(N=19965)

(*) Adjusted for age and deprivation (Townsend). Estimates come from linear splines random intercept and slope models. Body weight has been measured in kilograms and time in weeks. All crude and 
adjusted models reported ICC>0.95 as well as a p<0.001 when contrasted against null models (using Log-likelihood Ratio tests). 

RISPERIDONE    
(N=9401)

              

Women

Adjusted*

Men

Adjusted*CrudeCrude

199 
 



10.2.4 Appendix 5D: Changes in weight by dose and sex 
 

Table 5D. Changes in body weight over time before and after treatment initiation, by drug dose and sex 

 

 

 

 

 

 

 

 

 

 

 

 

 

weight 
change 

(kg/week)
( ) p

weight 
change 

(kg/week)
( ) p

weight 
change 

(kg/week)
( ) p

weight 
change 

(kg/week)
( ) p

pre-baseline -0.010 ( -0.013 to -0.006 ) <0.001 -0.002 ( -0.009 to 0.004 ) 0.425 -0.007 ( -0.011 to -0.003 ) 0.001 -0.002 ( -0.007 to 0.004 ) 0.552
post short-term 0.314 ( 0.231 to 0.397 ) <0.001 0.534 ( 0.401 to 0.667 ) <0.001 0.425 ( 0.326 to 0.525 ) <0.001 0.743 ( 0.608 to 0.879 ) <0.001
post long-term 0.012 ( 0.008 to 0.017 ) <0.001 0.015 ( 0.008 to 0.021 ) <0.001 0.009 ( 0.004 to 0.015 ) 0.001 0.007 ( 0.001 to 0.013 ) 0.020

weight at baseline (kg) 65.4 ( 63.1 to 67.8 ) <0.001 65.2 ( 61.7 to 68.7 ) <0.001 78.1 ( 75.5 to 80.7 ) <0.001 79.3 ( 76.4 to 82.3 ) <0.001
correlation* -0.155 ( -0.230 to -0.078 ) -0.004 ( -0.123 to 0.115 ) -0.135 ( -0.235 to -0.033 ) 0.022 ( -0.082 to 0.125 )

N N = 2535 N = 1100 N = 1887 N = 1470
pre-baseline -0.005 ( -0.007 to -0.002 ) <0.001 0.010 ( 0.005 to 0.015 ) <0.001 -0.009 ( -0.011 to -0.006 ) <0.001 0.010 ( 0.004 to 0.015 ) 0.001

post short-term 0.110 ( 0.046 to 0.174 ) 0.001 0.376 ( 0.260 to 0.492 ) <0.001 0.079 ( 0.000 to 0.157 ) 0.049 0.272 ( 0.147 to 0.397 ) <0.001
post long-term 0.004 ( 0.000 to 0.008 ) 0.028 0.008 ( 0.002 to 0.014 ) 0.009 -0.004 ( -0.009 to 0.001 ) 0.153 0.005 ( -0.001 to 0.011 ) 0.127

weight at baseline (kg) 71.8 ( 70.1 to 73.6 ) <0.001 69.8 ( 66.9 to 72.7 ) <0.001 81.6 ( 79.3 to 83.8 ) <0.001 82.9 ( 79.5 to 86.3 ) <0.001
correlation* 0.000 ( -0.052 to 0.052 ) 0.001 ( -0.077 to 0.079 ) -0.012 ( -0.086 to 0.061 ) -0.005 ( -0.118 to 0.107 )

N N = 5372 N = 1912 N = 3326 N = 1326
pre-baseline -0.009 ( -0.012 to -0.006 ) <0.001 0.018 ( 0.005 to 0.030 ) 0.005 -0.006 ( -0.009 to -0.002 ) 0.002 0.001 ( -0.009 to 0.012 ) 0.779

post short-term 0.162 ( 0.083 to 0.240 ) <0.001 0.188 ( -0.115 to 0.491 ) 0.223 0.174 ( 0.069 to 0.279 ) 0.001 0.319 ( 0.086 to 0.552 ) 0.007
post long-term 0.000 ( -0.004 to 0.005 ) 0.868 0.017 ( 0.005 to 0.030 ) 0.005 0.006 ( -0.001 to 0.013 ) 0.119 0.007 ( -0.004 to 0.018 ) 0.192

weight at baseline (kg) 70.2 ( 67.8 to 72.6 ) <0.001 64.6 ( 56.4 to 72.9 ) <0.001 80.0 ( 77.4 to 82.5 ) <0.001 83.7 ( 77.0 to 90.4 ) <0.001
correlation* -0.015 ( -0.083 to 0.054 ) 0.120 ( -0.070 to 0.302 ) 0.072 ( -0.017 to 0.160 ) 0.126 ( -0.050 to 0.294 )

N N = 3102 N = 316 N = 2411 N = 441

                 

Women Men

Low-dose High-dose Low-dose High-dose

(*) Correlation between weight at baseline and weight change in the post short-term.

95%  CI 95%  CI 95%  CI 95%  CI

All estimates were adjusted for age and deprivation (Townsend), coming from linear splines random intercept and slope models. Body weight has been measured in kilograms and time in weeks.Cut off point 
for low/high dose was: 5 mg for Olanzapine, 75 mg for Quetiapine and 2 mg for Risperidone. Missing data from drug dose are 26.4% for Olanzapine, 40.2% for Quetiapine and 33.3% for Risperidone.

QUETIAPINE     
(N=11,936)

RISPERIDONE    
(N=6,270)

OLANZAPINE      
(N=6,992)
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10.3 Appendices of Chapter 6 

 

10.3.1 Appendix 6A: Stata and R codes for the motivating example 

1 I started with a THIN fully containing sex, age and smoking fully observed, but weight 
and date of weight as recorded (irregular recording overtime). 

 
2 Time goes from 0 to 417 weeks, and week 209 marks the treatment initiation of 

olanzapine. The second knot is 215 weeks (+6 weeks after treatment initiation). 
 
 

3 I fitted crude and adjusted mixed effects models (MEM) with this full data, as follows: 

mkspline ls1 209 ls2 215 ls3 = time 
mixed weight ls1 ls2 ls3 || gppatid: ls1 ls2 ls3, cov(un) stddev reml   
mixed weight ls1 ls2 ls3 sex age age_2 smoking || gppatid: ls1 ls2 ls3, cov(un) 
stddev reml 
 

4 I also fitted SR and SR-W1 models with same full data, as follows: 

preserve 
 egen mean_sw1_weight = mean(weight), by(time) 
 egen count_sw1_weight = count(weight), by(time) 
 duplicates drop time mean_sw1_weight count_sw1_weight  
 glm mean_sw1_weight ls1 ls2 ls3 /*SR analysis*/   
 glm mean_sw1_weight ls1 ls2 ls3 [pw=count_sw1_weight] /*SR-W1 analysis*/ 
restore  

 

5 Then, I set weight values MAR on sex, reproducing approximately the mechanism shown 
in Figure 6.1 (sex=0=men): 

gen weight2 = weight 
forvalues t=0(1)208 {  

local p = (209-`t')*0.004   
randomselect if (sex==0), gen(rs`t') prop(`p') seed(3956412) 
replace weight2 =. if (rs`t'==1) & (time==`t') 

} 
 

randomselect if (sex==0), gen(rs209) prop(.20) 
replace weight2 =. if (rs209==1) & (time==209) 

randomselect if (sex==0), gen(rs210) prop(.30) 
replace weight2 =. if (rs210==1) & (time==210) 

randomselect if (sex==0), gen(rs211) prop(.40) 
replace weight2 =. if (rs211==1) & (time==211) 

randomselect if (sex==0), gen(rs212) prop(.50) 
replace weight2 =. if (rs212==1) & (time==212) 

randomselect if (sex==0), gen(rs213) prop(.60) 
replace weight2 =. if (rs213==1) & (time==213) 

randomselect if (sex==0), gen(rs214) prop(.70) 
replace weight2 =. if (rs214==1) & (time==214) 

randomselect if (sex==0), gen(rs215) prop(.80) 
replace weight2 =. if (rs215==1) & (time==215) 

 
forvalues t=216(1)417 { 

local p = (`t'-215)*0.004   
randomselect if (sex==0), gen(rs`t') prop(`p') 
replace weight2 =. if (rs`t'==1) & (time==`t') 

}   
 

6 Then, I set smoking MAR on sex as follows: 

drop rs* ls1 ls2 ls3 weight 
reshape wide weight2 , i(gppatid) j(time)  
randomselect if (sex==0), gen(smk_m) prop(.80) 
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replace smoking =. if (smk_m==1) 
randomselect if (sex==1), gen(smk_f) prop(.20) 
replace smoking =. if (smk_f==1)  
reshape long 
drop if weight2==.  
mkspline ls1 209 ls2 215 ls3 = time 
saveold phd_paper2_altana.dta, replace 
 

7 I fitted crude and adjusted mixed effects models (MEM) again, but now on incomplete 
data: 

 

mixed weight2 ls1 ls2 ls3 || gppatid: ls1 ls2 ls3, cov(un) stddev reml  

mixed weight2 ls1 ls2 ls3 sex age age_2 smoking || gppatid: ls1 ls2 ls3, cov(un) 
stddev reml 

  

8 I imputed smoking status only by using MI-JOMO (using R and Stata): 

###Preparing data 
mydata <- read.dta13("phd_paper2_altana.dta") 
mydata<-within(mydata, smoking<-factor(smoking)) 
mydata<-within(mydata, sex<-factor(sex)) 
mdata<-
mydata[,c("gppatid","weight2","time","ls1","ls2","ls3","sex","age","age_2","
smoking")] 
 
###Running JOMO on missing data (MAR) 
jdata<-
mydata[,c("gppatid","weight2","ls1","ls2","ls3","sex","age","age_2","smoking
")] 
mylevel<-c(1,1,1,1,1,2,2,2,2) 
formula<-as.formula(weight2 ~ sex + age + age_2 + smoking + ls1 + ls2 + ls3 
+ (1 + ls1 + ls2 +ls3|gppatid)) 
jomo.imp<-jomo.lmer(formula,jdata, level=mylevel, nimp=20, nburn=1000, 
nbetween=1000) 
 
###Saving imputed data in Stata 
write.dta(jomo.imp,  "jomo_appexample_2.dta") 

 

set more off 
use "\\ad.ucl.ac.uk\homez\rmjlbaz\DesktopSettings\Desktop\phd paper 2 app 
exmpl\jomo_appexample_2.dta", clear 
drop id 
gen time = ls1 + ls2 + ls3 
recode sex 1=0 2=1 
recode smoking 1=0 2=1 
mi import flong, id(clus time) m(Imputation) clear 
mi estimate: mixed weight ls1 ls2 ls3 sex age age_2 smoking || clus: ls1 ls2 ls3, 
cov(un) stddev reml 

 
9 Finally, I performed the SR and SR-W1 analyses with a previous averaging-step:  

/*using same data than in step 7*/ 

preserve 
 egen mean_sw1_weight = mean(weight2), by(time) 
 egen count_sw1_weight = count(weight2), by(time) 
 sort time 

duplicates drop time mean_sw1_weight count_sw1_weight  
 glm mean_sw1_weight ls1 ls2 ls3 /*SR analysis*/   
 glm mean_sw1_weight ls1 ls2 ls3 [pw=count_sw1_weight] /*SR-W1 analysis*/ 
restore  
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10.3.2 Appendix 6B: Motivating Example: 95% confidence intervals of 

cumulative weight 

 

  

Model N 

Weight 
gained 

during short-
time (0-6 
weeks), in 
kilograms. 

95% CI 

Weight 
gained 

during long-
time (6 

weeks-4 
years), in 
kilograms. 

95% CI 

Total 
weight 

gained, in 
kilograms 

MEM 3,379 2.47 (1.99 to 2.95) 2.46 (1.62 to 3.29) 4.93 

MI-JOMO with 
MEM 6,181 2.75 (2.39 to 3.10) 2.70 (2.03 to 3.35) 5.45 

SR 418 4.80 (3.62 to 5.97) 0.87 (-0.57 to 2.34) 5.67 

SR-W1 418 4.72 (3.61 to 5.83) 2.13 (0.39 to 3.88) 6.85 

Cumulative weight gain was calculated using estimates from Table 6.1 (data with missing records).CI=confidence interval, 
MEM=mixed effects model, MI-JOMO with MEM=multilevel multiple imputation followed by a mixed-effects model, 
SR=segmented regression, SR-W1=segmented regression weighted with the inverse of the number of weight records 
observed at each time-point 
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10.3.3 Appendix 6C: Summary of evaluated methods and scenarios 

Study 
Section Scenario Missingness Analysis methods evaluated 

Results 
are 

visible in 

Motivating 
Example     

(section 2) 

Scenario 
1 

Incomplete weight, all covariates 
complete 

MEM unadjusted, MEM 
adjusted, SR, SR-W1 

Table 6.1, 
left 

section 

Scenario 
2 

Further incomplete weight (MAR), 
incomplete smoking (MAR), other 

covariates complete 

MEM adjusted, MI-JOMO with 
MEM adjusted, SR, SR-W1 

Table 6.1, 
right 

section 

Simulation 
Study      

(section 3) 

Scenario 
1a Weight and all covariates complete 

MEM adjusted, SR, SR-W1, 
SR-W2 

Table 2, 
top 

section Scenario 
1b 

Incomplete weight (MAR on sex), all 
covariates complete 

Scenario 
2a Weight and all covariates complete 

Table 2, 
bottom 
section Scenario 

2b 

Incomplete weight (MAR/MNAR on 
sex, age, smoking and intercept), 
smoking (MAR on sex and age), 

other covariates complete 

MEM adjusted, MI-JOMO with 
MEM adjusted, SR, SR-W1, 

SR-W2 

Scenarios 1a and 1b have the same data generation mechanism= DGM-base. Scenarios 2a and 2b = DGM-extended-covariates. MAR=missing at 
random, SR='aggregate-level' segmented regression, SR-W1='aggregate-level' segmented regression weighted with the inverse of the number of 
observed weight records at each time point, SR-W2= similar to SR-W1 but the number of observed weight records were counted by each time point, 
sex and age group (quintiles), MEM=random intercept and slope model with restricted maximum likelihood and unstructured covariance, MI-
JOMO=substantive model compatible joint modelling multiple imputation using a similar MEM model. 
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10.3.4 Appendix 6D: Comments for applicative analyses 

Researchers could eventually trust in MAR as a mechanism that is feasible to handle with 
traditional ITS tools. However, here we showed that MCAR is the only mechanism for which SR 
(with averaging-step) and mixed-effects models (no averages at all) produce equally unbiased 
estimates. MCAR is rarely present in observational data.  

In practice, two potential averaging-steps can generate bias when outcome data are MAR 
at the individual level. In the first step, the period for establishing temporal units is defined (e.g. 
a monthly unit for a follow-up period of 48 months) and all the outcome records from the same 
patient are averaged – or one of them could also be randomly selected within that period-. The 
average represents the outcome value for that patient in that month. If some days within the 
month, inform the missing mechanism of the outcome, and the observed values are 
systematically lower or higher than missing values, then the average will be biased. The second 
step implies to average all patients’ weight averages within each month (e.g. population weight 
average for January, then for February, March, and so on). Now, if there is any covariate that 
can explain the outcome missingness and values at the individual level, that covariate will 
typically be lost after the second step (it becomes unobserved) and the ITS analysis will not be 
able to correct for bias. Considering the averaging issue studied by us, analysts should avoid 
any of these steps unless the individuals in the study are constant and fully observed over time 
(which is rarely the case in observational data). 

