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Abstract

This thesis presents the design, implementation and evaluation of techniques to

scale the base layers of decentralised blockchain networks—where transactions are

directly posted on the chain. The key challenge is to scale the base layer without

sacrificing properties such as decentralisation, security and public verifiability.

It proposes Chainspace, a blockchain sharding system where nodes process

and reach consensus on transactions in parallel, thereby scaling block production

and increasing on-chain throughput. In order to make the actions of consensus-

participating nodes efficiently verifiable despite the increase of on-chain data, a

system of fraud and data availability proofs is proposed so that invalid blocks can

be efficiently challenged and rejected without the need for all users to download all

transactions, thereby scaling block verification.

It then explores blockchain and application design paradigms that enable on-

chain scalability on the outset. This is in contrast to sharding, which scales

blockchains designed under the traditional state machine replication paradigm

where consensus and transaction execution are coupled. LazyLedger, a blockchain

design where the consensus layer separated from the execution layer is proposed,

where the consensus is only responsible for checking the availability of the data

in blocks via data availability proofs. Transactions are instead executed off-chain,

eliminating the need for nodes to execute on-chain transactions in order to verify

blocks. Finally, as an example of a blockchain use case that does not require an

execution layer, Contour, a scalable design for software binary transparency is pro-

posed on top of the existing Bitcoin blockchain, where all software binary records

do not need to be posted on-chain.
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Overall, the work in this thesis can be used to inform the design of new and existing

projects that implement blockchain networks or applications, in order to improve

their scalability and security.

Chainspace, the blockchain sharding system in Chapter 3 was used as part

of DECODE (DEcentralised Citizen-owned Data Ecosystems) [128], a European

Union project with a digital democracy pilot in Barcelona implementing a decen-

tralised petitions platform. The work in this chapter was also commercialised in a

company co-founded by the author of this thesis (chainspace.io), which was

later acquired by Facebook.

Fraud and data availability proofs in Chapter 4 is being adopted in the spec-

ification of Ethereum 2.0 [39], and is used in the whitepaper for Harmony [74],

a company implementing a sharded blockchain. The techniques described in this

chapter are of general use to any blockchain project to improve the security of light

clients. The work on data availability proofs has inspired further work on efficient

data availability schemes [156].

LazyLedger in Chapter 5 follows a trend in the blockchain space where the

design space of “on-chain data availability, off-chain execution” protocols has re-

ceived traction recently [38], and contributes one of the first designs following this

design paradigm. In the future it may make it economical to build blockchain appli-

cations requiring a high level of on-chain data storage. Furthermore, LazyLedger is

also being developed as a commercial project (lazyledger.io).

Contour, the software binary transparency system in Chapter 6 was developed

in the context of law enforcement agencies attempting to bypass end-to-end encryp-

chainspace.io
lazyledger.io
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tion by compelling software vendors to build versions of their software with back-

doors [64]. In 2018, the United Kingdom passed legislation which set out these

obligations as part of the Investigatory Powers (Technical Capability) Regulations

2018 [3]. This work (and binary transparency in general) can be used to inform fu-

ture policy, and also help software vendors increase the security assurances of their

users in the context of such legislation.
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Chapter 1

Introduction

Money is not an invention of the state. It is not the product of a

legislative act. Even the sanction of political authority is not necessary

for its existence. Certain commodities came to be money quite naturally,

as the result of economic relationships that were independent of the

power of the state.

Carl Menger

Blockchain-based cryptocurrencies and networks such as Bitcoin [109] and

Ethereum [36] are able to operate without a trusted central authority to verify trans-

actions, because nodes in the network verify for themselves that all transactions are

valid, and reject blocks that contain invalid transactions. Therefore, the producer of

a block (i.e., a miner) does not need to be trusted to only produce blocks with valid

transactions, as invalid blocks will be rejected by all correctly functioning nodes in

the network.

The public verifiability of blockchains has opened the doors to a new breed of

decentralised systems and computation platforms that do not rely on trusted central

parties. However, this blessing is also a curse; if every node in the network executes

and verifies every transaction, then the transaction throughput of the network is

limited by the node with the lowest amount of resources.

Blockchain networks typically adopt a hard limit on the size of blocks

[11, 153], to allow nodes with a low amount of resources to participate in the

network. While this is positive for the decentralisation of the network as it low-
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ers the cost of running a node, it limits the transaction throughput of the network.

During peak times, users pay higher fees as they compete to get their transactions

included on the blockchain due to on-chain space being limited. Popular services

have stopped accepting Bitcoin payments due to transactions fees rising as high

as $20 [115, 81], and Ethereum’s popular CryptoKitties smart contract caused the

pending transactions backlog to increase six-fold [152].

While increasing the block size limit would increase transaction throughput,

this would harm decentralisation as it would increase the cost of running a node

to execute and verify transactions. Therefore, for blockchain applications to gain

widespread usage, it is necessary to develop blockchain protocols and applications

that support greater transaction throughput, without sacrificing the desirable prop-

erties of blockchains such as public verifiability and decentralisation.

What is decentralisation?

The word ‘decentralisation’ can have many meanings and contexts in various sys-

tems. In the context of blockchains, we identify two primary contexts for decentral-

isation:

• Decentralisation of block production. This concerns the function of adding

new blocks or state to the system.

Potential questions: How many different entities share the ability to append

blocks to the chain? How ‘hard’ would it be to corrupt a majority of them

so that they censor or double-spend transactions? How expensive would it be

to bribe them? How many governments would need to co-operate to regulate

them?

• Decentralisation of block verification. This concerns the function of veri-

fying the validity of blocks and state of the system.

Potential questions: How expensive is it to verify all the transactions in the

blockchain? How many users are doing it in practice? Can users gain an

assurance of the validity of blocks in a more efficient way than verifying

every transaction individually?
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In this thesis, we are focused on the decentralisation of verification, as this the-

sis proposes the design of scalable transaction execution models. When transaction

execution is scaled, transaction verification must also be scaled in order to maintain

decentralisation.

1.1 Scope and Purpose

The scope and purpose of this thesis is to develop better blockchain protocols that

support greater throughput of transactions posted on the chain. The on-chain (layer

1) protocols of blockchains and their security properties will be discussed. Other as-

pects of blockchain scalability such cryptographic primitives (other than using them

as a pre-requisite), networking protocols (layer 0) or off-chain (layer 2) scalability

are out of scope. The primary contribution of this thesis is to design and evalu-

ate new on-chain blockchain protocols that improve the state of the art in terms of

scalability and security.

First, we provide background in Chapter 2 into the pre-requisite concepts that

this thesis builds upon, including cryptographic building blocks, data structures and

transactions. In particular, we focus on Bitcoin [109] and Ethereum [36] as exam-

ples of the two most prominent blockchain architectures for payments and smart

contracts, respectively.

We make a contribution to scaling blockchains through sharding in Chapter 3,

by designing a data model for transaction that enables them to be executed in paral-

lel, and a protocol to facilitate atomic cross-shard transactions (Sharded Byzantine

Atomic Commit).

One of key challenges with on-chain scalability is increasing on-chain trans-

action throughput, but still enabling nodes with low resources to validate the chain

(e.g., in all shards) in some way, and reject invalid blocks. In Chapter 4 we thus

propose a technique that enables nodes with low resources to run light clients, and

receive fraud proofs of invalid blocks from full nodes with more resources. We also

contribute a technique–data availability proofs–to allow these light clients to effi-

ciently ensure that the data necessary to generate fraud proofs has been published
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by block producers.

Data availability proofs are of general interest to verify that an entire file (such

as a block) has been published, by only downloading a small sample of that file. In

Chapter 5 we use these proofs as a primitive to propose LazyLedger, a new scalable

design paradigm for blockchains where the chain is only used as a data availability

layer to post ordered messages, but those messages are executed only by end-user

clients rather than consensus nodes. The on-chain consensus layer is thus separated

from the execution layer, thus simplifying the blockchain to a verifiable log that

orders messages, leaving the interpretation of those messages to clients.

As will be shown in Chapter 4, data availability proofs have a scale-out prop-

erty similar to sharding, where the size of the data that one can prove availability

for is proportional to the number of nodes in the network. Therefore by reducing

the task of block validation to data availability validation, the LazyLedger system in

Chapter 5 achieves scale-out block validation for data availability without sharding

the main chain.

Finally, in Chapter 6, we demonstrate how to build a scalable verifiable log on

top of the Bitcoin blockchain, for software binary transparency–an application that

does not need any execution, but simply an append-only log.

The work in Chapter 5 and Chapter 6 can be thought of as an inversion of each

other, as Chapter 5 builds an independent blockchain simplified as a verifiable log,

which developers can use to build applications on top of. On the other hand, Chap-

ter 6 builds a scalable verifiable log application that is built on top of the Bitcoin

blockchain, instead of a blockchain that natively supports data availability proofs.

The goal is to benefit from the existing anti-forking economic security of the Bit-

coin blockchain, rather than needing to bootstrap a new smaller network with less

security.

1.2 Schedule of Work

1.2.1 Included Work

Parts of this thesis have been published in the following papers:
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• Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis, G.:

Chainspace: A sharded smart contracts platform. In: 25th Annual Network

and Distributed System Security Symposium, NDSS 2018, San Diego, Cal-

ifornia, USA, February 18-21, 2018. The Internet Society (2018), http:

//wp.internetsociety.org/ndss/wp-content/uploads/

sites/25/2018/02/ndss2018_09-2_Al-Bassam_paper.pdf.

Included in Chapter 3.

• Al-Bassam, M., Meiklejohn, S.: Contour: A practical system for binary

transparency. In: Garcı́a-Alfaro, J., Herrera-Joancomartı́, J., Livraga, G.,

Rios, R. (eds.) Data Privacy Management, Cryptocurrencies and Blockchain

Technology - ESORICS 2018 International Workshops, DPM 2018 and

CBT 2018, Barcelona, Spain, September 6-7, 2018, Proceedings. Lecture

Notes in Computer Science, vol. 11025, pp. 94–110. Springer (2018). doi:

10.1007/978-3-030-00305-0\ 8, https://doi.org/10.1007/978-

3-030-00305-0_8. Included in Chapter 6.

Other parts of this thesis are under submission to conferences or workshops, and/or

have been published as pre-prints:

• Al-Bassam, M., Sonnino, A., Buterin, V.: Fraud proofs: Maximising light

client security and scaling blockchains with dishonest majorities. CoRR

abs/1809.09044 (2018), http://arxiv.org/abs/1809.09044. In-

cluded in Chapter 4.

• Al-Bassam, M.: LazyLedger: A distributed data availability ledger with

client-side smart contracts. CoRR abs/1905.09274 (2019), http://

arxiv.org/abs/1905.09274. Included in Chapter 5.

1.2.2 Other Work

As part of my research, the following papers were published that are not included

in this thesis:

http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-2_Al-Bassam_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-2_Al-Bassam_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-2_Al-Bassam_paper.pdf
https://doi.org/10.1007/978-3-030-00305-0_8
https://doi.org/10.1007/978-3-030-00305-0_8
http://arxiv.org/abs/1809.09044
http://arxiv.org/abs/1905.09274
http://arxiv.org/abs/1905.09274
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• Al-Bassam, M.: SCPKI: A smart contract-based PKI and identity system.

In: ACM Workshop on Blockchain, Cryptocurrencies and Contracts. pp. 35–

40. BCC ’17, ACM, New York, NY, USA (2017). doi: 10.1145/3055518.

3055530, https://doi.org/10.1145/3055518.3055530

• Azouvi, S., Al-Bassam, M., Meiklejohn, S.: Who am I? secure identity reg-

istration on distributed ledgers. In: Garcı́a-Alfaro, J., Navarro-Arribas, G.,

Hartenstein, H., Herrera-Joancomartı́, J. (eds.) Data Privacy Management,

Cryptocurrencies and Blockchain Technology - ESORICS 2017 International

Workshops, DPM 2017 and CBT 2017, Oslo, Norway, September 14-15,

2017, Proceedings. Lecture Notes in Computer Science, vol. 10436, pp.

373–389. Springer (2017). doi: 10.1007/978-3-319-67816-0\ 21, https:

//doi.org/10.1007/978-3-319-67816-0_21

• Sonnino, A., Al-Bassam, M., Bano, S., Meiklejohn, S., Danezis, G.: Coconut:

Threshold issuance selective disclosure credentials with applications to dis-

tributed ledgers. In: 26th Annual Network and Distributed System Security

Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019.

The Internet Society (2019), https://www.ndss-symposium.org/

ndss-paper/coconut-threshold-issuance-selective-

disclosure-credentials-with-applications-to-distributed-

ledgers/

• Król, M., Sonnino, A., Al-Bassam, M., Tasiopoulos, A.G., Psaras, I.: Proof-

of-prestige: A useful work reward system for unverifiable tasks. In: IEEE

International Conference on Blockchain and Cryptocurrency, ICBC 2019,

Seoul, Korea (South), May 14-17, 2019. pp. 293–301. IEEE (2019). doi:

10.1109/BLOC.2019.8751406, https://doi.org/10.1109/BLOC.

2019.8751406

• Bano, S., Sonnino, A., Al-Bassam, M., Azouvi, S., McCorry, P., Meiklejohn,
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(2019). doi: 10.1145/3318041.3355458, https://doi.org/10.1145/

3318041.3355458

• Sonnino, A., Bano, S., Al-Bassam, M., Danezis, G.: Replay attacks and de-

fenses against cross-shard consensus in sharded distributed ledgers. In: IEEE

European Symposium on Security and Privacy 2020 (2020)

Finally, as part of my research, the following papers are under submission that are

not included in this thesis:

• Hicks, A., Mavroudis, V., Al-Bassam, M., Meiklejohn, S., Murdoch,

S.J.: VAMS: verifiable auditing of access to confidential data. CoRR

abs/1805.04772 (2018), http://arxiv.org/abs/1805.04772

• Al-Bassam, M., Sonnino, A., Król, M., Psaras, I.: Airtnt: Fair exchange pay-

ment for outsourced secure enclave computations. CoRR abs/1805.06411
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1.2.3 Work Done in Collaboration

A large part of this work has been conducted in collaboration with other researchers,

who are listed in Section 1.2.

In Chapter 3, Alberto Sonnino designed Chainspace’s object and smart contract

model, whereas I designed the cross-shard transaction protocol (Sharded Byzantine

Atomic Commit) and led the implementation of the smart contracts framework and

evaluation of the system.

In Chapter 4, Alberto Sonnino designed the security theorems and imple-

mented the fraud proofs prototype, Vitalik Buterin proposed the idea of using 2D

erasure coding for data availability proofs, and I designed the overall fraud and data

https://doi.org/10.1145/3318041.3355458
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http://arxiv.org/abs/1805.06411
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availability proofs system, and implemented and measured the performance of data

availability proofs.

Chapter 5 is sole work that was not done in collaboration.

In Chapter 6, I designed, implemented and measured the performance of the

Contour system. My secondary supervisor Sarah Meiklejohn helped with the for-

malisation of the system design.



Chapter 2

Background

The only true wisdom is in knowing you know nothing.

Socrates

2.1 Cryptographic Primitives
This section presents the basic cryptographic building blocks that underpin cryp-

tocurrencies and blockchain protocols.

2.1.1 Hash Functions

A cryptographic hash function is a publicly known function h that takes in an ar-

bitrary sized input x, and returns an output of fixed size H(x). There are three

desirable properties for a cryptographic hash function:

• Pre-image resistance. Given a hash y, it is computationally hard to find any

x such that H(x) = y.

• Weak collision resistance. Given an input x1, it is computationally hard to

find a different input x2 such that H(x1) = H(x2).

• Strong collision resistance. It is computationally hard to find any x1 and x2

such that H(x1) = H(x2). This implies weak collision resistance.

In cryptocurrencies, common hash functions include SHA-256 which is used

by Bitcoin [11], and SHA-3 which is used by Ethereum [153].
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N6 = hash(N4||N5)

N4= hash(N0||N1) N5= hash(N2||N3)

N0 = hash(M0) N1 = hash(M1) N2 = hash(M2) N3 = hash(M3)

M0 M1 M2 M3

Figure 2.1: Illustration of an example Merkle tree where the items being committed

to are M0, M1, M2 and M3. The leaf nodes are N0, N1, N2 and N3, the intermediate

nodes are N4 and N5, and the root of the tree is N6.

2.1.2 Merkle Trees

A Merkle tree [106] is a binary tree where every non-leaf node is labelled with the

cryptographic hash of the concatenation of its children nodes. The root of a Merkle

tree can thus be shown to be a commitment to all of the items in its leaf nodes.

Figure 2.1 illustrates an example Merkle tree.

This allows for Merkle proofs which, given the root of some Merkle tree, are

proofs that a leaf is a part of the tree committed to by the root (i.e., a proof of set

membership). A Merkle proof for some leaf consists of all of the sibling nodes of

the ancestor nodes of that leaf, up to the root of the tree, as illustrated in Figure 2.2.

This allows a verifier to recompute the ancestor nodes of the leaf and the root, to

verify that the Merkle proof is valid and matches the committed root of the tree. The

size and verification time of a Merkle proof for a tree with n leaves is O(log(n)), as

it is a binary tree.

Sparse Merkle trees

A sparse Merkle tree [93, 51] is a Merkle tree with n leaves where n is extremely

large (e.g., n = 2256), but where almost all of the nodes have the same default value
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N6 = hash(N4||N5)

N4= hash(N0||N1) N5= hash(N2||N3)

N0 = hash(M0) N1 = hash(M1) N2 = hash(M2) N3 = hash(M3)

M0 M1 M2 M3

Figure 2.2: A Merkle proof for M1, where the blue nodes are included in the proof

(in addition to M1 itself and the root hash N6).

(e.g., 0). If k nodes are non-zero, then at each intermediate level of the tree there will

be a maximum of k non-zero values, and all other values will be the same default

value for that level: 0 at the bottom level, L1 = H(0||0) at the first intermediate

level, L2 = H(L1||L1) at the second intermediate level, and so on, where H is a hash

function. Hence despite the exponentially large number of nodes in the tree, the

root of the tree can be calculated in O(k× log(n)) time.

A sparse Merkle tree allows for commitments to key-value maps, where values

can be accessed, updated, inserted or deleted trivially in O(log(n)) time. Merkle

proofs of specific key-values entries are of size log(n) if constructed naively but can

be compressed to size log(k) as intermediate nodes whose sibling have the default

value do not need to explicitly be shown.

In a sparse Merkle tree, the H(k)th leaf node represents the value of the key k.

Figure 2.3 illustrates a sparse Merkle tree.

Their are also optimisations for sparse Merkle trees to allow values to be ac-

cessed or updated in O(log(k)) time rather than O(log(n)), with respect to the num-

ber of hash operations that need to performed. This can be achieved in one of two

ways:
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(root hash)

(node) (node)

hash(M0) hash(M2256-1)

M0 M2256-1

... ...

(a very large number of nodes)

Figure 2.3: Illustration of a sparse Merkle tree with 2256 items.

1. Use a ‘wrapper’ hash function W (l||r) that calls a real hash function H, where

W is trivial to compute if l or r have default values [40]. Thus, H only needs

to be called log(k) times rather than log(n) times, meaning that there are only

log(k) ‘non-trivial’ computations.

2. Simply replace subtrees consisting of only one non-default leaf, with that leaf.

Additionally, subtrees consisting of only default leaves are replaced with a

placeholder value [10].

There are other types of Merkelised trees that support key-value maps, most

notably Patricia trees used by Ethereum and Ripple [153, 132]. However in this

thesis we focus on sparse Merkle trees as our primitives for key-value maps due to

their greater simplicity and equivalent performance (with optimisations).

2.1.3 Public-Key Cryptography and Signatures

Public-key cryptography uses pairs of keys: a private key used to decrypt or sign

messages, and a corresponding public key used to encrypt messages to the private

key holder and verify signatures made by the private key holder. In cryptocurren-

cies, public-key cryptography is primarily used for digital signatures.

Given a key-pair (Kpk,Ksk) where Kpk is a public key and Ksk is its correspond-

ing private (secret) key, and a message x, there is a function sign(Ksk,x) that returns
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blockHeaderi

prevHashi: h(blockHeaderi-1)

txRooti

...

h(tx
0) h(tx1) h(tx2) h(tx3)

tx0 tx1 tx2 tx3

blockHeaderi+1

prevHashi+1: h(blockHeaderi)

txRooti+1

...

h(tx
0) h(tx1) h(tx2) h(tx3)

tx0 tx1 tx2 tx3

Block
headers

Block
data

Figure 2.4: Illustration of the core elements of a blockchain.

a signature for the message x, and a boolean verification function verify(Kpk,m,s)

that returns true if the signature s for a message m by public key Kpk is correct, so

that verify(Kpk,x,sign(Ksk,x)) is true.

There are many different algorithms for public-key cryptography systems. The

most common system used for cryptocurrencies is the Elliptic Curve Digital Signa-

ture Algorithm, which is used by Bitcoin and Ethereum [11, 153].

2.2 Blockchain Data Structures
The data structure of a blockchain is relatively simple. It consists of a sequence of

data elements–called blocks–such that each block contains the cryptographic hash

of the previous block.

As illustrated in Figure 2.4, each block consists of two core components: the

block header, and the block data. The header is relatively short piece of data that

contains the ‘meta-data’ of the block. At minimum, a block header contains the

hash of the previous block header in the chain, thus enabling the chaining property,

and the Merkle root of all the transactions in the block. The block data is the raw

transactions in the block, i.e., all the leafs of the Merkle tree.

Given a current block header, the blockchain is append-only: no transactions

or data in the previous blocks in the chain can be modified without changing the

hashes of their block headers, and thus all of the future block headers including the

current block header. Instead, data can only be appended to the chain by creating a



2.2. Blockchain Data Structures 32

Chain
height

0 1 2 3

Figure 2.5: A blockchain fork.

new block with a header that references the current bock header.

The block header can also contain other data that is specific to the blockchain

or consensus protocol, as we shall see later on in Section 2.3.

2.2.1 Genesis Block

The very first block in the chain is known as the ‘genesis block’, and is typically

hard-coded into the software. This requires a degree of trust in the creator of the

genesis block (trusted setup), because if the block was created a long time before

the software was released, the creator would have a significant head-start in crafting

an attack to ‘fork’ the chain in the future (see Section 2.2.2), depending on the

consensus protocol (see Section 2.3.2).

For this reason, the creator of Bitcoin embedded the message ‘The Times

03/Jan/2009 Chancellor on brink of second bailout for banks’ into the genesis block

[110], to prove that the block was created after the date specified in the referenced

newspaper headline.

2.2.2 Forks

As illustrated in Figure 2.5, a blockchain may contain a ‘fork’. A fork occurs when

a block header is succeeded by multiple block headers that reference it as the pre-

vious header. Blockchain systems employ consensus algorithms (to be discussed in

Section 2.3.2) to resolve forks and to ensure that there is only one canonical chain

that is considered the true chain by nodes in the network.
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Figure 2.6: High-level overview of UTXO-based transactions.

Transaction 3 (by Alice)

Instruction

Add 4000 to Bob's balance
Subtract 4000 from Alice's balance
(signed by Alice)

Key Old value New value

Alice’s balance 4000 0

Bob’s balance 0 4000

... ... ...

State

Figure 2.7: High-level overview of account-based transactions.

2.2.3 Transactions

Addresses

When Alice wishes to send money to Bob, Alice generates a transaction that sends

money to Bob’s public key, spending money controlled by Alice’s public key. The

identifiers of these public keys are known as addresses. For example, in Bitcoin, an

address is the Base58 encoded version of a hashed representation of the public key.

To prove that Alice is authorised to spend the money controlled by Alice’s public

key, the transaction is signed by Alice’s private key.

There are two main types of blockchain-based transaction models, which are

discussed below.
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Unspent Transaction Output (UTXO)-Based Transactions

In this transaction model, every transaction has multiple monetary inputs and out-

puts. Figure 2.6 provides an overview of UTXO-based transactions.

Outputs can specify which addresses are being paid by the transaction, and how

much. Specifically, outputs are scripts that specify the conditions necessary for that

output to be spent, or “unlocked”. For example in Bitcoin, outputs can be a script

that returns true upon the production of a valid cryptographic signature associated

with the address specified in the output, that wishes to claim that output. This is

known as a Pay-to-PubkeyHash (P2PKH) transaction, as the sender is sending a

payment to the hash of a public key (an address).

When a user wishes to spend money sent to their address, they must create a

transaction whose inputs are references to outputs from previous transactions, and a

“script signature” for each input that specifies a value that causes the input script to

return true, such as a valid cryptographic signature. Each output can only be spent

once, and unspent outputs are known as Unspent Transaction Outputs, or UTXOs

for short.

This enables nodes in the network to not keep track of the balances of all the

addresses in the system. They simply keep track of all of the unspent transaction

outputs in order to know which public keys are entitled to which funds, and to

validate new transactions. The state of the ledger at a given point in time can thus

be expressed as the set of unspent transaction outputs.

As unspent outputs can only be spent once, all of the monetary value of that

output must be consumed by the transaction spending the output at once. This

means that if Alice is attempting to spend an output to pay Bob, but the value she

wants to pay Bob is less than the value of the output, then she must create an ad-

ditional “change” output in the transaction that sends the excess money back to an

address she controls.

Account-Based Transactions

Unlike the UTXO-based transaction model, the account-based transaction model

does keep track of balances of addresses, which are known as “accounts”. Figure 2.7
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Smart contract X

init()
function1(a, b, ...)
function2(a, b, ...)
...

Transaction (by Alice)

Instruction

function1(a, b, ...)
2000 gas from Alice's account
(signed by Alice)

Key Old value New value

... ... ...

Contract X
variable 1

(pre-state) (post-state)

Contract X
variable 2

(pre-state) (post-state)

... (pre-state) (post-state)

Contract X
variable n

(pre-state) (post-state)

... ... ...

Figure 2.8: High-level overview of account-based smart contracts.

provides an overview of account-based transactions.

Transactions do not have inputs or outputs, but simply specify from and to

address to transfer money between. Nodes in the network need to keep track of the

balance of all addresses in order to be able to validate new transactions. The state of

the ledger at a given point in time can thus be expressed as a key-value map, where

the keys are accounts and the values are balances.

Although this model is simpler than the UTXO-based model, its disadvantage

is that it is more difficult to apply parallelisation to, as a balance can only be safely

updated sequentially. On the other hand, UTXOs are independent of each other and

thus multiple UTXOs for the same address can be created and spent in parallel.

2.2.4 Smart Contracts

The language that Bitcoin transaction outputs are written in, called Script, is a

simple stack-based language with a very limited set of opcodes [11]. It can be used

to add simple conditions to transaction outputs, such as freezing funds until a time

in the future, or creating M-of-N multi-signature transactions that require signatures

from M out of N parties to spend an output.

Since then, blockchain platforms with more advanced scripting languages have

emerged, the first and most popular of which being Ethereum [36]. These plat-



2.2. Blockchain Data Structures 36

forms support the use of “smart contracts”, scripts which can be uploaded to the

blockchain, that define functions that users can call by sending transactions, to

modify the smart contract’s state on the blockchain. In this model, the script is

therefore not defined by the transaction or its outputs, but by a pre-defined smart

contract. When a new contract is uploaded, its state is typically initialised with an

initialisation function defined by the smart contract.

Ethereum smart contracts are written in specialised high-level languages that

are compiled to Ethereum Virtual Machine (EVM) code [153], a limited but Turing-

complete [147] execution environment. As illustrated in Figure 2.8, smart contract

environments typically employ an account-based model, where the state of smart

contracts are stored in a key-value store that can be modified by the smart contract.

However in Chapter 3 we will discuss a UTXO-based smart contract environment

optimised for parallel transaction execution.

A smart contract execution environment must have several properties that dif-

ferentiate it from standard programming environments, to make it suitable within

the adversarial setting of a decentralised platform. Such an execution environment

must at minimum (i) be compartmentalised from the system in which it is run on

(e.g., it cannot make system calls) as code is run from untrusted sources, (ii) be

deterministic in its execution, regardless of where it is run, so that all nodes ver-

ifying transactions can arrive to the same result, and (iii) as we shall see in Sec-

tion 2.3.4, have a deterministic way to measure precisely the amount of computa-

tional resources its programs consume, regardless of where it is run and how long it

takes to run.

For this reason, standard programming languages such as Python are not suit-

able for smart contracts, hence the creation of the Ethereum Virtual Machine. How-

ever more recently, there has been work on using WebAssembly for smart contracts

[62]. Given that it is designed to run in web browsers and run untrusted code from

websites, it is suitable for smart contracts programming with some modifications to

its standard library to make it deterministic.

Publicly callable smart contract functions can also be called by other smart
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contracts, thus allowing developers to compose other smart contracts, or use code

in other contracts as libraries. Smart contracts may have their own balances, so that

they can act like an address with the ability to send and receive funds.

2.2.5 State Commitments

Blockchains with newer designs include an additional piece of data in block headers

known as a ‘state commitment’. This is a cryptographic value that commits to the

state of the blockchain at the point the block was created, and allows clients to

efficiently verify that some value is a part of the state, upon a prover generating and

presenting a proof of this with the commitment.

Typically, this state commitment is the root of a Merkelized tree that supports

non-membership proofs (i.e., proof that some key or element is not in the tree) such

as a sparse Merkle tree (as described in Section 2.1.2).

A state commitment based on a Merkelized tree that supports a key-value map,

can be created with both a UTXO-based and an account-based blockchain:

• UTXO-based. The keys in the map are transaction output identifiers e.g.,

H(H(txData)||i) where txData is the raw transaction data and i is the index

of the output being referred to in txData. The value of each key is the state

of each transaction output identifier: either unspent (1) or nonexistent (0, the

default value).

• Account-based. This is already a key-value map, where the key is the ac-

count or storage variable, and the value is the balance of the account or the

value of the variable.

In the case of a UTXO-based blockchain, a state commitment can also simply

be a standard Merkle tree containing the set of all UTXOs. However, it would not

be possible to prove that an UTXO does not exist as a standard Merkle tree does not

support non-membership proofs.

It is also possible to use cryptographic accumulators such as RSA accumulators

for state commitments [31], but this is outside the scope of this thesis.
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2.3 Blockchain Peer-to-Peer Network
In Section 2.2, we discussed the data structure of a blockchain, and the mechanics

of transactions and smart contracts. In this section, we will discuss how these pieces

fit together within a peer-to-peer network to construct a live system.

In order to implement a blockchain within a network, there are two key ele-

ments to consider:

• Who is permitted to participate in the process of appending blocks to the

blockchain. This is typically a group of nodes. This is known as Sybil-

resistance [56], and will be discussed in Section 2.3.1.

• How the group of nodes that are permitted to append blocks to the blockchain

agree with each other which block should be added, or whose turn it is to

propose a block. This is known as consensus or Byzantine fault tolerance,

and will be discussed in Section 2.3.2.

2.3.1 Sybil-resistance

A Sybil attack [56] is an attack that occurs in peer-to-peer systems where a node in

the network operates under multiple identities, thus appearing to be multiple nodes.

The Sybil attacker can launch many identities, or “Sybils”, to gain the majority of

the influence in the network. In the context of blockchain networks, this means that

the Sybil attacker controls the majority of the group of nodes that are responsible

for appending blocks to the chain, and thus may fork the chain to double spend a

transaction.

A key challenge of building decentralised blockchains with no centralised

trusted parties is to develop a mechanism to allow nodes who participate in the con-

sensus to be chosen in a decentralised way, such that it would be difficult for any

single party to conduct a Sybil attack. This section discusses the two most promi-

nent decentralised Sybil-resistant node selection schemes, proof-of-work and proof-

of-stake. First we discuss permissioned blockchains, which simply use a centralised

trusted party to select nodes rather than a decentralised Sybil-resistant mechanism.
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Permissioned

Rather than using a decentralised Sybil-resistant mechanism that allows any party

to participate in the production of blocks, some blockchain designs require the set

of consensus-participating nodes to be selected by some centralised party or group

of parties. This is known as a permissioned or consortium blockchain, and is of-

ten used in an enterprise setting where the blockchain is run and governed by a

consortium of companies that do not wish to open participation to external parties.

Libra [10] is an example a permissioned blockchain that is operated by a group

of one hundred nodes run by different companies and organisations, who are mem-

bers of a legal entity known as the Libra Association. Hyperledger [29] is a popular

software project which provides a series of tools and frameworks designed to enable

enterprises to run their own permissioned blockchains.

Proof-of-work

Proof-of-work is the Sybil-resistance scheme used by Bitcoin and its derivatives.

The idea of proof-of-work was first presented by Dwork and Naor in 1993 as a

technique for combatting spam mail, by requiring the email sender to compute the

solution to a mathematical puzzle to prove that some computational work was per-

formed [58].

Proof-of-work was independently proposed in 1997 for Hashcash by Back,

another system for fighting spam [18]. In Hashcash, the computational puzzle is

finding a SHA-1 hash of a header including the email recipient’s address and current

date, such that the hash contains at least 20 bits of leading zeros. As the hashing

algorithm is pre-image resistant, the puzzle can be solved only by sampling random

nonces in the header until the resulting hash meets the leading zeros requirement.

Testing these guesses require a significant amount of computational work, so a valid

hash is considered to be a proof-of-work.

Bitcoin’s proof-of-work mechanism is derived from Hashcash [18]. It replaces

Hashcash’s SHA-1 hashing with two successive SHA-2 hashes, and requires valid

hashes to have a value below a target integer value t. The difficulty of the puzzle is

therefore adjustable: decreasing t increases the number of guesses (and thus work)



2.3. Blockchain Peer-to-Peer Network 40

required to generate a valid hash. The nodes that generate hashes are called miners

and the process is referred to as mining. Miners calculate hashes of candidate blocks

of transactions to be added to the blockchain, and are rewarded with new coins if

they find a valid block. The value t is reset by the network every 2016 blocks such

that miners are successful (and can append a block to the blockchain) on average

every 10 minutes (also called the inter-block interval).

This means that the more computing power a miner has, the more likely they

are to successfully mine a block. Thus each miner’s share of ‘voting power’ to

decide the next blocks in the system is proportional to how much computational

resources they have.

In order to conduct a Sybil attack in the network, the attacker needs the ma-

jority of the computational resources in the network [109], although more recent

strategies show that such an attack can be performed with only 25% of resources

[63].

Proof-of-stake

Due to concerns that proof-of-work requires a significant amount of electrical en-

ergy to secure the network, proof-of-stake has emerged as a more energy-efficient

alternative.

In proof-of-stake, the ‘voting power’ or likelihood of nodes deciding the block

is proportional to how many coins they hold in the system (i.e., their stake in the

system), rather than computational resources.

Compared to proof-of-work, proof-of-stake protocols are subject to several key

attacks that need to be address [20]:

• Nothing-at-stake attack. Unlike proof-of-work, there is no cost to creating

a block in proof-of-stake. Thus block producers in proof-of-stake (‘stakers’)

have the incentive to attempt to extend every fork, in the hope that they will

get their block included in the right fork that reaches consensus. Mitigations

include introducing penalty fines (‘stake slashing’) for stakers that extend the

wrong fork [41].
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• Grinding attack. In proof-of-stake protocols, a source of randomness is

needed in order to randomly select a staker out of the set of stakers to pro-

duce the next block. In a grinding attack, a staker attempts to influence the

random number generation algorithm in its own favour, for example if the

algorithm’s source of randomness (seed) includes data supplied by the staker

such as block header data. This is mitigated by using a source of randomness

that cannot easily be biased or manipulated [83, 17].

• Long-range attack. In this attack, an attacker may purchase private keys

from stakers that had stored significant coins in the past, but not presently.

If the attacker has sufficient private keys such that they control a majority of

coins in the past, they can use these keys to fork the chain from a point in

the past an re-write the entire history of the chain. This can be mitigated by

creating checkpoints of the chain that finalise the chain at every checkpoint

[41]. Unfortunately, this means that if a node goes offline for a long period

of time and miss the creation of the checkpoint, they must ask another trusted

node to tell them which is the correct checkpoint (in the event that there are

multiple adversarial checkpoints).

Others

Although proof-of-work and proof-of-stake are the most prominent Sybil-resistant

mechanisms, other less prominent mechanisms have been proposed. This includes

proof-of-burn, where block producers must destroy coins to generate blocks [85].

Another is proof-of-coin-age, a version of proof-of-stake where the power of block

producers is proportional to how much coins they hold weighted by the time since

they were last moved [116].

2.3.2 Consensus and Byzantine Fault Tolerance

Once it is decided who is a part of the consensus group, the group must come to

consensus on the blocks to be attended to the chain. In this section we categorise

consensus into three main categories: centralised (i.e., a single trusted third party),

Nakamoto consensus (as introduced by Bitcoin [109], and tradition Byzantine fault
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tolerance algorithms.

Centralised/Verifiable Logs

Some system designs may opt to use a blockchain data structure for its append-only

property only, but not for decentralisation. This useful in a use case where the goal

is to write all of the actions of a centralised service in a tamper-resistant log, so

that evidence of misbehaviour cannot be deleted from the log. Such systems have

been proposed in the context of tamper-resistant operating system logs [50] and

TLS certificate transparency [94].

In such systems, the consensus algorithm is typically simply a centralised log

server signing block headers [50, 94], and thus the consensus group consists of

one party with no Byzantine fault tolerance. Likewise, there is no Sybil-resistant

mechanism as the consensus group consists of a known single party. To prevent the

log server from forking the chain and presenting different views of the log to clients

(equivocation), a gossiping protocol can be used so that clients can share versions

of logs with each other to detect equivocation [113].

In Chapter 6 we will explore how in case of software binary transparency,

gossiping does not work and it is better to use Bitcoin as a tamper-resistant verifi-

able log. This borrows from the economic security of Bitcoin to guarantee tamper-

resistance.

Nakamoto Consensus and Longest-chain Rule

Nakamoto consensus was proposed in the Bitcoin whitepaper by Satoshi Nakamoto

[109]. It is fairly simple: miners mine blocks with proof-of-work, and in the event

multiple blocks are mined at the same height (a fork), the chain with the most accu-

mulated proof-of-work is the correct one. This is (counter-intuitively) known as the

longest-chain rule. When applied to proof-of-stake, this would be the chain with the

most accumulated proof-of-stake. A fork may occur due to network latency issues;

a miner may for example produce a block at the same height of another block that

was produced seconds earlier, because the miner did not see that block in time.

Nakamoto consensus is very efficient; it requires only an O(1) messaging com-

plexity for a node to verify that a block has consensus, as it simply needs to down-
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load a block header (whose size is independent of the number of nodes in the net-

work) and check that it is in the chain with the most accumulated proof-of-work.

The main disadvantage of Nakamoto consensus that it has a slow finality time;

it takes a long time for nodes to be reasonably sure that a block is really part of the

chain and will not be orphaned in a fork. The typical recommendation for Bitcoin

is to wait for 6 blocks (an hour) for a transaction to be considered confirmed [11].

Traditional Byzantine Fault Tolerance

‘Traditional’ Byzantine fault tolerance (BFT) consensus algorithms have been pro-

posed since at least the 1980s. In such algorithms, 2 f +1 honest nodes are needed

to tolerate f dishonest (or Byzantine) nodes [92, 118].

Unlike Nakamoto consensus, these systems have fast finality because they ex-

plicitly require an honest 2 f +1 majority of 3 f +1 participants to sign every mes-

sage (which could e.g., a block) that consensus is to be reached on. Thus ‘forking’

is not possible if 2 f +1 participants are honest, as they cannot accidentally approve

consensus on two conflicting messages (e.g., two blocks of the same height) due to

e.g., network latency issues.

The disadvantage of traditional BFT algorithms is their high messaging com-

plexity; the most prominent BFT protocol, Practical Byzantine Fault Tolerance

(PBFT) [43] has a worse-case O(N4) messaging complexity [52].

More recently, there have been a large variety of hybrid ‘protocols’ that blur the

boundaries between Nakamoto consensus and traditional BFT consensus, to achieve

the best of both worlds in finality and efficiency [101, 52, 41, 35]. We do not discuss

them here further, as this thesis does not focus on the design of consensus protocols,

but uses them as a building block.

2.3.3 Block Validity and Network Nodes

In addition to consensus rules, blockchains also typically have a set of on-chain

transaction validity rules that dictate which transactions are valid. Thus blocks that

contain invalid transactions will never be accepted by the consensus algorthim and

should in fact always be rejected.
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Full nodes (also known as ‘fully validating nodes’) are nodes which download

both the block headers as well as the list of transactions, verifying that all trans-

actions are valid according to some transaction validity rules. This is necessary in

order to know which blocks have been accepted by the consensus algorithm.

There are also ‘light’ clients which only download block headers, and assume

that the list of transactions are valid according to the transaction validity rules.

These nodes verify blocks against the consensus rules, but not the transaction va-

lidity rules, and thus assume that the consensus is honest in that they only included

valid transactions. They therefore do not fully execute the consensus algorithm to

know which blocks are accepted, and may end up in a situation where they accept

blocks that contain invalid transactions, that full nodes have rejected.

Nodes with insufficient resources to run a full node, such as a mobile phone,

can run a light client. Light clients can accept payments by verifying that transac-

tions have been included in the chain, by requesting from full nodes Merkle proofs

of transactions being included in blocks.

The difference between these node types is at the crux of the blockchain scal-

ability challenge: if on-chain transaction capacity is increased, the amount of re-

sources required to run a full node could increase, thus requiring more people to

run light clients that make an additional honest-majority assumption for block va-

lidity. This will be discussed in greater depth in Chapter 4.

Gossiping and Eclipse Attacks

Typically, blocks are distributed to nodes via a peer-to-peer gossiping network [34].

An attacker that is able to control which nodes a node connects to can conduct

an ‘eclipse attack’ [75], where the node is made to connect to only nodes that the

attack controls. The attacker can thus control the node’s view of the network, and

control which blocks it sees. This can cause the node to be on a different fork of

the blockchain than the rest of the network that is not under an eclipse attack. We

explore such attacks in more detail in Chapter 6.
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2.3.4 Transaction Fees

Users can choose to optionally include a fee in their transaction, paid to any block

producer that includes their transaction in a block. Block producers may only decide

to include transactions with the highest fee if block space is limited, thus creating

a fee market. The higher the transaction fee, the more likely (and thus the more

quickly) it is to be included in a block.

In smart contract platforms, executing a function in a smart contract has a “gas”

cost associated with it, depending on how many and which operations the function

performs [153]. The more resource intensive a transaction is, the more the user

would have to pay. Different operations may have different gas costs depending on

how much CPU, RAM or storage space they require. This gas cost is paid by the

transaction creator in cryptocurrency tokens, and the transaction creator can choose

how much cryptocurrency per gas to include, but this will affect the speed in which

the transaction is included in a block, akin to transaction fees described earlier.

If the transaction is being executed in a Turing-complete execution environ-

ment, then the transaction creator includes a maximum gas fee, as due to the halting

problem [147] it may not be possible to determine the gas cost of the execution

beforehand, and the execution may consume differing amount of gas depending on

the state of the contract at the point of execution.



Chapter 3

Chainspace: A Sharded Smart

Contracts Platform

Whether to concentrate or to divide your troops, must be decided by

circumstances.

Sun Tzu

3.1 Introduction and Motivation
In blockchain networks such as Bitcoin and Ethereum, consensus-participating

block producers download and process (i.e., validate) all on-chain transactions to

propose blocks. The throughput of the chain is therefore bottlenecked by the block

producer with the lowest computational and network resources that ought to be sup-

ported by the network.

By ‘sharding’ the network into multiple chains with different consensus groups

that produce blocks, different block producers can process different transactions in

parallel, rather than every transaction. As the transaction load is then distributed,

on-chain throughput can be increased.

Two key challenges in designing a sharded blockchain system are (i) designing

a protocol for transactions to atomically access and modify state across shards and

(ii) supporting a transaction model that allows smart contracts to be designed that

can be easily parallelised across shards.

The atomic cross-shard transaction problem can be exemplified with the train

and hotel problem [54]. Suppose that a user wants to make a transaction to book a
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train seat and hotel room atomically, so that either both bookings succeed or neither

do. If the state for the train seat and hotel room is stored on different shards, then

the user could end up in a situation where the transaction succeeds on one shard

but fails on the other, so the user will end up with only either a train seat or hotel

room. To prevent this, a protocol to facilitate atomic transactions between shards is

required.

In this chapter we introduce Chainspace, a distributed ledger design for smart

contracts that makes use of sharding to allow nodes to process on-chain transactions

in parallel. A primary design goal of Chainspace is to allow for atomic cross-shard

transactions. A modest test-bed of 60 nodes achieves 350 transactions per second,

as compared with a peak rate of less than 7 transactions per second for Bitcoin over

around 5,400 full nodes [49].

The chapter makes the following contributions:

• It presents Chainspace, a system that can scale arbitrarily as the number of

nodes increase, tolerates Byzantine failures, and can be fully and publicly

audited.

• It introduces a UTXO-like data model for smart contracts based on atoms

called ‘objects’, which allows for transaction processing to be parallelised

across shards.

• It presents a novel distributed atomic commit protocol, called S-BAC, for

sharding generic smart contract transactions across multiple Byzantine nodes,

and correctly coordinating those nodes to ensure safety, liveness and security

properties.

• It provides a full implementation and evaluates the performance of the Byzan-

tine distributed commit protocol, S-BAC, on a real distributed set of nodes and

under varying transaction loads.
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3.2 Related Work
In this section we provide a view of related sharding proposals to Chainspace. For

a systematisation of knowledge of sharding on blockchains, we refer the reader

to SoK: Sharding on Blockchains by Wang et al. [149] and a formalisation of

blockchain sharding protocols by Avarikioti et al. [14].

3.2.1 OmniLedger

The most comparable system to Chainspace is OmniLedger [87]—that was devel-

oped concurrently—and provides a scalable distributed ledger for a cryptocurrency,

but it is not designed for generic smart contracts by default. OmniLedger assigns

nodes (selected using a Sybil-attack resistant mechanism) into shards among which

state, representing coins, is split. The node-to-shard assignment is done every epoch

using a bias-resistant decentralized randomness protocol [142] to prevent an adver-

sary from compromising individual shards. A block-DAG (Directed Acyclic Graph)

structure is maintained in each shard rather than a single blockchain, effectively

creating multiple blockchains in which consensus of transactions can take place in

parallel. Nodes within shards reach consensus through the PBFT protocol [43] with

ByzCoin [86]’s modifications that enable O(n) messaging complexity. In contrast,

Chainspace uses BFT-SMART ’s PBFT implementation [141] as a black box, and

inherits its O(n2) messaging complexity—however, BFT-SMART can be replaced

with any improved PBFT variant without breaking any security assumptions.

Similar to Chainspace, OmniLedger uses an atomic commit protocol to pro-

cess transactions across shards. However, it uses a different client-driven approach

to achieve it, called Atomix. To commit a transaction, the client first sends the trans-

action to the network. The leader of each shard that is responsible for the transaction

inputs (input shard) validates the transaction and returns a proof-of-acceptance (or

proof-of-rejection) to the client, and inputs are locked. To unlock those inputs, the

client sends proof-of-accepts to the output shards, whose leaders add the transaction

to the next block to be appended to the blockchain. In case the transaction fails the

validation test, the client can send proof-of-rejection to the input shards to roll back

the transaction and unlock the inputs.
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3.2.2 Ethereum 2.0

Ethereum 2.0 is a proposed upgrade to Ethereum to deploy sharding. It allows for

cross-shard transactions through a mechanism known as ‘cross-shard yanking’ [37],

which is a form of a mutual exclusion (mutexes) [55].

Mutexes are a property of computer program threads that run concurrently that

access a shared resource, where it is a requirement that only one thread can enter

its ‘critical section’ at a time. The critical section of a thread is the part of a thread

that accesses a shared resource, where concurrent access to that resource can lead

to erroneous behaviour. Therefore, mutexes ensure that only one thread at a time is

accessing a shared resource.

In the context of sharding, the threads are shards, and in Ethereum, the shared

resources are smart contracts. The goal is to ensure that a contract is accessed by

only one shard at a time.

Suppose Alice wants to yank a contract X from shard A to B. Cross-shard

yanking works as follows [37]:

• Alice creates a transaction on shard A that issues a yank(X ,B) command to

yank contract X from shard A to shard B.

• If they yank command is successful, shard A creates a ‘receipt’ that contains

the state of contract X , and the target shard B. This receipt is stored in a block

shard A produces, such that Alice can generate a Merkle proof of the receipt

being included in the block.

• Alice sends the receipt to shard B, which then imports and creates the smart

contract and its state in shard B.

If Alice wants to perform a transaction that involves two contracts X and Y ,

then Alice must first ensure both of those contracts are in the same shard using the

yanking process, and then perform the transaction.

In comparison with S-BAC, cross-shard yanking requires the state of contracts

to be transferred (temporarily) to the state of other shards, whereas S-BAC does not

require object data from other shards to be stored in the state of other shards. Object
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data needs to be downloaded to verify transactions against their checkers, but not

stored in state.

Furthermore, the unit of atomicity in Chainspace is objects rather than con-

tracts. This means Chainspace allows for ‘transparent’ sharding where developers

do not need to be concerned with the underlying sharding design of the system.

However for Ethereum 2.0 developers to take advantage of sharding, they must craft

their smart contracts in a specific way so that it spawns new ‘child’ smart contracts

where operations can be performed in parallel. For example, a hotel management

contract would spawn new child contracts to represent each hotel room, so that hotel

rooms can be booked concurrently.

3.2.3 RSCoin

RSCoin [53] is a permissioned blockchain. The central bank controls all mon-

etary supply, while mintettes (nodes authorized by the bank) manage subsets of

transactions and coins. Like OmniLedger, communication between mintettes takes

place indirectly, through the client—and also relies on the client to ensure comple-

tion of transactions. RSCoin has low communication overhead, and the transaction

throughput scales linearly with the number of mintettes, but cannot support generic

smart contracts.

This is because RSCoin assumes that objects (e.g., coins) only have one owner.

Thus there should not be a scenario where an honest coin owner would submit

conflicting transactions to mintettes for their coins. RSCoin uses an adapted two-

phase commit protocol, but without an abort phase. Therefore if a dishonest coin

owner submits conflicting transactions to mintettes for their coins, their coins will

effectively be locked and unspendable.

3.2.4 Elastico

Elastico [100] scales by partitioning nodes in the network into a hierarchy of com-

mittees, where each committee is responsible for managing a subset (shard) of trans-

actions consistently through PBFT. A final committee collates sets of transactions

received from committees into a final block and then broadcasts it. At the end of
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each epoch, nodes are reassigned to committees through proof-of-work. The block

throughput scales up almost linear to the size of the network. However, Elastico

cannot process multi-shard transactions.

3.2.5 RapidChain

RapidChain [157] is a sharded blockchain protocol that uses a variant of the Cuckoo

rule [15] called the Bounded Cuckoo rule to assign nodes to shards. The rule states

that once a new node joins the network, the set of shards are ordered by number

of nodes, and the new node is assigned to one of the shards in the biggest 50%

of shards. Some of the nodes in this shard are then evicted and moved to random

shards in the smallest 50% of shards. This allows nodes in shards to rotate gradually

without needing to reconfigure entire shards at a time, which can cause interruptions

in protocol execution.

For cross-shard transactions, RapidChain uses a variant of cross-shard yank-

ing as described in Section 3.2.2, however in RapidChain UTXOs are transferred

between shards, rather than smart contracts. For example, if a user submits a trans-

action with two inputs and one outputs, all of the inputs are moved to the output

shard before it is executed.

To achieve this on a network level, shards only maintain a connection with

log(n) shards, and messages are routed to shards via the Kademlia routing algorithm

[104].

3.3 System Overview
Chainspace allows applications developers to implement distributed ledger applica-

tions by defining and calling procedures of smart contracts operating on controlled

objects, and abstracts the details of how the ledger works and scales. In this sec-

tion, we first describe the data model of Chainspace, followed by an overview of

the system design, its threat model and security properties.

3.3.1 Data Model: Objects, Contracts, Transactions.

Chainspace applies aggressively the end-to-end principle [131] in relying on un-

trusted end-user applications to build transactions to be checked and executed. We
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describe below key concepts within the Chainspace data model, that developers

need to grasp to use the system.

Objects are atoms that hold state in the Chainspace system. We usually refer

to an object through the letter o, and a set of objects as o ∈ O. All objects have

a cryptographically derived unique identifier used to unambiguously refer to the

object, that we denote id(o). Objects also have a type, denoted as type(o), that

determines the unique identifier of the smart contract that defines them, and a type

name. In Chainspace object state is immutable. Objects may be in two meta-states,

either active or inactive. Active objects are available to be operated on through

smart contract procedures, while inactive ones are retained for the purposes of audit

only.

Contracts are special types of objects, that contain executable information on

how other objects of types defined by the contract may be manipulated. They de-

fine a set of initial objects that are created when the contract is first created within

Chainspace. A contract c defines a namespace within which types (denoted as

types(c)) and a checker v for procedures (denoted as proc(c)) are defined.

A procedure, p, defines the logic by which a number of objects, that may be

inputs or references, are processed by some logic and local parameters and local

return values (denoted as lpar and lret), to generate a number of object outputs.

Notionally, input objects, denoted as a vector ~w, represent state that is invalidated

by the procedure; references, denoted as ~r represent state that is only read; and

outputs are objects, or~x are created by the procedure. Some of the local parameters

or local returns may be secrets, and require confidentiality. We denote those as spar

and sret respectively.

We denote the execution of such a procedure as:

c.p(~w,~r, lpar,spar)→~x, lret,sret

for ~w,~r,~x ∈O and p ∈ proc(c). We restrict the type of all objects (inputs ~w, outputs

~x and references~r) to have types defined by the same contract c as the procedure p

(formally: ∀o∈ ~w∪~x∪~r.type(o)∈ types(c)). However, public locals (both lpar and

lret) may refer to objects that are from different contracts through their identifiers.
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We further require a procedure that outputs an non empty set of objects ~x, to also

take as parameters a non-empty set of input objects ~w. Transactions that create no

outputs are allowed to just take locals and references~r.

Associated with each smart contract c, we define a checker denoted as v. Those

checkers are pure functions (i.e., deterministic, and have no side-effects), and return

a Boolean value. A checker v is defined by a contract, and takes as parameters a

procedure p, as well as inputs, outputs, references and locals.

c.v(p,~w,~r, lpar,~x, lret,dep)→{true, false} (3.1)

Note that checkers do not take any secret local parameters (spar or sret). A checker

for a smart contract returns true only if there exist some secret parameters spar

or sret, such that an execution of the contract procedure p, with the parameters

passed to the checker alongside spar or sret, is possible as defined in Section 3.3.1.

The variable dep represents the context in which the procedure is called: namely

information about other procedure executions. This supports composition, as we

discuss in detail in the next section.

We note that procedures, unlike checkers, do not have to be pure functions, and

may be randomized, keep state or have side effects. A smart contract defines explic-

itly the checker c.v, but does not have to define procedures per se. The Chainspace

system is oblivious to procedures, and relies merely on checkers. Yet, applications

may use procedures to create valid transactions. The distinction between procedures

and checkers—that do not take secrets—is key to implementing privacy-friendly

contracts.

Transactions represent the atomic application of one or more valid procedures

to active input objects, and possibly some referenced objects, to create a number

of new active output objects. The design of Chainspace is user-centric, in that a

user client executes all the computations necessary to determine the outputs of one

or more procedures forming a transaction, and provides enough evidence to the

system to check the validity of the execution and the new objects.

Once a transaction is accepted in the system it ‘consumes’ the input objects,

that become inactive, and brings to life all new output objects that start their life
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Figure 3.1: Design overview of Chainspace system, showing the interaction be-

tween users, transactions, objects and nodes in shards.

by being active. References on the other hand must be active for the transaction to

succeed, and remain active once a transaction has been successfully committed.

A client packages enough information about the execution of those procedures

to allow Chainspace to safely serialize its execution, and atomically commit it only

if all transactions are valid according to relevant smart contract checkers.

3.3.2 System Design, Threat Model and Security Properties

We provide an overview of the system design, illustrated in Figure 6.1. Chainspace

is comprised of a network of infrastructure nodes that manage valid objects, and

ensure that only valid transactions are committed. A key design goal is to achieve

scalability in terms of high transaction throughput and low latency. To this end,

nodes are organized into shards that manage the state of objects, keep track of their

validity, and record transactions aborted or committed. Within each shard all hon-

est nodes ensure they consistently agree whether to accept or reject a transaction:

whether an object is active or inactive at any point, and whether traces from con-
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tracts they know are valid according to their checkers. Across shards, nodes must

ensure that transactions are committed if all shards are willing to commit the trans-

action, and rejected (or aborted) if any shards decide to abort the transaction—

due to checkers returning false or objects being inactive. To satisfy these require-

ments, Chainspace implements S-BAC—a protocol that composes existing Byzan-

tine agreement and atomic commit primitives in a novel way. Consensus on com-

mitting (or aborting) transactions takes place in parallel across different shards. For

transparency and auditability, nodes in each shard periodically publish a signed

blockchain of checkpoints: shards add a block (Merkle tree) of evidence including

transactions processed in the current epoch, and signed promises from other nodes,

to the blockchain.

Chainspace supports security properties against two distinct types of adver-

saries, both polynomial time bounded:

• Honest Shards (HS). The first adversary may create arbitrary contracts, and

input arbitrary transactions into Chainspace, however they are bound to only

control up to f faulty nodes in any shard. As a result, and to ensure the

correctness and liveness properties of Byzantine consensus, each shard must

have a size of at least 3 f +1 nodes.

• Dishonest Shards (DS). The second adversary has, additionally to HS, man-

aged to gain control of one or more shards, meaning that they control over f

nodes in those shards. Thus, its correctness or liveness may not be guaran-

teed.

Faulty nodes in shards may behave arbitrarily, and collude to violate any of

the security, safely or liveness properties of the system. They may emit incorrect or

contradictory messages, as well as not respond to any or some requests.

Given this threat model, Chainspace supports the following security properties:

• Transparency. Chainspace ensures that anyone in possession of the identity

of a valid object may authenticate the full history of transactions and objects
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that led to the creation of the object. No transactions may be inserted, mod-

ified or deleted from that causal chain or tree. Objects may be used to self-

authenticate their full history—this holds under both the HS and DS threat

models.

• Integrity. Subject to the HS threat model, when one or more transactions

are submitted only a set of valid non-conflicting transactions will be commit-

ted within the system. This includes resolving conflicts—in terms of multi-

ple transactions using the same objects—ensuring the validity of the transac-

tions, and also making sure that all new objects are registered as active. Ul-

timately, Chainspace transactions are accepted, and the set of active objects

changes, as if executed sequentially—however, unlike other systems such as

Ethereum [153], this is merely an abstraction and high levels of concurrency

are supported.

• Encapsulation. The smart contract checking system of Chainspace enforces

strict isolation between smart contracts and their state—thus prohibiting one

smart contract from directly interfering with objects from other contracts. Un-

der both the HS and DS threat models. However, cross-contract calls are

supported but mediated by well defined interfaces providing encapsulation.

• Non-repudiation. In case conflicting or otherwise invalid transactions were

to be accepted in honest shards (in the case of the DS threat model), then ev-

idence exists to pinpoint the parties or shards in the system that allowed the

inconsistency to occur. Thus, failures outside the HS threat model, are de-

tectable; the guilty parties may be banned; and appropriate off-line recovery

mechanisms could be deployed.

Note that as discussed in Section 2.3.3, under a traditional blockchain threat

model, the integrity property described above normally holds even in the presence

of a dishonest set of consensus nodes, because full nodes do not accept blocks that

contain invalid transactions. Thus ideally, integrity should be achieved even in a DS

threat model. However, this is not trivial to achieve in a sharded environment, as no



3.4. The Chainspace Application Interface 57

node is expected to fully validate the state of every shard. We address this problem

is Chapter 4 with fraud and data availability proofs.

3.4 The Chainspace Application Interface
Smart contract developers in Chainspace register a smart contract c into the dis-

tributed system managing Chainspace, by defining a checker for the contract and

some initial objects. Users may then submit transactions to operate on those objects

in ways allowed by the checkers. Transactions represent the execution of one or

more procedures from one or more smart contracts. It is necessary for all inputs to

all procedures within the transaction to be active for a transaction to be executed

and produce any output objects.

Transactions are atomic: either all their procedures run, and produce outputs,

or none of them do. Transactions are also consistent: in case two transactions are

submitted to the system using the same active object inputs, at most one of them will

eventually be executed to produce outputs. Other transactions, called conflicting,

will be aborted.

3.4.1 Representation of Transactions

A transaction within Chainspace is represented by a sequence of traces of the execu-

tions of the procedures that compose it, and their interdependencies. These are com-

puted and packaged by end-user clients, and contain all the information a checker

needs to establish its correctness. A Transaction is a data structure such that:

type Transaction : Trace list

type Trace : Record {

c : id(o), p : string,

~w,~r,~x : id(o) list,

lpar, lret : arbitrary data,

dep : Trace list}

To generate a set of traces composing the transaction, a user executes on the client

side all the smart contract procedures required on the input objects, references
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and local parameters, and generates the output objects and local returns for every

procedure—potentially also using secret parameters and returns. Thus the actual

computation behind the transactions is performed by the user, and the traces form-

ing the transaction already contain the output objects and return parameters, and

sufficient information to check their validity through smart contract checkers. This

design pattern is related to traditional optimistic concurrency control [91].