In real data analysis, MEM and MI-JOMO present both advantages and disadvantages. 
MEM is computationally less demanding, does not raise congeniality issues and can include 
individuals with just one outcome observation in the analysis. However, MEM must omit any 
individual with missing covariates and, as we demonstrated, if these covariates explain the 
outcome missingness, we should expect biased estimates. Although in ITS designs we should 
not adjust for time-invariant confounders, with MEM we are forced to do it at least for those 
associated with the outcome missingness since MEM uses covariates information when its 
implicit imputation operates. Here is when multiple imputation becomes relevant. MI-JOMO can 
handle missing data in the covariates and can do it while keeping the congeniality issue 
controlled. The way we used MI-JOMO in our motivating example allows it to impute covariates 
values (smoking status) and not the outcome of interest (bodyweight in this case). After that, the 
implicit imputation of weight records by MEM operates similarly. This way to perform the 
analysis prevent many issues related to imputing outcomes as well (e.g. impute so many weight 
records missed). For example, whenever the outcome would also be imputed, MI-JOMO needs 
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more outcome records to converge (number of observations>number of imputation parameters), 
and thus individuals with just a few outcome records must be removed from the analysis to 
overcome the problem. That kind of operation reduces the boundaries of MI-JOMO notably, so 
in practice, it is usually better to proceed as suggested in our study (only imputing covariates at 
baseline). 
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10.4 Appendices of Chapter 7 

10.4.1 Appendix 7A: Table 7A (for all drugs) 
 

Table 7A. Trajectories of weight change by sex and interaction between sex and time for the olanzapine, quetiapine and risperidone cohorts.  

Weight Trajectories by SEX 
Olanzapine Quetiapine Risperidone 

(women=3,803; men=2,973; combined=6,776) (women=8,765; men=6,205; combined=14,970) (women=4,127; men=3,166; combined=7,293) 
Beta 95% CI p Beta 95% CI p Beta 95% CI p 

Women 

t1 (-4 years to 0 weeks) -0.0150 ( -0.0178 to -0.0122 ) <0.001 -0.0086 ( -0.0105 to -0.0067 ) <0.001 -0.0132 ( -0.0157 to -0.0107 ) <0.001 
t2 (0 weeks to 6 weeks) 0.3021 ( 0.2303 to 0.3738 ) <0.001 0.1247 ( 0.0760 to 0.1733 ) <0.001 0.0666 ( -0.0026 to 0.1357 ) 0.059 
t3 (6 weeks to 4 years) 0.0123 ( 0.0087 to 0.0158 ) <0.001 0.0038 ( 0.0012 to 0.0065 ) 0.005 0.0014 ( -0.0027 to 0.0055 ) 0.500 
intercept 73.85 ( 62.26 to 85.43 ) <0.001 76.40 ( 68.65 to 84.14 ) <0.001 77.58 ( 66.12 to 89.04 ) <0.001 

Men 

t1 (-4 years to 0 weeks) -0.0120 ( -0.0151 to -0.0088 ) <0.001 -0.0098 ( -0.0118 to -0.0077 ) <0.001 -0.0095 ( -0.0123 to -0.0068 ) <0.001 
t2 (0 weeks to 6 weeks) 0.4469 ( 0.3687 to 0.5251 ) <0.001 0.0976 ( 0.0440 to 0.1513 ) <0.001 0.0986 ( 0.0198 to 0.1774 ) 0.014 
t3 (6 weeks to 4 years) 0.0066 ( 0.0028 to 0.0105 ) 0.001 -0.0003 ( -0.0034 to 0.0028 ) 0.855 0.0022 ( -0.0023 to 0.0066 ) 0.343 
intercept 76.87 ( 63.59 to 90.16 ) <0.001 88.98 ( 79.51 to 98.46 ) <0.001 85.88 ( 72.80 to 98.95 ) <0.001 

Combined 

t1 (-4 years to 0 weeks) -0.0120 ( -0.0153 to -0.0088 ) <0.001 -0.0098 ( -0.0120 to -0.0077 ) <0.001 -0.0096 ( -0.0124 to -0.0067 ) <0.001 
t2 (0 weeks to 6 weeks) 0.4455 ( 0.3646 to 0.5264 ) <0.001 0.1014 ( 0.0441 to 0.1588 ) 0.001 0.0974 ( 0.0170 to 0.1779 ) 0.018 
t3 (6 weeks to 4 years) 0.0067 ( 0.0027 to 0.0107 ) 0.001 -0.0002 ( -0.0035 to 0.0032 ) 0.917 0.0024 ( -0.0023 to 0.0071 ) 0.315 
women -12.08 ( -13.02 to -11.14 ) <0.001 -12.97 ( -13.62 to -12.32 ) <0.001 -11.71 ( -12.60 to -10.82 ) <0.001 
women*t1 -0.0029 ( -0.0071 to 0.0014 ) 0.187 0.0013 ( -0.0015 to 0.0041 ) 0.372 -0.0036 ( -0.0073 to 0.0002 ) 0.062 
women*t2 -0.1440 ( -0.2510 to -0.0371 ) 0.008 0.0187 ( -0.0553 to 0.0926 ) 0.621 -0.0301 ( -0.1355 to 0.0753 ) 0.575 
women*t3 0.0056 ( 0.0003 to 0.0108 ) 0.039 0.0040 ( -0.0002 to 0.0082 ) 0.064 -0.0012 ( -0.0073 to 0.0049 ) 0.696 
intercept 82.03 ( 73.35 to 90.71 ) <0.001 88.76 ( 82.73 to 94.78 ) <0.001 86.59 ( 77.98 to 95.19 ) <0.001 

All estimates are adjusted for age and deprivation. Intercept was set at the very beginning of the observation period. 
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10.4.2 Appendix 7B: Table 7B (for olanzapine) 
 

 

Table 7B. Trajectories of weight change by age, and interaction between age and time for the olanzapine cohort.  

Weight Trajectories by AGE 
(Complete Case Analysis) 

Olanzapine 
Unadjusted Adjusted 

(combined=6,776)                                                                   
(40-49 years=1,980; 50-59 years=1,620; 60-69 years=1,276; 

70-79 years=1,140; 80-89 years=760) 

(combined=4,923)                                                                
(40-49 years=1,468; 50-59 years=1,165; 60-69 years=926; 

70-79 years=834; 80-89 years=530) 

Beta 95% CI p Beta 95% CI p 

40-49 
years 

t1 (-4 years to 0 weeks) -0.0013 ( -0.0063 to 0.0036 ) 0.591 0.0000 ( -0.0056 to 0.0055 ) 0.989 
t2 (0 weeks to 6 weeks) 0.6317 ( 0.5246 to 0.7387 ) 0.000 0.6294 ( 0.5120 to 0.7469 ) 0.000 
t3 (6 weeks to 4 years) 0.0097 ( 0.0050 to 0.0145 ) 0.000 0.0108 ( 0.0056 to 0.0161 ) 0.000 
intercept 77.76 ( 76.72 to 78.80 ) 0.000 83.97 ( 81.06 to 86.89 ) 0.000 

50-59 
years 

t1 (-4 years to 0 weeks) -0.0108 ( -0.0153 to -0.0063 ) 0.000 -0.0138 ( -0.0191 to -0.0085 ) 0.000 
t2 (0 weeks to 6 weeks) 0.4512 ( 0.3498 to 0.5527 ) 0.000 0.4685 ( 0.3560 to 0.5810 ) 0.000 
t3 (6 weeks to 4 years) 0.0121 ( 0.0074 to 0.0168 ) 0.000 0.0135 ( 0.0080 to 0.0189 ) 0.000 
intercept 77.71 ( 76.67 to 78.75 ) 0.000 85.39 ( 82.60 to 88.17 ) 0.000 

60-69 
years 

t1 (-4 years to 0 weeks) -0.0119 ( -0.0162 to -0.0077 ) 0.000 -0.0123 ( -0.0172 to -0.0074 ) 0.000 
t2 (0 weeks to 6 weeks) 0.2202 ( 0.1014 to 0.3389 ) 0.000 0.2467 ( 0.1046 to 0.3888 ) 0.001 
t3 (6 weeks to 4 years) 0.0119 ( 0.0055 to 0.0182 ) 0.000 0.0102 ( 0.0027 to 0.0176 ) 0.007 
intercept 74.97 ( 73.92 to 76.02 ) 0.000 83.17 ( 80.50 to 85.84 ) 0.000 

70-79 
years 

t1 (-4 years to 0 weeks) -0.0258 ( -0.0299 to -0.0218 ) 0.000 -0.0231 ( -0.0279 to -0.0184 ) 0.000 
t2 (0 weeks to 6 weeks) 0.1148 ( -0.0022 to 0.2317 ) 0.055 0.0865 ( -0.0459 to 0.2190 ) 0.200 
t3 (6 weeks to 4 years) 0.0052 ( -0.0013 to 0.0118 ) 0.119 0.0006 ( -0.0070 to 0.0082 ) 0.873 
intercept 73.63 ( 72.60 to 74.66 ) 0.000 80.67 ( 78.11 to 83.24 ) 0.000 
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80-89 
years 

t1 (-4 years to 0 weeks) -0.0256 ( -0.0306 to -0.0207 ) 0.000 -0.0267 ( -0.0328 to -0.0205 ) 0.000 
t2 (0 weeks to 6 weeks) -0.0869 ( -0.2441 to 0.0704 ) 0.279 -0.0416 ( -0.2294 to 0.1461 ) 0.664 
t3 (6 weeks to 4 years) -0.0039 ( -0.0119 to 0.0040 ) 0.328 -0.0021 ( -0.0106 to 0.0063 ) 0.621 
intercept 68.83 ( 67.65 to 70.01 ) 0.000 79.78 ( 77.00 to 82.55 ) 0.000 

Combined 

t1 (-4 years to 0 weeks) -0.0017 ( -0.0059 to 0.0025 ) 0.424 -0.0002 ( -0.0051 to 0.0046 ) 0.930 
t2 (0 weeks to 6 weeks) 0.6399 ( 0.5405 to 0.7394 ) 0.000 0.6478 ( 0.5346 to 0.7610 ) 0.000 
t3 (6 weeks to 4 years) 0.0096 ( 0.0050 to 0.0143 ) 0.000 0.0101 ( 0.0048 to 0.0154 ) 0.000 
age ref ref 

50-59 -0.1296 ( -1.4932 to 1.2339 ) 0.852 0.6778 ( -0.8439 to 2.1996 ) 0.383 
60-69 -2.8110 ( -4.2496 to -1.3723 ) 0.000 -0.9582 ( -2.5668 to 0.6503 ) 0.243 
70-79 -4.1645 ( -5.6312 to -2.6978 ) 0.000 -2.1086 ( -3.7563 to -0.4609 ) 0.012 
80-89 -8.9634 ( -10.6556 to -7.2711 ) 0.000 -6.0138 ( -7.9581 to -4.0695 ) 0.000 

age*t1 ref ref 
50-59 -0.0089 ( -0.0150 to -0.0029 ) 0.004 -0.0133 ( -0.0204 to -0.0063 ) 0.000 
60-69 -0.0102 ( -0.0164 to -0.0040 ) 0.001 -0.0120 ( -0.0192 to -0.0048 ) 0.001 
70-79 -0.0241 ( -0.0303 to -0.0178 ) 0.000 -0.0230 ( -0.0302 to -0.0158 ) 0.000 
80-89 -0.0238 ( -0.0312 to -0.0164 ) 0.000 -0.0261 ( -0.0347 to -0.0174 ) 0.000 

age*t2 ref ref 
50-59 -0.1843 ( -0.3292 to -0.0394 ) 0.013 -0.1789 ( -0.3443 to -0.0135 ) 0.034 
60-69 -0.4248 ( -0.5767 to -0.2729 ) 0.000 -0.4153 ( -0.5879 to -0.2427 ) 0.000 
70-79 -0.5284 ( -0.6877 to -0.3692 ) 0.000 -0.5617 ( -0.7440 to -0.3794 ) 0.000 
80-89 -0.7440 ( -0.9483 to -0.5397 ) 0.000 -0.7545 ( -0.9852 to -0.5238 ) 0.000 

age*t3 ref ref 
50-59 0.0027 ( -0.0042 to 0.0095 ) 0.446 0.0036 ( -0.0042 to 0.0114 ) 0.367 
60-69 0.0017 ( -0.0056 to 0.0091 ) 0.643 -0.0004 ( -0.0088 to 0.0081 ) 0.934 
70-79 -0.0047 ( -0.0129 to 0.0035 ) 0.262 -0.0099 ( -0.0192 to -0.0006 ) 0.038 
80-89 -0.0122 ( -0.0237 to -0.0008 ) 0.037 -0.0113 ( -0.0242 to 0.0016 ) 0.086 

intercept 77.8 ( 76.9 to 78.7 ) 0.000 84.09 ( 82.51 to 85.67 ) 0.000 
ref=reference group. All estimates come from mixed effects models (restricted maximum likelihood and unstructured covariance matrix), adjusted for sex, social deprivation (Townsend) and 
first dose when indicated. Intercept was set at the very beginning of the observation period. 
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10.4.3 Appendix 7C: Table 7C (for quetiapine) 
 

Table 7C. Trajectories of weight change by age, and interaction between age and time for the quetiapine cohort.  

Weight Trajectories by AGE 
(Complete Case Analysis) 

Quetiapine 
Unadjusted Adjusted 

(combined=14,970)                                                                 
(40-49 years=3,977; 50-59 years=2,838; 60-69 years=1,969; 

70-79 years=2,709; 80-89 years=3,477) 

(combined=8,950)                                                                  
(40-49 years=2,325; 50-59 years=1,694; 60-69 years=1,227; 

70-79 years=1,656; 80-89 years=2,048) 

Beta 95% CI p Beta 95% CI p 

40-49 
years 

t1 (-4 years to 0 weeks) 0.0085 ( 0.0051 to 0.0119 ) 0.000 0.0096 ( 0.0050 to 0.0141 ) 0.000 
t2 (0 weeks to 6 weeks) 0.2618 ( 0.1874 to 0.3362 ) 0.000 0.2626 ( 0.1618 to 0.3633 ) 0.000 
t3 (6 weeks to 4 years) 0.0074 ( 0.0036 to 0.0112 ) 0.000 0.0025 ( -0.0027 to 0.0076 ) 0.349 
intercept 81.52 ( 80.75 to 82.30 ) 0.000 88.42 ( 85.77 to 91.06 ) 0.000 

50-59 
years 

t1 (-4 years to 0 weeks) -0.0015 ( -0.0048 to 0.0018 ) 0.371 -0.0022 ( -0.0065 to 0.0021 ) 0.307 
t2 (0 weeks to 6 weeks) 0.2059 ( 0.1267 to 0.2852 ) 0.000 0.2322 ( 0.1260 to 0.3383 ) 0.000 
t3 (6 weeks to 4 years) 0.0071 ( 0.0032 to 0.0110 ) 0.000 0.0049 ( -0.0002 to 0.0099 ) 0.060 
intercept 82.46 ( 81.62 to 83.31 ) 0.000 88.13 ( 85.35 to 90.92 ) 0.000 

60-69 
years 

t1 (-4 years to 0 weeks) -0.0107 ( -0.0142 to -0.0073 ) 0.000 -0.0089 ( -0.0133 to -0.0046 ) 0.000 
t2 (0 weeks to 6 weeks) 0.0648 ( -0.0217 to 0.1512 ) 0.142 0.0578 ( -0.0518 to 0.1673 ) 0.301 
t3 (6 weeks to 4 years) 0.0027 ( -0.0018 to 0.0072 ) 0.239 0.0005 ( -0.0052 to 0.0063 ) 0.854 
intercept 78.28 ( 77.37 to 79.18 ) 0.000 84.52 ( 82.12 to 86.92 ) 0.000 

70-79 
years 

t1 (-4 years to 0 weeks) -0.0193 ( -0.0221 to -0.0165 ) 0.000 -0.0178 ( -0.0214 to -0.0142 ) 0.000 
t2 (0 weeks to 6 weeks) -0.0897 ( -0.1734 to -0.0060 ) 0.036 -0.0603 ( -0.1656 to 0.0449 ) 0.261 
t3 (6 weeks to 4 years) -0.0078 ( -0.0132 to -0.0023 ) 0.005 -0.0078 ( -0.0146 to -0.0010 ) 0.024 
intercept 74.33 ( 73.66 to 75.01 ) 0.000 79.75 ( 78.11 to 81.38 ) 0.000 
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80-89 
years 

t1 (-4 years to 0 weeks) -0.0230 ( -0.0254 to -0.0207 ) 0.000 -0.0231 ( -0.0262 to -0.0201 ) 0.000 
t2 (0 weeks to 6 weeks) -0.0827 ( -0.1614 to -0.0040 ) 0.039 -0.0923 ( -0.1958 to 0.0112 ) 0.081 
t3 (6 weeks to 4 years) -0.0203 ( -0.0263 to -0.0143 ) 0.000 -0.0157 ( -0.0236 to -0.0078 ) 0.000 
intercept 68.58 ( 68.03 to 69.12 ) 0.000 77.97 ( 76.57 to 79.37 ) 0.000 