Only valid transactions are eventually committed into the Chainspace system,

as specified by two validity rules sequencing and checking presented below. Trans-

actions are considered valid within a context of a set of active objects maintained

by Chainspace, denoted with α . Valid transactions lead to a new context of active

objects (e.g., α ′). We denote this through the triplet (α,Valid(T ),α ′), which is true

if the execution of transaction T is valid within the context of active objects α and

generates a new context of active objects α ′. The two rules are as follows:

• (Sequence rule). A ‘Trace list’ (within a ‘Transaction’ or list of dependen-

cies) is valid if each of the traces are valid in sequence (i.e., when executed

sequentially). Further, the active objects set is updated in sequence before

considering the validity of each trace.

• (Check rule). A particular ‘Trace’ is valid, if the sequence of its dependen-

cies are valid, and then in the resulting active object context, the checker for

it returns true. A further three side conditions must hold: (1) inputs and refer-

ences must be active; (2) if the trace produces any output objects it must also

contain some input objects; and (3) all objects passed to the checker must be

of types defined by the smart contract of this checker.

The ordering of active object sets in the validation rules result in a depth-first

validation of all traces, which represents a depth-first execution and data flow de-

pendency between them. It is also noteworthy that only the active set of objects

needs to be tracked to determine the validity of new transactions, which is in the

order of magnitude of active objects in the system. The much longer list of inactive

objects, which grows to encompass the full history of every object in the system
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is not needed—which we leverage to enable better when validating transactions. It

also results in a smaller amount of working memory to perform incremental audits.

A valid transaction is executed in a serialized manner, and committed or

aborted atomically. If it is committed, the new set of active objects replaces the

previous set; if not the set of active objects does not change. Determining whether

a transaction may commit involves ensuring all the input objects are active, and all

are consumed as a result of the transaction executing, as well as all new objects

becoming available for processing (references however remain active). Chainspace

ensures this through the distributed atomic commit protocol, S-BAC.

3.4.2 Smart Contract Composition

A contract procedure may call a transaction of another smart contract, with specific

parameters and rely upon returned values. This is achieved through passing the dep

variable to a smart contract checker, a validated list of traces of all the sub-calls

performed. The checker can ensure that the parameters and return values are as

expected, and those dependencies are checked for validity by Chainspace.

Composition of smart contracts is a key feature of a transparent and auditable

computation platform. It allows the creation of a library of smart contracts that

act as utilities for other higher-level contracts: for example, a simple contract

can implement a cryptographic currency, and other contracts—for e-commerce for

example—can use this currency as part of their logic. Furthermore, we compose

smart contracts, in order to build some of the functionality of Chainspace itself as a

set of ‘system’ smart contracts, including management of shards mapping to nodes,

key management of shard nodes, and governance.

Chainspace also supports the atomic batch execution of multiple procedures

for efficiency, that are not dependent on each other.

3.4.3 Reads

Besides executing transactions, Chainspace clients, need to read the state of objects,

if anything, to correctly form transactions. Reads, by themselves, cannot lead to

inconsistent state being accepted into the system, even if they are used as inputs or
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references to transactions. This is a result of the system checking the validity rules

before accepting a transaction, which will reject any stale state.

Thus, any mechanism may be used to expose the state of objects to clients, in-

cluding traditional relational databases, or ‘no-SQL’ alternatives. Additionally, any

indexing mechanism may be used to allow clients to retrieve objects with specific

characteristics faster. Decentralized, read-only stores have been extensively studied,

so we do not address the question of reads further in this work.

3.4.4 Privacy by Design

Defining smart contract logic as checkers allows Chainspace to support privacy

friendly-contracts by design. In such contracts some information in objects is not

in the clear, but instead either encrypted using a public key, or committed using a

secure commitment scheme as [119]. The transaction only contains a valid proof

that the logic or invariants of the smart contract procedure were applied correctly or

hold respectively, and can take the form of a zero-knowledge proof, or a Succinct

Argument of Knowledge (SNARK). Then, generalizing the approach of [107], the

checker runs the verifier part of the proof or SNARK that validates the invariants of

the transactions, without revealing the secrets within the objects to the verifiers.

3.5 The Chainspace System Design

In Chainspace a network of infrastructure nodes manages valid objects, and ensure

key invariants: namely that only valid transactions are committed. We discuss the

data structures nodes use collectively and locally to ensure high integrity; and the

distributed protocols they employ to reach consensus on the accepted transactions.

3.5.1 High-Integrity Data Structures

Chainspace employs a number of high-integrity data structures. They enable those

in possession of a valid object or its identifier to verify all operations that lead to its

creation; they are also used to support non-equivocation—preventing Chainspace

nodes from providing a split view of the state they hold without detection.
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Hash-DAG Structure

Objects and transactions naturally form a directed acyclic graph (DAG): given an

initial state of active objects a number of transactions render their inputs invalid, and

create a new set of outputs as active objects. These may be represented as a directed

graph between objects, transactions and new objects and so on. Each object may

only be created by a single transaction trace, thus cycles between future transactions

and previous objects never occur. We prove that output object identifiers resulting

from valid transactions are fresh (see Theorem 1). Hence, the graph of objects

inputs, transactions and objects outputs form a DAG, that may be indexed by their

identifiers.

We leverage this DAG structure, and augment it to provide a high-integrity

data structure. Our principal aim is to ensure that given an object, and its identifier,

it is possible to unambiguously and unequivocally check all transactions and pre-

vious (now inactive) objects and references that contribute to the existence of the

object. To achieve this we define as an identifier for all objects and transactions a

cryptographic hash that directly or indirectly depends on the identifiers of all state

that contributed to the creation of the object.

Specifically, we define a function id(Trace) as the identifier of a trace contained

in transaction T . The identifier of a trace is a cryptographic hash function over the

name of contract and the procedure producing the trace; as well as serialization of

the input object identifiers, the reference object identifiers, and all local state of the

transaction (but not the secret state of the procedures); the identifiers of the trace’s

dependencies are also included. Thus all information contributing to defining the

Trace is included in the identifier, except the output object identifiers.

We also define the id(o) as the identifier of an object o. We derive this identifier

through the application of a cryptographic hash function, to the identifier of the

trace that created the object o, as well as a unique name assigned by the procedures

creating the trace, to this output object. (Unique in the context of the outputs of this

procedure call, not globally, such as a local counter.)

An object identifier id(o) is a high-integrity handle that may be used to authen-
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ticate the full history that led to the existence of the object o. Due to the collision

resistance properties of secure cryptographic hash functions an adversary is not able

to forge a past set of objects or transactions that leads to an object with the same

identifier. Thus, given id(o) anyone can verify the authenticity of a trace that led to

the existence of o.

A very important property of object identifiers is that future transactions cannot

re-create an object that has already become inactive. Thus checking object validity

only requires maintaining a list of active objects, and not a list of past inactive

objects:

Theorem 1. No sequence of valid transactions, by a polynomial time constrained

adversary, may re-create an object with the same identifier with an object that has

already been active in the system.

Proof. We argue this property by induction on the serialized application of valid

transactions, and for each transaction by structural induction on the two validity

rules. Assuming a history of n− 1 transactions for which this property holds we

consider transaction n. Within transaction n we sequence all traces and their depen-

dencies, and follow the data flow of the creation of new objects by the ‘check’ rule.

For two objects to have the same id(o) there need to be two invocations of the check

rule with the same contract, procedure, inputs and references. However, this leads

to a contradiction: once the first trace is checked and considered valid the active

input objects are removed from the active set, and the second invocation becomes

invalid. Thus, as long as object creation procedures have at least one input (which is

ensured by the side condition) the theorem holds, unless an adversary can produce

a hash collision. The inductive base case involves assuming that no initial objects

start with the same identifier – which we can ensure axiomatically.

We call this directed acyclic graph with identifiers derived using cryptographic

functions a Hash-DAG, and we make extensive use of the identifiers of objects and

their properties in Chainspace.
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Shard Blockchains

Each node in Chainspace, that is entrusted with preserving integrity, associates with

its shard a blockchain. Periodically, peers within a shard consistently agree to seal

a checkpoint, as a block of transactions into their blockchains. They each form a

Merkle tree containing all transactions that have been accepted or rejected in se-

quence by the shard since the last checkpoint was sealed. Then, they extend their

blockchain by hashing the root of this Merkle tree and a block sequence number,

with the head hash of the chain so far, to create the new head of the blockchain.

Each peer signs the new head of their chain, and shares it with all other peers in the

shard, and anyone who requests it. For strong auditability additional information,

besides committed or aborted transactions, has to be included in the Merkle tree:

node should log any promise to either commit or abort a transaction from any other

peer in any shard (the prepared(T,*) statements explained in the next sections).

All honest nodes within a shard independently create the same chain for a

checkpoint, and a signature on it—as long as the consensus protocols within the

shards are correct. We say that a checkpoint represents the decision of a shard, for a

specific sequence number, if at least f +1 signatures of shard nodes sign it. On the

basis of these blockchains we define a light audit and a full audit of the Chainspace

system. Light audits can be performed by light clients, where full audits can be

performed by full nodes, as described in Section 2.3.3.

In a light audit a client is provided evidence that a transaction has been either

committed or aborted by a shard. A client performing the light audit may request

from any node of the shard evidence for a transaction T. The shard peer will present

a block representing the decision of the shard, with f + 1 signatures, and a proof

of inclusion of a commit or abort for the transaction, or a signed statement the

transaction is unknown. A light audit provides evidence to a client of the fate of

their transaction, and may be used to detect past of future violations of integrity. A

light audit is an efficient operation since the evidence has size O(s+ logN) in N the

number of transactions in the checkpoint and s the size of the shard—thanks to the

efficiency of proving inclusion in a Merkle tree, and checking signatures.
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A full audit involves replaying all transactions processed by the shard, and

ensuring that (1) all transactions were valid according to the checkers the shard

executed; (2) the objects input or references of all committed transactions were all

active (see rules in Section 3.4.1); and (3) the evidence received from other shards

supports committing or aborting the transactions. To do so an auditor downloads the

full blockchain representing the decisions of the shard from the beginning of time,

and re-executes all the transactions in sequence. This is possible, since—besides

their secret signing keys—peers in shards have no secrets, and their execution is

deterministic once the sequence of transactions is defined. Thus, an auditor can

re-execute all transactions in sequence, and check that their decision to commit or

abort them is consistent with the decision of the shard. Doing this, requires any

inter-shard communication (namely the promises from other shards to commit or

abort transactions) to be logged in the blockchain, and used by the auditor to guide

the re-execution of the transactions. A full audit needs to re-execute all transactions

and requires evidence of size O(N) in the number N of transactions. This is costly,

but may be done incrementally as new blocks of shard decisions are created.

3.5.2 Distributed Architecture & Consensus

A network of nodes manages the state of Chainspace objects, keeps track of their

validity, and record transactions that are seen or that are accepted as being commit-

ted.

Chainspace uses sharding strategies to ensure scalability: a public function

φ(o) maps each object o to a set of nodes, we call a shard. These nodes collectively

are entrusted to manage the state of the object, keep track of its validity, record

transactions that involve the object, and eventually commit at most one transaction

consuming the object as input and rendering it inactive. However, nodes must only

record such a transaction as committed if they have certainty that all other nodes

have, or will in the future, record the same transaction as consuming the object. We

call this distributed algorithm the consensus algorithm within the shard.

For a transaction T we define a set of concerned nodes, Φ(T ) for a transaction

structure T . We first denote as ζ the set of all objects identifiers that are input into
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or referenced by any trace contained in T . We also denote as ξ the set of all objects

that are output by any trace in T . The function Φ(T ) represents the set of nodes that

are managing objects that should exist, and be active, in the system for T to succeed.

More mathematically, Φ(T ) =
⋃{φ(oi)|oi ∈ ζ \ ξ}, where ζ \ ξ represents the set

of objects input but not output by the transaction itself (its free variables). The set

of concerned peers thus includes all shard nodes managing objects that already exist

in Chainspace that the transaction uses as references or inputs.

An important property of this set of nodes holds, that ensures that all smart

contracts involved in a transaction will be mapped to some concerned nodes that

manage state from this contract:

Theorem 2. If a contract c appears in any trace within a transaction T , then the

concerned nodes set Φ(T ) will contain nodes in a shard managing an object o of a

type from contract c. I.e. ∃o.type(o) ∈ types(c)∧φ(o)∩Φ(T ) 6= /0.

Proof. Consider any trace t within T , from contract c. If the inputs or references

to this trace are not in ξ —the set of objects that were created within T —then their

shards will be included within Φ(T ). Since those are of types within c the theorem

holds. If on the other hand the inputs or references are in ξ , it means that there

exists another trace within T from the same contract c that generated those outputs.

We then recursively apply the case above to this trace from the same c. The process

will terminate with some objects of types in c and shard managing them within

the concerned nodes set—and this is guarantee to terminate due to the Hash-DAG

structure of the transactions (that may have no loops).

Theorem 2 ensures that the set of concerned nodes, includes nodes that manage

objects from all contracts represented in a transaction. Chainspace leverages this to

distribute the process of rule validation across peers in two ways:

• For any existing object o in the system, used as a reference or input within

a transaction T , only the shard nodes managing it, namely in φ(o), need to

check that it is active (as part of the ‘check’ rule in Section 3.4.1).
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• For any trace t from contract c within a transaction T , only shards of con-

cerned nodes that manage objects of types within c need to run the checker of

that contract to validate the trace (again as part of the ‘check’ rule), and that

all input, output and reference objects are of types within c.

However, all shards containing concerned nodes for T need to ensure that all oth-

ers have performed the necessary checks before committing the transaction, and

creating new objects.

To ensure that concerned nodes in each shards do not reach an inconsistent

state for the accepted transactions, we design an open, scalable and decentralized

mechanism to perform Sharded Byzantine Atomic Commit or S-BAC.

3.5.3 Sharded Byzantine Atomic Commit (S-BAC)

Chainspace implements the previously described intra-shard consensus algorithm

for transaction processing in the Byzantine and asynchronous setting, through the

Sharded Byzantine Atomic Commit (S-BAC) protocol, that combines two primitive

protocols: Byzantine Agreement and atomic commit.

• Byzantine agreement ensures that all honest members of a shard of size

3 f + 1, agree on a specific common sequence of actions, despite some f

malicious nodes within the shard. It also guarantees that when agreement is

sought, a decision or sequence will eventually be agreed upon. The agreement

protocol is executed within each shard to coordinate all nodes. We use MOD-

SMART [141] implementation of PBFT for state machine replication that

provides an optimal number of communications steps (similar to PBFT [43]).

This is achieved by replacing reliable broadcast with a special leader-driven

Byzantine consensus primitive called Validated and Provable Consensus (VP-

Consensus).

• Atomic commit is run across all shards managing objects relied upon by a

transaction. It ensures that each shard needs to accept to commit a transac-

tion, for the transaction to be committed; even if a single shard rejects the
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Fig. 3. The state machine representing the active, locked and inactive states
for any object within Chainspace. Each node in a shard replicates the state of
the object, and participates in a consensus protocol that allows it to derive the
invariants “Local prepared”, “All prepared”, and “Some prepared” to update
the state of an object.

• Byzantine agreement ensures that all honest members
of a shard of size 3f + 1, agree on a specific common
sequence of actions, despite some f malicious nodes
within the shard. It also guarantees that when agree-
ment is sought, a decision or sequence will eventually
be agreed upon. The agreement protocol is executed
within each shard to coordinate all nodes. We use
MOD-SMART [? ] implementation of PBFT for state
machine replication that provides an optimal number
of communications steps (similar to PBFT [? ]). This is
achieved by replacing reliable broadcast with a special
leader-driven Byzantine consensus primitive called
Validated and Provable Consensus (VP-Consensus).

• Atomic commit is run across all shards managing
objects relied upon by a transaction. It ensures that
each shard needs to accept to commit a transaction, for
the transaction to be committed; even if a single shard
rejects the transaction, then all agree it is rejected.
We propose the use of a simple two-phase commit
protocol [? ], composed with an agreement protocol to
achieve this—loosely inspired by Lamport and Gray [?
]. This protocol was the first to reconcile the needs for
distributed commit, and replicated consensus (but only
in the non-byzantine setting).

S-BAC composes the above primitives in a novel way
to ensure that shards process safely and consistently all
transactions. ?? illustrates a simple example of the S-BAC
protocol to commit a single transaction with two inputs and one
output that we may use as an example. The corresponding object
state transitions have been illustrated in ??. The combined
protocol has been described below. For ease of understanding,
in our description we state that all messages are sent and
processed by shards. In reality, some of these are handled by
a designated node in each shard—the BFT-Initiator —as we
discuss at the end of this section.

Initial Broadcast (Prepare). A user acts as a transaction
initiator, and sends ‘prepare(T)’ to at least one honest concerned
node for transaction T . To ensure at least one honest node
receives it, the user may send the message to f + 1 nodes of a
single shard, or f + 1 nodes in each concerned shard.

Sequence Prepare. Upon a message ‘prepare(T)’ being re-
ceived, nodes in each shard interpret it as the initiation of a two-
phase commit protocol performed across the concerned shards.
The shard locally sequences ‘prepare(T)’ message through the
Byzantine consensus protocol.

Process Prepare. Upon the first action ‘prepare(T )’ being
sequenced through BFT consensus in a shard, nodes of the
shard implicitly decide whether it should be committed or
aborted. Since all honest nodes in the shard have a consistent
replica of the full sequence of actions, they will all decide the
same consistent action following ‘prepare(T)’.

Transaction T is to be committed if it is valid according
to the usual rules (see ??), in brief: (1) the objects input or
referenced by T in the shard are active, (2) there is no other
instance of the two-phase commit protocol on-going concerning
any of those objects (no locks held) and (3) if T is valid
according to the validity rules, and the smart contract checkers
in the shard. Only the checkers for types of objects held by
the shard are checked by the shard.

If the decision is to commit, the shard broadcasts to all
concerned nodes ‘prepared(T ,commit)’, otherwise it broadcasts
‘prepared(T , abort)’—along with sufficient signatures to con-
vince any party of the collective shard decision (we denote
this action as LOCALPREPARED(*, T)). The objects used or
referenced by T are ‘locked’ (??) in case of a ‘prepared commit’
until an ‘accept’ decision on the transaction is reached, and
subsequent transactions concerning them will be aborted by the
shard. Any subsequent ‘prepare(T 00)’ actions in the sequence
are ignored, until a matching accept(T , abort) is reached to
release locks, or forever if the transaction is committed.

Process Prepared (accept or abort). Depending on the deci-
sion of ‘prepare(T )’, the shard sequences ‘accept(T ,commit)’ or
‘accept(T ,abort)’ through the atomic commit protocol across all
the concerned shards—along with all messages and signatures
of the bundle of ‘prepared’ messages relating to T proving to
other shards that the decision should be ‘accept(T ,commit)’ or
‘accept(T ,abort)’ according to its local consensus. If it receives
even a single ‘LOCALPREPARED(T ,abort)’ from another shard
it instead will move to reach consensus on ‘accept(T , abort)’
(denoted as SOMEPREPARED(abort,T)). Otherwise, if all the
shards respond with ‘LOCALPREPARED(T ,commit)’ it will
reach a consensus on ALLPREPARED(commit,T). The final
decision is sent to the user, along with all messages and
signatures of the bundle of ‘accept’ messages relating to T
proving that the final decision should be to commit or abort
according to responses from all concerned shards.

It is possible, that a shard hears a prepared message for
T before a prepare message, due to unreliability, asynchrony
or a malicious user. In that case the shard assumes that a
‘prepare(T)’ message is implicit, and sequences it.

Process Accept. When a shard sequences an ‘accept(T , com-
mit)’ decision, it sets all objects that are inputs to the transaction
T as being inactive (??). It also creates any output objects from
T via BFT consensus that are to be managed by the shard. If
the output objects are not managed by the shard, the shard
sends requests to the concerned shards to create the objects. On
the other hand if the shard decision is ‘accept(T , abort)’, all

7

Figure 3.2: The state machine representing the active, locked and inactive states for

any object within Chainspace. Each node in a shard replicates the state of the object,

and participates in a consensus protocol that allows it to derive the invariants “Local

prepared”, “All prepared”, and “Some prepared” to update the state of an object.

transaction, then all agree it is rejected. We propose the use of a simple two-

phase commit protocol [26], composed with an agreement protocol to achieve

this—loosely inspired by Lamport and Gray [72]. This protocol was the first

to reconcile the needs for distributed commit, and replicated consensus (but

only in the non-Byzantine setting).

S-BAC composes the above primitives in a novel way to ensure that shards

process safely and consistently all transactions. Figure 3.3 illustrates a simple ex-

ample of the S-BAC protocol to commit a single transaction with two inputs and

one output that we may use as an example. The corresponding object state transi-

tions have been illustrated in Figure 3.2. The combined protocol has been described

below. For ease of understanding, in our description we state that all messages are

sent and processed by shards. In reality, some of these are handled by a designated

node in each shard—the BFT-Initiator—as we discuss at the end of this section.
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Figure 3.3: S-BAC for a transaction T with two inputs (o1,o2) and one output object

(o3). The user sends the transaction to all nodes in shards managing o1 and o2. The

BFT-Initiator takes the lead in sequencing T , and emits ’prepared(accept, T)’ or

’prepared(abort, T)’ to all nodes within the shard. Next the BFT-Initiator of each

shard assesses whether overall ‘All proposed(accept, T)’ or ‘Some proposed(abort,

T)’ holds across shards, sequences the accept(T,*), and sends the decision to the

user. All cross-shard arrows represent a multicast of all nodes in one shard to all

nodes in another.

Initial Broadcast (Prepare)

A user acts as a transaction initiator, and sends ‘prepare(T)’ to at least one honest

concerned node for transaction T . To ensure at least one honest node receives it, the

user may send the message to f +1 nodes of a single shard, or f +1 nodes in each

concerned shard.

Sequence Prepare

Upon a message ‘prepare(T)’ being received, nodes in each shard interpret it as the

initiation of a two-phase commit protocol performed across the concerned shards.

The shard locally sequences ‘prepare(T)’ message through the Byzantine consensus

protocol.

Process Prepare

Upon the first action ‘prepare(T )’ being sequenced through BFT consensus in a

shard, nodes of the shard implicitly decide whether it should be committed or
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aborted. Since all honest nodes in the shard have a consistent replica of the full

sequence of actions, they will all decide the same consistent action following ‘pre-

pare(T)’.

Transaction T is to be committed if it is valid according to the usual rules (see

Section 3.4.1), in brief: (1) the objects input or referenced by T in the shard are

active, (2) there is no other instance of the two-phase commit protocol on-going

concerning any of those objects (no locks held) and (3) if T is valid according to

the validity rules, and the smart contract checkers in the shard. Only the checkers

for types of objects held by the shard are checked by the shard.

If the decision is to commit, the shard broadcasts to all concerned nodes

‘prepared(T ,commit)’, otherwise it broadcasts ‘prepared(T , abort)’—along with

sufficient signatures to convince any party of the collective shard decision (we de-

note this action as LOCALPREPARED(*, T)). The objects used or referenced by T

are ‘locked’ (Figure 3.2) in case of a ‘prepared commit’ until an ‘accept’ decision

on the transaction is reached, and subsequent transactions concerning them will be

aborted by the shard. Any subsequent ‘prepare(T ′′)’ actions in the sequence are

ignored, until a matching accept(T , abort) is reached to release locks, or forever if

the transaction is committed.

Process Prepared (Accept or Abort)

Depending on the decision of ‘prepare(T )’, the shard sequences ‘accept(T ,commit)’

or ‘accept(T ,abort)’ through the atomic commit protocol across all the con-

cerned shards—along with all messages and signatures of the bundle of

‘prepared’ messages relating to T proving to other shards that the decision

should be ‘accept(T ,commit)’ or ‘accept(T ,abort)’ according to its local con-

sensus. If it receives even a single ‘LOCALPREPARED(T ,abort)’ from an-

other shard it instead will move to reach consensus on ‘accept(T , abort)’

(denoted as SOMEPREPARED(abort,T)). Otherwise, if all the shards respond

with ‘LOCALPREPARED(T ,commit)’ it will reach a consensus on ALLPRE-

PARED(commit,T). The final decision is sent to the user, along with all messages

and signatures of the bundle of ‘accept’ messages relating to T proving that the final
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decision should be to commit or abort according to responses from all concerned

shards.

It is possible, that a shard hears a prepared message for T before a prepare

message, due to unreliability, asynchrony or a malicious user. In that case the shard

assumes that a ‘prepare(T)’ message is implicit, and sequences it.

Process Accept

When a shard sequences an ‘accept(T , commit)’ decision, it sets all objects that

are inputs to the transaction T as being inactive (Figure 3.2). It also creates any

output objects from T via BFT consensus that are to be managed by the shard. If

the output objects are not managed by the shard, the shard sends requests to the

concerned shards to create the objects. On the other hand if the shard decision is

‘accept(T , abort)’, all nodes release locks held on inputs or references of transaction

T . Thus those objects remain active and may be used by other transactions.

As previously mentioned, some of the messages in S-BAC are handled by

a designated node in each shard called the BFT-Initiator. Specifically, the BFT-

Initiator drives the composed S-BAC protocol by sending ‘prepare(T)’ and then

‘accept(T , *)’ messages to reach BFT consensus within and across shards. It is

also responsible for broadcasting consensus decisions to relevant parties. The pro-

tocol supports a two-phase process to recover from a malicious BFT-Initiator that

suppresses transactions. As nodes in a shard hear all messages, they wait for the

BFT-Initiator to act on it until they time out. They first send a reminder to the

BFT-Initiator along with the original message to account for network losses. Next

they proceed to wait; if they time out again, other nodes perform the action of BFT-

Initiator which is idempotent.

Out of scope in this chapter is the prevention of replay attacks within S-

BAC. Specifically, an adversary may capture and replay ‘prepared(T ,commit)’ or

‘accept(T ,commit)’ messages from previous rounds of S-BAC for T , to cause shards

to accept transactions that do not have consensus, or to cause output shards to create

the same object multiple times. In a separate work co-authored by the author of this

thesis, [138], we discuss how to handle message replays in cross-shard transaction
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protocols including S-BAC and OmniLedger’s Atomix protocol.

3.5.4 Concurrency & Scalability

Each transaction T involves a fixed number of concerned nodes Φ(T ) within

Chainspace, corresponding to the shards managing its inputs and references. If two

transactions T0 and T1 have disjoint sets of concerned nodes (Φ(T0)∩Φ(T1) = /0)

they cannot conflict, and are executed in parallel or in any arbitrary order. If how-

ever, two transactions have common input objects, only one of them is accepted

by all nodes. This is achieved through the S-BAC protocol. It is local, in that it

concerns only nodes managing the conflicting transactions, and does not require a

global consensus.

From the point of view of scalability, Chainspace capacity grows linearly as

more shards are added, subject to transactions having on average a constant, or

sub-linear, number of inputs and references (see Figure 3.5). Furthermore, those

inputs must be managed by different nodes within the system to ensure that load of

accepting transactions is distributed across them.

3.5.5 System Contracts

The operation of a Chainspace distributed ledger itself requires the maintenance of

a number of high-integrity high-availability data structures. Instead of employing

an ad-hoc mechanism, Chainspace employs a number of system smart contracts

to implement those. Effectively, instantiation of Chainspace is the combination of

nodes running the basic S-BAC protocol, as well as a set of system smart contracts

providing flexible policies about managing shards, smart contract creation, auditing

and accounting. This section provides an overview of system smart contracts.

Shard Management

The discussion of Chainspace so far has assumed a function φ(o) mapping an object

o to nodes forming a shard. However, how those shards are constituted has been

abstracted. A smart contract ManageShards is responsible for mapping nodes

to shards. ManageShards initializes a singleton object of type MS.Token and

provides three procedures: MS.create takes as input a singleton object, and a list
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of node descriptors (names, network addresses and public verification keys), and

creates a new singleton object and a MS.Shard object representing a new shard;

MS.update takes an existing shard object, a new list of nodes, and 2 f +1 signatures

from nodes in the shard, and creates a new shard object representing the updated

shard. Finally, the MS.object procedure takes a shard object, and a non-repudiable

record of malpractice from one of the nodes in the shard, and creates a new shard

object omitting the malicious shard node—after validating the misbehaviour. Note

that Chainspace is ‘open’ in the sense that any nodes may form a shard; and anyone

may object to a malicious node and exclude it from a shard.

Smart Contract Management

Chainspace is also ‘open’ in the sense that anyone may create a new smart con-

tract, and this process is implemented using the ManageContracts smart con-

tract. ManageContracts implements three types: MC.Token, MC.Mapping and

MC.Contract. It also implements at least one procedure, MC.create that takes a

binary representing a checker for the contract, an initialization procedure name that

creates initial objects for the contract, and the singleton token object. It then creates

a number of outputs: one object of type MC.Token for use to create further con-

tracts; an object of type MC.Contract representing the contract, and containing the

checker code, and a mapping object MC.mapping encoding the mapping between

objects of the contract and shards within the system. Furthermore, the procedure

MC.create calls the initialization function of the contract, with the contract itself

as reference, and the singleton token, and creates the initial objects for the contract.

Note that this simple implementation for ManageContracts does not allow

for updating contracts. The semantics of such an update are delicate, particularly in

relation to governance and backwards compatibility with existing objects. We leave

the definitions of more complex, but correct, contracts for managing contracts as

future work. In our first implementation we have hardcoded ManageShards and

ManageContracts.
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3.6 Security and Correctness

3.6.1 Security & Correctness of S-BAC

The S-BAC protocol guarantees a number of key properties, on which rest the secu-

rity of Chainspace, namely liveness, consistency, and validity. Before proceeding

with stating those properties in details, and proving them we note three key invari-

ants, that nodes may decide:

• LOCALPREPARED(commit / abort, T): A node considers that LOCALPRE-

PARED(commit / abort, T) for a shard holds, if it receives at least f + 1 dis-

tinct signed messages from nodes in the shard, stating ‘prepared(commit, T)’

or ‘prepared(abort, T)’ respectively. As a special case a node automatically

concludes LOCALPREPARED(commit / abort, T) for a shard it is a member

of, if all the preconditions necessary to provide that answer are present when

an ‘prepare(T)’ is sequenced.

• ALLPREPARED(commit, T): A node considers that ‘ALLPREPARED(commit,

T)’ holds if it believes that ‘LOCALPREPARED(commit, T)’ holds for all

shards with concerned nodes for T . Note this may only be decided after reach-

ing a conclusion (e.g. through receiving signed messages) about all shards.