Combined 

t1 (-4 years to 0 weeks) 0.0079 ( 0.0051 to 0.0107 ) 0.000 0.0091 ( 0.0054 to 0.0128 ) 0.000 
t2 (0 weeks to 6 weeks) 0.2805 ( 0.2123 to 0.3487 ) 0.000 0.2731 ( 0.1818 to 0.3643 ) 0.000 
t3 (6 weeks to 4 years) 0.0070 ( 0.0035 to 0.0106 ) 0.000 0.0022 ( -0.0025 to 0.0069 ) 0.360 
age ref ref 

50-59 0.9184 ( -0.0947 to 1.9315 ) 0.076 0.8097 ( -0.4503 to 2.0698 ) 0.208 
60-69 -3.2989 ( -4.4273 to -2.1706 ) 0.000 -2.8048 ( -4.1967 to -1.4129 ) 0.000 
70-79 -7.2780 ( -8.2945 to -6.2615 ) 0.000 -7.8847 ( -9.1800 to -6.5894 ) 0.000 

80-89 -
13.0431 ( -

13.9985 to -
12.0878 ) 0.000 -

11.8903 ( -
13.1387 to -

10.6419 ) 0.000 

age*t1 ref ref 
50-59 -0.0095 ( -0.0137 to -0.0053 ) 0.000 -0.0115 ( -0.0170 to -0.0060 ) 0.000 
60-69 -0.0186 ( -0.0232 to -0.0140 ) 0.000 -0.0183 ( -0.0243 to -0.0124 ) 0.000 
70-79 -0.0270 ( -0.0312 to -0.0228 ) 0.000 -0.0268 ( -0.0322 to -0.0213 ) 0.000 
80-89 -0.0308 ( -0.0349 to -0.0268 ) 0.000 -0.0322 ( -0.0375 to -0.0269 ) 0.000 

age*t2 ref ref 
50-59 -0.0760 ( -0.1784 to 0.0264 ) 0.146 -0.0453 ( -0.1807 to 0.0901 ) 0.512 
60-69 -0.2258 ( -0.3384 to -0.1133 ) 0.000 -0.2176 ( -0.3649 to -0.0703 ) 0.004 
70-79 -0.3890 ( -0.4994 to -0.2785 ) 0.000 -0.3480 ( -0.4929 to -0.2032 ) 0.000 
80-89 -0.3604 ( -0.4722 to -0.2486 ) 0.000 -0.3641 ( -0.5134 to -0.2148 ) 0.000 

age*t3 ref ref 
50-59 0.0002 ( -0.0053 to 0.0056 ) 0.953 0.0027 ( -0.0044 to 0.0098 ) 0.464 
60-69 -0.0036 ( -0.0096 to 0.0024 ) 0.242 -0.0012 ( -0.0090 to 0.0066 ) 0.755 
70-79 -0.0137 ( -0.0202 to -0.0072 ) 0.000 -0.0085 ( -0.0169 to 0.0000 ) 0.050 
80-89 -0.0266 ( -0.0335 to -0.0197 ) 0.000 -0.0190 ( -0.0281 to -0.0099 ) 0.000 

intercept 81.6 ( 80.9 to 82.2 ) 0.000 88.27 ( 86.99 to 89.55 ) 0.000 
ref=reference group. All estimates come from mixed effects models (restricted maximum likelihood and unstructured covariance matrix), adjusted for sex, social deprivation (Townsend) 
and first dose when indicated. Intercept was set at the very beginning of the observation period. 
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10.4.4 Appendix 7D: Table 7D (for risperidone) 
 

 

Table 7D. Trajectories of weight change by age, and interaction between age and time for the quetiapine cohort.  

Weight Trajectories by AGE 
(Complete Case Analysis) 

Risperidone 
Unadjusted Adjusted 

(combined=7,293)                                                                        
(40-49 years=1,353; 50-59 years=1,065; 60-69 years=1,014; 70-

79 years=1,614; 80-89 years=2,247) 

(combined=4,761)                                                                   
(40-49 years=961; 50-59 years=716; 60-69 years=696; 70-79 

years=1,016; 80-89 years=1,372) 

Beta 95% CI p Beta 95% CI p 

40-49 
years 

t1 (-4 years to 0 weeks) 0.0094 ( 0.0042 to 0.0146 ) 0.000 0.0094 ( 0.0033 to 0.0154 ) 0.002 
t2 (0 weeks to 6 weeks) 0.2463 ( 0.1214 to 0.3712 ) 0.000 0.2853 ( 0.1404 to 0.4302 ) 0.000 
t3 (6 weeks to 4 years) 0.0116 ( 0.0056 to 0.0176 ) 0.000 0.0097 ( 0.0026 to 0.0168 ) 0.008 
intercept 80.62 ( 79.31 to 81.92 ) 0.000 85.25 ( 81.35 to 89.15 ) 0.000 

50-59 
years 

t1 (-4 years to 0 weeks) -0.0028 ( -0.0084 to 0.0028 ) 0.322 -0.0051 ( -0.0123 to 0.0021 ) 0.165 
t2 (0 weeks to 6 weeks) 0.2575 ( 0.1261 to 0.3889 ) 0.000 0.3121 ( 0.1450 to 0.4792 ) 0.000 
t3 (6 weeks to 4 years) 0.0041 ( -0.0021 to 0.0103 ) 0.195 0.0056 ( -0.0024 to 0.0135 ) 0.169 
intercept 80.23 ( 78.82 to 81.64 ) 0.000 88.10 ( 84.06 to 92.13 ) 0.000 

60-69 
years 

t1 (-4 years to 0 weeks) -0.0087 ( -0.0139 to -0.0035 ) 0.001 -0.0085 ( -0.0145 to -0.0024 ) 0.006 
t2 (0 weeks to 6 weeks) 0.0647 ( -0.0518 to 0.1812 ) 0.276 0.1022 ( -0.0384 to 0.2429 ) 0.154 
t3 (6 weeks to 4 years) 0.0024 ( -0.0040 to 0.0088 ) 0.466 0.0010 ( -0.0063 to 0.0082 ) 0.793 
intercept 77.66 ( 76.40 to 78.92 ) 0.000 83.55 ( 80.15 to 86.96 ) 0.000 

70-79 
years 

t1 (-4 years to 0 weeks) -0.0183 ( -0.0218 to -0.0148 ) 0.000 -0.0177 ( -0.0223 to -0.0131 ) 0.000 
t2 (0 weeks to 6 weeks) -0.0926 ( -0.1929 to 0.0077 ) 0.070 -0.1131 ( -0.2425 to 0.0163 ) 0.087 
t3 (6 weeks to 4 years) -0.0060 ( -0.0130 to 0.0010 ) 0.092 -0.0032 ( -0.0114 to 0.0050 ) 0.440 
intercept 73.71 ( 72.85 to 74.57 ) 0.000 80.00 ( 77.72 to 82.28 ) 0.000 
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80-89 
years 

t1 (-4 years to 0 weeks) -0.0216 ( -0.0245 to -0.0187 ) 0.000 -0.0212 ( -0.0247 to -0.0177 ) 0.000 
t2 (0 weeks to 6 weeks) -0.1011 ( -0.2086 to 0.0064 ) 0.065 -0.0712 ( -0.1942 to 0.0518 ) 0.257 
t3 (6 weeks to 4 years) -0.0247 ( -0.0333 to -0.0161 ) 0.000 -0.0259 ( -0.0363 to -0.0155 ) 0.000 
intercept 69.20 ( 68.50 to 69.90 ) 0.000 77.22 ( 75.46 to 78.98 ) 0.000 

Combined 

t1 (-4 years to 0 weeks) 0.0087 ( 0.0041 to 0.0132 ) 0.000 0.0087 ( 0.0033 to 0.0142 ) 0.002 
t2 (0 weeks to 6 weeks) 0.2690 ( 0.1581 to 0.3799 ) 0.000 0.3143 ( 0.1836 to 0.4449 ) 0.000 
t3 (6 weeks to 4 years) 0.0115 ( 0.0059 to 0.0172 ) 0.000 0.0096 ( 0.0029 to 0.0163 ) 0.005 
age ref ref 

50-59 -0.3952 ( -2.0345 to 1.2441 ) 0.637 0.6467 ( -1.2340 to 2.5274 ) 0.500 
60-69 -2.9903 ( -4.6398 to -1.3408 ) 0.000 -2.2956 ( -4.1842 to -0.4071 ) 0.017 
70-79 -7.0115 ( -8.4678 to -5.5551 ) 0.000 -5.6614 ( -7.3847 to -3.9380 ) 0.000 
80-89 -11.5164 ( -12.8868 to -10.1460 ) 0.000 -8.9142 ( -10.5603 to -7.2681 ) 0.000 

age*t1 ref ref 
50-59 -0.0118 ( -0.0185 to -0.0051 ) 0.001 -0.0140 ( -0.0222 to -0.0059 ) 0.001 
60-69 -0.0178 ( -0.0245 to -0.0111 ) 0.000 -0.0173 ( -0.0253 to -0.0094 ) 0.000 
70-79 -0.0268 ( -0.0327 to -0.0209 ) 0.000 -0.0262 ( -0.0334 to -0.0190 ) 0.000 
80-89 -0.0302 ( -0.0358 to -0.0245 ) 0.000 -0.0300 ( -0.0370 to -0.0231 ) 0.000 

age*t2 ref ref 
50-59 -0.0181 ( -0.1836 to 0.1474 ) 0.830 -0.0211 ( -0.2206 to 0.1784 ) 0.836 
60-69 -0.1968 ( -0.3627 to -0.0308 ) 0.020 -0.2157 ( -0.4130 to -0.0185 ) 0.032 
70-79 -0.3673 ( -0.5245 to -0.2101 ) 0.000 -0.4412 ( -0.6322 to -0.2502 ) 0.000 
80-89 -0.3693 ( -0.5271 to -0.2114 ) 0.000 -0.3747 ( -0.5685 to -0.1809 ) 0.000 

age*t3 ref ref 
50-59 -0.0075 ( -0.0159 to 0.0010 ) 0.083 -0.0038 ( -0.0140 to 0.0064 ) 0.466 
60-69 -0.0080 ( -0.0169 to 0.0008 ) 0.074 -0.0068 ( -0.0173 to 0.0036 ) 0.201 
70-79 -0.0165 ( -0.0257 to -0.0074 ) 0.000 -0.0120 ( -0.0231 to -0.0009 ) 0.033 
80-89 -0.0359 ( -0.0458 to -0.0261 ) 0.000 -0.0361 ( -0.0482 to -0.0240 ) 0.000 

intercept 80.7 ( 79.6 to 81.8 ) 0.000 85.91 ( 84.17 to 87.64 ) 0.000 
ref=reference group. All estimates come from mixed effects models (restricted maximum likelihood and unstructured covariance matrix), adjusted for sex, social deprivation (Townsend) and 
first dose when indicated. Intercept was set at the very beginning of the observation period. 
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10.4.5 Appendix 7E: Table 7E (for olanzapine) 
 

Table 7E. Trajectories of weight change by dose, and interaction between dose and time for the olanzapine cohort. 

Weight Trajectories by DOSE 

Olanzapine 
Unadjusted Adjusted (CCA) Adjusted (MI-JOMO) 

(total=6,776)                                                                           
(low-dose=3,280; high-dose=1,643; missing dose=1,853; 

combined=4,923) 

(total=6,776)                                                                          
(low-dose=3,280; high-dose=1,643; missing dose=1,853; 

combined=4,923) 
(total=6,776)                                                                          

(low-dose=4,403; high-dose=2,323; combined=6,776) 

Beta 95% CI p Beta 95% CI p Beta 95% CI p 

Low      
dose 

t1 (-4 years to 0 weeks) -0.0134 ( -0.0163 to -0.0106 ) 0.000 -0.0140 ( -0.0168 to -0.0111 ) 0.000 -0.0145 ( -0.0171 to -0.0119 ) 0.000 
t2 (0 weeks to 6 weeks) 0.2893 ( 0.2158 to 0.3629 ) 0.000 0.2932 ( 0.2197 to 0.3667 ) 0.000 0.3113 ( 0.2433 to 0.3793 ) 0.000 
t3 (6 weeks to 4 years) 0.0096 ( 0.0058 to 0.0134 ) 0.000 0.0095 ( 0.0057 to 0.0133 ) 0.000 0.0099 ( 0.0064 to 0.0134 ) 0.000 
intercept 74.27 ( 73.60 to 74.95 ) 0.000 80.60 ( 68.50 to 92.71 ) 0.000 96.93 ( 83.98 to 109.89 ) 0.000 

High     
dose 

t1 (-4 years to 0 weeks) -0.0116 ( -0.0163 to -0.0069 ) 0.000 -0.0119 ( -0.0166 to -0.0072 ) 0.000 -0.0120 ( -0.0162 to -0.0078 ) 0.000 
t2 (0 weeks to 6 weeks) 0.5017 ( 0.3950 to 0.6084 ) 0.000 0.4945 ( 0.3881 to 0.6009 ) 0.000 0.4517 ( 0.3548 to 0.5487 ) 0.000 
t3 (6 weeks to 4 years) 0.0100 ( 0.0051 to 0.0148 ) 0.000 0.0099 ( 0.0050 to 0.0147 ) 0.000 0.0100 ( 0.0055 to 0.0145 ) 0.000 
intercept 78.29 ( 77.24 to 79.35 ) 0.000 82.21 ( 62.49 to 101.93 ) 0.000 96.01 ( 75.89 to 116.12 ) 0.000 

Missing 
dose 

t1 (-4 years to 0 weeks) -0.0140 ( -0.0180 to -0.0099 ) 0.000 -0.0145 ( -0.0186 to -0.0105 ) 0.000               
t2 (0 weeks to 6 weeks) 0.3491 ( 0.2409 to 0.4574 ) 0.000 0.3604 ( 0.2525 to 0.4683 ) 0.000               
t3 (6 weeks to 4 years) 0.0111 ( 0.0057 to 0.0165 ) 0.000 0.0108 ( 0.0053 to 0.0162 ) 0.000               
intercept 75.73 ( 74.79 to 76.67 ) 0.000 89.02 ( 72.11 to 105.94 ) 0.000               

Combined 

t1 (-4 years to 0 weeks) -0.0133 ( -0.0163 to -0.0104 ) 0.000 -0.0138 ( -0.0167 to -0.0108 ) 0.000 -0.0144 ( -0.0171 to -0.0117 ) 0.000 
t2 (0 weeks to 6 weeks) 0.2896 ( 0.2152 to 0.3639 ) 0.000 0.2914 ( 0.2172 to 0.3656 ) 0.000 0.3100 ( 0.2415 to 0.3786 ) 0.000 
t3 (6 weeks to 4 years) 0.0095 ( 0.0057 to 0.0132 ) 0.000 0.0093 ( 0.0055 to 0.0130 ) 0.000 0.0097 ( 0.0062 to 0.0131 ) 0.000 
high-dose 4.0634 ( 2.8449 to 5.2820 ) 0.000 0.8732 ( -0.3106 to 2.0570 ) 0.148 0.8529 ( -0.6017 to 2.3075 ) 0.246 
high-dose*t1 0.0014 ( -0.0039 to 0.0066 ) 0.615 0.0012 ( -0.0041 to 0.0065 ) 0.650 0.0018 ( -0.0033 to 0.0070 ) 0.481 
high-dose*t2 0.2182 ( 0.0900 to 0.3463 ) 0.001 0.2117 ( 0.0837 to 0.3396 ) 0.001 0.1496 ( 0.0250 to 0.2742 ) 0.019 
high-dose*t3 0.0006 ( -0.0056 to 0.0068 ) 0.858 0.0007 ( -0.0055 to 0.0069 ) 0.834 0.0005 ( -0.0056 to 0.0065 ) 0.883 
intercept 74.3 ( 73.6 to 75.0 ) 0.000 80.39 ( 70.28 to 90.50 ) 0.000 96.47 ( 86.31 to 106.62 ) 0.000 

All estimates come from mixed effects models (restricted maximum likelihood and unstructured covariance matrix), and were adjusted for sex, social deprivation (Townsend) and age when indicated. Missing dose was handled with complete case analysis 
(CCA) and multilevel multiple imputation (MI-JOMO). Results from both methods are visible in the table. Intercept was set at the very beginning of the observation period. 
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10.4.6 Appendix 7F: Table 7F (for quetiapine) 

 

Table 7F. Trajectories of weight change by dose, and interaction between dose and time for the quetiapine cohort. 