• SOMEPREPARED(abort, T): A node considers that ‘SOMEPREPARED(abort,

T)’ holds if it believes that ‘LOCALPREPARED(abort, T)’ holds for at least

one shard with concerned nodes for T . This may be concluded after only

reaching a conclusion for a single shard, including the shard the node may be

part of.

Liveness ensures that transactions make progress once proposed by a user, and

no locks are held indefinitely on objects, preventing other transactions from making

progress.

Theorem 3. Liveness: Under the ‘honest shards’ threat model, a transaction T

that is proposed to at least one honest concerned node, will eventually result in

either being committed or aborted, namely all parties deciding accept(commit, T)

or accept(abort, T).
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Proof. We rely on the standard liveness properties of the underlying Byzantine

agreement: i.e., shards with only up to f faulty nodes will reach a consensus on

a sequence eventually. We also rely on the broadcast from nodes of shards to all

other nodes of shards, including the shards that manage transaction outputs. As-

suming prepare(T) has been given to an honest node, it will be sequenced within

an honest shard BFT sequence, and thus a prepared(commit, T) or prepared(abort,

T) will be sent from the 2 f + 1 honest nodes of this shard, to the 2 f + 1 nodes

of the other concerned shards. Upon receiving these messages the honest nodes

from other shards will schedule a prepare(T) message within their shards, and the

BFT will eventually sequence it. Thus the user and all other honest concerned

nodes will receive enough ‘prepared’ messages to decide whether to proceed with

‘ALLPREPARED(commit, T)’ or ‘SOMEPREPARED(abort, T)’ and proceed with se-

quencing them through BFT. Eventually, each shard will sequence those, and decide

on the appropriate ‘accept’.

The second key property ensures that the execution of valid transactions could

be serialized, and thus is correct.

Theorem 4. Consistency: Under the ‘honest shards’ threat model, no two conflict-

ing transactions, namely transactions sharing the same input will be committed.

Furthermore, a sequential execution for all transactions exists.

Proof. A Chainspace transaction is committed only if some nodes conclude that

‘ALLPREPARED(commit, T)’, which presupposes all shards have provided enough

evidence to conclude ‘LOCALPREPARED(commit, T)’ for each of them. Two con-

flicting transaction, sharing an input or reference, must share a shard of at least

3 f +1 concerned nodes for the common object—with at most f of them being ma-

licious. Without loss of generality upon receiving the prepare(T) message for the

first transaction, this shard will sequence it, and the honest nodes will emit mes-

sages for all to conclude ‘ALLPREPARED(commit, T)’—and will lock this object

until the two phase protocol concludes. Any subsequent attempt to prepare(T’) for

a conflicting T’ will result in a LOCALPREPARED(abort, T’) and cannot yield a

commit, if all other shards are honest majority too. After completion of the first
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‘accept(commit, T)’ the shard removes the object from the active set, and thus sub-

sequent T’ would also lead to SOMEPREPARED(abort, T’). Thus there is no path in

the chain of possible interleavings of the executions of two conflicting transactions

that leads to them both being committed.

Theorem 5. Validity: Under the ‘honest shards’ threat model, a transaction may

only be committed if it is valid according to the smart contract checkers matching

the traces of the procedures it executes.

Proof. A Chainspace transaction is committed only if some nodes conclude that

‘ALLPREPARED(commit, T)’, which presupposes all shards have provided enough

evidence to conclude ‘LOCALPREPARED(commit, T)’ for each of them. The con-

cerned nodes include at least one shard per input or reference object for the trans-

action; for any contract c represented in the transaction, at least one of those shards

will be managing object from that contract. Each shard checks the validity rules

for the objects they manage (ensuring they are active, and not locked) and the con-

tracts those objects are part of (ensuring the calls to c pass its checker) in order

to LOCALPREPARED(accept, T). Thus if all shards say LOCALPREPARED(accept,

T) to conclude that ‘ALLPREPARED(commit, T)’, all object have been checked as

active, and all the contract calls within the transaction have been checked by at

least one shard—whose decision is honest due to at most f faulty nodes. If even

a single object is inactive or locked, or a single trace for a contract fails to check,

then the honest nodes in the shard will emit ‘prepared(abort, T)’ upon sequencing

‘prepare(T)’, and the final decision will be ‘SOMEPREPARED(abort, T)’.

3.6.2 Auditability

In the previous sections we show that if each shard contains at most f faulty nodes

(honest shard model), the S-BAC protocol guarantees consistency and validity. In

this section we argue that if this assumption is violated, i.e. one or more shards

contain more than f Byzantine nodes each, then honest shards can detect faulty

shards. Namely, enough auditing information is maintained by honest nodes in

Chainspace to detect inconsistencies and attribute them to specific shards (or nodes
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within them).

The rules for transaction validity are summarized in Section 3.4.1. Those rules

are checked in a distributed manner: each shard keeps and checks the active or

inactive state of objects assigned to it; and also only the contract checkers corre-

sponding to the type of those objects. An honest shard emits a proposed(T, commit)

for a transaction T only if those checks pass, and proposed(T, abort) otherwise or

if there is a lock on a relevant object. A dishonest shard may emit proposed(T, *)

messages arbitrarily without checking the validity rules. By definition, an invalid

transaction is one that does not pass one or more of the checks defined in Sec-

tion 3.4.1 at a shared, for which the shard has erroneously emitted a proposed(T,

commit) message.

Theorem 6. Auditability: A malicious shard (with more than f faulty nodes) that

attempts to introduce an invalid transaction or object into the state of one or

more honest shards, can be detected by an auditor performing a full audit of the

Chainspace system.

Proof. We consider two blockchains from two distinct shards. We define the pair

of them as being valid if (1) they are each valid under full audit, meaning that a

re-execution of all their transactions under the messages received yields the same

decisions to commit or abort all transactions; and (2) if all prepared(T,*) messages

in one chain are compatible with all messages seen in the other chain. In this context

‘compatible’ means that all prepared(T,*) statements received in one shard from

the other represent the ‘correct’ decision to commit or abort the transaction T in

the other shard. An example of incompatible message would result in observing

a proposed(T, commit) message being emitted from the first shard to the second,

when in fact the first shard should have aborted the transaction, due to the checker

showing it is invalid or an input being inactive.

Due to the property of digital signatures (unforgeability and non-repudiation),

if two blockchains are found to be ‘incompatible’, one belonging to an honest shard

and one belonging to a dishonest shard, it is possible for everyone to determine

which shard is the dishonest one. To do so it suffices to isolate all statements that are
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signed by each shard (or a peer in the shard)—all of which should be self-consistent.

It is then possible to show that within those statements there is an inconsistency—

unambiguously implicating one of the two shards in the cheating. Thus, given two

blockchains it is possible to either establish their consistency, under a full audit, or

determine which belongs to a malicious shard.

Note that the mechanism underlying tracing dishonest shards is an instance of

the age-old double-entry book keeping1: shards keep records of their operations

as a non-repudiable signed blockchain of checkpoints—with a view to prove the

correctness of their operations. They also provide non-repudiable statements about

their decisions in the form of signed proposed(T,*) statements to other shards. The

two forms of evidence must be both correct and consistent—otherwise their misbe-

haviour is detected.

3.7 Implementation & Evaluation
We implemented a prototype of Chainspace in ∼10,000 lines of Python and Java

code. The implementation consists of two components: a Python contracts environ-

ment and a Java node. We have released the code as an open-source project.2

3.7.1 Python Contract Environment

The Python contracts environment allows developers to write, deploy and test smart

contracts. These are deployed on each node by running the Python script for the

contract, which starts a local web service for the contract’s checker. The contract’s

checker is then called though the web service. The environment provides a frame-

work to allow developers to write smart contracts without knowledge of the under-

lying implementation, and provides an auto-generated checker for simple contracts.

3.7.2 Java Node Implementation

The Java node implements a shard replica that accepts incoming transactions from

clients and initiates, and executes, the S-BAC protocol. For BFT consensus, we use

1The first reported use is 1340AD [95].
2https://github.com/chainspace/chainspace

https://github.com/chainspace/chainspace
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Figure 3.4: Diagram illustrating the implementation of a Chainspace system with

two shards managing four nodes each. The user submits the transaction to its local

S-BAC client through a built-in HTTP API (arrow 1). Then, this S-BAC client sends

the transaction to Chainspace (arrow 2).

the BFT-SMART [27] Java library—one of the very few maintained open source

libraries for BFT.

To communicate with Chainspace, end users also run an S-BAC–enabled

client. First, she creates a transaction through the Python environments using a

smart contract. She then submits the transaction to its S-BAC client through the

HTTP API as indicated in Figure 3.4, that sends the transaction to Chainspace ac-

cording to the BFT-SMART protocol.

A node is composed of a server divided in two parts: the core and the checker.

To communicate with other nodes, each node also contains an S-BAC client. When

a transaction is received, the core is in charge of verifying that the input objects and

references are active (neither locked nor inactive). Then, the node runs the checker

associated with the contract, in an isolated container. (The checker is provided by

the contract’s creator when the node starts up, and interfaces with the node through

an HTTP API.) When the client submits a transaction with dependencies, the core

recursively checks each dependent transaction first, and the top-level transaction at

last (similar to depth-first search algorithm).
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3.7.3 Performance Measurements

We evaluated the performances and scalability of our implementation of

Chainspace, through deployments on Amazon EC2 containers. We launched up

to 96 nodes on t2.medium virtual machines, each containing 8 GB of RAM on 2

virtual CPUs and running GNU/Linux Debian 8.1. We sent transactions to the net-

work from a Chainspace client running on a t2.xlarge virtual machine, containing

16 GB of RAM and 4 virtual CPUs, also running GNU/Linux Debian 8.1. In our

tests, we map objects to shards randomly using the mapping function φ(o) = id(o)

mod K where K is a constant representing the number of shards and id(o) is the

SHA256 hash of the object.

We first measure the effect of the number of shards on transaction throughput

(Figure 3.5). The transaction throughput of Chainspace scales linearly with the

number of shards: with 4 nodes per shard, the number of transactions per second

(t/s) increases on average by 22 for 1-input transactions for each shard added. This

is because as inputs are randomly assigned to shards based on their hashes, the

transaction processing load is spread out over a larger number of shards.

Next we investigate the effect of shard size (the number of nodes per shard)

on transaction throughput (Figure 3.8). We fix the number of shards to 2, and in-

crease the number of nodes per shard from 2 to 48. With BFT-SMART configured

for 3 f + 1 fault tolerance, we observe an expected gracious decrease in transac-

tion throughput: for each node added, the throughput reduces on average by 1.6

transactions per second. This is because in order for a BFT-SMART node to realise

consensus for a message, it must receive a result from at least f + 1 nodes. Thus,

the bottleneck is the latency of the f +1th node with the highest response time.

Another factor that can potentially affect transaction throughput is the number

of inputs per transaction: the more shards touched by the transaction inputs, the

longer it will take to run S-BAC among all the concerned shards. In Figure 3.6,

we study how the number of inputs per transaction affects transaction throughput.

We measure this for 5 shards, varying the number of inputs per transaction from

1 to 10, and the inputs are randomly mapped to shards as previously stated. The



3.8. Conclusions 80

transaction throughput decreases asymptotically until it becomes stable at around

40 transactions per second. This is because S-BAC’s maximum time in processing

transactions is capped at the time it takes to process transactions that touch all the 5

shards. Increasing the number of inputs does not further deteriorate the transaction

throughput.

Finally, we measure the client-perceived latency—the time from when a client

submits a transaction until it receives a decision about whether the transaction has

been committed—under varying system loads expressed in terms of transactions

received per second. Figure 3.7 shows the effect of transactions received by the

system per second (all 1-input transactions) on client-perceived latency for 2 shards,

each having 4 nodes. Recall from Figure 3.5 that the average throughput for a

Chainspace system with similar configuration is 75 1-input transactions per second.

Consequently, we observe in Figure 3.8 that the increase in latency with varying

system loads is smaller for 20 t/s–60 t/s (average 69 ms), but the values start to get

bigger after 60 t/s (average 210 ms). This is when the system reaches its maximum

transaction throughput, causing a backlog of transactions to be processed.

3.8 Conclusions
We presented the design of Chainspace—an open, distributed ledger platform for

high-integrity and transparent processing of transactions. However, unlike exist-

ing smart-contract based systems such as Ethereum [153], it offers high scalability

through sharding across nodes using a novel distributed atomic commit protocol

called S-BAC, while offering high auditability. We presented implementation and

evaluation of S-BAC on a real cloud-based testbed under varying transaction loads

and showed that Chainspace’s transaction throughput scales linearly with the num-

ber of shards by up to 22 transactions per second for each shard added, handling up

to 350 transactions per second with 15 shards. As such it offers a competitive alter-

native to both centralized and permissioned systems, as well as fully peer-to-peer,

but unscalable systems like Ethereum.
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Figure 3.5: The effect of the number of shards on transaction throughput. (Nodes

per shard: 4, input-to-shard mapping: random. Repeats: 20. Error bars show stan-

dard deviation.)

Figure 3.6: The effect of the number of inputs per transaction on transaction

throughput. (Shards: 2, nodes per shard: 4, input-to-shard mapping: random. Re-

peats: 20.)
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Figure 3.7: The cumulative distribution function of delay for the client to receive

a final commit or abort response, for varying system load. (Shards: 5, nodes per

shard: 4, inputs per transaction: 1, input-to-shard mapping: random. Repeats: 5.

Error bars show standard deviation.)
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Figure 3.8: The effect of the number of nodes per shard on transaction throughput.

(Shards: 2, inputs per transaction: 1, input-to-shard mapping: random. Repeats:

20. Error bars show standard deviation.)



Chapter 4

Fraud and Data Availability Proofs:

Maximising Light Client Security

and Scaling Blockchains with

Dishonest Majorities

I’m not upset that you lied to me, I’m upset that from now on I can’t

believe you.

Friedrich Nietzsche

4.1 Introduction and Motivation
While increasing on-chain capacity–whether it be via sharding or simply increas-

ing the block size–would yield higher transaction throughput, there are concerns

that this creates a trade-off that would decrease decentralisation and security, be-

cause it would increase the resources required to fully download and validate the

blockchain. Thus fewer users would be able to afford to run full nodes that inde-

pendently validate the blockchain, requiring users to instead run light clients that

assume that the chain favoured by the blockchain’s consensus algorithm abides by

the protocol rules for transaction validity [102]. Recall in Section 2.3.3 that light

clients operate well under normal circumstances, but have weaker assurances when

the majority of the consensus (e.g., miners or block producers) is dishonest (also
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known as a ‘51% attack’, or also referred to as the ‘Dishonest Shards‘ threat model

in Section 3.3.2). For example, whereas a dishonest majority in the Bitcoin or

Ethereum network can at present only censor, reverse or reorder transactions, if all

clients are using light nodes, a majority of the consensus would be able to collude

together to generate blocks that contain contain invalid transactions that, for exam-

ple, create money out of thin air, and light nodes would not be able to detect this.

On the other hand, full nodes would reject those invalid blocks immediately.

In this chapter, we decrease the on-chain capacity vs. security trade-off by mak-

ing it possible for light clients to receive and verify fraud proofs of invalid blocks

from full nodes, so that they too can reject them, assuming that there is at least one

honest full node willing to generate fraud proofs to be propagated within a maxi-

mum network delay. We also design a data availability proof system, a necessary

complement to fraud proofs, so that light clients have assurance that the block data

required for full nodes to generate fraud proofs from is available, given that there is

a minimum number of honest light clients to reconstruct missing data from blocks.

We implement and evaluate the security and efficiency of our overall design.

Our work also plays a key role in efforts to scale blockchains with sharding

(Chapter 3), as in a sharded system no single node in the network is expected to

download and validate the state of all shards, and thus fraud proofs are necessary

to detect invalid blocks from malicious shards (i.e., the violation of the integrity

property by dishonest shards as described in Section 3.3.2).

4.2 Related Work

4.2.1 Alerts and Fraud Proofs

The original Bitcoin whitepaper [109] briefly mentions the possibility of ‘alerts’,

which are messages sent by full nodes to alert light clients that a block is invalid,

prompting them to download the full block to verify the inconsistency. This suffers

from a denial-of-service problem, as false alerts could cause light clients to down-

load and verify every block in the chain, which would require the same resources as

a full node.
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There have been online discussions about how one may go about designing

‘compact fraud proof’ systems [126, 145], where only one specific invalid transac-

tion in a block needs to be sent to prove that a block is invalid. However no complete

design that deals with all transaction invalidity cases and data availability has been

proposed. These earlier systems have taken the approach of attempting to design

a fraud proof for each possible way to create a block that violates the transaction

validity rules (e.g., double spending inputs, mining a block with a reward too high,

etc), whereas this chapter generalises the blockchain into a state transition system

with only one fraud proof.

To prove invalid state transitions, we use similar techniques to TrueBit [144]

and Arbitrum [80], which are layer two protocols where smart contracts can be exe-

cuted off-chain by the parties involved. The execution of smart contracts are divided

into many state transitions. In the event that a malicious party has incorrectly exe-

cuted the result of a smart contract execution, a dispute resolution protocol can be

triggered by another party to pin-point the specific state transition where their exe-

cution diverged. The other party can provide a compact proof of what the correct

result of the state transition should be (known as a ‘one-step proof’ in Arbitrum).

This proof is then executed by an on-chain smart contract to resolve the dispute. The

proof consists of a state commitment (i.e., state root) representing the starting state

of the execution, and the execution instruction. The instruction is then re-executed

to determine what the resulting post-execution state commitment should be.

4.2.2 Data Availability

One of the key unsolved challenges of designing a fraud proof system is the data

availability problem. If a block producer releases a block header that contains a

Merkle root of transactions, but does not publish the transaction data itself, full

nodes would not have the data to generate a fraud proof. Therefore a block producer

could prevent fraud proofs from being generated. To prevent this, there ought to be

a way for light clients to be able to verify all the transaction data in a block is

available to the network, without downloading all the data itself.

To solve this, we utilise erasure coding, which allows data to be encoded in
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such a way that the entire data can be recovered from only a subset of the data.

By requiring block producers to commit to the erasure coded version of block data,

only a subset of the data needs to be available, rather than all of it, in order for the

entire block to be recoverable. We then build a random sampling-based scheme on

top of this, to allow light clients to verify with high probability that a subset of the

data has been published, to be described in Section 4.5.

Erasure coding and sampling as a potential solution has been briefly discussed

on IRC chatrooms with no analysis, however these early ideas [103] require semi-

trusted third parties to inform clients of missing pieces of the block, and do not have

a means of dealing with block producers that generate invalid codes.

Perard et al. [120] have proposed using erasure coding to allow light clients to

voluntarily contribute to help storing the blockchain without having to download all

of it, however they do not propose a scheme to allow light clients to verify that the

full data is available.

RapidChain [157] uses an information dispersal algorithm [124] that uses era-

sure codes to make block propagation more efficient. Similar to our work, block

producers create blocks that commit to the erasure coded version of data, however

a data availability proof scheme is not proposed.

Since the release of the paper based on this chapter, new work by Yu et al. [156]

on data availability proofs has been published that builds on this work, that adopts

our security definitions (Definition 1 and Definition 2) and framework. An alterna-

tive data availability proof scheme is proposed where only an O(1) hash commit-

ment is required in each header with respect to the size of the block, compared to

an O(
√

n) commitment in our scheme. However, this scheme requires light clients

to download 2.5-4x more samples from each block to achieve the same level of data

availability guarantee [156].

Proofs of Data Possession and Retrievability

There is extensive literature on ‘proofs of data possession’ (PoDP) [12, 13] and

‘proofs of retrievability’ (PoR) schemes [33, 78, 133]. PoDPs allow a storage

provider (the prover) to prove to a verifier that they have possession of a file [73].
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PoRs extend PoDPs by allowing a storage provider to prove to a verifier that they

present a protocol interface in which a verifier can retrieve a file in its entirety [78],

assuming that the interface remains live. A prover can refuse to release the file

(e.g., by closing its protocol interface) after successfully participating in a PoR [78].

However, the acts of proving possession of a file and extracting a file use the same

interface, and therefore in theory preventing the extraction of a file would also pre-

vent proving the possession of it.

Our data availability proofs use similar building blocks as PoR schemes. In

particular, we employ erasure coding and random sampling to ensure that a file

is retrievable with a high probability. However, data availability proofs and PoRs

differ in two key ways. Firstly, in PoR schemes the file is chosen by the verifier,

and thus can trust themselves to encode the file correctly when it is uploaded to

the prover’s storage server. This is not the case for data availability proofs, as the

file contents is decided by a block producer. Secondly, there is no single authenti-

cated prover in our context, as data availability proofs aim to show that the data has

been published to an unauthenticated peer-to-peer network, rather than a single or

(specific set of) servers.

4.3 Assumptions and Model
We first present our blockchain model, and then define the core problem solved by

fraud and data availability proofs, under this model in Section 4.3.2.

We then present the network and threat model under which our fraud proofs

(Section 4.4) and data availability proofs (Section 4.5) apply.

4.3.1 Preliminaries

We present some primitives that we use in the rest of the chapter.

• hash(x) is a cryptographically secure hash function that returns the digest of

x (e.g., SHA-256).

• root(L) returns the Merkle root for a list of items L.
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• {e→ r} denotes a Merkle proof that an element e is a member of the Merkle

tree committed by root r.

• VerifyMerkleProof(e,{e→ r},r,n, i) returns true if the Merkle proof is valid,

otherwise false, where n additionally denotes the total number of elements in

the underlying tree and i is the index of e in the tree. This verifies that e is at

index i, as well as its membership.

• {k,v→ r} denotes a Merkle proof that a key-value pair k,v is a member of

the Sparse Merkle tree committed by root r.

4.3.2 Blockchain Model

We assume a generalised blockchain architecture, where the blockchain consists of

a hash-based chain of block headers H = (h0,h1, ...). A block header may have state

agreement, state validity, or both [158]:

• State validity. A block header is considered to have state validity if all the

transactions in the block are valid according to the protocol’s transaction va-

lidity rules.

• State agreement. A block header has state agreement if the consensus set is

in agreement that it should be included in the chain, e.g., it has 2 f + 1 BFT

signatures, or it is a part of a longest proof-of-work chain. If the consensus

set is dishonest, then a block header that does not have state validity may have

state agreement, thus causing light clients to accept invalid blocks.

Each block header hi contains a Merkle root txRooti of a list of transactions Ti,

such that root(Ti) = txRooti. Given a node that downloads the list of transactions

Ni from the network, a block header hi is considered to have state validity if (i)

root(Ni) = txRooti and (ii) given some validity function

valid(T,S) ∈ {true, false}

where T is a list of transactions and S is the state of the blockchain, then

valid(Ti,Si−1) must return true, where Si is the state of the blockchain after applying



4.3. Assumptions and Model 90

all of the transactions in Ti on the state from the previous block Si−1. We assume

that valid(T,S) takes O(n) time to execute, where n is the number of transactions in

T .

In terms of transactions, we assume that given a list of transactions Ti =

(t0
i , t

1
i , ..., t

n
i ), where t j

i denotes a transaction j at block i, there exists a state transi-

tion function transition that returns the post-state S′ of executing a transaction on a

particular pre-state S, or an error if the transition is illegal:

transition(S, t) ∈ {S′,err}

transition(err, t) = err

Thus given the intermediate state I j
i = transition(I j−1

i , t j
i ) after executing trans-

actions (t0
i , t

1
i , ..., t

j
i ) in block i where j ≤ n, and the base case I−1

i = Si−1, then

Si = In
i .

Therefore, valid(Ti,Si−1) = true if and only if In
i 6= err.

Core Problem

How can it be proven to clients that for a given block header hi, valid(Ti,Si−i) returns

false (thus proving that hi does not have state validity) in less than O(n) time and

less than O(n) space, relying on as few security assumptions as possible?

4.3.3 Network and Threat Model

We assume a network that consists of full nodes and light clients as described in

Section 2.3.3. As is the status quo in Bitcoin and Ethereum, we assume a network

topology as shown in Figure 4.1; full nodes communicate with each other, and light

clients communicate with full nodes, but light clients do not communicate with each

other.

We outline our threat model in detail below.

Blocks and Consensus

Block headers may be created by adversarial actors, and thus may be invalid, and

there is no honest majority of consensus-participating nodes that we can rely on that

can confirm state validity.
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Figure 4.1: Network model—full nodes communicate with each other, and light

clients communicate only with full nodes.

Network Synchrony

We assume a synchronous gossiping network [34]. Specifically, we assume a maxi-

mum network delay δ ; such that if one honest node can connect to the network and

download some data (e.g., a block) at time T , then it is guaranteed that any other

honest node will be able to do the same at time T ′ ≤ T + δ . In order to guarantee

that light clients do not accept block headers that do not have state validity, they

must receive fraud proofs in time, hence a synchrony assumption is required.

This synchronous model is a recurring assumption in the consensus protocols

of most blockchains [157, 100, 117, 109, 87] due to FLP impossibility [66]. How-

ever while full nodes rely on synchrony to determine which block headers have

state agreement, they do not rely on synchrony for state validity, as they check the

validity of blocks themselves. Standard light clients however do rely on a syn-

chrony assumption for state validity, as they assume that block headers that have

state agreement also have state validity. However without synchrony, they cannot

know if a block header has state agreement.

Full nodes

Full nodes may be dishonest, e.g., they may not relay information (e.g., fraud

proofs), or they may relay invalid blocks. However we assume that the graph of

honest full nodes is well connected, a standard assumption made in previous work
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[109, 87, 83, 100]. This results in a broadcast network, due to the synchrony as-

sumption made above.

Light clients

As is the status quo in prior work [109, 36], we assume that each light client is

connected to at least one honest full node (i.e., is not under an eclipse attack [75]),

as this is necessary to achieve a synchronous gossiping network.

However when a light client is connected to multiple full nodes, they do not

know which nodes are honest or dishonest, just that at least one of them is. Con-

sequently, light clients may be connected to dishonest full nodes that send block

headers that have consensus (state agreement) but correspond to invalid or unavail-

able blocks (violating state validity), and thus need fraud and data availability proofs

to detect this.

For data availability proofs, we assume a minimum number of honest light

clients in the network to allow for a block to be reconstructed, as each light client

downloads a small chunk of every block. The specific number depends on the pa-

rameters of the system, and is analysed in Section 4.5.8.

Double Spending vs. State Invalidity

Our goal is specifically to ensure that light clients do not accept blocks with in-

valid transactions, in the presence of a dishonest majority of consensus-participating

nodes. This is different to double spending attacks, where a dishonest majority forks

the chain to undo valid transactions, by breaking consensus finality to change which

block headers have state agreement, which is not the focus of this paper. An hon-

est majority assumption is still necessary to prevent double spending attacks for

both full nodes and light clients—our goal is to eliminate this assumption for trans-

action validity, thus significantly limiting the damage that a dishonest majority of

consensus-participating nodes can do.

We believe that it is nevertheless vital to prevent dishonest consensus majori-

ties from being able to get invalid transactions accepted, even if double spends are

possible. This is because, for example, the electricity cost of executing a 51% at-

tack in Bitcoin for an hour is over 350,000 USD (see Section 6.5.1). If only a
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Figure 4.2: Overview of the architecture of a fraud proof system at a network level.

double spend is possible with a 51% attack, the attacker would have to purchase

(and receive within one hour) a real-world item that costs at least 350,000 USD to

break even (assuming that the attacker already has the hardware, e.g., miners may

collude), possibly revealing their identity in the process. However if 51% attacker

can get invalid transaction accepted, they could create e.g., transactions that gener-

ate unbounded amounts of currency and inflate the monetary supply, which greatly

increases the incentive for conducting such an attack.

4.4 Fraud Proofs

4.4.1 Block Structure

In order to support efficient fraud proofs, it is necessary to design a blockchain

data structure that supports fraud proof generation by design. Extending the model

described in Section 4.3.2, a block header hi at height i contains the following ele-

ments:
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prevHashi The hash of the previous block header in the chain.

dataRooti The root of the Merkle tree of the data (e.g., transactions) included in

the block.

dataLengthi The number of leaves represented by dataRooti.

stateRooti The root of a Sparse Merkle tree of the state of the blockchain (to be

described in Section 4.4.2).

additionalDatai Additional arbitrary data that may be required by the network (e.g.,

in proof-of-work, this may include a nonce and the target difficulty threshold).

Additionally, the hash of each block header blockHashi = hash(hi) is also

stored by clients and nodes.

Note that typically blockchains have the Merkle root of transactions included

in headers. We have abstracted this to a ‘Merkle root of data’ called dataRooti,

because as we shall see in Section 4.4.3, as well as including transactions in the

block data, we also need to include intermediate state roots.

4.4.2 State Root and Execution Trace Construction

To instantiate a blockchain based on the state-based model described in Sec-

tion 4.3.2, we make use of Sparse Merkle trees, and represent the state as a key-

value map.

The state would need to keep track of all data that is relevant to block process-

ing, including for example the cumulative transaction fees paid to the creator of the

current block after each transaction.

We now define a variation of the function transition defined in Section 4.3.2,

called rootTransition, that performs transitions without requiring the whole state

tree, but only the state root and Merkle proofs of parts of the state tree that the

transaction reads or modifies (which we call “state witness”, or w for short). These

Merkle proofs are effectively expressed as a sub-tree of the same state tree with a

common root.

rootTransition(stateRoot, t,w) ∈ {stateRoot′,err}
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Figure 4.3: Example of a 256-byte share.

A state witness w consists of a set of (k, v) key-value pairs and their associated

Sparse Merkle proofs in the state tree, w = {(k0,v0,{k0,v0→ stateRoot}),(k1,v1,

{k1,v1→ stateRoot}), ...}.
After executing t on the parts of the state shown by w, if t modifies any of

the state, then the new resulting stateRoot′ can be generated by computing the root

of the new sub-tree with the modified leafs. Note that if w is invalid and does

not contain all of the parts of the state required by t during execution, then err is

returned.

Let us denote, for the list of transactions Ti = (t0
i , t

1
i , ..., t

n
i ), where t j

i denotes a

transaction j at block i, then w j
i is the state witness for transaction w j

i for stateRooti.

Thus given the intermediate state root interRoot j
i = rootTransition(interRoot j−1

i ,

t j
i ,w

j
i ) after executing transactions (t0

i , t
1
i , ..., t

j
i ) in block i where j≤ n, and the base

case interRoot−1
i = stateRooti−1, then stateRooti = interRootni .

4.4.3 Data Root and Periods

The data represented by the dataRooti of a block contains transactions arranged

into fixed-size chunks of data called ‘shares’, interspersed with intermediate state

roots called ‘traces’ between transactions. We denote trace j
i as the jth intermediate

state root in block i. These intermediate state roots between transactions effectively

form an execution trace within the block, forcing the block producer to ‘show’ how

it computed the final stateRooti in the block header, so that if the final stateRooti is

incorrect, the first incorrect intermediate state root in the execution trace that intro-

duced the error can be pin-pointed. As we will see in Section 4.4.4, it then becomes

trivial to efficiently prove to light clients that stateRooti is incorrect, as only the

(few) transactions in the execution trace between the last correct intermediate state

root and first incorrect intermediate state root need to be shown as proof.
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Each leaf in the data tree represents a share. It is necessary to arrange data into

fixed-size shares to allow for data availability proofs as we shall see in Section 4.5.

Additionally, the reason for interspersing intermediate state roots with transactions

in the same tree is because the availability of both the transactions and intermediate

state roots need to be guaranteed, as both are required to generate fraud proofs of

invalid state transitions as we shall see in Section 4.4.4.

As a share may not contain entire transactions but only parts of transactions

as shown in Figure 4.3, we may reserve the first byte in each share to be the start-

ing position of the first transaction that starts in the share, or 0 if no transaction

starts in the share. This allows a protocol message parser to establish the message

boundaries without needing every transaction in the block.

Given a list of shares (sh0,sh1, ...) we define a function parseShares which

parses these shares and outputs an ordered list of messages (m0,m1, ...), which are

either transactions or intermediate state roots. For example, parseShares on some

shares in the middle of some block i may return (trace1
i , t

4
i , t

5
i , t

6
i , trace

2
i ).

parseShares((sh0,sh1, ...)) = (m0,m1, ...)

Note that as the block data does not necessarily contain an intermediate state

root after every transaction, we assume a ‘period criterion’, a protocol rule that

defines how often an intermediate state root should be included in the block’s data.

For example, the rule could be at least once every p transactions, or b bytes or g gas

(i.e., in Ethereum [153]).

We thus define a function parsePeriod which parses a list of messages, and

returns a pre-state intermediate root tracex
i , a post-state intermediate root tracex+1

i ,

and a list of transaction (tg
i , t

g+1
i , ..., tg+h

i ) such that applying these transactions on

tracex
i is expected to return tracex+1

i . If the list of messages violate the period crite-

rion, then the function may return err, for example if there are too many transactions

in the messages to constitute a period.

parsePeriod((m0,m1, ...)) ∈ {(tracex
i , trace

x+1
i ,(tg

i , t
g+1
i , ..., tg+h

i )),err}
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Note that tracex
i may be nil if no pre-state root was parsed, as this may be the

case if the first messages in the block are being parsed, and thus the pre-state root is

the state root of the previous block stateRooti−i. Likewise, tracex+1
i may be nil if

no post-state root was parsed i.e., if the last messages in the block are being parsed,

as the post-state root would be stateRooti.

4.4.4 Proof of Invalid State Transition

A faulty or malicious miner may provide a bad stateRooti in the block header that

modifies the state in an invalid way, i.e., it does not match the new state root that

should be returned according to rootTransition. Full nodes can use the execution

trace provided in dataRooti to prove to light clients that some part of the execution

trace resulting in stateRooti was invalid, by pin-pointing the first intermediate state

root that is invalid. This also prevents adversaries from including invalid transac-

tions that cause rootTransition to return an err symbol, as stateRooti cannot be an

err symbol as it is interpreted as a cryptographic hash; the adversary would simply

have to provide an invalid arbitrary state root.

We define a function VerifyTransitionFraudProof and its parameters which ver-

ifies fraud proofs of invalid state transitions received from full nodes. We denote d j
i

as share number j in block i.

Summary of VerifyTransitionFraudProof. A state transition fraud proof

consists of (i) the relevant shares in the block that contain the bad state transition,

(ii) Merkle proofs that those shares are in dataRooti, and (iii) the state witnesses

for the transactions contained in those shares. The function takes as input this fraud

proof, then (i) verifies the Merkle proofs of the shares, (ii) parses the transactions

from the shares, and (iii) checks if applying the transactions on the intermediate

pre-state root results in the intermediate post-state root specified in the shares. If

it does not, then the fraud proof is valid, and the block that the fraud proof is for

should be permanently rejected by the client.

Importantly, the client does not need to know the entire state of the blockchain

to validate this fraud proof; clients only need to know the relevant parts of the state

that the relevant transactions access, which are provided by the state witnesses.
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VerifyTransitionFraudProof(blockHashi,

(dy
i ,d

y+1
i , ...),y, (shares)

({dy
i → dataRooti},{dy+1

i → dataRooti}, ...), (share Merkle proofs)

(wg
i ,w

g+1
i , ...,wg+h

i ) (state witnesses)

) ∈ {true, false}

VerifyTransitionFraudProof returns true if all of the following conditions are

met, otherwise false is returned:

1. blockHashi corresponds to a block header hi that the client has downloaded

and stored.

2. For each share dy+a
i in the proof, VerifyMerkleProof(dy+a

i ,{dy+a
i →

dataRooti},dataRooti,dataLengthi,y+a) must return true.

3. Given parsePeriod(parseShares((dy
i ,d

y+1
i , ...))) ∈ {(tracex

i , trace
x+1
i ,(tg

i ,

tg+1
i , ..., tg+h

i )),err}, the result must not be err. If tracex
i is nil, then y = 0

must be true, and if tracex+1
i is nil, then y+m = dataLengthi must be true.

4. Check that applying (tg
i , t

g+1
i , ..., tg+h

i ) on tracex
i results in tracex+1

i . For-

mally, let the intermediate state root after executing transactions (t0
i , t

1
i , ..., t

j
i )

in block i be interRoot j
i = rootTransition(interRoot j−1

i , t j
i ,w

j
i ). If tracex

i is

not nil, then the base case is interRootyi = tracex
i , otherwise interRootyi =

stateRooti−1. If tracex+1
i is not nil, tracex+1

i = interRootg+h
i must be true,

otherwise stateRooti = interRooty+m
i must be true.1

4.4.5 Transaction Fees

As discussed in Section 4.4.2, the state would need to keep track of all data that

is relevant to block processing. A block producer may attempt to collect more

1For simplicity, we assume a model where state witnesses are provided for every individual

intermediate state root within the trace, but it is also possible to only provide state witnesses only for

the trace intermediate pre-state root, and execute the transactions as a single batch.
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transaction fees than is afforded to them by the transactions in the block. In order

to make this detectable by a fraud proof as part of the model we have described,

we can introduce a special key in the state tree called fees , which represents the

cumulative fees in the block after applying each transaction, and is reset to 0 after

applying the transaction where the block producer collects the fees.

4.5 Data Availability Proofs
A malicious block producer could prevent full nodes from generating fraud proofs

by withholding the data needed to recompute dataRooti and only releasing the block

header hi to the network. The block producer could then only release the data—

which may contain invalid transactions or state transitions—long after the block

has been published, and make the block invalid. This would cause a rollback of

transactions on the ledger of future blocks. It is therefore necessary for light clients

to have a level of assurance that the data matching dataRooti is indeed available to

the network.

We propose a data availability scheme based on Reed-Solomon erasure coding,

where light clients request random shares of data to get high probability guarantees

that all the data associated with the root of a Merkle tree is available. The scheme

assumes there is a sufficient number of honest light clients making the same requests

such that the network can recover the data, as light clients upload these shares to

full nodes, if a full node that does not have the complete data requests it. It is fun-

damental for light clients to have assurance that all the transaction data is available,

because it is only necessary to withhold a few bytes to hide an invalid transaction in

a block.

We define below soundness and agreement and analyse them in Section 4.5.9.

We use k as a constant that depends on the size and topology of the peer-to-peer

network.

Definition 1 (Soundness). If an honest light client accepts a block as available, then

at least one honest full node has the full block data or will have the full block data

within some known maximum delay k ·δ where δ is the maximum network delay.
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Definition 2 (Agreement). If an honest light client accepts a block as available,

then all other honest light clients will accept that block as available within some

known maximum delay k ·δ where δ is the maximum network delay.

4.5.1 Background on Erasure Codes and Reed-Solomon Codes

Erasure codes are error-correcting codes [60, 121] working under the assumption

of bit erasures rather than bit errors; in particular, the users knows which bits have

to be reconstructed. Error-correcting codes transform a message of length k into

a longer message of length n > k such that the original message can be recovered

from a subset of the n shares.

Reed-Solomon (RS) codes [150] have various applications and are among the

most studied error-correcting codes. A Reed-Solomon code encodes data by treat-

ing a length-k message as a list of elements x0,x1, ...,xk−1 in some finite field (prime

fields and binary fields are most frequently used), interpolating the polynomial P(x)

where P(i) = xi for all 0 ≤ i < k, and then extending the list with xk,xk+1, ...,xn−1

where xi = P(i). The polynomial P can be recovered from any k shares from this

longer list using techniques such as Lagrange interpolation, or more optimized and

advanced techniques involving tools such as Fast Fourier transforms, and know-

ing P one can then recover the original message. Reed-Solomon codes can detect

and correct any combination of up to n−k
2 errors, or combinations of errors and

erasures. RS codes have been generalised to multidimensional codes [134, 57] in

various ways [135, 154, 130]. In a d-dimensional code, the message is encoded

into a square or cube or hybercube of size k× k× ...× k, and a multidimensional

polynomial P(x1,x2, ...,xd) is interpolated where P(i1, i2, ..., in) = xi1,i2...,in , and this

polynomial is extended to a larger n×n× ...×n square or cube or hypercube.

4.5.2 Strawman 1D Reed-Solomon Availability Scheme

To provide some intuition, we first describe a strawman data availability scheme,

based on standard Reed-Solomon coding.

A block producer compiles a block of data consisting of k shares, extends the

data to 2k shares using Reed-Solomon encoding, and computes a Merkle root (the
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dataRooti) over the extended data, where each leaf corresponds to one share.

When light clients receive a block header with this dataRooti, they randomly

sample from full nodes shares from the Merkle tree that dataRooti represents, and

only accept a block once it has received all of the shares requested. If an adversarial

block producer makes more than 50% of the shares unavailable to make the full data

unrecoverable (recall in Section 4.5.1 that Reed-Solomon codes allow recovery of 2t

shares from any t shares), there is a 50% chance that a client will randomly sample

an unavailable share in the first draw and thus detect that the data is unavailable, a

75% chance after two draws, a 87.5% chance after three draws, and so on, if they

draw with replacement. (In the full scheme, they will draw without replacement,

and so the probability will be even higher.)

Note that for this scheme to work, there must be enough light clients in the

network sampling enough shares so that block producers will be required to release

more than 50% of the shares in order to pass the sampling challenge of all light

clients, and so that the full block can be recovered. An in-depth probability and

security analysis is provided in Section 4.5.8.

The problem with this scheme is that an adversarial block producer may incor-

rectly compute the extended Reed-Solomon encoded data, and thus the incomplete

block is unrecoverable from the extended data even if more than 50% of the data

is available. With standard Reed-Solomon encoding, the fraud proof that the ex-

tended data is invalid is the original data itself, as clients would have to re-encode

all data locally to verify the mismatch with the given extended data, and thus it re-

quires O(n) data with respect to the size of the block. Therefore, we instead use

multi-dimensional encoding, as will be described in Section 4.5.3, so that proofs

of incorrectly generated codes are limited to a specific axis—rather than the en-

tire data—reducing the fraud proof size to O( d
√

n) where d is the number of di-

mensions of the encoding. For simplicity, we will only consider two-dimensional

Reed-Solomon encoding in this paper, but our scheme can be generalised to higher

dimensions.

In the sections below, we proceed to describe the details of the full data avail-
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Figure 4.4: Diagram showing a 2D Reed-Solomon encoding. The original data is

initially arranged in a k× k matrix, which is then ‘extended’ to a 2k× 2k matrix

applying multiple times Reed-Solomon encoding.

ability scheme.

4.5.3 2D Reed-Solomon Encoded Merkle Tree Construction

In this section we describe how to compute a dataRooti for block header i using a

2D Reed-Solomon code.

Let extend be a function that takes in a list of k shares, and returns a list of

2k shares that represent the extended shares encoded using a standard 1D Reed-

Solomon code.

extend(sh1,sh2, ...,shk) = (sh1,sh2, ...,sh2k)

The first k shares that are returned are the same as the input shares, and the lat-

ter k are the coded shares. Recall that all 2k shares can be recovered with knowledge

of any k of the 2k shares.

A 2D Reed-Solomon Encoded Merkle tree can then be constructed as follows

from a block of data:
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1. Split the original data into shares of size shareSize each, and arrange them

into a k× k matrix Oi; apply padding if the last share is not exactly of size

shareSize, or if there are not enough shares to complete the matrix. In the next

step, we extend this k× k matrix to a 2k×2k matrix Mi with Reed-Solomon

encoding.

2. For each row in the original k× k matrix Oi, pass the k shares in that row to

extend(sh1,sh2, ...,shk) and append the extra shares outputted (shk+1, ...,sh2k)

to the row to create an extended row of length 2k, thus extending the matrix

horizontally. Repeat this process for the columns in Oi to extend the matrix

vertically, so that each original column now has length 2k. This creates an

extended 2k×2k matrix with the upper-right and lower-left quadrants filled,

as shown in Figure 4.4. Then finally apply Reed-Solomon encoding horizon-

tally on each row of the vertically extended portion of the matrix to complete

the bottom-right quadrant of the 2k×2k matrix. This results in the extended

matrix Mi for block i.

3. Compute the root of the Merkle tree for each row and column in the 2k×2k

matrix, where each leaf is a share. We have rowRoot j
i = root((M j,1

i ,M j,2
i ,

...,M j,2k
i )) and columnRoot j

i = root((M1, j
i ,M2, j

i , ...,M2k, j
i )), where Mx,y

i rep-

resents the share in row x, column y in the matrix.

4. Compute the root of the Merkle tree of the roots computed in step 3 and

use this as dataRooti. We have dataRooti = root((rowRoot1i , rowRoot
2
i , ...,

rowRoot2k
i ,columnRoot1i ,columnRoot2i , ...,columnRoot2k

i )).

We note that in step 2, we have chosen to extend the vertically extended portion

of the matrix horizontally to complete the extended matrix, however it would also

be just as fine to extend the horizontally extended portion of the matrix vertically

to complete the extended matrix; this will result in the same matrix because Reed-

Solomon coding is linear and commutative with itself [134]. The resulting matrix

has the property that all rows and columns have reconstruction capabilities, even

columns Ck+1, ...,C2k.
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The resulting tree of dataRooti has dataLengthi = 2× (2k)2 elements, where

the first 1
2dataLengthi elements are in leaves via the row roots, and the latter half

are in leaves via the column roots.

Note that although it is possible to present a Merkle proof from dataRooti

to an individual share, it is important to note that a Merkle tree has 2x leaves,

and the Merkle sub-trees for the row and column roots are constructed indepen-

dently from dataRooti. Therefore it is necessary to have a wrapper function around

VerifyMerkleProof called VerifyShareMerkleProof with the same parameters which

takes into account how the underlying Merkle tree deals with an unbalanced number

of leaves; this may involve calling VerifyMerkleProof twice for different portions of

the path, or offsetting the index.

The width of the matrix can be derived as matrixWidthi =
√

1
2dataLengthi. If

we are only interested in the row and column roots of dataRooti, rather than the

actual shares, then we can assume that dataRooti has 2×matrixWidthi leaves when

verifying a Merkle proof of a row or column root.

A light client or full node is able to reconstruct dataRooti from all the row and

column roots by recomputing step 4. In order to gain data availability assurances, all

light clients should at minimum download all the row and column roots needed to

reconstruct dataRooti and check that step 4 was computed correctly, because as we

shall see in Section 4.5.7, they are necessary to generate fraud proofs of incorrectly

generated extended data.

We nevertheless represent all of the row and column roots as a a single

dataRooti to allow ‘super-light’ clients which do not download the row and col-

umn roots, but these clients cannot be assured of data availability and thus do not

fully benefit from the increased security of allowing fraud proofs.

Alternative codes and design space

In our system we have chosen to use Reed-Solomon codes with an equal ratio of

message to recovery bits. Although other ratios may be used, we parameterise our

protocol and security analysis with this ratio for the sake of simplicity, and leave

exploration of different parameters for future work.
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In terms of the choice of code used, we require two key properties. Firstly,

there must be a way to efficiently verify that the code was constructed incorrectly.

We have made use of a two-dimensional code, so that a fraud proof of incorrect

code is limited to only rows and columns, rather than the entire code. In order to

construct a two-dimensional code, the underlying coding scheme must be linear and

commutative with itself [134]. Reed-Solomon codes are the most widespread and

among the most efficient codes that have this property.

Secondly, it must be possible to authenticate that the shares of a code are gen-

erated by the block producer, without interacting directly with the block producer.

This is because as discussed in our network model (Section 4.3.3), blocks are prop-

agated in a peer-to-peer network, therefore nodes may not have a direct connection

to the block producer. This makes rateless codes such as LT codes [99] unsuitable,

because they have an unbounded number of shares, and thus it is not possible for

the block producer to commit to all the shares using a Merkle root.

Falcon codes [79] is a construction which allows for authenticated LT codes,

however it relies on the assumption that the sender and receiver of the codes have

a shared secret key, which would require direct interaction between the block pro-

ducer and nodes. Krohn et al. propose a construction for cryptographically verifying

the correctness of rateless codes in a peer-to-peer setting [88]. However, it is not

fully secure against a malicious encoder that produces correctly coded shares (due

to ‘distribution attacks’ [88]).

4.5.4 Random Sampling and Network Block Recovery

In order for any share in the 2D Reed-Solomon matrix to be unrecoverable, then at

least (k+1)2 out of (2k)2 shares must be unavailable (see Theorem 7), as opposed

to k+ 1 out of 2k with a 1D code (i.e., more than 50% as mentioned in the straw-

man scheme in Section 4.5.2). When light clients receive a new block header from

the network, they should randomly sample 0 < s ≤ (2k)2 distinct shares from the

extended matrix, and only accept the block if they receive all shares. The higher

the s, the greater the confidence a light client can have that the data is available

(this will be analysed in Section 4.5.8), just as mentioned in the strawman scheme
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in Section 4.5.2. Additionally, light clients gossip shares that they have received to

the network, so that the full block can be recovered by honest full nodes.

The protocol between a light client and the full nodes that it is connected to

works as follows:

1. The light client receives a new block header hi from one of the full nodes it is

connected to, and a set of row and column roots R= (rowRoot1i , rowRoot
2
i , ...,

rowRoot2k
i ,columnRoot1i ,columnRoot2i , ...,columnRoot2k

i ). If the check

root(R) = dataRooti is false, then the light client rejects the header.

2. The light client randomly chooses a set of unique (x,y) coordinates

S = {(x0,y0)(x1,y1), ...,(xn,yn)} where 0 < x ≤ matrixWidthi and 0 < y ≤
matrixWidthi, corresponding to points on the extended matrix, and sends

them to one or more of the full nodes it is connected to.

3. If a full node has all of the shares corresponding to the coordinates in S

and their associated Merkle proofs, then for each coordinate (xa,yb) the

full node responds with Mxa,yb
i ,{Mxa,yb

i → rowRootai } or Mxa,yb
i ,{Mxa,yb

i →
columnRootbi }. Note that there are two possible Merkle proofs for each share;

one from the row roots, and one from the column roots, and thus the full node

must also specify for each Merkle proof if it is associated with a row or col-

umn root.

4. For each share Mxa,yb
i that the light client has received, the light client checks

VerifyMerkleProof(Mxa,yb
i ,{Mxa,yb

i → rowRootai }, rowRootai ,matrixWidthi,b)

is true if the proof is from a row root, otherwise if the proof is from a column

root then VerifyMerkleProof(Mxa,yb
i ,{Mxa,yb

i → columnRootbi },columnRootbi ,

matrixWidthi,a) is true.

5. Each share and valid Merkle proof that is received by the light client is gos-

siped to all the full nodes that the light client is connected to if the full nodes

do not have them, and those full nodes gossip it to all of the full nodes that

they are connected to.
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6. If all the proofs in step 4 succeeded, and no shares are missing from the

sample made in step 2, then the block is accepted as available if within 2×δ

no fraud proofs for the block’s erasure code is received (to be described in

Section 4.5.7).

4.5.5 Extraction Model

We describe an extraction model, namely an interactive algorithm that governs the

recovery of a block. In the classical extraction model in PoR schemes [78, 133,

28, 13, 148], the extractor aims to recover a specific block from a storage server

(the prover). In our data availability proofs scheme however, the block data is not

recovered from a specific server, but from the peer-to-peer network from nodes

that have shares of data from blocks. Another fundamental difference with the

classical extraction model where the verifier of the PoR is also the extractor: in our

scheme, only full nodes act as extractors—not light clients. Light clients verify data

availability proofs in order to ensure that full nodes are able to extract the block,

and thus generate fraud proofs.

Given a full node that wants to recover a matrix Mi associated with block i, the

extraction process proceeds as follows:

1. The full node picks a set of random shares that it does not have, and samples

them from one or more of the full nodes it is connected to, using the same

random sampling protocol in Section 4.5.4.

2. If as a result of downloading any new share, the row or column that the share

is in has greater than k + 1 recovered shares, then recover the whole row

and/or column with recover (see Section 4.5.7).

3. If as a result of the previous step, any incomplete row or column in Mi has

greater than k + 1 recovered shares, then recover the whole row or column

with recover. Repeat this step until Mi does not change and no new rows or

columns are recoverable.

4. Repeat from step 1 until the whole matrix is recovered.
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Note that in step 5 in Section 4.5.4, it is also mentioned that light clients gossip

shares to full nodes that do not have them. We note that the share gossiping mech-

anism among full nodes can be generalised as a peer-to-peer file-sharing network

such as BitTorrent or IPFS [47, 25], to enable full nodes to download shares that

they do not have, as an alternative to step 1.

Assumption on the Query Interface

Extraction algorithms in PoR schemes work under the assumption that the query

interface for querying shares is live, and that the prover replies to the extractor.

In our system, the query interface is effectively the entire peer-to-peer network.

Specifically, our extraction mechanism assumes that once the shares in a block are

published and available, then there will be a copy of at least (2k)2− (k+1)2 shares

that can be downloaded from the network, so that the block can be recovered. If at

any point this no longer is the case, the block cannot be extracted. For our fraud

proofs use case, we only require the block to be extractable within the maximum

delay k×δ after the block is published, so that a fraud proof can be generated.

4.5.6 Selective Share Disclosure

If a block producer selectively releases shares as light clients ask for them, up to

(2k)2−(k+1)2 shares, they can violate the soundness property (Definition 1) of the

clients that ask for the first (2k)2− (k+1)2 out of (2k)2 shares, as they will accept

the blocks as available despite them being unrecoverable; recall that if (k + 1)2

shares are unavailable, the Reed-Solomon matrix may be unrecoverable.

This can be alleviated if one assumes an enhanced network model where

a sufficient number of honest light clients make requests such that more than

(2k)2−(k+1)2 shares will be sampled, and that each sample request for each share

is anonymous (i.e., sample requests cannot be linked to the same client) and the

distribution in which every sample request is received is uniformly random, for ex-

ample by using a mix net [45]. As the network would not be able to link different

per-share sample requests to the same clients, shares cannot be selectively released

on a per-client basis.



4.5. Data Availability Proofs 109

We thus assume two network connection models that sample requests can be

made under, which we analyse in Section 4.5.9:

• Standard model. Sample requests are linkable to the clients that made them,

and the order that they are received is predictable (e.g., they are received in

the order that they were sent).

• Enhanced model. Different sample requests cannot be linked to the same

client, and the order that they are received by the network is uniformly random

with respect to other requests.

Whether the standard model is acceptable depends on the size of the network

and threat model; we will see from Corollary 1 that under reasonable parameters

only up to a few hundred clients can be fooled. In a network with hundreds of thou-

sands of users for example (a popular Bitcoin SPV wallet for Android has millions

of installs2), only small but expensive targeted attacks would be possible.

4.5.7 Fraud Proofs of Incorrectly Generated Extended Data

If a full node has enough shares to recover a particular row or column, and after

doing so detects that recovered data does not match its respective row or column

root, then it should distribute a fraud proof consisting of enough shares in that row

or column to be able to recover it, and a Merkle proof for each share.

We define a function VerifyCodecFraudProof and its parameters that verifies

these fraud proofs, where axisRoot j
i ∈ {rowRoot

j
i ,columnRoot j

i }. These proofs can

also be verified by ‘super-light’ clients as they do not assume any knowledge of the

row and column roots. We denote axis and ax j as row or column boolean indicators;

0 for rows and 1 for columns.

Summary of VerifyCodecFraudProof. The fraud proof consists of (i) the

Merkle root of the incorrectly generated row or column, (ii) a Merkle proof that the

row or column root is in the data tree, (iii) enough shares to be able to reconstruct

that row or column, and (iv) Merkle proofs that each share is in the data tree. The

2https://play.google.com/store/apps/details?id=de.schildbach.

wallet

https://play.google.com/store/apps/details?id=de.schildbach.wallet
https://play.google.com/store/apps/details?id=de.schildbach.wallet
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function takes as input this fraud proof, and checks that (i) all of the supplied Merkle

proofs are valid, (ii) all of the shares given by the prover are in the same row or

column and (iii) that the recovered row or column indeed does not match the row

or column root in the block. If all these conditions are true, then the fraud proof is

valid, and the block that the fraud proof is for should be permanently rejected by

the client.

VerifyCodecFraudProof(blockHashi,

axisRoot j
i ,{axisRoot

j
i → dataRooti}, j, (row or column root)

axis, (row or column indicator)

((sh1,pos1,ax1),(sh2,pos2,ax2), ...,(shk,posk,axk)), (shares)

({sh1→ dataRooti},{sh2→ dataRooti}, ...,{shk→ dataRooti})

) ∈ {true, false}

Let recover be a function that takes a list of shares and their positions in the

row or column ((sh1,pos1),(sh2,pos2), ...,(shk,posk)), and the length of the original

row or column k. The function outputs the full recovered shares (sh1,sh2, ...,sh2k)

or err if the shares are unrecoverable.

recover(((sh1,pos1),(sh2,pos2), ...,(shk,posk)),k) ∈ {(sh1,sh2, ...,sh2k),err}

VerifyCodecFraudProof returns true if all of the following conditions are met:

1. blockHashi corresponds to a block header hi that the client has downloaded

and stored.

2. If axis= 0 (row root), VerifyMerkleProof(axisRoot j
i ,{axisRoot

j
i → dataRooti},

dataRooti,2×matrixWidthi, j) returns true.

3. If axis = 1 (col. root), VerifyMerkleProof(axisRoot j
i ,{axisRoot

j
i →

dataRooti},dataRooti,2×matrixWidthi,
1
2dataLengthi + j) returns true.
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4. For each (shx,posx,axx), VerifyShareMerkleProof(shx,{shx → dataRooti},
dataRooti,dataLengthi, index) returns true, where index is the expected in-

dex of the shx in the data tree based on posx assuming it is in the same row or

column as axisRoot j
i . See Appendix A.1 for how index can be computed.

Note that full nodes can specify Merkle proofs of shares in rows or columns

from either the row or column roots e.g., if a row is invalid but the full nodes

only has Merkle proofs for the row’s share from column roots. This also

allows for full nodes to generate fraud proofs if there are inconsistencies in

the data between rows and columns e.g., if the same cell in the matrix has a

different share in its row and column trees.

5. root(recover(((sh1,pos1),(sh2,pos2), ...,(shk,posk)),k))= axisRoot j
i is false.

4.5.8 Sampling Security Analysis

We present how the data availability scheme presented in Section 4.5 can provide

lights clients with a high level of assurance that block data is available to the net-

work.

Minimum Unavailable Shares for Unrecoverability

Theorem 7 states that data is unrecoverable if a malicious block proposer withholds

k + 1 shares of at least k + 1 columns or rows; which makes a total of (k + 1)2

minimum shares to withhold.

Theorem 7. Given a 2k× 2k extended matrix E as show in Figure 4.4, data is

unrecoverable if at least k+1 columns or rows have each at least k+1 unavailable

shares. In that case, the minimum number of shares that must be unavailable is

(k+1)2.

Proof. Suppose a malicious block producer wants to make unrecoverable a share

Ei, j of the 2k×2k matrix E. Recall that Reed-Solomon encoding allows recovery of

all 2k shares from any k shares; the block producer will have to (i) make unavailable

at least k+1 shares from the row Ei,∗, and (ii) make unavailable at least k+1 shares

from the column E∗, j.
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Figure 4.5: Graphical interpretation of Theorem 7. Data is unrecoverable if at least

k+1 columns (or rows) have each at least k+1 unavailable shares.

Let us start from (i); the block producer withholds at least k+1 shares from row

Ei,∗. However, each of these k+1 withheld shares (Ei,c1, . . . ,Ei,ck+1)∈Ei,∗ can be re-

covered from the available shares of their respective columns E∗,c1,E∗,c2, . . . ,E∗,ck+1 .

Therefore, the block producer will also have to withhold at least k+1 shares from

each of these columns. This gives a total of (k+ 1) ∗ (k+ 1) = (k+ 1)2 shares to

withhold. Note that at this point, there are not enough shares left in the matrix to

recover any of the (k+1)2 shares of columns E∗,c1, . . . ,E∗,ck+1 .

Let us now consider (ii); the block producer withholds at least k + 1 shares

from the column E∗, j to make unrecoverable the share Ei, j. As before, each shares

(Er1, j, . . . ,Erk+1, j) ∈ E∗, j can be recovered from the available shares of their respec-

tive row Er1,∗,Er2,∗, . . . ,Erk+1,∗. Therefore, the block producer will also have to

withhold at least at least k+1 shares from each of these rows. As before, this also

gives a total of (k+1)∗ (k+1) = (k+1)2 shares to withhold.

However, (i) is equivalent to (ii) by the symmetry of the matrix, and are actually

operating on the same shares; executing (i) on matrix E is equivalent to executing

(ii) on the transpose of matrix E.

We note that Theorem 7 relies on a necessary but not sufficient condition for
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an adversary to cause a block to be unrecoverable; (k+1)2 is the minimum number

of shares that need to be withheld. In particular, if the adversary does not withhold

the exact correct (k+1)2 shares to form a (k+1)× (k+1) square, then the matrix

may be recoverable. This means that in practice the adversary will likely have to

withhold more than (k+1)2 shares because it is unlikely that clients will randomly

sample shares in a perfect square; thus we assume a stronger adversary than likely

exists in practice for our security analysis. Therefore the analysis is conservative in

terms of security.

Unrecoverable Block Detection

Theorem 8 states the probability that a single light client will sample at least one

unavailable share in a matrix with the minimum unavailable shares for unrecover-

ability, thus detecting that a block may be unrecoverable.