Weight Trajectories by DOSE 

Quetiapine 
Unadjusted Adjusted (CCA) Adjusted (MI-JOMO) 
(total=14,970)                                                                         

(low-dose=6,856; high-dose=2,094; missing dose=6,020; 
combined=8,950) 

(total=14,970)                                                                        
(low-dose=6,856; high-dose=2,094; missing dose=6,020; 

combined=8,950) 
(total=14,970)                                                                         

(low-dose=11,023; high-dose=3,882; combined=14,970) 

Beta 95% CI p Beta 95% CI p Beta 95% CI p 

Low      
dose 

t1 (-4 years to 0 weeks) -0.0114 ( -0.0134 to -0.0094 ) 0.000 -0.0116 ( -0.0136 to -0.0096 ) 0.000 -0.0113 ( -0.0130 to -0.0097 ) 0.000 
t2 (0 weeks to 6 weeks) 0.0430 ( -0.0112 to 0.0973 ) 0.120 0.0467 ( -0.0073 to 0.1008 ) 0.090 0.0661 ( 0.0217 to 0.1105 ) 0.004 
t3 (6 weeks to 4 years) -0.0025 ( -0.0057 to 0.0006 ) 0.117 -0.0029 ( -0.0061 to 0.0002 ) 0.068 0.0006 ( -0.0020 to 0.0032 ) 0.649 
intercept 75.54 ( 75.03 to 76.04 ) 0.000 90.22 ( 81.17 to 99.27 ) 0.000 102.38 ( 93.84 to 110.91 ) 0.000 

High     
dose 

t1 (-4 years to 0 weeks) 0.0026 ( -0.0016 to 0.0068 ) 0.226 0.0023 ( -0.0019 to 0.0065 ) 0.277 -0.0025 ( -0.0058 to 0.0007 ) 0.130 
t2 (0 weeks to 6 weeks) 0.2870 ( 0.1884 to 0.3855 ) 0.000 0.2852 ( 0.1868 to 0.3835 ) 0.000 0.2091 ( 0.1311 to 0.2870 ) 0.000 
t3 (6 weeks to 4 years) 0.0060 ( 0.0011 to 0.0109 ) 0.015 0.0059 ( 0.0011 to 0.0108 ) 0.017 0.0061 ( 0.0020 to 0.0102 ) 0.004 
intercept 80.97 ( 80.00 to 81.94 ) 0.000 74.09 ( 55.27 to 92.91 ) 0.000 91.55 ( 76.26 to 106.85 ) 0.000 

Missing 
dose 

t1 (-4 years to 0 weeks) -0.0099 ( -0.0121 to -0.0077 ) 0.000 -0.0100 ( -0.0122 to -0.0079 ) 0.000               
t2 (0 weeks to 6 weeks) 0.1051 ( 0.0495 to 0.1608 ) 0.000 0.1011 ( 0.0456 to 0.1566 ) 0.000               
t3 (6 weeks to 4 years) 0.0061 ( 0.0029 to 0.0094 ) 0.000 0.0061 ( 0.0028 to 0.0093 ) 0.000               
intercept 77.37 ( 76.83 to 77.91 ) 0.000 91.52 ( 82.13 to 100.90 ) 0.000               

Combined 

t1 (-4 years to 0 weeks) -0.0114 ( -0.0135 to -0.0093 ) 0.000 -0.0116 ( -0.0137 to -0.0095 ) 0.000 -0.0113 ( -0.0130 to -0.0096 ) 0.000 
t2 (0 weeks to 6 weeks) 0.0496 ( -0.0065 to 0.1057 ) 0.083 0.0509 ( -0.0051 to 0.1068 ) 0.075 0.0690 ( 0.0238 to 0.1143 ) 0.003 
t3 (6 weeks to 4 years) -0.0026 ( -0.0058 to 0.0007 ) 0.120 -0.0032 ( -0.0064 to 0.0001 ) 0.055 0.0004 ( -0.0022 to 0.0031 ) 0.751 
high-dose 5.4369 ( 4.3763 to 6.4976 ) 0.000 -0.7762 ( -1.8154 to 0.2630 ) 0.143 -0.5034 ( -1.5478 to 0.5411 ) 0.341 
high-dose*t1 0.0140 ( 0.0097 to 0.0183 ) 0.000 0.0138 ( 0.0095 to 0.0181 ) 0.000 0.0088 ( 0.0051 to 0.0126 ) 0.000 
high-dose*t2 0.2329 ( 0.1265 to 0.3393 ) 0.000 0.2308 ( 0.1247 to 0.3369 ) 0.000 0.1363 ( 0.0438 to 0.2289 ) 0.004 
high-dose*t3 0.0086 ( 0.0029 to 0.0143 ) 0.003 0.0093 ( 0.0036 to 0.0149 ) 0.001 0.0059 ( 0.0007 to 0.0110 ) 0.025 
intercept 75.5 ( 75.0 to 76.0 ) 0.000 85.63 ( 77.76 to 93.51 ) 0.000 99.27 ( 92.18 to 106.37 ) 0.000 

All estimates come from mixed effects models (restricted maximum likelihood and unstructured covariance matrix), and were adjusted for sex, social deprivation (Townsend) and age when indicated. Missing dose was handled with complete case 
analysis (CCA) and multilevel multiple imputation (MI-JOMO). Results from both methods are visible in the table. Intercept was set at the very beginning of the observation period. 
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10.4.7 Appendix 7G: Table 7G (for risperidone) 
 

Table 7G. Trajectories of weight change by dose, and interaction between dose and time for the risperidone cohort. 

Weight Trajectories by DOSE 

Risperidone 
Unadjusted Adjusted (CCA) Adjusted (MI-JOMO) 
(total=7,293)                                                                           

(low-dose=4,299; high-dose=462; missing dose=2,532; 
combined=4,761) 

(total=7,293)                                                                          
(low-dose=4,299; high-dose=462; missing dose=2,532; 

combined=4,761) 
(total=7,293)                                                                          

(low-dose=6,365; high-dose=3,964; combined=7,293) 

Beta 95% CI p Beta 95% CI p Beta 95% CI p 

Low      
dose 

t1 (-4 years to 0 weeks) -0.0123 ( -0.0147 to -0.0099 ) 0.000 -0.0126 ( -0.0150 to -0.0102 ) 0.000 -0.0127 ( -0.0147 to -0.0107 ) 0.000 
t2 (0 weeks to 6 weeks) 0.1062 ( 0.0390 to 0.1734 ) 0.002 0.1006 ( 0.0335 to 0.1676 ) 0.003 0.0728 ( 0.0169 to 0.1287 ) 0.011 
t3 (6 weeks to 4 years) 0.0008 ( -0.0032 to 0.0048 ) 0.683 0.0009 ( -0.0031 to 0.0049 ) 0.655 0.0009 ( -0.0024 to 0.0042 ) 0.602 
intercept 74.77 ( 74.17 to 75.38 ) 0.000 87.34 ( 76.34 to 98.34 ) 0.000 97.23 ( 86.47 to 107.99 ) 0.000 

High     
dose 

t1 (-4 years to 0 weeks) 0.0065 ( -0.0020 to 0.0149 ) 0.132 0.0059 ( -0.0025 to 0.0144 ) 0.166 -0.0012 ( -0.0087 to 0.0063 ) 0.754 
t2 (0 weeks to 6 weeks) 0.1706 ( -0.0339 to 0.3751 ) 0.102 0.1731 ( -0.0313 to 0.3776 ) 0.097 0.1338 ( -0.0656 to 0.3332 ) 0.188 
t3 (6 weeks to 4 years) 0.0070 ( -0.0020 to 0.0160 ) 0.126 0.0070 ( -0.0020 to 0.0160 ) 0.126 0.0069 ( -0.0023 to 0.0160 ) 0.141 
intercept 80.57 ( 78.61 to 82.54 ) 0.000 87.89 ( 45.36 to 130.41 ) 0.000 85.03 ( 44.46 to 125.60 ) 0.000 

Missing 
dose 

t1 (-4 years to 0 weeks) -0.0124 ( -0.0155 to -0.0092 ) 0.000 -0.0127 ( -0.0159 to -0.0096 ) 0.000               
t2 (0 weeks to 6 weeks) 0.0257 ( -0.0642 to 0.1157 ) 0.575 0.0094 ( -0.0801 to 0.0989 ) 0.837               
t3 (6 weeks to 4 years) 0.0013 ( -0.0041 to 0.0067 ) 0.633 0.0014 ( -0.0040 to 0.0068 ) 0.615               
intercept 74.88 ( 74.08 to 75.69 ) 0.000 88.25 ( 72.95 to 103.56 ) 0.000               

Combined 

t1 (-4 years to 0 weeks) -0.0123 ( -0.0148 to -0.0099 ) 0.000 -0.0127 ( -0.0151 to -0.0103 ) 0.000 -0.0128 ( -0.0148 to -0.0108 ) 0.000 
t2 (0 weeks to 6 weeks) 0.1082 ( 0.0400 to 0.1764 ) 0.002 0.1032 ( 0.0351 to 0.1713 ) 0.003 0.0743 ( 0.0173 to 0.1312 ) 0.011 
t3 (6 weeks to 4 years) 0.0008 ( -0.0032 to 0.0047 ) 0.706 0.0007 ( -0.0033 to 0.0047 ) 0.729 0.0008 ( -0.0026 to 0.0041 ) 0.654 
high-dose 5.7331 ( 3.7512 to 7.7150 ) 0.000 -1.4312 ( -3.3492 to 0.4867 ) 0.144 -0.6345 ( -3.1030 to 1.8341 ) 0.608 
high-dose*t1 0.0195 ( 0.0115 to 0.0274 ) 0.000 0.0198 ( 0.0118 to 0.0278 ) 0.000 0.0121 ( 0.0045 to 0.0197 ) 0.002 
high-dose*t2 0.0504 ( -0.1469 to 0.2477 ) 0.617 0.0454 ( -0.1517 to 0.2425 ) 0.652 0.0456 ( -0.1615 to 0.2527 ) 0.664 
high-dose*t3 0.0061 ( -0.0039 to 0.0162 ) 0.231 0.0065 ( -0.0035 to 0.0165 ) 0.205 0.0064 ( -0.0038 to 0.0167 ) 0.217 
intercept 74.8 ( 74.2 to 75.4 ) 0.000 86.40 ( 75.94 to 96.86 ) 0.000 95.75 ( 85.74 to 105.75 ) 0.000 

All estimates come from mixed effects models (restricted maximum likelihood and unstructured covariance matrix), and were adjusted for sex, social deprivation (Townsend) and age when indicated. Missing dose was handled with complete 
case analysis (CCA) and multilevel multiple imputation (MI-JOMO). Results from both methods are visible in the table. Intercept was set at the very beginning of the observation period.   
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10.4.8 Appendix 7H: Tables 7H-Sex, 7H-Dose and 7H-Age (for all drugs) 
 

Table 7H-Sex. Expected weight gain for an average patient prescribed a particular antipsychotic, stratified by sex. 

Drug Sex N 
Weight gained during 

short-time (0-6 
weeks) in Kilograms 

95% CI 

Weight gained during 
long-time (6weeks - 

4 years) in 
Kilograms 

95% CI Total                       
weight gained 

OLANZAPINE 
Women 3,803 1.8 (1.4 to 2.2) 2.5 (1.8 to 3.2) 4.3 

Men 2,973 2.7 (2.2 to 3.2) 1.3 (0.6 to 2.1) 4 

QUETIAPINE 
Women 8,765 0.8 (0.5 to 1.1) 0.8 (0.2 to 1.3) 1.6 

Men 6,205 0.6 (0.3 to 0.9) -0.1 (-0.7 to 0.6) 0.5 

RISPERIDONE 
Women 4,127 0.4 (0 to 0.8)  0.3 (-0.5 to 1.1) 0.7 

Men 3,166 0.6 (0.1 to 1.1) 0.4 (-0.5 to 1.3) 1 

Estimates come from Table 7A 
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Table 7H-Dose. Expected weight gain for an average patient prescribed a particular antipsychotic, stratified by dose. 

Drug Dose* N 
Weight gained during 

short-time (0-6 weeks) 
in Kilograms 

95% CI 
Weight gained during 
long-time (6weeks - 4 
years) in Kilograms 

95% CI Total                       
weight gained 

OLANZAPINE 
low 4,403 1.9 (1.5 to 2.3) 2 (1.3 to 2.7) 3.9 

high 2,323 2.7 (2.1 to 3.3) 2 (1.1 to 2.9) 4.7 

QUETIAPINE 
low 11,023 0.4 (0.1 to 0.7) 0.1 (-0.4 to 0.6) 0.5 

high 3,882 1.3 (0.8 to 1.7) 1.2 (0.4 to 2.1) 2.5 

RISPERIDONE 
low 6,365 0.4 (0.1 to 0.8) 0.2 (-0.5 to 0.8) 0.6 

high 3,964 0.8 (-0.4 to 1.9) 1.4 (-0.5 to 3.2) 2.2 

Estimates come from Tables 7E, 7F and 7G (adjusted, MI-JOMO) 

(*) Cut off point for low/high dose was: ≤5 mg for Olanzapine, ≤75 mg for Quetiapine and ≤2 mg for Risperidone.  
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Table 7H-Age. Expected weight gain for an average patient prescribed a particular antipsychotic, stratified by age. 

Drug Age      (years) N 

Weight gained 
during short-

time (0-6 
weeks) in 

Kilograms 

95% CI 

Weight gained 
during    long-
time (6weeks - 

4 years) in 
Kilograms 

95% CI Total                       
weight gained 

OLANZAPINE 

40-49 1,468 3.8 (3.1 to 4.5) 2.2 (1.1 to 3.3) 6 

50-59 1,165 2.8 (2.1 to 3.5) 2.7 (1.6 to 3.8) 5.5 

60-69 926 1.5 (0.6 to 2.3) 2.1 (0.5 to 3.6) 3.6 

70-79 834 0.5 (-0.3 to 1.3) 0.1 (-1.4 to 1.7) 0.6 

80-89 530 -0.3 (-1.4 to 0.9) -0.4 (-2.1 to 1.3) -0.7 

QUETIAPINE 

40-49 2,325 1.6 (1.0 to 2.2) 0.5 (-0.5 to 1.5) 2.1 

50-59 1,694 1.4 (0.8 to 2.0) 1.0 (0 to 2.0) 2.4 

60-69 1,227 0.4 (-0.3 to 1.0) 0.1 (-1.1 to 1.3) 0.5 

70-79 1,656 -0.4 (-1.0 to 0.3) -1.6 (-2.9 to -0.2) -2 

80-89 2,048 -0.6 (-1.2 to 0.1) -3.2 (-4.8 to -1.6) -3.8 

RISPERIDONE 

40-49 961 1.7 (0.8 to 2.6) 2.0 (0.5 to 3.4) 3.7 

50-59 716 1.9 (0.9 to 2.9) 1.1 (-0.5 to 2.7) 3 

60-69 696 0.6 (-0.2 to 1.5) 0.2 (-1.3 to 1.7) 0.8 
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70-79 1,016 -0.7 (-1.5 to 0.1) -0.6 (-2.3 to 1.0) -1.3 

80-89 1,372 -0.4 (-1.1 to 0.3) -5.2 (-7.3 to -3.1) -5.6 

Estimates come from Tables 7B, 7C and 7D (adjusted) 
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10.4.9 Appendix 7I: Table 7I (for olanzapine) 
 

Table 7I. ITS effect size of second-generation antipsychotics on weight change in the LONG-TERM, by age and dose. 

    Low Dose High Dose 

Antipsychotic Age 
(years) 

pre-
treatment 

(β1) 

long-
term 
(β3) 

ITS effect 
size (β3-β1) 

pre-
treatment 

(β1) 

long-
term 
(β3) 

ITS effect 
size (β3-β1) 

Olanzapine 

40-49 0.0020 0.0130 0.0110 -0.0005 0.0093 0.0098 
50-59 -0.0088 0.0124 0.0212 -0.0200 0.0151 0.0351 
60-69 -0.0137 0.0141 0.0278 -0.0091 0.0047 0.0138 
70-79 -0.0236 -0.0008 0.0228 -0.0216 0.0027 0.0243 
80-89 -0.0269 -0.0041 0.0228 -0.0261 -0.0024 0.0237 

ITS = interrupted time series. In this approach, the long-term effect size can be estimated by the difference between pre-treatment trajectory (beta 
1) and long-term post-treatment trajectory (beta 3). Estimates are unadjusted. 
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10.5 Conference presentations, grant funding and publications related to this 

thesis 

 

10.5.1 Conference presentations 
 

I presented different components of this thesis, at different stages of progress, in the 
conferences listed below: 

 

• Bazo-Alvarez JC, Petersen I, Morris T, Carpenter J. Analysing weight after 
antipsychotic drug treatment: understanding missing data behaviour and its 
impact on estimates in longitudinal electronic health records. Poster 
presented in the Symposium of Peruvian Researchers at Europe SINAPSIS, 
Berlin Oct 2017. https://www.sinapsis-peru.org/ 

 

• Bazo-Alvarez JC 32, Morris TP, Carpenter JR, Petersen I. Weight change after 
anti-psychotic drug treatment: long-term evidence from a retrospective study 
using electronic health records. Poster presented in the International Society 
of Pharmacovigilance 18th Annual Meeting, Geneve Nov 
2018. https://www.isop2018geneva.org/programme/poster-listing.html 

 

• Bazo-Alvarez JC 33, Morris TP, Carpenter JR, Hayes JF, Petersen I. Antipsychotic 
dose and weight gain: long-term evidence from a retrospective study using 
electronic health records. Poster presented in the 35th International 
Conference of Pharmacoepidemiology and Risk Management, Philadelphia, Aug 
2019. https://onlinelibrary.wiley.com/toc/10991557/2019/28/S2 

 

• Bazo-Alvarez JC, Petersen I, Morris TP, Carpenter JR. Handling missing data for 
interrupted time series analysis in longitudinal electronic health records. Poster 
presented in the 4th Symposium of Peruvian Scientists in Europe SINAPSIS, 
Ghent, Oct 2019. https://www.sinapsis-peru.org/ 

  

32 Best Poster. An early version of this poster won the Best Poster Prize in the 3rd Annual Symposium of Peruvian 
Scientists in Europe, SINAPSIS Oct 2018, Barcelona, Spain. The presentation of the definitive version (in Geneve) 
was supported by the Seedcorn Funding Award given by the Research Department of Primary Care and Population 
Health at UCL. 
33 Travel Scholarship. I was given this scholarship by the International Society of Pharmacoepidemiology (ISPE) 
for presenting this poster in Philadelphia, USA. 
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• Bazo-Alvarez JC 34, Morris TP, Pham TM, Carpenter JR, Petersen I. How to deal 
with missing data in interrupted time series analysis with electronic health 
records. Oral presentation accepted for the International Conference of 
Pharmacoepidemiology All Access, Sep 2020 
. https://www.eventscribe.com/2020/ICPEAllAccess/ 

 

10.5.2 Grant funding 
 

During my PhD, I got two grants for funding projects that include components directly 
connected to my PhD thesis: 

 

Title: Prescribing of Antipsychotic Drugs in Older People in the UK: a cohort 
study using UK primary care data  

Year:  2019  
Amount: GBP 29,448.93 
Funder:  Funded by NHS National Institute for Health Research, School for 

Primary Care Research (Funding Round - 17)  
Applicants: Elizabeth Jones (PI), Irene Petersen, JC Bazo-Alvarez, Kate Walters, 

Cini Bhanu.  
Connection: This project has a component related to antipsychotic-induced weight 

gain in older people, which is directly connected to the Chapter 7 of my 
thesis.  

 

Title: Statins and LDL-Cholesterol in the long-term: a retrospective cohort 
study using electronic health records 

Year:  2020  
Amount: GBP 17,069.74 
Funder:  Funded by NHS National Institute for Health Research, School for 

Primary Care Research (Funding Round - 19)  
Applicants: JC Bazo-Alvarez (PI), Irene Petersen, Wannamethee Goya, Kingshuk 

Pal. 
Connection: In this project, we will apply the approach I studied in this thesis 

(interrupted time series with mixed effects models and multilevel 
multiple imputation). The study will start in Oct 2020. 

 

  

34 All Access Scholarship. I was given this scholarship by the International Society of Pharmacoepidemiology 
(ISPE) for oral presentation in the ICPE All Access Sep 2020 

223 
 

                                                           

https://www.eventscribe.com/2020/ICPEAllAccess/


10.5.3 Publications 
 

Up to August 2020, I got one original article published and another accepted for 
publication: 

 

• Bazo-Alvarez JC, Morris TP, Carpenter JR, Hayes JF, Petersen I. Effects of long-
term antipsychotics treatment on body weight: A population-based cohort 
study. Journal of Psychopharmacology. 2020 Jan;34(1):79-85. 

 

• Bazo-Alvarez JC, Morris TP, Pham TM, Carpenter JR, Petersen I. Handling 
missing values in interrupted time series analysis of longitudinal individual-level 
data. Accepted for publication in Clinical Epidemiology. 2020 Aug. 

 

The first paper is based on Chapter 5 (An application of interrupted time series with 
mixed effect models) and the second paper is based on Chapter 6 of this thesis 
(Evaluating methods for missing data handling in interrupted time series analysis via 
simulation studies). In the next pages, I show copies of both the published and accepted 
papers:  
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Introduction
Overweight and obesity is a worldwide problem that impacts 
severely on population health (Newcomer and Haupt, 2006). 
Since the prevalence of overweight and obesity is higher in indi-
viduals with severe mental illnesses than in the general popula-
tion (Elmslie et al., 2000; Holt and Peveler, 2009), their risk of 
harmful consequences is also higher (Hayes et al., 2017; Osborn 
et al., 2007). Individuals with severe mental illnesses are more 
susceptible to developing metabolic syndrome, type-2 diabetes 
mellitus (De Hert et al., 2006) and cardiovascular diseases (Emul 
and Kalelioglu, 2015; Osborn et al., 2007), leading to a higher 
risk of death. Adults with schizophrenia have three and a half 
times the mortality risk than the general population, with cardio-
vascular diseases the most common cause (Olfson et al., 2015; 
Osborn et al., 2007). Particularly, Lahti et al. demonstrated that 
the risk of death is higher in women than in men with schizophre-
nia (Lahti et al., 2012), suggesting that differences between sexes 
need to be further investigated.

Second-generation antipsychotics (AP) are a known cause of 
weight gain (Bak et al., 2014; Osborn et al., 2018). Some evi-
dence suggests that women gain more weight than men during 
AP treatment (Seeman, 2008). One study suggested that women 
have five times the odds of increasing body mass index (BMI) 
compared with men after a period of two years or more (Koga, 
2003). Of women treated with clozapine, 29% gained ⩾ 20% of 

their baseline body weight after two years of follow up, in con-
trast to 13% of men (Covell et al., 2004). Other studies have dem-
onstrated similar differences between men and women (Gebhardt 
et al., 2009; Najar et al., 2017). However, most of these studies 
are based on small sample sizes of less than 200 individuals, and 
most do not distinguish between short- and long-term weight 
gain associated with antipsychotic treatment.

Weight gain after initiation of antipsychotic treatment may 
also depend on body weight when treatment is initiated. Thus, 
Gebhardt et  al. found that low BMI before first AP treatment 
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predicted a faster increment of BMI after treatment initiation 
(Gebhardt et al., 2009), and a similar conclusion was reached by 
Najar et al. (2017). On the other hand, we have limited informa-
tion about how doses of antipsychotic treatment are associated 
with weight gain (Bak et al., 2014).

In this study, our aim was to investigate the change in body 
weight of patients initiated with high or low doses of the three most 
commonly prescribed second-generation antipsychotics: olanzap-
ine, risperidone and quetiapine. Our objectives were to evaluate:

(1)  the short- and long-term change in body weight in men 
and women upon initiation of AP;

(2)   whether this is different for low and high doses;
(3)  whether low body weight at treatment initiation had the 

greatest weight gain.

Methods

Data source

We used anonymized, longitudinal patients’ records from The 
Health Improvement Network (THIN), a database that comprises 
information from UK primary care electronic health records from 
general practices (Roland et  al., 2012). THIN integrates more 
than 12 million patients from 711 general practices, including 
demographic data (sex, year of birth and indicator of social dep-
rivation (quintiles of Townsend score)) and clinical data. The 
clinical data are recorded using the hierarchical Read Code sys-
tem (Chisholm, 1990). In the UK, more than 95% are registered 
with a general practice, THIN is roughly representative of the UK 
population and has been previously used for reporting health 
indicators at the national level (Blak et al., 2011). For this study, 
we included data from all practices after they have been deemed 
to be operating at the standard of acceptable computer usage 
(Horsfall et al., 2013) and whose reported mortality rate was con-
sistent with national statistics (Maguire et al., 2009).

Study population

At the individual level, we included all patients aged between 18 
and 99 years at the date they started their first treatment with olan-
zapine, risperidone or quetiapine; between 1 January 2005 and 31 
December 2015. We included patients with a diagnosed psychiat-
ric disorder (schizophrenia, bipolar disorder, other non-affective 
psychoses, borderline personality disorder, anxiety, depression or 
dementia) who had at least one further prescription of the same 
AP within three months after the first prescription. We judged that 
these individuals were more likely to have initiated treatment than 
those with a single prescription. Patients who had been initiated 
on more than one type of AP were excluded (including switchers). 
A few individuals had no records of year of birth, sex or social 
deprivation records and were thus excluded from our study. 
Likewise, we excluded individuals with no available data 
12 months before the date of initiation of antipsychotic treatments 
since they may have initiated antipsychotic treatment elsewhere.

Variables and measurements

The exposure of interest was the initiation of olanzapine, risperi-
done or quetiapine prescription. In the Neuroscience-based 
Nomenclature olanzapine is a dopamine and serotonin receptor 

antagonist, risperidone is a dopamine, serotonin and norepineph-
rine receptor antagonist, and quetiapine is a dopamine and sero-
tonin receptor antagonist and norepinephrine reuptake inhibitor 
(Nutt and Blier, 2016). The outcome was body weight, measured 
in kilograms. The main covariates were sex (women/men) and 
first prescribed dose of AP (hereafter called ‘first dose’). All AP 
reported first doses in milligrams, but we used the dose-equiva-
lence approach of Woods (Woods, 2003) for defining cut-off 
points of low/high first dose: ⩽ 5 mg for olanzapine, ⩽ 75 mg for 
quetiapine and ⩽ 2 mg for risperidone. Using the ‘2 mg of halop-
eridol equals 100 mg of chlorpromazine’ convention as reference, 
Woods (2003) explored available evidence for identifying the 
minimum effective dose across olanzapine, quetiapine and risp-
eridone, defining this dose equivalence. The first dose is a good 
predictor of all subsequent doses prescribed during treatment; 
thus, over time, patients usually stay in a dose range close to 
the first dose they were prescribed (data not shown). We also 
retrieved information on age, height, social deprivation 
(Townsend score 1–5, from least to most deprived), smoking and 
drinking status, having a type-2 diabetes mellitus diagnosis, sys-
tolic blood pressure (SBP), low-density lipoprotein cholesterol 
(LDL-cholesterol) and high-density lipoprotein cholesterol 
(HDL-cholesterol); recorded within first year of initiation of 
treatment. This information served mostly for sample characteri-
zation; only sex, age, type-2 diabetes mellitus diagnosis and 
social deprivation were fully observed.

Statistical analysis

We used an interrupted time series approach (Bernal et al., 2017) 
to analyse weight change over time, with one model for each of 
the three AP initiation cohorts by sex (six models in total, one per 
drug per sex). We modelled weight change over time using con-
tinuous linear splines with random intercept and slopes models 
(unstructured covariance, restricted maximum likelihood), from 
which three slopes of weight change were estimated for: (a) 
–4 years to baseline (pre-treatment), (b) baseline to +6 weeks 
(short-term), (c) +6 weeks to +4 years (long-term). Differences 
between slopes served to describe weight change after AP treat-
ment initiation, both crude and adjusted for age and social depri-
vation (objective 1). The correlation between average weight at 
baseline (intercept) and short-term gradient of change (short-
term slope) was estimated, as it provided an estimate for whether 
individuals with lower weight at baseline gain more or less 
weight after AP treatment initiation than individuals with higher 
body weight. Negative correlations mean that individuals with 
low weight gain more weight during the short-term period and 
vice versa (objective 3). Our main analysis was performed after 
stratifying each of cohorts according to low/high first dose. This 
was to examine whether the gradient of weight change after treat-
ment varies between low/high first doses of AP (objective 2). For 
all these models, the Intraclass Correlation Coefficient (ICC) was 
reported. Likelihood ratio tests were performed to compare the 
goodness of fit between the nested models. We assumed weight 
records were missing at random within strata, conditional on 
observed weights, so that modelling the observed data over time 
provides unbiased estimates (van Buuren, 2012). We also 
assumed missing data on dose was missing at random, so that the 
complete case analysis we performed provides unbiased esti-
mates (White and Carlin, 2010). Model assessment included 
evaluation of residuals and a visual exploration of average and 
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individual trajectories. Although the chosen impact model (linear 
splines with knots at baseline and +6 weeks) was informed by 
both the clinical criteria and evidence (Bak et al., 2014), we also 
performed a sensitivity analysis following the suggestions from 
Lopez Bernal et al. (Bernal et al., 2017). This sensitivity analysis 
consisted of comparing our preferred linear spline model against 
another feasible impact model, a restricted cubic spline model 
(knots again at baseline and +6 weeks), using graphical and ana-
lytical tools (see Figure S1 in supplemental material). Estimates 
are given with 95% confidence intervals (CIs). All the statistical 
analyses were performed using Stata 15 for Windows (Stata, 
2017).

Results
In total, we included 16,559 men and 22,306 women in the study. 
The median number ± interquartile range of weight measure-
ments within individual trajectories over eight years of observa-
tion were 6 ± 7 and 8 ± 10 (olanzapine cohorts), and 7 ± 8 and 
8 ± 9 (quetiapine and risperidone cohorts) for men and women 
respectively. Characteristics of the individuals are summarized in 
Figure 1 and are provided in more detail in Table S1. On average, 
at initiation of treatment, men were younger than women pre-
scribed olanzapine (men = 47.5 years ±17.8 SD, 
women = 54.0 years ±19.5 SD) and risperidone (men = 56.6 years 
±22.1 SD, women = 64.5 years ±21.8 SD), but were of similar 
age in the quetiapine cohort (men = 56.5 years ±20.7 SD, 
women = 56.1 years ±22.1 SD). On average, men were pre-
scribed higher dose of olanzapine (+1 mg), quetiapine (+10 mg) 
and risperidone (+0.3 mg).