Theorem 8. Given a 2k× 2k extended matrix E as shown in Figure 4.4, where

(k + 1)2 shares are unavailable. If one player randomly samples 0 < s ≤ (2k)2

shares from E, the probability of sampling at least one unavailable share is:

p1(X ≥ 1) = 1−
s−1

∏
i=0

(
1− (k+1)2

4k2− i

)
(4.1)

Proof. We start by assuming that the 2k×2k matrix E contains q unavailable shares;

If the player performs s trials (0 < s≤ (2k)2), the probability of finding exactly zero

unavailable shares is:

p1(X = 0) =

(4k2−q
s

)(4k2

s

) (4.2)

The numerator of Equation (4.2) computes the number of ways to pick s shares

among the set of available shares 4k2−q (i.e.,
(4k2−q

s

)
). The denominator computes

the total number of ways to pick any s shares out of the total number of shares (i.e.,(4k2

s

)
).

Then, the probability p1(X ≥ 1) of finding at least one unavailable share can



4.5. Data Availability Proofs 114

2 4 6 8 10 12 14 16 18 20
number of sampled shares (s)

0.2

0.4

0.6

0.8

1

p 1(X
 

 1
)

k=32
k=256

Figure 4.6: Plot of Equation (4.1)—variation of the probability p1(X ≥ 1) with the

number of sampled shares (s) (computed for k = 32 and k = 256).
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Figure 4.7: Variation of the shares size with the size of the matrix (k).

be easily computed from Equation (4.2):

p1(X ≥ 1) = 1− p1(X = 0) (4.3)

= 1−
(4k2−q

s

)(4k2

s

) (4.4)

= 1−
s−1

∏
i=0

(
1− q

4k2− i

)
(4.5)

which can be re-written as Equation (4.1) by setting q = (k+1)2.

Figure 4.6 shows how this probability varies with s samples for k = 32 and

k = 256; each light client samples at least one unavailable share with about 60%

probability after 3 samplings (i.e., after querying respectively 0.07% of the block

shares for k = 32 and 0.001% of the block shares for k = 256), and with more than
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99% probability after 15 samplings (i.e., after querying respectively 0.4% of the

block shares for k = 16 and 0.005% of the block shares for k = 256). Figure 4.7

shows that light clients would have to download about 3.6 KB of shares to be able

to detect incomplete blocks with more than 99% probability for k = 32, and about

57 bytes of shares for k = 256, for 1MB blocks.

Equation (4.6) shows a noticeable result: the probability p1(X ≥ 1) is almost

independent of k for large values of k; it is therefore convenient to have a large

matrix size (i.e., k ≥ 128) as this reduces the amount of data that light clients have

to download.

lim
k→∞

p1(X ≥ 1) = lim
k→∞

(
1−

s−1

∏
i=0

(
1− (k+1)2

4k2− i

))
= 1− (3/4)s (4.6)

Under the enhanced model described in Section 4.5.6, a malicious block pro-

ducer could statistically link light clients based on the shares they query; i.e., assum-

ing that a light client would never request twice the same share, a block producer

can deduce that any request for the same share comes from a different client. To

mitigate this problem, light clients could sample without replacement by perform-

ing the procedure for sampling with replacement multiple times, and only stop when

they have sampled s unique values.

Multi-Client Unrecoverable Block Detection

Theorem 9 captures the probability that more than ĉ out of c light clients sample

at least one unavailable share in a matrix with the minimum unavailable shares for

unrecoverability.

Theorem 9. Given a 2k× 2k extended matrix E as shown in Figure 4.4, where

(k+1)2 shares are unavailable. If c players randomly sample 0 < s≤ (2k)2 shares

from E, the probability that more than ĉ players sample at least one unavailable

share is:

pc(Y > ĉ) = 1−
ĉ

∑
j=1

(
c
j

)(
p1(X ≥ 1)

) j(1− p1(X ≥ 1)
)c− j (4.7)

where p1(X ≥ 1) is given by Equation (4.1).
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Proof. We start by computing the probability that exactly ĉ players sample at least

one unavailable share; this probability is given by the binomial probability mass

function:

ps,ĉ(Y = ĉ) =
(

c
ĉ

)(
p1(X ≥ 1)

)ĉ(1− p1(X ≥ 1)
)c−ĉ (4.8)

where p1(X ≥ 1) is given by Equation (4.1). Equation (4.8) describes the proba-

bility that ĉ players succeed to sample at least one unavailable share. This can be

viewed as the probability of observing ĉ successes each happening with probabil-

ity p1, and (c− ĉ) failures each happening with probability 1− p1; there are
(c

ĉ

)
possible ways of sequencing these successes and failures.

Equation (4.8) easily generalises to the binomial cumulative distribution func-

tion expressed in Equation (4.9)—the probability of observing at most ĉ successes

is the sum of the probabilities of observing j successes for j = 1, . . . , ĉ.

pc(Y ≤ ĉ) =
ĉ

∑
j=1

(
c
j

)(
p1(X ≥ 1)

) j(1− p1(X ≥ 1)
)c− j (4.9)

Therefore the probability of observing more than ĉ successes is given by Equa-

tion (4.10) below, which expands as Equation (4.7).

pc(Y > ĉ) = 1− pc(Y ≤ ĉ) (4.10)

Figure 4.8 shows the variation of the number of light clients ĉ for which

pc(Y > ĉ) ≥ 0.99 with the sampling size s. The total number of clients is fixed

to c = 1000, and the matrix sizes are k = 64,128,256; Equation (4.7) is however

almost independent of k, as indicated by Equation (4.6). This figure can be used to

determine the number of light clients that will detect incomplete matrices with high

probability (pc(Y > ĉ)≥ 0.99), and that there is little gain in increasing s over 15.

Recovery and Selective Share Disclosure

Corollary 1 presents the probability that light clients collectively samples enough

shares to recover every share of the 2k×2k matrix.

If the light clients collectively sample all but (k+1)2 distinct shares, the block

producer cannot release any more shares without allowing the network to recover



4.5. Data Availability Proofs 117

5 10 15 20 25
200

400

600

800

1000

k=64
k=128
k=256

Figure 4.8: Plot of Equation (4.7)—variation of the number of light clients ĉ for

which pc(Y > ĉ) ≥ 0.99 with the sampling size s. The total number of clients

is fixed to c = 1000, and the matrix sizes are k = 64,128,256; Equation (4.7) is

however almost independent of k, as indicated by Equation (4.6).

the whole matrix; it follows from Theorem 7 that light clients need to collect at

least:

γ = (2k)2− (k+1)2 +1 = k(3k−2)

distinct shares (randomly chosen) to have the certainty to be able to recover the

2k× 2k matrix. We are therefore interested in the probability that light clients—

each sampling s distinct shares—collectively samples at least γ distinct shares; this

probability is expressed by Corollary 1.

Theorem 10. (Euler [61]) The probability that the number of distinct elements

sampled from a set of n elements, after c drawings with replacement of s distinct

elements each, is at least all but λ elements3:

pe(Z ≥ n−λ ) = 1−
∞

∑
i=1

(−1)i
(

λ + i−1
λ

)(
n

λ + i

)(
Wi
)c (4.11)

where Wi =

(
n−λ − i

s

)/(
n
s

)
Corollary 1. Given a 2k× 2k extended matrix E as shown in Figure 4.4, where

each of c players randomly samples s distinct shares from E. The probability that

the players collectively sample at least γ = k(3k−2) distinct shares is pe(Z ≥ γ)

3This problem is also known as the coupon collector’s problem with group drawing [65].
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Figure 4.9: Plot of Corollary 1—variation of the probability pe(Z ≥ γ) with the

number of clients (c) for different values of s and k.

Proof. Corollary 1 can be easily proven by substituting λ = n− γ and n = (2k)2

into Theorem 10.

Figure 4.9 shows how pe(Z ≥ γ) varies for different numbers of light clients,

for matrix sizes k = 16 and k = 32. Contrarily to Equation (4.7), Figure 4.9 shows

that pe(Z ≥ γ) depends on the matrix size k. However, we can see that there is a

small range in which pe(Z ≥ γ) rises very quickly to 1.

Table 4.1 shows the minimum number of light clients (c) required to achieve

pe(Z ≥ γ)> 0.99 for various values of k and s. As expected, a high number of sam-

ples s per clients reduces the number of clients needed to sample all the necessary

shares. However, increasing k increases the total number of shares to sample, and

thus increases the number of clients needed to sample all the necessary shares.

4.5.9 Properties Security Analysis

Standard Model

Corollary 2. Under the standard model, a block producer cannot cause soundness

(Definition 1) and agreement (Definition 2) to fail for more than c honest clients

with a probability lower than p1(X ≥ 1) per client, where c is determined by the

probability distribution pe(Z ≥ γ).

Proof. Corollary 1 shows that with probability pe(Z ≥ γ), c honest clients will sam-
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pe(Z ≥ γ) s = 5 s = 10 s = 20 s = 50

k = 16 277 138 69 28

k = 32 1,122 561 280 112

k = 64 4,516 2,258 1,129 451

k = 128 ∼18,000 ∼9,000 ∼4,500 1,811

Table 4.1: Minimum number of light clients (c) required to achieve pe(Z ≥ γ) >

0.99 for various values of k and s. The approximate values have been approached

numerically as evaluating Theorem 10 can be extremely resource-intensive for large

values of k.

ple enough shares to collectively recover the full block. Honest clients will gossip

these shares to full nodes which then gossip them to each other, and within k× δ

at least one honest full node will then recover the full block data, thus satisfying

soundness with a probability of 1− p1(X ≥ 1) per client (the probability of the

block producer not passing the client’s random sampling challenge when all the

block data is available).

If the data is available and no fraud proofs of incorrectly generated extended

data was received by the client, then no other client will receive a fraud proof either,

due to our assumption that there is at least one honest full node in the network and

honest light clients are not under an eclipse attack, thus satisfying agreement with a

probability of 1− p1(X ≥ 1) per client.

Due to the selective share disclosure attack described in Section 4.5.6, this

means that the block producer can violate soundness and agreement of the first c

clients that make sample requests, as the block producer can stop releasing shares

just before it is about to release the final shares to allow the block to be recoverable.
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Enhanced Model

Corollary 3. Under the enhanced model, a block producer cannot cause soundness

(Definition 1) and agreement (Definition 2) to fail with a probability lower than

px(X ≥ 1) per client,

px(X ≥ 1) =
d

∑
i=1

(s
i

)(s(c−1)
d−i

)(c·s
d

) (4.12)

where c is the number of clients and d is the number of requests that the block

producer must deny to prevent full nodes from recovering the data.

Proof. The proof of Corollary 3 starts as the proof of Corollary 2; honest light

clients collectively sample enough shares to recover the full block data by gossip-

ing these shares to full nodes; soundness is satisfied with probability 1− p1(X ≥ 1)

per client. None of the light clients receive fraud proofs if the full data is available

and no valid fraud proofs are sent over the network, and all light clients eventu-

ally receive a valid fraud proof if one is sent, satisfying agreement with the same

probability.

However, the enhanced model assumes that all sample requests come through

a perfect mix network (i.e., requests are unlinkable between each other), and de-

feats the selective shares disclosure attack presented in Section 4.5.6. The enhanced

model removes the notion of ‘first’ clients described in Corollary 2 as block produc-

ers cannot distinguish which requests comes from which client (since requests are

unlinkable). Furthermore, if block producers randomly deny some requests, light

clients would uniformly see some of their sample requests denied, and each light

client would therefore consider the block invalid with equal probability.

Particularly, if c light clients each sample 0< s≤ (2k)2 shares, block producers

observe a total of (c · s) indistinguishable requests. Let us assume that a malicious

block producer must deny at least d request to prevent full nodes from recovering

the block data. The probability that a light client observes at least one of its requests

denied (and thus rejects the block) is given by px(X ≥ 1) in Equation (4.12). The

numerator of Equation (4.12) computes the number of ways of picking i of the

denied requests among the s requests sent by the light client (i.e.,
(s

i

)
), multiplied by

the number of ways to pick the remaining d− i requests among the set of requests
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sent by other light clients: c · s− s = s(c− 1) (i.e.,
(s(c−1)

d−i

)
). The denominator

computes the total number of ways to pick any d requests out of the total number of

requests (i.e.,
(c·s

d

)
). The probability that at least one of the denied requests comes

from a particular client is the sum of the probabilities for i = 1, . . . ,d.

Like Equation (4.1), Equation (4.12) rapidly grows and shows that light clients

reject the block if invalid (for appropriate values of d). The value of d can be ap-

proximated using Corollary 1, and depends on s and c. To provide a quick intuition,

if we assume that the light clients collectively sample at least once every share of the

block, a malicious block producer must deny at least (k+1)2 requests on different

shares to prevent full nodes from recovering the block data; since multiple requests

can sample the same shares, d ≥ (k+1)2.

4.6 Performance and Implementation
We implemented the data availability proof scheme described in Section 4.5 and

a prototype of the state transition fraud proof scheme described in Section 4.4 in

approximately 2.5k lines of Go code and released the code as a series of free and

open-source libraries.4

Our Sparse Merkle tree implementation makes use of optimisation 2 as de-

scribed in Section 2.1.2, thus the number of hash operations required per update is

O(s) where s is the number of non-default values in the tree.

For our Reed-Solomon coding implementation, we employ a coding algorithm

based on Fast Fourier Transforms (FFT) [97, 127], and therefore the computational

complexity for each encoding and decoding operation is O(k log(k)) where k is the

number of shares in the code.

We first evaluate the space and time complexity of the scheme in Section 4.6.1

and then present the performance benchmarks of our implementation in Sec-

42D Reed-Solomon Merkle tree data availability scheme: https://github.com/

lazyledger/rsmt2d

State transition fraud proofs prototype: https://github.com/musalbas/fraudproofs-

prototype

Sparse Merkle tree library: https://github.com/lazyledger/smt

https://github.com/lazyledger/rsmt2d
https://github.com/lazyledger/rsmt2d
https://github.com/musalbas/fraudproofs-prototype
https://github.com/musalbas/fraudproofs-prototype
https://github.com/lazyledger/smt
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Object Worst case space complexity

State fraud proof O(p+ p log(d)+w log(s)+w)

Availability fraud proof O(d0.5 +d0.5 log(d0.5))

Single sample response O(shareSize+ log(d))

Block header with axis roots O(d0.5)

Block header excl. axis roots O(1)

Table 4.2: Worst case space complexity for various objects. p represents the number

of transactions in a period, w represents the number of state witnesses for those

transactions, d is short for dataLength, and s is the number of key-value pairs in the

state tree.

tion 4.6.2. We perform the measurements on a laptop with an Intel Core i5 1.3GHz

processor and 16GB of RAM, and use SHA-256 for hashing.

4.6.1 Space and Time Complexity

Table 4.2 shows the space complexity for different objects. We observe that the size

of the state transition fraud proofs only grows logarithmically with the size of the

block and state, whereas the availability fraud proofs (as well as block headers with

the axis roots) grows at least in proportion to the square root of the size of the block,

due to our two-dimensional erasure coding.

Table 4.3 shows the time complexity for various actions. For generating and

verifying fraud proofs, the primary cost is processing the state transitions, as well

as generating and verifying the Merkle proofs for transactions and witnesses. How-

ever, verifying fraud proofs is less expensive, as only the state transitions for the

(few) transactions in a single period need to be processed, rather than the whole

block. Similarly, verifying a data availability fraud proof is cheaper than generat-

ing one, because only a single coding operation with O(d0.5 log(d0.5)) complexity

for one row or column needs to performed, rather than for every row and column

requiring O(d log(d0.5)) complexity.



4.6. Performance and Implementation 123

Action Worst case time complexity

[G] State fraud proof O(b+ p log(d)+w log(s))

[V] State fraud proof O(p+ p log(d)+w)

[G] Availability fraud proof O(d log(d0.5)+d0.5 log(d0.5))

[V] Availability fraud proof O(d0.5 log(d0.5))

[G] Single sample response O(log(d0.5))

[V] Single sample response O(log(d0.5))

Table 4.3: Worst case time complexity for various actions, where [G] means gen-

erate and [V] means verify. p represents the number of transactions in a period, b

represents the number of transactions in the block, w represents the number of state

witnesses for those transactions, d is short for dataLength, and s is the number of

key-value pairs in the state tree. For generating and verifying state fraud proofs,

we assume that each transaction takes the same amount of time to process. For

generating fraud proofs, we also include the cost of verifying the block itself.

4.6.2 Benchmarks

Table 4.4 shows the size of various objects when transmitted over the network. We

observe that the size of the block only causes a marginal impact on the size of

the state fraud proof (a logarithmic increase, as discussed in Section 4.6.1); this is

because the number of transactions in a period remains static, but the size of the

Merkle proof for each transaction increases slightly. Block size impacts the size

of availability fraud proofs and the axis roots more, as the size of a single row or

column is proportional to the square root of the size of the block.

Table 4.5 shows the computation time for generating and verifying various ob-

jects; the benchmark for state fraud proof generation includes time spent verifying

the block. As expected and discussed, verifying state transition fraud proofs and

availability fraud proofs is significantly quicker than generating them.

Comparison with Bitcoin. We provide a comparison of the bandwidth (space

complexity) costs to sync the chain if Bitcoin adopts light clients with data avail-



4.7. Conclusion 124

Object (10 tx/period) Size (∼0.25MB block) Size (∼1MB block)

State fraud proof 14,090b 14,410b

Availability fraud proof 12,320b 26,688b

Single sample response 320b 368b

Block header with. axis roots 2,176b 4,224b

Block header excl. axis roots 128b 128b

Table 4.4: Illustrative sizes for objects for ∼0.25MB and ∼1MB blocks, assuming

that a period consists of 10 transactions, the average transaction size is 225 bytes,

and that conservatively there are 230 non-default nodes in the state tree.

ability proofs support, using historical block data. As of June 2020, 268GB of data

needs to be downloaded to bootstrap a full node, and 48MB of data needs to be

downloaded to bootstrap a light client. In order to bootstrap a fraud proof enabled

light client that verifies data availability proofs, the client would have to download

6GB of data, assuming 256-byte shares and 15 samples per block. This is 2.2% of

the data that a full node needs to download.

4.7 Conclusion
We presented, implemented and evaluated a complete fraud and data availability

proof scheme, which enables light clients to have security guarantees almost at the

level of a full node, with the added assumptions that there is at least one honest full

node in the network that distributes fraud proofs within a maximum network delay,

and that there is a minimum number of light clients in the network to collectively

recover blocks.
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Action Time (∼0.25MB block) Time (∼1MB block)

[G] State fraud proof 41.22 ms 182.80 ms

[V] State fraud proof 0.03 ms 0.03 ms

[G] Availability fraud proof 4.91ms 19.18ms

[V] Availability fraud proof 0.05ms 0.08ms

[G] Single sample response < 0.00001ms < 0.00001ms

[V] Single sample response < 0.00001ms < 0.00001ms

Table 4.5: Computation time (mean over ten repeats) for various actions, where

[G] means generate and [V] means verify. We assume that a period consists of 10

transactions, the average transaction size is 225 bytes, and each transaction writes

to one key in the state tree.



Chapter 5

LazyLedger: A Distributed Data

Availability Ledger With Client-Side

Smart Contracts

Mathematics is being lazy. Mathematics is letting the principles do the

work for you so that you do not have to do the work for yourself.

George Pólya

5.1 Introduction
So far, blockchain-based distributed ledger platforms such as Bitcoin [109] and

Ethereum [36] have adopted similar consensus design paradigms, where the valid-

ity of the blocks proposed by block producers is determined by (i) whether it is

the block producer’s turn to propose a block (state agreement) and (ii) whether the

transactions in the block are valid according to some state machine (state valid-

ity). Traditional consensus protocols such as Practical Byzantine Fault Tolerance

[43] have also taken a similar approach, where consensus nodes (replicas) process

transactions according to a state machine.

The scalability issues that have plagued decentralised blockchains [49] can be

attributed to the fact that in order to run a node that validates the blockchain, the

node must download, process and validate every transaction included in the chain.

As a result, various scalability efforts have emerged including on-chain scaling via
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sharding (Chapter 3), which aims to split the state of the blockchain into multiple

shards so that transactions can be processed by different consensus groups in par-

allel. On the other hand, off-chain scaling via state channels [123, 108] takes the

approach of moving transactions off-chain and using the blockchain as a settlement

layer.

However, it is also worth exploring alternative blockchain design paradigms

that may be suitable for different types of applications, where nodes that validate

the blockchain do not need to validate the contents of the blocks. Instead, the end-

users of applications that store information on the blockchain can be concerned with

the validation of such contents. This would remove the bottleneck where nodes

need to validate everyone else’s transactions, and reducing the problem of validat-

ing the blockchain to simply verifying that the contents of the block are available

(the data availability problem), so that end-users can meaningfully access the infor-

mation needed to apply state transitions on their applications. In such a paradigm,

the blockchain is used solely for ordering and making available messages, rather

than executing and verifying the state machine transitions of transactions. Because

messages for applications are executed by end-users off-chain, the logic of these

applications does not need to be defined on-chain, and thus application logic can be

written in any programming language or environment, and changing the logic does

not require a hard-fork of the chain.

A result of reducing blockchain validation to the data availability problem is

that one can fully achieve consensus on new messages without downloading the

entire set of messages, using probabilistic data availability verification techniques

(Section 4.5), as consensus participants do not need to process the contents of mes-

sages.

Philosophically, LazyLedger can be thought of as a system of ‘virtual’

sidechains [19] that live on the same chain, in the sense that transactions associ-

ated with each application only need to be processed by users of those applications,

similar to the fact that only users of a specific sidechain need to process transactions

of that sidechain. However, because all applications in LazyLedger share the same
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chain, the availability of the data of all their transactions are equally and uniformly

guaranteed by the same consensus group, unlike in traditional sidechains where

each sidechain may have a different (smaller) consensus group.

In this chapter, we make the following contributions:

• We design a blockchain, LazyLedger, where consensus and transaction valid-

ity is decoupled, and compare two alternative block validity rules which just

ensure that block data is available. One is a simple rule where nodes simply

download the blocks themselves, and the other uses data availability proofs

as described in Section 4.5, which is probabilistic but more efficient as nodes

do not need to download entire blocks.

• We build an application-layer on top of our proposed blockchain, where end-

user clients can efficiently query the network for data relating only to their

applications, and only need to execute transactions related to their applica-

tions.

• We implement and evaluate several example LazyLedger applications; in-

cluding a currency, a name registrar and a dummy application for testing pur-

poses.

5.2 Related Work

5.2.1 Mastercoin

Mastercoin (now OmniLayer) [151] is a blockchain application system predating

Ethereum [36], which uses Bitcoin as a protocol layer for posting messages. This

is similar to LazyLedger in the sense that the blockchain can be used to post ar-

bitrary messages that are interpreted by clients, however in Mastercoin all nodes

must download all Mastercoin messages as the Bitcoin base layer does not support

efficient data availability schemes using probabilistic data availability proofs.

Additionally, Mastercoin has a set of hardcoded applications, and does not

support arbitrary applications. In contrast, LazyLedger examines what an ideal new
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blockchain would look like for use as a base layer in a system where the base layer

is only for posting messages and data availability.

5.2.2 Separating Agreement from Execution for BFT Services

Yin et al. [155] have proposed an architecture for BFT state machine replication (in

a non-blockchain setting) where message ordering is separated from execution—a

key idea of LazyLedger. In their system, the agreement layer is responsible for

receiving and ordering client requests and sending them in order to the execution

layer. The execution layer then executes the request, sending the reply back to the

agreement layer in the form of a ‘reply certificate’, which relays it to the client that

invoked the operation.

This reduces state machine replication costs as only 2 f + 1 execution repli-

cas are needed to tolerate f faults (a simple majority), whereas 3 f + 1 agreement

replicas are needed. This is in contrast to BFT architectures where agreement and

execution are combined, where 3 f +1 replicas are needed.

LazyLedger differs from this architecture in several ways. Firstly, as

LazyLedger operates in a decentralised setting, public verifiability of transactions

is important. Therefore the agreement layer in LazyLedger (the base chain) ought

to be responsible not only for ordering but data availability, and thus it is also a data

availability layer. This is because the availability of block data need to be guar-

anteed in order for relevant transactions to be validated and processed by public

nodes.

Secondly, in LazyLedger there is no explicit notion of execution replicas

that communicate with the agreement layer, and abstracts the separation further.

LazyLedger applications (which can be thought of as execution layers) post mes-

sages directly on the LazyLedger base chain, which are interpreted locally by users

of that application who watch the LazyLedger chain for messages for their appli-

cation. Therefore the LazyLedger base chain does not need to be aware of, or

understand, any applications building on top of it, and ‘reply certificates’ are not

generated.
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5.2.3 Hyperledger

Hyperledger Fabric [42, 140] is a permissioned blockchain project that also adopts

an architecture for separating agreement from execution. There is an ‘ordering ser-

vice’ which orders transactions received by ‘endorsing peers’, which execute and

endorse transactions received by clients. In comparison to the architecture pro-

posed by Yin et al. [155], in Hyperledger Fabric it is transactions endorsed by the

execution layer that are ordered, rather than client requests that are to be sent to the

execution layer.

Compared to LazyLedger, this architecture does not fully decouple agreement

from execution, as requiring the ordering service to check that every transaction has

the endorsement of endorsing peers, requires an execution layer that performs an

operation on each transaction. A key design goal of LazyLedger is to enable nodes

validating the base chain to be able to validate blocks without needing to read the

contents of, or perform operations on all transactions in blocks, thus truly separating

agreement from execution.

5.2.4 Sidechains and Optimistic Rollups

Sidechains [19, 122, 1] are blockchains that can inherit and perform operations on

the state or assets of some parent ‘main’ chain. They have been proposed as a layer

two scalability solution, as transactions are processed off the main chain.

In traditional sidechain designs [19, 122], a sidechain has its own consensus

group that produces sidechain blocks. Users can transfer state or assets to the

sidechain, perform transactions on the sidechain, and then transfer the state or as-

sets back to the main chain. This is effectively a two-way asset bridge between the

main chain and the sidechain.

In the Plasma sidechain design [122], a user can enter a sidechain by sending

assets to a smart contract. The validators in the sidechain follow the transactions

in the main chain, and can then observe and recognise that new assets have entered

the sidechain. The user then performs transactions within the sidechain. To exit

the sidechain, the user can present a light client Merkle proof to the smart contract

on the main chain showing proof that they own assets on the sidechain, using the
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sidechain’s state root (see Section 2.2.5). The smart contract then releases the as-

sets back to the user on the main chain. The pegged Bitcoin sidechain design also

follows a similar architecture using SPV proofs [19].

In this sidechain architecture, the user trusts the consensus in the sidechain

to only produce blocks that contain valid state. Malicious consensus nodes in a

sidechain can produce blocks with invalid state that steals assets in the sidechain by

incorrectly changing their ownership. The malicious party can then submit Merkle

proofs to the main chain smart contract to show that they own the assets, and thus

steal the assets.

Plasma attempts to solve this by allowing users to submit fraud proofs to the

main chain smart contract in case the sidechain produces blocks with invalid state.

However as discussed in Chapter 4, the generation of fraud proofs requires the

sidechain block data to be available. In order to deal with cases where sidechain

block data is withheld, Plasma proposes a ‘mass-exit’ protocol where users can col-

lectively force the entire state of the sidechain to be posted and processed on the

main chain. This has several drawbacks, including the fact that it is not practical

to congest the main chain by posting the state of an entire sidechain within a short

period of time, and users need to constantly watch the chain in case they need to

participate in a mass-exit [125].

Optimistic rollups [1, 38] is a sidechain design that works around the data

availability problem in Plasma, by simply requiring sidechain blocks to be posted

on the main chain. Assuming that sidechain clients validate the data availability

of the main chain blocks, then the data of sidechain blocks is guaranteed to be

available, and thus fraud proofs can be generated. This avoids the need for a mass-

exit protocol.

In this architecture, the sidechain has on-chain (main chain) data availability

but off-chain execution, as the consensus nodes and validators on the main chain

do not execute any of the transactions in the sidechain, but simply guarantee their

availability. A benefit of this scheme is that as blocks are posted on the main

chain, the main chain is responsible for ordering and data availability of sidechain
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blocks. Therefore the sidechain inherits the security of the consensus of the main

chain. This means that an optimistic rollup chain can be run by a single block pro-

ducer known as an ‘aggregator’ (which collects transactions and ’rolls’ them up into

blocks), as this block producer does not need to be trusted neither for ordering or

state validity. If the aggregator produces rolls up blocks with invalid state, then a

fraud proof will be generated so that blocks can be rejected by the sidechain users

or the on-chain smart contract in the case of a two-way bridge. Additionally, if the

aggregator loses liveness, then a new aggregator can take over via an aggregator

selection mechanism [1].

LazyLedger and optimistic rollup sidechains are complementary, as optimistic

rollups can be implemented as a LazyLedger applications that uses LazyLedger as

an efficient data availability layer.

5.3 Model

5.3.1 Threat Model and Nodes

We consider the following types of nodes in LazyLedger:

• Consensus nodes. These are nodes which participate in the consensus set, to

decide which blocks should be added to the chain.

• Storage nodes. These are nodes which store a copy of all of the data in the

blockchain and its blocks.

• Client nodes. These are effectively the end-users of the blockchain system.

They participate in applications or use cases that use the blockchain, and re-

ceive transaction data or messages from storage nodes relevant to their appli-

cations.

LazyLedger makes use of data availability proofs as described in Section 4.5,

and therefore inherits the network and threat model in Section 4.3.3. We will re-

summarise the model here.

We assume a synchronous gossiping network [34] amongst these nodes. We

assume that there is a maximum network delay δ so that if an honest node can
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receive a message from the network at time T , then any other honest node can also

do so at time T ′ ≤ T +δ .

In LazyLedger all node types may have some connections with any other node

type and thus the topology of the network is non-hierarchical. However, client nodes

may wish to ensure that they are connected to at least one storage node if they wish

to utilise their services. We assume that the graph of honest nodes is well connected,

as this is necessary to achieve a synchronous gossiping network.

For data availability proofs, we assume a minimum number of honest nodes

(of any type) in the network to allow for a block to be reconstructed, as each node

downloads a small chunk of every block. The specific number depends on the pa-

rameters of the system, and is analysed in Section 4.5.8. In the LazyLedger setup,

as there is no notion of a ‘fully-validating node’ for clients to gossip shares to, block

shares are instead gossiped to storage nodes which are responsible for reconstruct-

ing blocks if block data is missing.