In the short (< 6 weeks) and long term (⩾ 6 weeks to 
⩽ 4 years), individuals treated with any of the three AP drugs 
gained weight, especially those patients prescribed olanzapine. 
Pre-treatment weight change was negligible for quetiapine 
(women and men) and risperidone (men only) cohorts, and 
slightly negative for the rest of cohorts. In the short-term after 
olanzapine initiation, men’s weight increased by 0.569 kg/week 
(3.4 kg over the first six weeks) and women’s weight increased 
by 0.382 kg/week (2.3 kg over the first six weeks) (Tables 1 and 
S2). Individuals initiated on quetiapine and risperidone also 
gained weight shortly after initiation of treatment, but to a lesser 
extent (Tables 1 and S2, and Figure 2). Individuals continued to 
gain weight after six weeks, but at a slower rate than the first six 
weeks. For example, for women initiated on olanzapine, long-
term weight gain was estimated to be 0.014 kg/week (0.7 kg per 
year) (Tables 1 and S2, and Figure 2). Women who were initiated 
on olanzapine were in general slightly lighter (69.7 kg) than 
women initiated on risperidone (73.3 kg) and quetiapine (70.1 kg), 
but there was not much difference for the men (weight at base-
line, see Figure 1 and Table S2). Women who had a lower weight 
before initiation of olanzapine gained more weight in the short 
term than women who had a higher weight (correlation between 
intercept and slope = –0.068, 95% CI: –0.121 to −0.014); a simi-
lar effect was observed for men (correlation between intercept 
and slope = –0.050, 95% CI: –0.113 to +0.014) (Table S2).

The weight gain in individuals who were initiated on high 
dose of AP was greater than those initiated on low dose. When 
olanzapine was initiated at high dose (> 5 mg), women gained 
+0.534 kg/week (+3.2 kg over 6 weeks) and men +0.743 kg/
week (+4.5 kg over 6 weeks) compared with low-dose gain of 

+0.314 kg/week (+1.9 kg over 6 weeks) for women and 
+0.425 kg/week (+2.6 kg over 6 weeks) for men (Tables 1 and 
S3). The short-term effect of initiation of quetiapine was also 
stronger for those given high doses (> 75 mg) (women +2.3 kg 
and men +1.6 kg, both over 6 weeks) than given low doses 
(women +0.7 kg and men +0.5 kg, both over 6 weeks). However, 
there was a relatively small difference for those initiated on risp-
eridone low doses (⩽ 2 mg) (+1.0 kg over 6 weeks for both 
women and men) and high doses (women +1.1 kg and men 
1.9 kg, both over 6 weeks). In the short-term, those given low 
doses of olanzapine tended to gain more weight as their weight at 
baseline was lower (women: correlation between intercept and 
slope = –0.155, 95% CI: –0.230 to −0.078; men: correlation 
between intercept and slope = –0.135, 95% CI: –0.235 to −0.033).

Cumulative weight gain in the long-term was particularly 
high in patients prescribed olanzapine but, for any drug, people 
did not on average lose the extra-weight they gained during the 
short-term (Table 1 and S3). For example, after four years from 
the first olanzapine prescription, a typical woman gained 2.3 kg 
(short-term, 95% CI: 1.9–2.7 kg) + 2.8 kg (long-term, 95% CI: 
2.2–3.5 kg)  = 5.1 kg (total) whereas a typical man gained 3.4 kg 
(short-term, 95%CI: 3.0–3.8 kg) + 1.7 kg (long-term, 95% CI: 
0.9–2.4 kg) = 5.1 kg (total) of AP induced extra-weight. The pre-
scribed dose of olanzapine was also critical, particularly for 
women in the long-term. For example, given a low dose (< 5 mg), 
women gained 1.9 + 2.5 = 4.4 kg after four years; given a high 
dose (> 5 mg), women gained 3.2 + 2.9 = 6.1 kg. A similar impact 
of higher doses was observed for quetiapine and risperidone 
(Table 1 and S3).

Discussion
This retrospective cohort study reports data from patients seen in 
primary care, before and after AP treatment initiation. Pre-
treatment weight change was insignificant or slightly negative 
for all cohorts during four years before baseline. Individuals 
starting treatment with any AP gained weight on average, espe-
cially those patients prescribed olanzapine. Weight gain was 
much more rapid in the short-term than in the long-term. People 
who were initiated on high-dose AP experienced much greater 
absolute weight gain than those initiated on low dose AP. 
Cumulative weight gain during the long-term was particularly 
high in individuals treated with olanzapine but, for all APs, peo-
ple typically never lost the extra weight they gained during the 
first six weeks of AP treatment.

Strengths and limitations of this study

This study presents evidence from a large sample (n > 38,000) of 
people prescribed antipsychotic medications, taken from a popu-
lation which is broadly representative of the UK (Blak et  al., 
2011). Patients prescribed antipsychotics are often treated for 
long periods, and so quantifying the risk of long-term side effects 
is particularly important. Clinical trials invariably fail to do this 
because of their short durations and much smaller sample size, so 
our study provides a necessary long-term perspective. We applied 
an analysis approach that has not been used previously in assess-
ing AP-induced weight gain. A major advantage of our approach 
is that it includes pre-treatment weight change information, so 
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patients act as their own controls in the analysis and any addi-
tional weight change after baseline is attributable to the AP treat-
ment. The approach utilizes all individual weight records at their 
time of measurement, therefore avoiding the loss of information 
seen in previous studies which categorize outcomes or use period 
means or incidence rates as summary measures (Bak et al., 2014; 
Osborn et al., 2018). Our longitudinal model-based approach also 
accounts for missing weight records – assuming weight record-
ing is missing at random within strata, conditional on observed 

weight measurements (Haneuse et al., 2016) – while incorporat-
ing informative pre-baseline weight data. From this method we 
expect unbiased estimates if data were missing at random 
(Molenberghs et al., 2014), a property that is not ensured by com-
plete case analyses applied elsewhere (Bushe et al., 2012; Osborn 
et al., 2018). Following standard recommendations (Bernal et al., 
2017), we guaranteed good statistical power by having equal 
periods of observation before and after baseline, and a large sam-
ple size. Additional analyses showed that our proposed linear 

Figure 1.  Baseline characteristics of patients from olanzapine, quetiapine and risperidone cohorts, stratified by sex. From height onwards, some 
continuous variables changed their scale as labelled below their names.
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spline models were very similar to the restricted cubic splines 
models (Figure S1), and for primary analysis we used the former 
as interpretation is more straightforward.

Our study does have a number of potential limitations. 
Information on possible time-varying confounders (for example, 
symptoms level or illness severity) was not included, however, it 

Table 1.  Expected weight gain for an average patient prescribed a particular antipsychotic, stratified by dose and sex.

Drug Sex na Doseb Weight gained during 
short-time (0–6 weeks), kg

95% CI Weight gained during long-
time (6 weeks–4 years), kg

95% CI Total weight 
gained

OLANZAPINE 
(n = 9499)

Women 5004 Overall 2.3 (1.9–2.7) 2.8 (2.2–3.5) 5.1
2535 Low 1.9 (1.4–2.4) 2.5 (1.6–3.3) 4.4
1100 High 3.2 (2.4–4.0) 2.9 (1.6–4.2) 6.1

Men 4495 Overall 3.4 (3.0–3.8) 1.7 (0.9–2.4) 5.1
1887 Low 2.6 (2.0–3.2) 1.9 (0.8–3.0) 4.5
1470 High 4.5 (3.6–5.3) 1.4 (0.2–2.7) 5.9

QUETIAPINE 
(n = 19,965)

Women 12,149 Overall 1.2 (1.0–1.5) 1.1 (0.6–1.6) 2.3
5372 Low 0.7 (0.3–1.0) 0.9 (0.1–1.6) 1.6
1912 High 2.3 (1.6–2.9) 1.6 (0.4–2.7) 3.9

Men 7816 Overall 0.8 (0.4–1.1) 0.7 (0.1–1.3) 1.5
3326 Low 0.5 (0.0–0.9) −0.7 (–1.8–0.3) −0.3
1326 High 1.6 (0.9–2.4) 1.0 (–0.3–2.2) 2.6

RISPERIDONE 
(n = 9401)

Women 5153 Overall 0.9 (0.5–1.3) 0.7 (–0.1–1.5) 1.6
3102 Low 1.0 (0.5–1.4) 0.1 (–0.9–1.1) 1.1
316 High 1.1 (–0.7–2.9) 3.5 (1.0–5.9) 4.6

Men 4248 Overall 1.1 (0.6–1.5) 1.4 (0.4–2.4) 2.5
2411 Low 1.0 (0.4–1.7) 1.1 (–0.3–2.6) 2.2
441 High 1.9 (0.5–3.3) 1.4 (–0.7–3.5) 3.3

aOverall estimates come from Table S2 (n = 38,865) and low/high dose estimates come from Table S3 (n = 25,198). n from Table S2 < n from Table S3 due to missing data 
on dose.
bCut off point for low/high dose was: ⩽ 5 mg for Olanzapine, ⩽ 75 mg for Quetiapine and ⩽ 2 mg for Risperidone.

Figure 2.  Changes in body weight over time before and after treatment initiation by drugs and sex.
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is reasonable to assume limited variation from patients’ baseline 
values for unmeasured confounders. Treatment initiation has 
been defined using first prescription date in general practice; but, 
for some individuals, the first prescription date might occur while 
the individual is under the care of secondary care mental services 
(these data are not recorded in primary care). However, it is most 
likely these patients have a first prescription date very close to 
the one in primary care, thus no major impact on estimates is 
expected.

We did not control for drugs prescribed to reduce antipsy-
chotic-induced weight gain, or for multiple prescriptions of other 
drugs that could potentially affect weight as well. However, we 
know that drugs prescribed for ameliorating weight gain would 
only reduce the estimate of the real weight gain of the target pop-
ulation, thus we are not overestimating the weight gain effect. We 
did not assess weight gain associated with other antipsychotic 
medications as there were not enough data on them, but the three 
drugs included in this study are the most commonly prescribed 
antipsychotic medications in the UK (Marston et al., 2014) and 
have previously been associated with weight gain (Osborn et al., 
2018). The weight gain trajectories we described are averages, 
thus they should be interpreted as typical patient trajectories. In 
practice, individual patients’ weight gain will vary from these 
average trajectories. However, the first weeks of treatment are 
critical for everyone. Finally, we did not control the number of 
prescriptions beyond the second prescription (treatment dura-
tion), meaning that studied patients can include those treated for 
long periods, those treated sporadically, just for a short period, or 
those who did not adhere to treatment regularly. This lack of con-
trol may reduce our long-term estimates of weight gain, but, 
given the evidence about dosage, we anticipate that patients 
exposed to AP on a regular basis and for long periods will have 
larger estimates of long-term weight gain.

Comparison with other studies

Previous studies have suggested olanzapine is associated with a 
large short-term weight gain whereas risperidone and quetiapine 
have a moderate effect on weight (Bak et al., 2014). In the long-
term, contrary to one previous finding (Haddad, 2005), we found 
that weight gain did not stabilize during four years of follow up. 
However, our finding of long-term effect of weight gain is con-
sistent with previous studies by Bushe et al. (2012) and Osborn 
et al. (2018), but we are able to quantify the effect more accu-
rately. Previous research has suggested women’s weight is more 
affected by AP exposure (Seeman, 2008); however, we found that 
only olanzapine (in the long-term) and quetiapine (in the long 
and short-term) induced more weight gain in women. Since our 
study population is a mixture of naïve and recurrent antipsychotic 
consumers, short- and long-term weight gain in olanzapine naïve 
individuals and long-term weight gain in risperidone naïve indi-
viduals can be higher than the weight gain reported by us (Bak 
et al., 2014). Risperidone seemed to be associated with greater 
weight gain in men than women both in the short- and long-term, 
and men prescribed olanzapine gained more weight in the short-
term. Regarding the dosage, one recent study reanalysed results 
of 14 clinical trials to explore variations in weight gain across 
doses of olanzapine and risperidone (Spertus et al., 2018). Their 
conclusions about olanzapine are consistent with our results; that 
the excess risk of at least 7% weight gain is 16.1% for low doses 

(0–10 g chlorpromazine equivalent dose) and 46.8% for high 
doses (0–20 g chlorpromazine equivalent dose). They could not 
be conclusive about the effects of risperidone as they showed 
only a trend in weight gain; however, this trend is in line with our 
findings. Some advantages from our original study are: (a) we 
added similar information about quetiapine, (b) we observed 
longer periods of weight change (four years) and (c) we analysed 
information at individual-level from cohorts with more than 
38,000 patients in total.

Conclusions and policy implications

Over a four-year period, olanzapine treatment was associated with 
the highest increase in weight with around 6 kg for those on high 
dose and 4.5 kg for those on low dose. The weight gain was less 
dramatic for individuals treated with quetiapine and risperidone. 
In general, individuals did not lose the weight gained during the 
first six weeks of treatment. Doctors and patients may want to take 
the issue of a substantial weight gain into consideration when 
making decisions on initiation of antipsychotic treatments, and 
doctors should prescribe the lowest effective dose to balance men-
tal health benefits, weight gain and other adverse effects.
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Abstract 1 

 2 

Background 3 

In the interrupted time series (ITS) approach, it is common to average the outcome of interest at each 4 

time point and then perform a segmented regression (SR) analysis. In this study, we illustrate that such 5 

‘aggregate-level’ analysis is biased when data are missing at random (MAR) and provide alternative 6 

analysis methods.  7 

 8 

Methods 9 

Using electronic health records from the UK, we evaluated weight change over time induced by the 10 

initiation of antipsychotic treatment. We contrasted estimates from aggregate-level SR analysis against 11 

estimates from mixed models with and without multiple imputation of missing covariates, using individual-12 

level data. Then, we conducted a simulation study for insight about the different results in a controlled 13 

environment.   14 

   15 

Results 16 

Aggregate-level SR analysis suggested a substantial weight gain after initiation of treatment (average 17 

short-term weight change: 0.799kg/week) compared to mixed models (0.412kg/week). Simulation studies 18 

confirmed that aggregate-level SR analysis was biased when data were MAR. In simulations, mixed 19 

models gave less biased estimates than SR analysis and, in combination with multilevel multiple 20 

imputation, provided unbiased estimates. Mixed models with multiple imputation can be used with other 21 

types of ITS outcomes (e.g. proportions). Other standard methods applied in ITS do not help to correct 22 

this bias problem.    23 

 24 

  25 
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Conclusions 1 

Aggregate-level SR analysis can bias the ITS estimates when individual-level data are MAR, because 2 

taking averages of individual-level data before SR means that data at the cluster level are missing not at 3 

random. Avoiding the averaging-step and using mixed models with or without multilevel multiple 4 

imputation of covariates is recommended. 5 

   6 
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1. Introduction 1 

 Interrupted time series (ITS) is a widely used quasi-experimental approach that evaluates the 2 

potential impact of an intervention over time, using longitudinal observational data 1. It has frequently 3 

been used to evaluate intervention effects in longitudinal population studies; for example, to evaluate the 4 

impact of policies and social interventions on clusters, such as districts, cities and countries 2,3. While ITS 5 

comes from social science literature, it is becoming more widespread in health research 4,5. ITS may be 6 

used to address causal questions that are not feasible for a randomised controlled trial, but with stronger 7 

assumptions 6. The methodology for the analysis of ITS studies is well developed 1,7,8, and typically uses 8 

segmented regression (SR) analysis 4,5. Given a time point, for example the initiation of treatment, we 9 

may observe a change in the values of a variable before and after that time point, and then compare the 10 

trajectories of change at the intervention. The pre-treatment trajectory is regarded as the control ‘period’ 11 

and the post-treatment trajectory as the intervention ‘period’, so that each individual acts as their own 12 

control. The difference between mean trajectories at the intervention time is then used to estimate the 13 

effect of the intervention 1. 14 

In SR analysis, when individual-level data are available, a typical approach is to average the data 15 

at each of the predefined time points/units (e.g. months or years) and then model the time series over 16 

these time points 5,9–11. In other words, all outcome variable measurements available from individuals are 17 

averaged at each time point, and then these averages are used as population-level data for performing 18 

the SR analysis. This approach is reasonable if the same people provide data at each time point, but in 19 

observational data this is rarely the case. For example, in clinical practice, younger women are more 20 

likely than younger men to have weight recorded when they consult their family physician (general 21 

practitioner) 12. In other words, the distribution of missing data in weight depends on the individual's sex, 22 

so weight is missing at random (MAR) given sex. The same will apply to other partially observed 23 

outcomes that are MAR. With such data, the average points will be biased – and so will the intercept of 24 

the trajectories estimated by SR models – because they will include more measurements from women 25 
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than men, and women will typically weigh less than men. Moreover, if the proportion of women and men 1 

with observed weight varies at each time point, the slope of the trajectories can also be biased. 2 