5.3.2 Block Model

Similar to Chapter 4, we assume a blockchain data structure that at minimum con-

sists of a hash-based chain of block headers H = (h0,h1, ...). Each block header hi

contains the root mRooti of a Merkle tree of a list of messages Mi = (m0
i ,m

1
i , ...),

such that given a function root(M) that returns the Merkle root of a list of mes-

sages M, then root(Mi) = mRooti. This is not an ordinary Merkle tree, but an

ordered Merkle tree we refer to as a ‘namespaced’ Merkle tree which we describe

in Section 5.5.3. A block header hi is considered to be valid if given some boolean

function

blockValid(h) ∈ {true, false}

then blockValid(hi) must return true.

If a block is valid, then it has the potential to be included in the blockchain. We

assume that the blockchain has some consensus rules to decide which valid blocks

have consensus to be included in the blockchain, and resolve forks. A block header
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hi is considered to have consensus if given some boolean function

inChain(h,{H0,H1, ...}) ∈ {true, false}

then inChain(hi,{H0,H1, ...}) must return true, where each H j is a distinct chain of

block headers and {H0,H1, ...} is the set of distinct chains observed (there may be

multiple in the event of a fork).

Note that computing inChain on hi can only return true if and only if

blockValid(hi) returns true, regardless of the forks to pick from. Apart from this

constraint, the specific consensus rules used by inChain are arbitrary and are out of

scope for the design of LazyLedger. For example, inChain may use proof-of-work

or proof-of-stake with the longest chain rule [109, 20].

5.3.3 Goals

With this threat model in mind, LazyLedger has the following goals:

In the text below, ‘messages relevant to the application’ means messages that

are necessary to compute the state of an application, and is discussed in more depth

in Section 5.5.2.

1. Availability-only block validity. The result of blockValid(hi) should be true

if the data behind mRooti is available to the network. This consequently

means that consensus nodes should not need to execute or verify messages in

blocks.

2. Application message retrieval partitioning. Client nodes must be able to

download all of the messages relevant to the applications they use from stor-

age nodes, without needing to downloading any messages for other applica-

tions.

3. Application message retrieval completeness. When client nodes download

messages relevant to the applications they use from storage nodes, they must

be able to verify that the messages they received are the complete set of mes-

sages relevant to their applications, for specific blocks, and that there are no

omitted messages.
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4. Application state sovereignty. Client nodes must be able to execute all of

the messages relevant to the applications and compute the state for their ap-

plications, without needing to read the state of other applications, unless other

specific applications are explicitly declared as dependencies.

5.4 Block Validity Rule Design
The key idea of LazyLedger is that the result of blockValid(hi) should only depend

on whether the data required to compute mRooti is available to the network or not,

rather on whether any of the messages in the block correspond to transactions that

satisfy the rules of some state machine (Goal 1 in Section 6.3.3). This way, we

can decouple transaction validity rules from the consensus rules, as the result of

inChain does not depend on the contents of the messages in the block Mi, when

blockValid(hi) is computed (recall inChain on hi can only return true if and only if

blockValid(hi) returns true).

We consider that checking the availability of the data necessary to recompute

mRooti is the bare minimum necessary requirement to have a useful functioning

blockchain. This is because, as we shall see in Section 5.5, clients need to know the

transactions that have occurred in the blockchain in order to know the state of ap-

plications on the blockchain and thus do anything useful. If the data behind a block

is unavailable, clients would not be able to compute the state of their applications.

We compare two possible validity rules with different trade-offs. Section 5.4.1

describes a simple validity rule that satisfies Definition 1 and Definition 2 (defined

in Section 4.5) with 100% probability, for an O(n) bandwidth cost where n is the

size of the block, because the node must download the entire block data to confirm

that it is available. Section 5.4.2 is the probabilistic validity rule that uses data avail-

ability proofs (described in Section 4.5) that satisfies Definition 1 and Definition 2

with a high but less than 100% probability, but with a O(
√

n+ log(
√

n)) bandwidth

cost because the block’s row and column Merkle roots and only a static number of

samples and their logarithmically-sized Merkle proofs from the block need to be

downloaded. This bandwidth cost is analysed further in Section 5.6.
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5.4.1 Simplistic Validity Rule

In the Simplistic Validity Rule, blockValid(hi) returns true if and only if upon re-

ceiving a block header hi from the network, the node is also able to download Mi

from the network and authenticate that the Merkle root of the downloaded Mi is

mRooti, by checking that root(Mi) =mRooti.

Upon blockValid(hi) returning true, the node must distribute hi and Mi to the

nodes it is connected to, should the nodes request the data if they do not have it.

The node should thus store Mi for at least δ , the maximum network delay.

Theorem 11. The Simplistic Validity Rule satisfies Definition 1 (Soundness).

Proof. If blockValid(hi) returns true on an honest node, then the node will distribute

Mi to the nodes it is connected to, of at least one of which is honest, and will also

run blockValid(hi) and distribute Mi, and so on. Thus a storage node will receive

Mi within the maximum network delay δ , which there exists at least one of which

is honest.

Theorem 12. The Simplistic Validity Rule satisfies Definition 2 (Agreement).

Proof. If blockValid(hi) returns true on an honest node, then the node will distribute

Mi to the nodes it is connected to, of at least one of which is honest, and will also

run blockValid(hi) and distribute Mi, and so on. Thus all honest nodes will receive

Mi within the maximum network delay δ , and blockValid(hi) will thus return true,

causing them to accept hi as an available block.

5.4.2 Probabilistic Validity Rule

For the Probabilistic Validity Rule, blockValid(hi) utilises the probabilistic data

availability scheme based on random sampling the erasure coded version of the

block data Mi described in Section 4.5. Unlike the Simplistic Validity Rule, this

scheme is probabilistic in satisfying these definitions, however it is more efficient

because only a part of the block data needs to be downloaded to obtain high proba-

bility guarantees that the data is available; see Section 4.5.8 for analysis.

The bandwidth cost of executing blockValid(hi) is O(
√

n+ log(
√

n)) where

n is the size of the block, because each node needs to download 2
√

n row and
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column Merkle roots for the block’s 2D erasure coded data, and a fixed number of

share samples and their corrosponding Merkle proofs authenticating them to one of

the block’s row or column roots (which are logarithmic in size). Further analysis

specific to LazyLedger will be provided in Section 5.6.

As mentioned in Section 4.5.6, this scheme only works if there is a sufficient

minimum number of nodes in the network making a sufficient number of sample

requests so that the network collectively samples enough shares to be able to recon-

struct the block, thus the maximum block size and number of samples each node

makes should be set to reasonable values such that this condition is met.

Using the Probabilistic Validity Rule, in order to securely scale the block size

of the chain, one can increase the number of nodes in the network, in order to ensure

that the minimum number of nodes assumption requires by data availability proofs

holds true. See Table 4.1 in Chapter 4 for example parameterisation and numbers

for the minimum nodes that are required for certain block sizes.

5.5 Application-Layer Design

5.5.1 Application Model

Recall in Section 5.3 that LazyLedger has client nodes which read and write mes-

sages in blocks relevant to their application, and that the contents of blocks have

no validity rules, and thus any arbitrary message can be included in a block.

LazyLedger applications are akin to smart contracts, with the primary difference

being that they are executed by end-user clients rather than consensus participants.

Thus, application logic is defined and agreed upon entirely off-chain by clients of

that application, and may therefore be written in any programming language or en-

vironment.

A client can submit a message to be recorded on the blockchain that specifies

a transaction for a specific application, which will then be read and parsed by other

clients of that applications, which may then modify their copy of the state of that

application.

Applications are identified by their own ‘namespace’, and well-formed mes-



5.5. Application-Layer Design 138

node

storage node

node

node

storage node

node

client node

query(hash(hi), nid)
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Figure 5.1: Overview of interaction between client nodes and storage nodes.

sages associated with a specific application can be parsed to determine their appli-

cation namespace. We assume a function ns(m) that takes as input a message m and

returns its namespace ID. Therefore if a client is a user of an application with ID

nid, it is interested in reading all messages m in the ledger such that ns(m) = nid, in

order to determine the state of its application.

Since the consensus of the blockchain does not require checking the validity

of any transactions included in the blockchain, the ledger may include transactions

that are considered invalid according to the logic of certain applications. Therefore

we define a state transition function that LazyLedger applications should use that

does not return an error. Given an application with ID nid:

transitionnid(state, tx) = state′

transitionnid(state, tx) cannot return an error because if an adversarial actor

includes an invalid tx in a block, then the state of the application would end up in a

permanently erroneous state. Therefore if tx is considered erroneous by the logic of

the transition function, it should simply return the previous state, state, as the new



5.5. Application-Layer Design 139

state.

Clients who use an application with ID nid should agree with each other on

the logic or code of transitionnid. If one client decides to use different logic for

transitionnid, then that client would reach a different final state for that application

than everyone else, which in effect means that they would be using a different ‘hard-

fork’ of the application, but it would not effect the state of anyone else.

Interestingly, this means that it is possible for users of an application to de-

cide to change the logic of that application without requiring a hard-fork of the

LazyLedger blockchain that would effect other applications. Instead, they would

only be hard-forking their application. However if immutability of the logic is im-

portant, the creator of the application may decide for example that the namespace

identifier of the application should be the cryptographic hash of the application’s

logic, as a convention.

5.5.2 Cross-Application Calls

Some applications may want to read or write to the state of other applications (i.e.,

a cross-contract call) on LazyLedger. As LazyLedger does not have an on-chain

execution environment, we do not enforce a particular cross-application call mech-

anism, and so this is out-of-scope and left to the developer. However, we discuss

some of the options here. We consider two scenarios in which an application may

want to do this: either as a read or a write.

Recall in Section 6.3.3 that Goal 4 of LazyLedger is application state

sovereignty, which means that users of an application should not have to exe-

cute messages from other irrelevant applications. An application can specify other

applications as dependencies in its logic, where knowledge of the state of the de-

pendency applications is necessary in order to compute the state of the application.

An application B is thus defined as ‘relevant’ to users of application A if B is a

dependency of A, however if A is not a dependency of B, then A is not relevant to

the users of B. In order to preserve the notion of state sovereignty, this means third

party applications cannot force other applications to take a dependency on the state

of third party applications.
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Reads (One-Way Dependency)

In the case of a read, an application may have a function that can only be executed if

another application that it depends on is in a certain state. In such a case, in order to

validate that a pre-condition is met, clients of an application can also download and

verify the state of the application’s dependency applications; however the clients of

the dependency application do not need to download the state of the applications

which depend on it. Therefore application state sovereignty is preserved.

For example, consider a name registrar application where clients can register

names only if they send money to a certain address in a different currency appli-

cation. The clients of the name registrar application would have to also become

clients of the currency application, in order to verify that when a name is registered,

there is a corresponding transaction that sends the funds to pay for the name to the

correct address.

In order to avoid the need for an application’s clients and dependants to have

to download and verify all the transactions of the application in order to read its

state, an application can adopt the optimistic rollup sidechain model (Section 5.2.4),

where the application has an ‘aggregator’ that periodically rolls the transactions up

into block headers that contain state roots that represent the state. Instead of clients

needing to download and verify all the transactions of an application in order to

perform a read operation, clients can operate as light clients and download the latest

state root and request inclusion proofs of state from nodes that have the full state.

Writes (Two-Way Dependency)

In the case of a write, an application A may want to modify the state of another

application B during a transaction. If we assume a model where smart contracts

cannot store their own secret state (as the blockchain is public) and thus own private

keys, this is only possible if application B is designed so that application A can be

a dependency of application B. This is because in order to execute the write, the

clients of application B would have to download and verify the state of application

A, to verify that it has the authority to execute the write (i.e., certain pre-conditions

are met), as the smart contract cannot own an account on B controlled by a private
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N6 = 0003, 09ac,
hash(N4|N5)

N4= 0003, 0003,
hash(N0|N1)

N5= 001f, 09ac,
hash(N2|N3)

N0 = 0003, 0003,
hash(M0)

N1 = 0003, 0003,
hash(M1)

N2 = 001f, 001f,
hash(M2)

N3 = 09ac, 09ac,
hash(M3)

M0=0003 f39a... M1=0003 a029... M2=001f 9013... M3=09ac 1fc8...

Figure 5.2: An example of a namespaced Merkle tree.

key. This therefore creates a two-way dependency, where both applications take a

dependency on each other.

If any application was allowed to execute a write in any application, then

it would mean that clients would have to download and verify other applica-

tions against their will, thus violating Goal 4 in Section 6.3.3 (application state

sovereignty). Thus applications that support writes from other applications must

explicitly be designed in a way that they allow other applications to add themselves

as a dependency. This can be done for example by allowing an application A to

post its state roots to application B, so that B can verify state inclusion proofs from

A. This is similar to the design of Plasma [122] and optimistic rollups [1], where

sidechains post their state roots to an Ethereum smart contract, so that Ethereum

main chain is able to read state from the sidechains via state inclusion proofs.

5.5.3 Storage Nodes and Namespaced Merkle Tree

In order to satisfy Goal 2 in Section 6.3.3 (application message retrieval partition-

ing) to allow client nodes to be able to retrieve all the messages relevant to the ap-

plication namespaces they are interested in without having to download and parse

the entire blockchain themselves (e.g., if they use the Probabilistic Validity Rule, or

simply assume that the consensus has a honest-majority that only accepts available
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blocks), they may query storage nodes for all of the messages in a particular appli-

cation namespace for particular blocks. The storage node can then return Merkle

proofs the relevant messages being included in the blocks.

In order to allow storage node to prove to clients that they have returned the

complete set of messages for a namespace included in a block’s Merkle tree of

messages (Goal 3 in Section 6.3.3, application message retrieval completeness), we

use a ‘namespaced‘ Merkle tree described below, which is an ordered Merkle tree

that uses a modified hash function so that each node in the tree includes the range

of namespaces of the messages in all of the descendants of each node. The leafs in

the tree are ordered by the namespace identifiers of the messages.

In a namespaced Merkle tree, each non-leaf node in the tree contains the lowest

and highest namespace identifiers found in all the leaf nodes that are descendants

of the non-leaf node, in addition to the hash of the concatenation of the children of

the node. This enables Merkle inclusion proofs to be created that prove to a verifier

that all the elements of the tree for a specific namespace have been included in a

Merkle inclusion proof.

This is inspired by the ‘flagged’ Merkle tree concept by Crosby and Wallach

[50], where each node in the tree has a flag that represents the attributes that its leafs

represents.

The Merkle tree can be implemented using standard unmodified Merkle tree

algorithms, but with a modified hash algorithm that depends on an existing hash

function, that prefixes hashes with namespace identifiers. Suppose hash(x) is a

cryptographically secure hash function such as SHA-256. We define a wrapper

function nsHash(x) that produces hashes prefixed with namespace identifiers. A

namespaced hash has the format minNs||maxNs||hash(x), where minNs is the lowest

namespace identifier found in all the children of the node that the hash represents,

and maxNs is the highest.

The value of minNs and maxNs in the output of nsHash(x) depends on if the

input x is a leaf or two concatenated tree nodes, as illustrated by Figure 5.2. If x is a

leaf, then minNs=maxNs= ns(x), as the hash contains only one leaf with a single
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namespace.

If x is two concatenated tree nodes, then x = left||right where left =

leftMinNs||leftMaxNs||hash(x) and right= rightMinNs||rightMaxNs||hash(x). Thus

in the output of nsHash(x), minNs = min(leftMinNs, rightMinNs) and maxNs =

max(leftMaxNs, rightMaxNs).

An adversarial consensus node may attempt to produce a block that contains a

Merkle tree with children that are not ordered correctly. To prevent this, we can set a

condition in nsHash such that there is no valid hash when leftMaxNs≥ rightMinNs,

and thus there would be no valid Merkle root for incorrectly ordered children.

Therefore blockValid(hi) would return false in the simplistic and probabilistic va-

lidity rules as there is no possible Mi where root(Mi) = mRooti. Additionally, re-

call that root(Mi) = mRooti and thus blockValid(hi) would also return false if the

Merkle root of the tree is constructed incorrectly, e.g., if the minimum and maxi-

mum namespaces for a node in the tree are incorrectly labelled.

Because only the hash function is being modified in the Merkle tree, the Merkle

tree is generated, and Merkle proofs are verified using standard algorithms. How-

ever, during Merkle proof verification, an extra step is necessary in order to verify

that the proofs cover all of the messages for a specific namespace.

A client node can send a query query(hash(hi),nid) to a storage node to request

all of the messages in block hi that have namespace ID nid. The storage node replies

with a list of Merkle proofs proofs= (proof0,proof1, ...,proofn) and an index index

that specifies the index in the tree in which proof0 is located. In addition to the

client node verifying all the proofs, the client node also verifies that the highest

namespace in all of the left siblings included in proof0 are smaller than nid, and the

lowest namespace in all of the right siblings included in proofn are larger than nid.

If a block has no messages associated with nid, then only one proof proof0 is

returned which corresponds to the child in the tree where the child to the left of it is

smaller than nid but the child to the right of it is larger than nid. The actual message

in the child does not need to be included in the proof as the purpose of the proof

would just be to show that there are no messages in the tree for nid.
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Theorem 13. Assuming the Merkle tree is correctly constructed, an incomplete set

of Merkle proofs proofs= (proof0,proof1, ...,proofn) for a request for the messages

of nid can always be detected.

Proof. Let us assume that an adversary returns an incomplete set of correct proofs

proofs = (proof0,proof1, ...,proofn) for nid, and index is the index in the tree that

proof0 is located at.

If an omitted message for nid has an index lower than index, then proof0 will

contain a left sibling node with a maximum namespace maxNs where maxNs> nid,

thus proving that there is an omitted message to the left of the proof set.

If an omitted message for nid has an index higher than index+ n, then proofn

will contain a right sibling node with a minimum namespace minNs where nid >

minNs, thus proving that there is an omitted message to the right of the proof set.

5.5.4 DoS-resistance

In the design of LazyLedger, consensus nodes are not responsible for validating

transactions, and thus an adversarial client may submit many invalid transactions

for namespaces, forcing clients to download many invalid transactions. In a permis-

sioned system, consensus nodes can choose which clients can submit transactions.

However in a permissionless system, there ought to be a way to prioritise transac-

tions and to make it expensive to conduct DoS attacks.

Transaction Fees

Consensus nodes can choose to prioritise transactions that include transaction fees.

However, any transaction fee system should ideally not require client nodes that read

messages from the application namespaces they are interested in, to also validate the

application that implements the currency that transaction fees are paid in.

To achieve this, when a message is submitted to consensus nodes for inclusion

in a block, the submitter of the message can also submit a ‘fee transaction’ for the

currency application, and also attach to the fee transaction the hash of the ‘child’

message that the fee is paying for, such that the fee in this special fee transaction
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can only be collected if the message behind the specified hash is included in the

same block, according to the logic of the currency application.

Client nodes of the original application whose message that the fee is paying

for do not need to validate the fee transactions in the currency application; only

client nodes of the currency application (e.g., the consensus nodes) do. Additionally,

the client nodes of the currency system application do not have to download the

child message itself to verify that it has been included in the block and thus the fee

has been earned, but simply verify a Merkle proof that the hash of the child message

is included in the same block.

We assume that fee transactions only specify one dependency message for sim-

plicity, but they may specify multiple dependency messages.

There does not need to be a native currency to the system, as consensus nodes

can choose to accept transaction fees in any currency application that they choose

to recognise.

Maximum Block Size

A maximum block size can be implemented without requiring nodes to download

the entire block’s data to verify that it is below a certain size. Instead, each message,

and thus each leaf in the Merkle tree of messages, may have a maximum size such

that if a message x is bigger than the allowed size, nsHash(x) would return an error,

so root(Mi) =mRooti and thus blockValid(hi) would return false. If larger message

sizes are required, a message could be chunked into multiple messages and parsed

back into a single message by clients.

5.6 Implementation and Performance
We implemented a prototype of LazyLedger in 2,865 lines of Golang code. The

code has been released as a free and open-source project.1 We performed all mea-

surements on a laptop with an Intel Core i5 2.60GHz CPU and 12GB of RAM. The

prototype was not networked, as the underlying consensus protocol is arbitrary—the

core contribution of LazyLedger concerns the methodology for block verification.

1https://github.com/musalbas/lazyledger-prototype

https://github.com/musalbas/lazyledger-prototype
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Therefore the graphs we present with regards to the amount of data downloaded are

deterministic and do not contain error bars.

The prototype implements the LazyLedger block validity rules, and block data

structure using namespaced Merkle trees. We also implemented (and released)

several example applications using LazyLedger. Each application’s state is imple-

mented as one or more key-value stores that can be read from or modified. Appli-

cations include:

• A currency application where clients publish messages that are transactions

for the transfer of funds between addresses that are elliptic curve public keys.

Transactions are signed by the public keys of senders, and specify the amount

of funds to send and the recipient address. In the key-value store, keys are

public keys, and values are the corresponding balance of each public key,

which is updated after each valid transaction.

• A name registration application where clients can: (i) send a balance top-up

transaction to the registrar’s public key using a dependency currency applica-

tion, so that clients can pay for name registrations using their balance with the

registrar; and (ii) send a registration transaction to register a specified name to

their public key, which reduces the balance of the registrant, if their balance

is sufficient. The registration application has one key-value store representing

the in-app topped-up balance of each public key, and another key-value store

where each key represents a registered name and each value represents the

public key the name has been registered to.

• A dummy application for testing purposes which adds arbitrary sized speci-

fied key-value pairs to its key-value store.

We present an evaluation of LazyLedger’s performance and scalability prop-

erties in relation to the goals presented in Section 6.3.3, in particular performance-

related Goals 2 and 4.

Figure 5.3 compares how much data needs to be downloaded to execute the

Simple Validity Rule and the Probabilistic Validity Rule to verify data availability,
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for varying block sizes. As expected, there is a linear relationship between block

size and data downloaded for the Simple Validity Rule, as this requires downloading

all of the block data to ensure that it is available. However, we can see that the rela-

tionship between block size and data downloaded for the Probabilistic Validity Rule

is sub-linear and almost flat. This is because in order to execute the Probabilistic

Validity Rule, nodes download a fixed number of samples and their corresponding

Merkle proofs whose sizes increase logarithmically with the size of the block, as

well as set of 2
√

n row and column Merkle roots for the block where n is the size of

the block.

Recall that Goal 2 in Section 6.3.3 is application message retrieval partition-

ing. This means it should be possible to download all the messages for an appli-

cation without needing to download the messages of other applications. Figure 5.4

compares the response size of queries for a specific namespace to a storage node

(“application proofs”), for varying amounts of messages of different namespaces

(measured by total bytes) that are not relevant to that query. We use currency appli-

cation messages as the relevant queried namespace (although any other application

could be used), fixing the number of currency messages in the block to 10, but in-

creasing the total size of dummy application messages. We can observe that for

both simple blocks and probabilistic blocks, the size of the application proofs for

the relevant application only increases logarithmically, because although messages

that are not in the relevant namespace do not need to be downloaded, the size of the

Merkle proofs for those messages increase logarithmically as the number of total

messages in the block increases. The size of the application proofs for probabilis-

tic blocks are smaller because a two-dimensional erasure code is used, where each

column and row gets its own Merkle tree, and thus the Merkle proofs are smaller

because there are less items in each tree.

Recall that Goal 4 in Section 6.3.3 is application state sovereignty. This means

that it should be possible for a client to determine the state of the application with-

out requiring state from other applications that are not dependencies. Figure 5.5

follows the same setup as Figure 5.4, however instead of comparing the size of the
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applications proofs for the currency application, we compare the size of the state

that needs to be stored by users of the relevant application (in this case, the cur-

rency application). As expected, we observe that as the size of the state of other

applications increase, the size of the state that needs to be stored for the currency

application remains constant.

Figure 5.6 and Figure 5.7 illustrate how the size of application proofs may vary

for an application that has a dependency application. In this case we use the name

registration application as an example, which requires users to follow the state of

a currency application so that balance top-up transactions to the registrar can be

verified. In the two graphs, we setup multiple instances of the name registration

application for multiple registrars, but the user is only interested in following one

of them. In Figure 5.6 we can observe that as the number of top-up transactions

for the irrelevant name registration applications increase, the size of the application

proofs for the relevant name registration application increases linearly, because the

user must also download application proofs for the currency application, which has

transactions being added to it by users of the other name registration applications.

This extreme case where there are only top-up transactions defeats any scalabil-

ity gains of LazyLedger, since all transactions require transactions in dependency

applications that other users may follow.

However, Figure 5.7 shows the same but in the case of name registration trans-

actions instead of balance top-up transactions. Here we see that irrelevant name

registration transactions do not linearly increase the size of application proofs that

need to be downloaded for other users, because only users of the relevant name

registration application need to have knowledge of the registered names, and no

dependency application is impacted.

5.7 Conclusion

We have presented and evaluated LazyLedger, a unique blockchain design paradigm

where the base layer is only used a mechanism to guarantee the availability of on-

chain messages, and transactions are interpreted and executed by end-users. We
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Figure 5.3: How much data needs to be downloaded to execute the block validity

rule to validate data availability versus the size of the block. For the Probabilistic

Validity Rule, 15 samples are used.
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Figure 5.4: The sizes of application proofs in a block for a currency application

with 10 transactions versus the total size of all of the other transactions in the block.
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Figure 5.5: The sizes of the state that needs to be stored after a block versus the

total size the state of all apps in the block, for a currency app and all other apps.
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Figure 5.6: The sizes of application proofs in a block for an instance of a registrar

application with 10 top-up transactions versus the number of top-up transactions for

other registrar application instances in the block.
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Figure 5.7: The sizes of application proofs in a block for an instance of a regis-

trar application with 10 registration transactions versus the number of registration

transactions for other registrar application instances in the block.

have shown that by reducing block verification to data availability verification,

blocks can be verified in sub-linear time. Additionally, using the notion of ap-

plication state sovereignty, we have shown that multiple sovereign applications can

use the same chain for data availability, with only limited impact to the workload of

each other’s users.



Chapter 6

Contour: A Practical System for

Binary Transparency

Should governments continue to encounter impediments to lawful access

to information necessary to aid the protection of the citizens of our

countries, we may pursue technological, enforcement, legislative or

other measures to achieve lawful access solutions.

The Attorneys General and Interior Ministers of the United States, the

United Kingdom, Canada, Australia and New Zealand (Five Eyes)

6.1 Introduction and Motivation
Blockchain-based systems such as Bitcoin make the history of their ledgers trans-

parent, in order to allow all participants to confirm for themselves whether or not

transactions included in blocks are complying with the protocol rules, thus remov-

ing the need for a centralised or single trusted third party. However, the idea of

transparency is also useful for holding centralised third parties accountable for their

actions, by allowing users to audit their actions in a blockchain-based ledger that

acts as an audit log, even if that log can only be written to by a centralised party.

By utilising the append-only property of a blockchain log (see Section 2.2), the

centralised party should not be able to hide or erase evidence of misbehaviour.

One of the technical settings in which the idea of transparency has been most

thoroughly deployed is the issuance of X.509 certificates; this is likely due partially
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to the nature of these certificates (which are themselves intended to be globally vis-

ible), and partially to the many publicised failures of major certificate authorities

(CAs) [71, 96]. A long line of recent research [94, 22, 84, 129, 105] has provided

and analysed solutions that bring transparency to the issuance of both TLS certifi-

cates (“certificate transparency”) and to the assignment of public keys to end users

(“key transparency”).

Despite their differences, many of these systems share a fundamentally similar

architecture [44]: after being signed by CAs, certificates are stored by log servers

in a globally visible append-only log. Clients do not accept certificates unless they

have been included in such a log, and are thus publicly auditable. To determine this

they rely on auditors, who are responsible for checking inclusion of the specific

certificates seen by clients. Because auditors are often implemented as software

running on the client (e.g., a browser extension), they must be able to operate ef-

ficiently. Finally, in order to expose misbehavior, monitors (inefficiently) audit the

certificates stored in a given log to see if they satisfy the rules of the system.

To achieve the append-only log property where the log server is centralised

(see Section 2.3.2 for background on centralised consensus), an additional line of

communication is needed between the auditor and monitor in the form of a gossip

protocol [113, 46]. In such a protocol, the auditor and monitor exchange informa-

tion on their current view of the log (e.g., the latest block headers), which allows

them to detect whether or not their views are consistent, and thus whether or not

the log server is misbehaving by presenting “split” views of the log. If such attacks

are possible, then the accountability of the system is destroyed, as a log server can

present one log containing all certificates to auditors (thus convincing it that its cer-

tificates are in the log), and one log containing only “good” certificates to monitors

(thus convincing them that all participants in the system are obeying the rules). This

is identical to an adversary forking a blockchain as described in Section 2.2.2, and

showing different users different sides of the fork.

While gossiping can detect this misbehaviour, it is ultimately a retroactive

mechanism — i.e., it detects rather than prevents this misbehavior — and is thus
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most effective in settings where no man-in-the-middle (MitM) attack can occur, so

the line of communication between an auditor and monitors remains open. Vari-

ous systems have been proposed recently that do not rely on retrospective gossip-

ing to deal with split view attacks, such as Collective Signing [143], but perhaps

the most prominent example of such a system is Bitcoin and other decentralised

blockchain-based systems. The decentralised consensus in Bitcoin and other de-

centralised blockchains makes forking the chain and conducting split view attacks

economically expensive even in the presence of man-in-the-middle (MitM) attacks,

or ‘eclipse’ attacks where the attacker fully controls a client’s connections with

other nodes. We analyse the economic costs in Section 6.5.1.

Because of the effectiveness of these approaches, there has been interest in re-

purposing them to provide not only transparency for certificates or monetary trans-

fers, but for more general classes of objects (“general transparency”) [59]. One

specific area that thus far has been relatively unexplored is the setting of software

binary distribution (“binary transparency”). Bringing transparency to this setting is

increasingly important, as there are an increasing number of cases in which actors

target devices with malicious software signed by the authoritative keys of update

servers. For example, the Flame malware, discovered in 2012, was signed by a

rogue Microsoft certificate [71] and masqueraded as a routine Microsoft software

update [111]. In 2016, a US court compelled Apple to produce and sign custom

firmware in order to disable security measures on a phone that the FBI wanted to

unlock [64].

Aside from its growing relevance, binary transparency is particularly in need of

exploration because the techniques described above for both certificate transparency

and Bitcoin cannot be directly translated to this setting. Whereas certificates and

Bitcoin transactions are small (on the order of kilobytes), software binaries can

be arbitrarily large (often on the order of gigabytes), so cannot be easily stored

and replicated in a log or ledger. Most importantly, by their very nature software

packages have the ability to execute code on a system, so malicious software pack-

ages can easily disable gossiping mechanisms or launch wider (and long-lasting)
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MitM attacks. This makes retroactive methods for detecting misbehaviour almost

uniquely poorly suited to this setting, in which clients need to know that a software

package is auditable by independent parties before installing it, not after.