Figure 1 presents a scenario where weight is constant over time for all individuals (half men, half 3 

women; men weigh 85kg, and women weigh 55kg, resulting in an overall average of 70kg). In this 4 

scenario, all individuals have a weight measurement at treatment initiation (t=0), but at different time 5 

points before and after treatment initiation the relative proportion of women and men with a weight record 6 

varies due to missing data. The average observed weight at each time point becomes biased, providing 7 

a false impression of weight change over time. Thus, the ‘aggregate-level’ SR analysis performed with 8 

averages calculated at pre-defined time points can produce biased estimates due to missing data. 9 

An alternative approach to the ‘aggregate-level’ SR analysis is to use mixed models, which are 10 

based on individual-level data, avoiding the averaging-step described above. Formally, these mixed 11 

models are also segmented models, but they include random intercept and slopes (random effects) that 12 

cannot be included by the ‘aggregate-level’ SR models due to the averaging-step. Mixed models estimate 13 

identical linear trajectories to ‘aggregate-level’ SR models under perfect balance (when all individuals are 14 

included at each time point). However, in contrast to ‘aggregate-level’ SR models, the mixed model 15 

approach can provide unbiased estimates when data in the outcome variable are MAR 13. Following the 16 

same example as before, a mixed model directly uses weight measurements taken at different time points 17 

from the same individual, and models the population trajectory based on all individual trajectories, taking 18 

account of the longitudinal correlation. Thus, no initial averaging-step at each time point is needed. If 19 

individuals have missing weight records over time, the mixed model approach implicitly imputes those 20 

missing values, meaning that observations from all individuals – even those with just one record over 21 

time – contribute to the analysis.  22 

Despite these advantages, mixed models cannot automatically handle missing data in the 23 

covariates, and individuals with covariates missing are by default omitted from regression analyses in all 24 

standard software packages. One way to address this issue is to use multilevel multiple imputation (MMI) 25 
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for missing covariate data in conjunction with mixed models. MMI generates multiple datasets with 1 

missing covariate values replaced by imputed values (drawn from the conditional predictive distribution 2 

of the missing data given the observed data). Then, MMI fits the substantive model of interest in each 3 

imputed dataset and, in the final step, combines the model estimates into an overall estimate, taking into 4 

account variation within and between the imputed datasets 14. In our setting, the substantive model fitted 5 

at the second step is a mixed model. 6 

In this study, we demonstrate how standard ITS analysis, based on average estimates at each 7 

predefined time point, gives biased results when data are MAR. Subsequently, we illustrate how the use 8 

of mixed models, with or without MMI of individual data, avoids this bias.  9 

Our objectives are 1) to examine the potential problems arising from the ‘aggregate-level’ SR 10 

analysis when outcome data are missing, evaluating mixed models as an alternative approach; 2) to 11 

compare the performance of mixed models with and without MMI for handling missing data on covariates.  12 

The rest of this article is structured as follows. In Section 2 we present a motivating example of 13 

ITS to estimate the effect of initiating antipsychotic drugs (olanzapine) on weight gain, showing that the 14 

standard approach of aggregating the data and then using SR gives clinically different results to using 15 

mixed models (with and without MMI). Section 3 presents a simulation study, which demonstrates that 16 

this difference is because the standard ‘aggregate-level’ approach is biased when data are MAR. We 17 

conclude in Section 4 by discussing the practical and methodological implications of our findings. Stata 18 

and R codes for reproducing our results are provided in the Appendix. It should be noted that this study 19 

did not cover ITS modelled on consecutive cross-sectional samples (e.g. incidence trajectories modelled 20 

with data from different individuals over time).    21 

2. Motivating example: ITS for effect of antipsychotic drugs on weight. 22 

In this motivating example, as well as in the later simulation study, we focus on assessing 23 

estimators for the regression coefficients of pre- and post-treatment weight trajectories. 24 
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2.1. Data and first analysis 1 

We used data from The Health Improvement Network (THIN) database, which includes electronic 2 

health records from ~12 million individuals registered with 711 UK general practices 15. In the UK, more 3 

than 95% of people are registered with a general practice (GP), and THIN is roughly representative of 4 

the general population 16. THIN data include demographics (e.g. sex, age, social deprivation) and clinical 5 

records (e.g. drug treatments, diagnoses, health outcomes). In this study, we only included data from 6 

general practices that met quality criteria for computer usage 17 and whose reported mortality rate is 7 

consistent with national statistics 18.  8 

We performed an ITS analysis to investigate the long-term effects of the initiation of antipsychotic 9 

drug treatment on people’s body weight. It is known that specific antipsychotic treatments are likely to 10 

increase body weight substantially over a relatively short period 19, but we have less information on 11 

potential long-term effects 20. In this study, the exposure of interest was the initiation of olanzapine (a 12 

second-generation antipsychotic), and the outcome was body weight (in kilograms). We modelled the 13 

development of weight over time using linear splines with two knots. In other words, our model estimated 14 

how weight changed in three time periods: 1) pre-treatment: from 4 years before treatment initiation up 15 

to treatment initiation; 2) short-term: from treatment initiation to 6 weeks (short-term), and 3) long term:  16 

from 6 weeks to 4 years post-treatment. We adjusted for sex, age at initiation (in years) and smoking at 17 

initiation of treatment (smoker vs non-smoker). We included individuals who were aged between 18 and 18 

99 years, with data available between 1st January 2005 and 31st December 2015, and who initiated their 19 

first olanzapine treatment within this period. All had a diagnosed psychotic disorder before treatment 20 

initiation and at least one further prescription of olanzapine within three months following the first 21 

prescription. We included this criterion as there may some individuals who received just one prescription, 22 

but never used the medication. However, if they had at least two prescriptions it seems more likely that 23 

they initiated treatment. We excluded individuals who initiated other antipsychotics than olanzapine, as 24 

well as those with no available data for 12 months before the treatment initiation. 25 
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In addition to the inclusion and exclusion criteria given above, we restricted our data to those with 1 

complete data on sex, age and smoking at treatment initiation. As this is observational data, weight 2 

measurements did not follow any fixed schedule. For example, if we look for a weight measurement every 3 

two weeks for every individual, we will find that >90% of weight measurements are missing.  In other 4 

words, the weight has been irregularly recorded over the observation period (416 weeks), as it is expected 5 

for most electronic health records.  6 

Centring each patient’s follow-up time (in weeks) at their treatment initiation, we fitted the 7 

following mixed model to these data: 8 

 9 

𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗 = 𝛽0 + 𝑢0𝑗 + (𝛽1 + 𝑢1𝑗)𝑡𝑖𝑚𝑒𝑖𝑗 × 1[𝑡𝑖𝑚𝑒𝑖𝑗 < 0] + (𝛽2 + 𝑢2𝑗)𝑡𝑖𝑚𝑒𝑖𝑗 × [0 ≤ 𝑡𝑖𝑚𝑒𝑖𝑗 ≤ 6]10 

+ (𝛽3 + 𝑢3𝑗)𝑡𝑖𝑚𝑒𝑖𝑗 × [𝑡𝑖𝑚𝑒𝑖𝑗 > 6] + ϵij, 11 

           [Equation 1] 12 

(

𝑢0𝑗

𝑢1𝑗

𝑢2𝑗

𝑢3𝑗

) ∼ 𝑁 (

0
0
0
0

, 𝛴);                𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2), 13 

 14 

where i denotes the follow-up time and j denotes the patient, and 1[ ] is an indicator for the event in square 15 

brackets. We then fitted the same model adjusting for sex, age and smoking at treatment initiation (as 16 

fixed effects). These mixed intercept and slope models were fitted by Restricted Maximum Likelihood, 17 

and hereafter we call them just mixed-effects models (MEM). 18 

 We also fitted an ‘aggregate-level’ SR model by averaging available weight records at each time 19 

point (across-individuals average), and then fitting the standard regression version of [Equation 1] – i.e. 20 

omitting the person-specific random effects-. Because this model is fitted to data aggregated over 21 

individuals, no adjustment for sex, age or smoking was possible.  22 
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 Finally, we fitted a similar model, but now weighting by the inverse of the number of body weight 1 

values observed at each time point. We called this model the ‘aggregate-level’ SR-W1, which may help 2 

to improve standard errors by including a more accurate sample size information at each time-point. 3 

  These models were used to examine the issues arising from the ‘aggregate-level’ SR analysis 4 

when outcome (weight measurements) data are missing, which was part of our first study objective.  5 

2.2. Imposed missing data and second analysis 6 

For our second objective, we wanted to explore the issues arising from covariate data missing at 7 

treatment initiation. Therefore, we intentionally set smoking records MAR on sex, and increased the 8 

amount of missing data on weight MAR on sex, to explore later the potential differences between 9 

estimates from complete case analysis (removing cases with smoking missing) and MMI (preserving 10 

those cases and imputing smoking). This controlled missing data generation scenario was used evaluate 11 

all analysis methods: ‘aggregate-level’ SR, ‘aggregate-level’ SR-W1, MEM, and MMI followed by a mixed-12 

effects model (MI-JOMO with MEM). 13 

In detail, we set weight values MAR dependent on sex and time from treatment initiation, so that 14 

a fraction of observed data was similar to that shown in Figure 1. In addition, we set smoking MAR on 15 

sex, randomly removing 80% of records from men and 20% from women. Both missing mechanisms are 16 

described in detail in Appendix A.  17 

In our subsequent analyses we first fitted the same MEM [Equation 1] to the incomplete data, 18 

adjusting for covariates (complete case analysis). Then, we used a substantive-model-compatible joint-19 

modelling multilevel multiple imputation (MI-JOMO) 21 to impute the missing smoking values and  fitted 20 

the same substantive model (MEM adjusted) to each imputed data set and combined the results using 21 

Rubin’s rules. We generated 20 imputed datasets with MI-JOMO, and we used a burn-in of 1000 iterations 22 

and then a further 1000 iterations between each imputation. We name this model MI-JOMO with MEM. 23 

Lastly, we fitted the ‘aggregate-level’ SR and ‘aggregate-level’ SR-W1 models. Full details and 24 

codes for all models are given in Appendix A. 25 
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2.3. Results 1 

Overall, there were 6,522 individuals with at least one weight measurement and complete age, 2 

sex or smoking status data. Of these 2,954 (45.3%) were men and 3,568 (54.7%) were women. On 3 

average, there were 4.8 (sd 5.5) weight records per person over the observation period. Individuals were 4 

aged 50.2 (sd 18.9) years on average, and 2,658 (40.8%) reported being current smokers.   5 

There were substantial differences between estimates derived from MEM and SR (Table 1, 6 

section ‘THIN: Data Fully Observed’). For example, the short-term weight change (beta2) was 7 

0.462kg/week from MEM (adjusted) and 0.816kg/week and 0.807kg/week from SR and SR-W1 8 

respectively. Likewise, pre-treatment and long-term periods, weight change rates from SR and SR-W1 9 

were more than double the MEM estimates. In general, all estimates of weight change from SR analyses 10 

were higher in magnitude than those from MEM, which also implies a more substantial ITS treatment 11 

effect.   12 

After further removal of weight records, 6,181 individuals remained with one or more weight 13 

records. There were 4.3 (sd 5.3) average weight records per person over the observation period. The 14 

average age was 50.6 (sd 19) years, and 2,613 (42.3%) were men. After removal of smoking records at 15 

baseline there were only 3,379 individuals with a record of their smoking status and 1,188 (35.2%) of 16 

them were current smokers. 17 

 In general, estimates from MEM with and without MI-JOMO were similar for pre-treatment and 18 

long-term effects, and both close to those estimated under MEM with full data. However, the MI-JOMO 19 

with MEM for short-term were closest to those estimated under MEM with full data (Table 1). ITS 20 

estimates from SR differed substantially from the estimates from MEM with and without MI-JOMO (Table 21 

1, Figure 2), with SRs reporting a weight pre-treatment (beta1) and long-term trajectories (beta3) closer 22 

to zero. For SR-W1, the long-term treatment effect was similar to the MEM estimates, while the short-23 

term effects estimates (beta2) were much higher than MEM estimates. For both the SR and SR-W1 24 
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models, pre-treatment and long-term effects were also different when fitted to data with and without 1 

imposed missing values. 2 

The immediate treatment effect, estimated as the difference between the negative and positive 3 

trajectories before and after olanzapine initiation, was highest for the SR approach (Table 1 and Figure 4 

2). For example, the SR-W1 method suggested a cumulative short-term weight gain of 4.72kg, a long-5 

term of 2.13kg, and a total of 6.85kg. In contrast, the estimates based on MEM with MI-JOMO (short-6 

term=2.47kg, long-term=2.46kg, total=4.93kg) and without MI-JOMO (short-term=2.75kg, long-7 

term=2.70kg, total=5.45kg) were less for the short-term and the total accumulated (see 95% CI in 8 

Appendix B).  9 

In summary, individual-data model such as MEM [Equation 1]  produced notably different results 10 

from SR models with ‘aggregate-level’ data. Further, if covariate values are MAR, use of MI-JOMO can 11 

recover information by bringing individuals with these missing covariates back into the analysis, avoiding 12 

potential bias and increasing precision. By contrast, the often-used SR ‘aggregate-level’ analysis cannot 13 

adjust for covariates and appears to be biased when weight data are MAR (depending on time and 14 

covariates). This may often be the case when analysing health care records.     15 

3. Simulation study 16 

We now report the results of a simulation study, based on the motivating clinical example and 17 

designed to evaluate the performance of SR and MEM (with and without MMI) under controlled 18 

conditions. We are adding to this evaluation another method called Prais-Winsten regression, which is 19 

similar to SR but is recommended by ITS guidelines to account for autocorrelation at the aggregate level 20 

1. In particular, we wish to determine whether the differences between the various analysis methods are 21 

due to the way they handle missing data.  22 

 23 
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3.1. Simulation design 1 

3.1.1. Study model 2 

For the simulation study, we designed an ITS dataset where the treatment of interest was the 3 

initiation of antipsychotic treatment, and we examined  change in body weight (in kilograms) over time. 4 

The covariates were sex, age (years) and smoking status (yes/no), measured at initiation of treatment. 5 

The ITS impact model 8 is a linear weight trajectory whose slope changes only once –  at treatment 6 

initiation – i.e. slightly simpler than our previous  example. We included five time-units before and five 7 

after treatment initiation. We modelled the evolution of weight over time using two continuous linear 8 

splines, jointing at treatment initiation. 9 

3.1.2. Data generation  10 

Each simulated dataset with 1,000 observations was generated as follows: 11 

1 Sex was generated as a random variable from a Bernoulli distribution with probability 0.5. 12 

2 For each individual, weight observation times were fixed at the same 11 equally spaced times 13 

between -5 and +5, i.e. centred at treatment initiation, which is at time 0.  14 

3 Weight was generated from the following random intercept and slopes model:    15 

 16 

𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗 = 75 + 𝑢0𝑗 + (−0.5 + 𝑢1𝑗)𝑡𝑖𝑚𝑒𝑖𝑗 × 1[−5 ≤ 𝑡𝑖𝑚𝑒𝑖𝑗 < 0] + (3.4 + 𝑢2𝑗)𝑡𝑖𝑚𝑒𝑖𝑗 ×17 

[0 ≤ 𝑡𝑖𝑚𝑒𝑖𝑗 ≤ 5] + 10 ∗ 𝑠𝑒𝑥𝑖 + 𝜀𝑖𝑗 ,      [Equation 2] 18 

 19 

(

𝑢0𝑗

𝑢1𝑗

𝑢2𝑗

) ∼ 𝑁 (
0
0
0

,
5
0
0

0
1.1
−.7

0
−.7
1.1

);                𝜀𝑖𝑗 ∼ 𝑁(0,2), 20 

 21 
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where i denotes the follow-up time and j denotes the patient, and 1[ ] is an indicator for the event in square 1 

brackets. We referred to this as ‘Data Generation Mechanism Base’ (DGM-base). We also generated 2 

data from DGM-extended covariates:  3 

 4 

𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗 = 75 + 𝑢0𝑗 + (−0.5 + 𝑢1𝑗)𝑡𝑖𝑚𝑒𝑖𝑗 × 1[−5 ≤ 𝑡𝑖𝑚𝑒𝑖𝑗 < 0] + (3.4 + 𝑢2𝑗)𝑡𝑖𝑚𝑒𝑖𝑗 ×5 

[0 ≤ 𝑡𝑖𝑚𝑒𝑖𝑗 ≤ 5] + 10 ∗ 𝑠𝑒𝑥𝑖 + 0.05 ∗ 𝑎𝑔𝑒𝑖 − 0.0005 ∗ 𝑎𝑔𝑒𝑖
2 + 2.5 ∗ 𝑠𝑚𝑜𝑘𝑖𝑛𝑔𝑖 + 𝜀𝑖𝑗 . 6 

           [Equation 3] 7 

 8 

Age was generated as a random variable from a normal distribution with mean 45 and sd 10. 9 

Smoking was binary and generated as follows:  10 

 11 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑠𝑚𝑜𝑘𝑖𝑛𝑔𝑖 = 1)) = −2 + 1.5 ∗ 𝑠𝑒𝑥𝑖 + 0.04 ∗ 𝑎𝑔𝑒𝑖 − 0.0005 ∗ 𝑎𝑔𝑒𝑖
2. 12 

   13 

Having generated the full data, we made observations missing using two missing data 14 

mechanisms: 15 

    16 

1. MAR-1: starting with the fully observed weight variable at treatment initiation (𝑡0), pre and post-17 

treatment initiation values of weight at times 𝑡0±𝑗 were set to missing (𝑗 = 1,2,3,4,5) dependent 18 

on the individual’s sex. For the missing sequence, pre-treatment setting of missing values was 19 

reverse-sequential (𝑡−1, 𝑡−2, 𝑡−3, 𝑡−4, 𝑡−5) and post-treatment setting was forward-sequential 20 

(𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5). For both directions (±𝑗) of MAR-1 mechanism, we defined the probability of 21 

being missing by: 22 

   23 

𝑙𝑜𝑔𝑖𝑡 (𝑃(𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗 = 𝑚𝑖𝑠𝑠𝑖𝑛𝑔)) = −2.5 + 5 ∗ 𝑠𝑒𝑥𝑖, 24 

 25 
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shaping the patterns of missing weight data and setting more weight records being observed for 1 

women than men. Both patterns and proportion of missing values are available in Appendix C. 2 

MAR-1 was applied on data generated under DGM-base only. 3 

 4 

2. MAR-2: similar to MAR-1, but now the probability of weight being missing also depends on the 5 

individual’s random intercept, age and smoking. As the random intercept is unobservable (as 6 

smoking will partially be), this mechanism is a mix between MAR and MNAR (missing not at 7 

random). Moving away from treatment initiation (in both directions), the probability of weight 8 

being missing is monotonically given by: 9 

   10 

𝑙𝑜𝑔𝑖𝑡 (𝑃(𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗 = 𝑚𝑖𝑠𝑠𝑖𝑛𝑔))11 

= −0.25 − 2 ∗ 𝑢0𝑗 − 1.5 ∗ 𝑠𝑒𝑥𝑖 − 0.05 ∗ 𝑎𝑔𝑒𝑖 + 0.0005 ∗ 𝑎𝑔𝑒𝑖
2 − 1.512 

∗ 𝑠𝑚𝑜𝑘𝑖𝑛𝑔𝑖, 13 

    14 

where -0.25 helped to shape the overall proportion of missing data over time; -1.5 set more 15 

weight records to be observed for men (only for explicative purposes); -2 set more weight records 16 

to be observed for individuals who are heavier at treatment initiation; -0.05 and 0.0005 set more 17 

missing data for younger individuals, and -1.5 set more weight records to be observed for 18 

smokers. We also set  about 30% of smoking values to be missing with probability:  19 

 20 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑠𝑚𝑜𝑘𝑖𝑛𝑔𝑖 = 𝑚𝑖𝑠𝑠𝑖𝑛𝑔)) = −3 + 3 ∗ 𝑠𝑒𝑥𝑖 − 0.01 ∗ 𝑎𝑔𝑒𝑖 + 0.0003 ∗ 𝑎𝑔𝑒𝑖
2, 21 

  22 

MAR-2 was applied to data from DGM-extended-covariates only. For both described 23 

mechanisms (MAR-1 and -2), the proportion of missing weight data in the simulated sample was set to 24 

approximately 60% of individuals. In the other 40% of the data, we set only one weight record per 25 
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individual at any time point, setting more individuals with only one weight record at treatment initiation 1 

(MAR dependent on the treatment initiation). This additional mechanism sought to emulate the missing 2 

data proportions and patterns seen in the clinical data used for the illustrative example (see Appendix C). 3 

We simulated 1,000 full datasets for each of the two scenarios, and then applied the missing data 4 

mechanisms to obtain the partially observed data.  5 

3.1.3. Analysis methods evaluated 6 

  We analysed the full and partially observed data using each of the following six methods (see 7 

summary in Appendix D): 8 

  9 

1) SR: this averaged observed individual weight measures at each time point and then fits a 10 

linear regression on time (maximum likelihood estimator), with a knot at zero. 11 

2) SR-W1: (weighted SR version 1) similar to SR but weighted by the inverse of the number of 12 

observed weight records at each time point.  13 

3) SR-W2: (weighted SR version 2) similar to SR-W1 but the number of observed weight 14 

records – used for weighting – were counted at each time point by sex and age. We 15 

categorised age using its quartiles (before averaging). When smoking data were incomplete, 16 

smoking was not included as a covariate for SR-W2. 17 

4) Prais-Winsten: regression similar to SR but adjusted for serial correlation at the aggregate 18 

level by assuming errors that follow a first-order autoregressive process 22, an approach 19 

typically used in ITS analysis for controlling the autocorrelation issue 1. 20 

5) MEM: we fitted the data generating model [Equations 2 and 3] using Restricted Maximum 21 

Likelihood with an unstructured covariance matrix for the random effects.  22 

6) MI-JOMO (with MEM): We first imputed the missing covariate values, using multilevel 23 

substantive-model-compatible joint modelling multiple imputation, with the JOMO package 24 

in R. As described in 23,24 this imputes missing values consistent with the substantive model 25 
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[Equation 1]. It does this by factorising the joint model into a joint model for the covariates 1 

and a conditional model for the outcome given the covariates. Then, the estimation and 2 

imputation process allows compatibility between the imputation and analysis models (MEM 3 

in this case), even with longitudinal data 24. We used 5 imputations and 1000 iterations 4 

(before the first, and between each subsequent imputation) to impute the missing covariate 5 

smoking status. We did not impute the missing weight, as (in the absence of auxiliary 6 

variables) no information can be recovered by doing this. Note that standard fully conditional 7 

specification 25 is not evaluated because it is inappropriate for handling the irregular 8 

observation times we expect in real longitudinal data. We only used MI-JOMO in the MAR-2 9 

scenario.  10 

3.1.4. Estimands and performance measures 11 

 We focused on the slope estimates (true values: 𝑡𝑖𝑚𝑒𝑏𝑒𝑓𝑜𝑟𝑒: 𝛽1 = −0.05 and 𝑡𝑖𝑚𝑒𝑎𝑓𝑡𝑒𝑟: 𝛽2 =12 

3.4) from all methods evaluated in both MAR scenarios (MAR-1 and MAR-2), by examining the bias, 13 

empirical standard error, model-based standard error and confidence interval coverage 26.  14 

3.2. Simulation results  15 

In the first scenario (DGM-base), all SR methods were biased except from when data were fully 16 

observed (Table 2). However, the coverage of these methods was low (<61%) due to their small model-17 

based standard errors, even the weighted methods (SR-W1 and SR-W2) and the method adjusted for 18 

serial correlation (Prais-Winsten). Conversely, MEM provided reasonably good coverage for 𝛽1 and  𝛽2 19 

(>94%) for unbiased estimates.  20 

Where weight was missing based on sex only (MAR-1), MEM showed unbiased results and the 21 

best coverage (≥95%). SR and SR-W1 produced biased estimates for both pre- and post-treatment 22 

initiation slopes, showing the highest model-based standard errors. Because the missingness mechanism 23 

depended on sex, and women weighed less than men, the preliminary data aggregation step in SR and 24 
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SR-W1 biased the estimated slopes (see example in Figure 3, MAR-1). The SR bias was corrected using 1 

inverse-probability weights based on sex (SR-W2), but coverage was low (<74%) due to too-small model-2 

based standard errors. The Prais-Winsten model was not successful in correcting the SR bias since it 3 

does not incorporate information on missing data at the individual-level as SR-W2 does. 4 

In the second scenario (DGM-extended-covariates), with full data, all methods were unbiased 5 

(Table 2). MEM provided the best coverage for 𝛽1 and  𝛽2 (>95%), followed by SR-W2 (>90%). Although 6 

with unbiased estimates, SR, SR-W1 and Prais-Winsten provided a low coverage (<55%) due to their 7 

small model-based standard errors. SR, SR-W1 or Prais-Winsten cannot provide different averages by 8 

sex and age at each time point, which can be provided by SR-W2. Having more variability at each time 9 

point produced higher – and more realistic – standard errors from SR-W2.  10 

On the other hand, with missing values in weight and smoking status (MAR-2), MI-JOMO had 11 

the best performance. MEM showed poorer performance after all covariates were included in the 12 

imputation and study models and there were missing smoking data, producing slightly biased estimates 13 

and low coverage (<79%). In the same scenario, MI-JOMO performed better than MEM, providing less 14 

biased estimates, closer values of empirical and model-based standard errors, and higher coverage 15 

(>87%). For both methods, we should consider that there is some residual bias because of the 16 

dependence of observation of weights on the random intercepts. While the results in the bottom half of 17 

Table 2 show this resulted in a bias in the MI-JOMO analysis, this was not severe, and the resulting 18 

inferences were still usable. Conversely, SR, SR-W1, SR-W-2 and Prais-Winsten performed extremely 19 

poorly, showing large bias and low coverage (<18%). 20 

The ‘aggregate-level’ SR analysis biased the slope trajectories in different directions, which we 21 

illustrated by our simulations (Figure 3). 22 
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4. Discussion 1 

ITS provides a conceptually attractive approach for assessing the impact of treatments because 2 

each individual acts as their own control. However, its innate strength, leading to its increasing use 4, 3 

raises important questions about how to appropriately handle missing data. As our example illustrates, 4 

incomplete outcome data (in our case, weight) is an intrinsic feature of this kind of study because the 5 

underlying observational data do not follow any pre-planned schedule. This means that, at any specific 6 

time, the marginal distribution of the response is unlikely to be representative of the underlying population. 7 

The results of our studies demonstrate that the ‘aggregate-level’ approach will generally be 8 

biased when individual-level data are missing at random (MAR). Indeed, the motivating example shows 9 

this bias could lead to a substantial exaggeration of the actual effect of the studied intervention. In the 10 

example, the difference between pre- and immediate post-treatment weight change (biased slopes) 11 

increases the overall effect attributed to olanzapine. However, it is not always possible to determine the 12 

direction of bias. This is because the direction of the average-points bias depends on how the covariate 13 

is associated with the  missingness of weight records. Even when the ‘aggregate-level’ SR analysis does 14 

not bring about a bias issue, our results highlight that the precision is inaccurate as the standard errors 15 

for this method are typically grossly underestimated. 16 

When data are missing-at-random at the individual level, averaging before SR means that data 17 

are missing-not-at-random at the cluster level. This leads to the bias observed for the ‘aggregate-level’ 18 

SR analysis. For example, in the MAR-1 mechanism, ‘aggregate-level’ SR analysis loses the information 19 

about the distribution of weight records that are MAR on sex at each time point, due to the averaging-20 

step. Thus, sex becomes unobservable at the ‘aggregate-level’, making weight records MNAR on sex at 21 

this level and biasing the subsequent analysis using those averages. As we demonstrate in the same 22 

simulation study, this issue could be handled by including sex in the averaging-step (SR-W2). However, 23 

in practice, any version of SR-W2 will be hard to apply since other covariates are typically incomplete as 24 

well. 25 
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A natural alternative to the ‘aggregate-level’ analysis is to model the individual patient data 1 

explicitly. When the reason for outcome data being observed depends principally on time (e.g. before 2 

and after treatment initiation), underlying patient characteristics (e.g. sex, age) and observed outcomes 3 

(e.g. observed weights), the unseen values are plausibly MAR. In this setting, our simulation results 4 

demonstrate that a carefully formulated longitudinal model provides a practical approach for improved 5 

inference. 6 

Longitudinal models should be formulated carefully to include covariates predictive of both the 7 

outcome and the chance of observing it, which are key for avoiding bias. Where it is not desired – or 8 

appropriate – to include some such variables in the substantive analysis, an MMI approach should be 9 

considered, where these variables are included as auxiliary variables. Care should also be taken to model 10 

the longitudinal correlation of the outcome appropriately, as this is particularly important for missing data, 11 

as well as to use the observed rather than expected information for likelihood-based models. In particular, 12 

having random intercepts alone, or having uncorrelated random intercepts and slopes, should be avoided 13 

(see Appendix E for other practical suggestions) 21. If data at the individual level are not available, and 14 

the researcher suspects that a strong MAR mechanism affect the outcome points over time (e.g. averages 15 

or rates), the issue should be stated as a limitation as recommended in reporting guidelines 27,28. 16 

Our results show that MMI provides a practical approach for handling missing covariates in the 17 

analysis. When performing MMI, it is essential to both use an approach that properly takes account of 18 

the multilevel structure, and uses an approach that is compatible with the substantive model (which here 19 

includes splines for the effect of time). The JOMO package in R has the flexibility to do both.  20 

  We set our example and simulations with averages of a continuous variable, but a similar problem 21 

can happen with other types of outcomes. Rates (proportions), another common ITS outcome 5, can also 22 

be biased when outcome data are MAR at the individual level. For example, if the numerator of the rate 23 

(the events) is higher in women than men, and the missingness process generates more missing records 24 

for women, the rate will be underestimated at the ‘aggregated-level’ (e.g. at time points, hospitals or 25 
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districts). The ITS analysis will use those rates as consecutive points, biasing the estimated trajectories. 1 

Similar reasoning can be applied to binary and count ITS outcomes. Even using other recommended 2 

analysis methods than SR, such as ARIMA models 1, the bias problem will remain in the ‘aggregate-level’ 3 

used for the time series. Although we did not formally evaluate these alternative methods, some 4 

reflections can be enlightened by the study findings. In the aggregate-level approach, ARIMA models will 5 

be fitted after the averaging-step; therefore, the ITS will be based on population-level average points 6 

already biased. Other options useful for individual-level data, such as generalised estimated equations 7 

(GEE) can be applicable. However, because they are moment-based estimates, precisely like the 8 

aggregate data analysis, its estimates will be biased unless data are missing completely at random 29,30.  9 

 This is the first time that this averaging-step problem for MAR data has been studied with 10 

simulations and real data. Our results will help to guide future ITS studies. We focused our study on the 11 

situation when data are missing at random. However, we are aware there may be other scenarios where 12 

data missing not at random (MNAR) could bias estimates. For example, if weight is only recorded for 13 

those with a high or low weight. This scenario goes beyond the scope of this study but in practice, when 14 

a strong MNAR mechanism is suspected, a sensitivity analysis is possible using a pattern mixture 15 

approach 31,32. 16 

In conclusion, the segmented regression using averaged data points can over or underestimate 17 

the effect evaluated in interrupted time series analyses, when performed on outcome data missing at 18 

random at the individual level. However, such a problem can be addressed by using mixed models. If 19 

there are also covariates missing at random, mixed models can be combined with multilevel multiple 20 

imputation and provide unbiased results.  21 

  22 
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