In this chapter, we make the following contributions:

• We present the design of Contour, a solution for binary transparency that

utilizes the Bitcoin blockchain in an efficient manner to proactively prevent

clients from installing malicious software, even in the face of long-term MitM

attacks and malicious binaries.

• We analyse both the security and efficiency of Contour. Given the volume

of related research on certificate transparency, we also present some compar-

isons here, and argue that ours is the first efficient solution to provide these

security guarantees without requiring any coordination cost, in the form of

selecting a central entity to perform authorization, or otherwise forming a

Sybil-free set of log servers. This ensures that Contour could be easily and

securely deployed today.

• To validate our efficiency claims, we describe an implementation of Contour

and benchmark its performance, finding that almost all operations can be per-

formed very quickly (on the order of microseconds), that auditors can store

minimal information (on the order of kilobytes), and that arbitrary numbers of

binaries can be represented by a single small (235-byte) Bitcoin transaction.

• We also validate our claims of real-world relevance by presenting the appli-

cation of Contour to the current package repository for the Debian operating

system. We find that it would require minimal overhead for the existing actors

within this system, and cost under 2 USD per day.

6.2 Related Work
As mentioned in the introduction, there is a significant volume of related work on

the idea of transparency, particularly in the settings of certificates and keys. We

describe the most relevant work here.
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6.2.1 Certificate Transparency

RFC 6962

RFC 6962 [94] is the protocol standard for TLS certificate transparency adopted

by web browsers including Google Chrome and Mozilla Firefox. Clients such as

web browsers use a built-in of log servers, which they require valid certificates

to be included in. Auditors verify Merkle proofs that certificates are included in

logs before clients accept them. Monitors—which may be website operators that

want to protect their users from rogue certificates—read the log servers to look for

misbehaviour.

To allow servers to deploy TLS certificates before they are included in a log,

log servers produce a Signed Certificate Timestamp when a certificate is submitted

to a log. This is a signed promise by a log to include a certificate within a certain

amount of time. This allows clients to accept certificates before they are included

in the log. If a log server fails to honour its promise then the signature can be used

as cryptographic evidence of this.

Chase and Meiklejohn abstract certificate transparency into the general idea of

a “transparency overlay” [44] and prove its security.

Accountable Key Infrastructure (AKI) and Attack Resilient Public

Key Infrastructure (ARPKI)

AKI [84] adopts the log server concept, but addresses shortcomings in RFC 6962.

As RFC 6962 does not support certificate revocation, Merkle audit proofs for certifi-

cates in the log are valid indefinitely. To address this, AKI’s “integrity tree” commits

to a list of all of the certificates in the system in each log update, ordered by domain

name. If a certificate is revoked, then the next log update will remove the certifi-

cate from the list. This allows for auditors to verify Merkle non-inclusion proofs to

verify that a certificate is not in the latest version in the log. Similar approaches for

handling revocation transparency have also been proposed for RFC 6962, using a

sparse Merkle tree to commit to the set of certificates in the log [129, 93].

AKI also allows domain owners to define a specific set of certificate authorities
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that are authorised to sign certificates on for the domain, a minimum defined thresh-

old of which is required to sign a certificate for it to be valid. This is in contrast to

the current Public Key Infrastructure for TLS, where any one certificate authority

in the client’s root of trust is authorised to sign certificates for any domain. In AKI,

validators (which are akin to monitors) check the logs for misbehaviour.

ARPKI [22] builds on AKI, augmenting it so that the domain owner selects two

certificate authorities and one log server that validate each other’s actions, so that a

rogue certificate can only be created if all three actors have been compromised.

6.2.2 Key Transparency

CONIKS

CONIKS [105] is a key transparency protocol aimed for end-to-end encrypted com-

munication software. It relies on identity providers with their own namespaces,

which provide key directories with name-to-key bindings. Users can query identity

providers to get the key of a user. Each identity provider also operates its own log

of keys, similar to certificate transparency log servers, so that malicious name-to-

keys bindings can be detected by users. It similarly relies on gossiping to detect log

equivocation by log servers.

EthIKS [32] proposes an implementation of a CONIKS auditor as an Ethereum

smart contract, so that users can trust the Ethereum network to audit CONIKS logs

for consistency and non-equivocation.

ClaimChain

ClaimChain [90] is a key transparency protocol developed in the context of end-to-

end encrypted email. Like CONIKS and certificate transparency, it also makes use

of append-only logs. However rather than having a set of centralised log servers,

each ClaimChain user operates their own log known as a ClaimChain. Each user’s

log records claims about their own keys, as well beliefs about other the keys of other

users, which are recorded as cross-references to other chains. It relies on gossiping

to detect log equivocation.
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Certcoin

Certcoin [67] propose a blockchain-based decentralised public key infrastructure

for domain names that eliminates the need for certificate authorities. It works by

allowing users to register domains directly on the blockchain, and specify the public

key associated with the domain at the point of registration. This creates a domain-

to-key mapping that does not require certificate authorities.

Smart Contract Public Key Infrastructure (SCPKI)

SCPKI [2] is a public key infrastructure for user identities designed as a smart con-

tract on the Ethereum blockchain. It uses a PGP-style web-of-trust model [69]

where users can vouch for attributes associated with the keys of other users, such as

name.

6.2.3 Binary Transparency

Mozilla

The Mozilla community has proposed an approach to binary transparency [21] that

is layered on top of the RFC 6962 certificate transparency protocol, where the

hashes of binaries are included in logged certificates. Auditors can then verify in-

clusion of binaries in a log by checking that certificates that include the hashes of

the binaries are in the log.

As mentioned in Section 6.1 and Section 6.2.1, RFC 6962 certificate trans-

parency is a retroactive transparency mechanism that is reliant on client-side gossip-

ing to detect log equivocation. This approach is therefore not secure in the presence

of malicious binaries that can disable gossiping in the client’s auditor software, and

long term MiTM attacks.

Golang

Golang implements a binary transparency protocol for Go packages [48]. It is based

on Trillian [59], a general-purpose transparent log implementation. Like the Mozilla

community’s binary transparency proposal, it also relies on gossiping to detect log

equivocation and is therefore also not secure in the presence of malicious binaries

that can disable gossiping, and long term MiTM attacks.
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Collective Signing (CoSi)

CoSi [143] is a protocol that aims to keep authorities honest, by using a decen-

tralised network of witnesses that collectively sign messages (such as certificates)

produced by authorities, to confirm that they are validated and/or logged. It uses

a tree-based protocol to allow thousands of witnesses to collectively generate a

Schnorr multisignature [114] that can be efficiently verified.

This is a proactive transparency mechanism, and is thus suitable for a binary

transparency use case. However CoSi does not address the problem of how the set

of witnesses, which must be Sybil-free, should be selected and maintained. This is

left as an open problem. This creates a deployment challenge that we wish to avoid

in Contour, by using an existing consensus network—Bitcoin.

Chainiac

Chainaic [112] is a binary transparency protocol that is based on CoSi, developed

concurrently with Contour. It uses a set of CoSi witnesses who verify that soft-

ware updates conform to release policies. Additionally, it proposes an append-only

data structure called a skip-chain, which allows clients efficiently navigate update

timelines, both forwards (for upgrades) and backwards (for downgrades).

6.2.4 General Transparency

Catena

Catena [146] is a Bitcoin-based general transparency protocol developed concur-

rently with Contour. While both Catena and Contour utilise similar features of

Bitcoin to achieve efficiency, they differ in their focus (general vs. binary trans-

parency), and thus in the proposed threat model; e.g., they dismiss eclipse at-

tacks [136] on the Bitcoin network, whereas we consider them well within the scope

of a MitM attacker.

Trillian

Trillian [59] is a general-purpose implementation of a Merkle tree-based log, that

can be used to implement log servers that stores auditable data. The log servers are

centralised entities that produce signed tree heads, and thus gossiping is necessary
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to detect equivocation.

6.2.5 Reproducible Builds

Reproducible builds [112, 30] is a technology that allows an interested user to verify

that a certain software binary was built from a given source code. This is achieved

by providing a deterministic script for building the software, so that it always returns

the same binary. While reproducible builds allow a user to verify that a binary

matches a certain source code, it does not allow users to verify that the binary–or

source code–is the same that was given to all other users, or is publicly auditable.

Therefore, binary transparency and reproducible builds can be used to complement

each other; reproducible builds can be used to show that a source code matches a

binary, and binary transparency can be used to ensure that a record of the source

code and binary is publicly auditable (i.e., the source code could be packaged with

the binary).

6.3 Threat Model and Setting
In this section, we describe the actors in our software binary transparency system

(Section 6.3.1), along with the interactions between these actors (Section 6.3.2), and

the goals we aim to achieve (Section 6.3.3).

6.3.1 Participants

We consider a system with five types of actors: services, authorities, monitors,

auditors, and clients. We describe each of these types below in the singular, but for

the correct and secure functioning of a transparency overlay we require a distributed

set of auditors and monitors, each acting independently.

Service: The service is responsible for producing actions, such as the issuance of a

software update. In order to have these actions authorized, they must be sent

to the authority.

Authority: The authority is responsible for publishing statements that declare it

has seen a given action taken by a service; e.g., that it has been sent a given

software binary. These statements furthermore claim that the authority has —
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in some form — published these actions in a way that allows them to be in-

spected by the monitor. As this inspection is typically inefficient, the author-

ity is also responsible for placing its statements into a public audit log, where

they can be efficiently verified by the auditor.

Monitor: The monitor is responsible for inspecting the actions published by the

authority and performing out-of-band tests to determine their validity (e.g., to

ensure that software updates do not contain malware).

Auditor: The auditor is responsible for checking specific actions against the state-

ments made by the authority that claim they are published.

Client: The client receives software updates from either the authority or the ser-

vice, along with a statement that claims the update has been published for

inspection. It outsources all responsibility to the auditor, so in practice the

auditor can be thought of as software that sits on the client (thus making the

client and auditor the same actor).

6.3.2 Interactions

In terms of the interactions between these entities, one of the main benefits of Con-

tour — as discussed in the introduction — is that entities do not need to engage in

prolonged multi-round interactions like gossiping, but rather pass messages atom-

ically to one another. As we see in Section 6.5.1, this minimizes the advantage

that an adversary could gain by launching man-in-the-middle attacks. We therefore

outline only non-interactive algorithms needed to generate messages, rather than in-

teractive protocols, and wait to specify the exact inputs and outputs until we present

our construction in Section 6.4.

Authority.commit: The authority runs this algorithm to commit statements to the

audit log.

Authority.prove incl: The authority runs this algorithm to provide a proof that a

specific statement is in the audit log.
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Auditor.check incl: The auditor runs this algorithm to check the proof of inclu-

sion for a specific statement.

Monitor.get commits: The monitor runs this algorithm to retrieve relevant com-

mitments from the audit log.

6.3.3 Goals

We break the goals of the system down into security goals (denoted with an S) and

deployability goals (denoted with a D).

In all our security goals, we aim to defend against the specified attacks in the

face of malicious authorities that, in addition to performing all the usual actions of

the authority, can also perform man-in-the-middle attacks on the auditor’s network

communications, and can compromise the client’s machine with malicious software

updates. If additional adversaries are considered we state them explicitly.

S1: No split views. We would like to prevent split-view attacks, in which the in-

formation contained in the audit log convinces the auditor that the authority

published an action taken in the system, and thus it is able to be inspected by

monitors, whereas in fact it is not and only appears that way in the auditor’s

“split” view of the log.

S2: Auditor privacy. We would like to ensure that the specific binaries in which

the auditor is interested are not revealed to any other parties apart from the

authority (where software binaries may be downloaded from), as this might

reveal, for example, that a client has a software version that is susceptible to

malware. We thus consider how to achieve this not only in the face of ma-

licious authorities, but in the case in which all parties aside from the auditor

are malicious.

D1: Efficiency. We would like Contour to operate as efficiently as possible, in

terms of computational, storage, and communication costs. In particularly,

we would like the overhead beyond the existing requirements for a software

distribution system to be minimal.



6.4. Design of Contour 163

D2: Minimal setup. In addition to the computational overheads, we would like as

little effort — in terms of, e.g., coordination — to be done as possible in order

to deploy Contour. Specifically, we would like to avoid the need to bootstrap

and govern a new set of Sybil-free nodes or witnesses (such as CoSi [143]).

6.4 Design of Contour
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Figure 6.1: The overall structure of Contour.

In this section we describe the overall design of Contour. An overview of the

interactions between all the various actors can be seen in Figure 6.1.

6.4.1 Setup and Instantiation

Contour and its security properties make use of a blockchain, whose primary pur-

pose — as we see in Section 6.5.1 — is to provide an immutable ledger that prevents

split-view attacks. Because the Bitcoin blockchain is currently the most expensive

to attack, we use it here and in our security analysis in Section 6.5.1, but observe
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that any blockchain could be used in its place. An authority must initially estab-

lish a known Bitcoin address that Contour commitments are published with. As

knowledge of the private key associated with the Bitcoin address is required to sign

transactions to spend transaction outputs sent to the address, this acts as the root-

of-trust for the authority. This address can be an embedded value in the auditor

software. An initial amount of coins must be sent to the Bitcoin address to enable it

to start making transactions from the address.

6.4.2 Logging and Publishing Statements

To start, the authority receives actions from services; i.e., software binaries from

the developers of the relevant packages (Step 1 of Figure 6.1). As it receives such

a binary, it incorporates its hash as a leaf in a Merkle tree with root hT . The root,

coupled with the path down to the leaf representing the binary, thus proves that the

authority has seen the binary, so we view the root as a batched statement attesting

to the fact that the authority has seen all the binaries represented in the tree.

commit(hT ): Form a Bitcoin transaction in which one of the outputs embeds hT by

using OP_RETURN. One of the inputs must be a previous transaction output

that can only be spent by the authority’s Bitcoin address (i.e. a standard Bit-

coin transaction to the authority’s address). The other outputs are optional and

may simply send the coins back to the authority’s address, according to the

miner’s fees it wants to pay. (See Section 6.6.2 for some concrete choices.)

Sign the transaction with the address’s private key and publish to the Bitcoin

blockchain and return the raw transaction data, denoted tx.

Crucially, the commit algorithm stores only the root hash in the transaction,

meaning its size is independent of the number of statements it represents. Further-

more, if the blockchain is append-only — i.e., if double spending is prevented —

then the log represented by the commitments in the blockchain is append-only as

well.
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6.4.3 Proving Inclusion

After committing a batch of binaries to the blockchain, the authority can now make

these binaries accessible to clients. When a client requests a software update, the

authority sends not only the relevant binary, but also an accompanying proof of

inclusion, which asserts that the binary has been placed in the log and is thus acces-

sible to monitors (Step 3 of Figure 6.1).

To generate this proof, the authority must first wait for its transaction to be

included in the blockchain (or, for improved security, for it to be embedded k blocks

into the chain). We denote the header of the block in which it was included as

headB. The proof then needs to convince anyone checking it of two things: (1)

that the relevant binary is included in a Merkle tree produced by the authority and

(2) that the transaction representing this Merkle tree is in the blockchain. Thus, as

illustrated in Figure 6.2, this means providing a path of hashes leading from the

values retrieved from the blockchain to a hash of the statement itself.

block header1

blockchain

(transactions
Merkle tree)

transaction
merkle root

intermediate
node

intermediate
node

transaction1 transaction2 transaction3 transaction4

... ...

binary batch
merkle root

intermediate
node

intermediate
node

binary1 binary2 binary3 binary4

... ... ... ...

......

transaction
merkle root

block header2 block headern

transaction
merkle root

(binary
Merkle tree)

Figure 6.2: An example of a path of hashes leading from the block’s transactions

merkle root to the hash of the statement2.
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For a given binary binary, the algorithm prove incl thus runs as follows:

prove incl(tx,headB,binary): First, form a Merkle proof for the inclusion of tx

in the block represented by headB. This means forming a path from the root

hash stored in headB to the leaf representing tx; denote these intermediate

hashes by πtx. Second, form a Merkle proof for the inclusion of binary in the

Merkle tree represented by tx (using the hash hT stored in the OP_RETURN

output) by forming a path from hT to the leaf representing binary; denote

these intermediate hashes by πbinary. Return (headB, tx,πtx,πbinary).

6.4.4 Verifying Inclusion

To verify this proof, the auditor must check the Merkle proofs, and must also check

the authority’s version of the block header against its own knowledge of the Bitcoin

blockchain. This means that the auditor must first keep up-to-date on the headers

in the blockchain, which it obtains by running an SPV client (Step 4 in Figure 6.1).

By running this client, the auditor builds up a set S = {headBi}i of block headers,

which it can check against the values in the proof of inclusion. This means that, for

a binary binary, check incl (Step 5 in Figure 6.1) runs as follows:

check incl(S,binary,(headB, tx,πtx,πbinary)): First, check that headB ∈ S; output

0 if not. Next, extract hT from tx (using the hash stored in the OP_RETURN

output), form hbinary ← H(binary), and check that πbinary forms a path from

the leaf hbinary to the root hT . Finally, form htx← H(tx), and check that πtx

forms a path from the leaf htx to the root hash in headB. If both these checks

pass then output 1; otherwise output 0.

6.4.5 Discussion of Data Availability

A malicious authority may publish Merkle roots of binaries to the Bitcoin

blockchain, but not publish the data of the entire tree or the binaries. We do

not propose or enforce an in-protocol mechanism to prevent this such as data avail-

ability proofs (Section 4.5). This is because the role of monitors is social, as when

misbehaviour is detected, any reaction to the misbehaviour occurs outside the pro-

tocol, within the relevant community. For example, there may not be an objective
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mechanism to determine that a binary contains malicious code (is it malicious code

or is it a feature?). Therefore as mentioned in Section 6.3, the actions of monitors

are out-of-scope to this chapter.

While data unavailability would prevent monitors from being able to inspect

specific binaries, they would still be aware that they have been unable to download

the binaries, which is an indication of misbehaviour that can raised to the commu-

nity. If no monitor is able unable to download the data, they may conclude that the

authority has not published the data.

In order to give auditors data availability guarantees, authorities may publish

binaries to a data availability layer such as LazyLedger (Chapter 5), however we

consider this to be out-of-scope as do not enforce an in-protocol data availability

scheme for the reasons above.

6.5 Evaluation
In this section, we evaluate Contour in terms of how well it meets the security goals

(Section 6.5.1) and deployability goals (Section 6.5.2) specified in our threat model

in Section 6.3.3.

6.5.1 Security goals

No split views (S1)

In order to prevent split views, we rely on the security of the Bitcoin blockchain

and its associated proof-of-work-based consensus mechanism. If every party has

the same view of the blockchain, then split views of the log are impossible, as there

is a unique commitment to the state of the log at any given point in time. The ability

to prevent split views therefore reduces to the ability to carry out attacks on the

Bitcoin blockchain. We break down the costs of such attacks below: in particular,

we first consider the cost of mining a single block, and then separately examine

the case when the adversary can carry out an eclipse attack — in which, recall from

Section 2.3.3, it can control the auditor’s view of the blockchain — and the case

when it cannot.
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Figure 6.3: The number of Antminer S17+ rigs required to produce blocks under a

certain time limit.

Cost to mine a single block. The probability of a miner finding a valid block after

each hashing attempt is 216−1
248D , where D is the periodically adjusted difficulty of

the network. For a miner to mine a block then, they must make on average 248D
216−1

hashing attempts. The total electricity cost (C) of mining a block is thus

C =
248D

216−1
· J ·E (6.1)

where J is the number of joules required per hashing attempt, and E is the elec-

tricity cost of one joule. As of December 2019, the most energy-efficient Bitcoin

mining hardware is the Antminer S17+, which has an energy cost of 4 ·10−11 joules

per hash, and the average retail price of one kilowatt hour in the US is 0.10 USD

[149]. The cost per joule, E, is therefore 0.10
1000·60·60 = 2.8 ·10−8 USD. As of Decem-

ber 2019, the Bitcoin mining difficulty (D) is 12,876,842,089,682. Plugging these

numbers into Equation 6.1, the total electricity cost to mine a block under these

assumptions, using the most efficient hardware and assuming standard electricity

costs, is thus 61,450 USD.
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To also take account of hardware costs, we observe that the number of mining

rigs N needed to mine a block in S seconds is

N =
( 248D

216−1)

H ·S (6.2)

where H is the number of hashes that the mining rig is capable of calculating per

second. This formula is graphed in Figure 6.3 for the Antminer S17+ rig, which

is capable of calculating 73 terahashes per second and has a retail cost of 1,930

USD [82]. We use these formulas to estimate the cost of split-view attacks in the

following analysis.

Using eclipse attacks. If an eclipse attack is possible, the adversary can “pause”

the auditor at a block height representing some previous state of the log, and can

prevent the auditor from hearing about new blocks past this height. It is then free

to mine blocks at its own pace, and can thus launch a successful split-view attack

solely by mining k blocks, where k is the number of blocks the auditor requires

to be mined after a block containing a given commitment in order to consider that

commitment as valid. (It is standard in most Bitcoin wallets to use k = 6.)

Using our rough estimates above, it would cost the adversary 61,450 USD in

electricity costs to mine a block, or 368,700 USD for k = 6. The hardware costs

depends on how much time the adversary needs to conduct the attack, or how long

they are able to continue their man-in-the-middle attack on the auditor. If — as a

conservative number — the adversary wants to conduct the attack within a week, it

must mine a block every 1.4 days to produce 6 blocks, which requires 6,263 mining

rigs at a hardware cost of 12,087,590 USD. This brings the total cost of the attack

to 12.5M USD, which is likely to deter at least a large fraction of potential adver-

saries. It may be affordable for a powerful adversary, however, but the attack is also

fundamentally targeted: if the adversary wants to later compromise previously non-

eclipsed auditors, it must mine a new set of blocks (assuming these auditors have

more up-to-date blocks) and pay the electricity costs again. Even for an adversary

with few financial constraints, this makes it significantly more difficult to conduct

such an attack on a wide scale.
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Furthermore, if the adversary takes 1.4 days to mine a block, or in general the

auditor sees no new blocks until long after the expected 10-minute interval, it may

assume that an eclipse attack is being performed. We can thus greatly increase the

cost of the attack by adding simple checks to the auditor to ensure that there is a

maximum interval between blocks. If we generously set such a check to require a

maximum of 6 hours between blocks, then a total of 35,074 mining rigs are required

at a cost of 67.7M USD.

In addition, the blocks must still follow the same difficulty level as honest

blocks, so by mining these only in the eclipsed view of the network the adversary

is not only expending the energy needed to do so but is also forfeiting the mining

reward associated with them. As of December 2019, the Bitcoin mining reward is

12.5 bitcoins, or roughly 87,500 USD at 7000 USD per coin [70], so for k = 6 the

adversary must additionally forfeit 525,000 USD.

Ignoring eclipse attacks. If, for whatever reason, an eclipse attack is not possible,

then an adversary can perform a split-view attack only if it can fork the Bitcoin

blockchain. This naı̈vely requires it to control 51% of the network’s mining power.

As of December 2019, the total hashing power of the Bitcoin network was

100,497,473 terahashes per second.1 Conducting a 51% attack would therefore

require the adversary to be able to compute more than 100,497,473 terahashes per

second. Per hour, the total electricity cost would be 100497473 · 1012 · 3600 · J ·E,

or — using our earlier estimates for J and E — 401,990 USD per hour. In terms of

hardware costs, if we use the figures for the Antminer S17+ from before, the total

number of mining rigs required would be greater than 100497473·1012

73·1012 = 1376677, at

a total cost of at least 2657M USD.

While more sophisticated attacks, such as selfish mining [63], have proposed

strategies that fork the blockchain (also known as a “double spend” attack) using

only 25% of the mining power, this would still require an investment of hundreds

of millions of dollars. Such an attack would furthermore be highly visible, as the

blockchain is regularly monitored for forks.

1https://www.blockchain.com/en/charts/hash-rate

https://www.blockchain.com/en/charts/hash-rate
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Operation Time complexity

commit O(nS)

prove incl (one-time) O(log(nT ))

prove incl (per statement) O(log(nS))

check incl O(log(nS)+ log(nT ))

Table 6.1: Asymptotic computational costs for the operations of Contour, where nS

is the number of statements in a batch and nT is the number of transactions in a

block.

Auditor privacy (S3)

Recall from Section 6.3.2 that one of the goals of Contour was to avoid prolonged

interactions and engage only in the atomic exchange of messages. In particular,

the auditor receives pre-formed proofs of inclusion from the authority (as opposed

to requesting them for specific statements), retrieves commitments directly from

the blockchain and does not engage in any form of gossip with monitors. We thus

achieve privacy by design, as at no point in the process does the auditor reveal the

statements in which it is interested to any other party.

One particular point to highlight is that Contour achieves auditor privacy de-

spite the fact that auditors run SPV clients, which are known to potentially introduce

privacy issues due to the use of Bloom filtering and the reliance on full nodes. This

is because the proofs of inclusion contain both the raw transaction data and the

block header, so the auditor does not need to query a full node for the inclusion of

the transaction and can instead verify it itself (and, as a bonus, saves the bandwidth

costs of doing so).

6.5.2 Deployability goals

Efficiency (D1)

Table 6.1 summarizes the computational complexity of each of the operations re-

quired to run Contour, and Table 6.2 summarizes the size complexity.
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Object Size Complexity

Inclusion proof O(log(nS)+ log(nT ))

Log commitment (tx) O(1)

Table 6.2: Asymptotic storage costs for the objects in Contour, where nS is the

number of statements in a batch and nT is the number of transactions in a block.

We observe that the end-user devices on which the auditor is run impose a

relatively minimal performance overhead (with everything logarithmic in nS and/or

nT ), as this simply involves verifying Merkle proofs of transactions or statements.

Authorities have linear performance overhead with respect to the number of updates

in each batch, as this involves computing the root of a Merkle tree. We confirm this

in our implementation in Section 6.6.2.

Minimal setup (D2)

In terms of coordination, the only setup requirement in Contour is the authority gen-

erating a key to be used as the root-of-trust in auditor software, as the rest is a matter

of adding software to existing actors in software distribution ecosystems. We do

not require the authority to bootstrap and maintain a Sybil-free set of nodes or wit-

nesses, and we instead rely on the existing Bitcoin blockchain for non-equivocation.

6.6 Implementation and Performance
To test Contour and analyze its performance, we have implemented and provided

benchmarks for a prototype Python module and toolset that developers can use. We

have released the implementation as an open-source project.2

6.6.1 Implementation details

The implementation consists of roughly 1000 lines of Python code, and provides a

set of developer APIs and corresponding command-line tools. We used SHA-256

as the hashing algorithm to build Merkle trees, and modified versions of an existing

2https://github.com/musalbas/contour

https://github.com/musalbas/contour
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Merkle tree implementation3 and a Python-based Bitcoin library pycoinnet4 in

order to develop our Merkle tree and SPV client, respectively.5

Authority: We provide API calls for Authority.commit, which commits batches

of statements to the Bitcoin blockchain, and Authority.prove incl, which

allows it to generate inclusion proofs for individual statements.

Auditor: We provide an API call for Auditor.check incl, which allows end-user

software to verify proofs of inclusion. We also provide an Auditor.sync call

that uses the Bitcoin SPV protocol to download and verify all the block hashes

in the Bitcoin blockchain, so that inclusion proofs can be efficiently verified

independently of third parties. (This call needs to be run only once.)

Monitor: We provide an API call for Monitor.get commits, which gets all the

statement batches associated with a specific authority. Monitors can then use

these commitments to check the validity of the statement data (which they

can retrieve from the authority or an archival node using a web server), and

do whatever manual inspection is necessary; we consider this functionality

outside of the scope of this paper.

6.6.2 Performance

To evaluate the performance of our implementation, we tested all the operations

listed above on a laptop with an Intel Core i5 2.60GHz CPU and 12GB of RAM,

that was connected to a WiFi network with an Internet connection of 5Mbit/s. We

also assume that a batch to be committed contains 1 million statements, although

as was seen in Table 6.1 — and confirmed later on in Figure 6.4 — these numbers

scale as expected (either logarithmically or linearly), so it is easy to extrapolate the

results for other batch sizes given the ones we present here.
3https://github.com/jvsteiner/merkletree
4https://github.com/richardkiss/pycoinnet
5The Merkle tree modifications were necessary because the Merkle tree implementation in Bit-

coin has a documented bug that must, for consensus reasons, be replicated in software using the

Bitcoin protocol. The pycoinnet modifications were necessary as this library provides only the

code to communicate using the Bitcoin protocol, rather than connecting to Bitcoin itself.

https://github.com/jvsteiner/merkletree
https://github.com/richardkiss/pycoinnet
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Operation Time (µs) σ (µs)

commit 5.93 (s) 0.297 (s)

prove incl (one-time) 8.5 5.4

prove incl (per statement) 12 6.4

check incl 224 62.14

Table 6.3: Average time of individual operations, and standard deviation σ , where

n is the number of statements in a batch. The timings for commit were averaged

over 20 runs, and for prove incl and check incl over 1M runs. The timings for

commit are in bold to emphasize that they are in seconds, not microseconds.

We consider the complexity of these operations in terms of their computational,

storage, and bandwidth requirements. A summary of our timing benchmarks can be

found in Table 6.3.

Number of transactions per block

The overhead of both generating and verifying a proof of inclusion is dependent on

the number of transactions in a Bitcoin block. To capture the worst-case scenario,

we consider the maximum number of transactions that can fit into a block. The

Bitcoin block size limit is 1 MB (excluding SegWit), up to 97 bytes of which is non-

transaction data. The minimum transaction size is 166 bytes, so the upper bound on

the number of transactions in a given block is 6,023. While this is far higher than

the number of transactions that Bitcoin blocks usually contain, we nevertheless use

it as a worst-case cost and an acknowledgment that Bitcoin is evolving and blocks

may grow in the future.

Authority overheads

To run commit and prove incl, an authority must have access to the full blocks

in the Bitcoin blockchain, as well as the ability to broadcast transactions to the

network. Rather than achieve these by running the authority as a full node, our

implementation uses external blockchain APIs supplied by blockchain.info

and blockcypher.com. This decision was based on the improved efficiency

blockchain.info
blockcypher.com
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and ease of development for prototyping, but it does not affect the security of the

system: authorities do not need to validate the blockchain, as invalid blocks from a

dishonest external API simply result in invalid inclusion proofs that are rejected by

the auditor.

To run commit, an authority must first build the Merkle tree containing its state-

ments. Sampled over 20 runs, the average time to build a Merkle tree for 1M state-

ments was 5.9 s (σ = 0.29 s). After building the tree, an authority next embeds its

root hash (which is 32 bytes) into an OP_RETURN Bitcoin transaction to broadcast

to the network. Sampled over 1,000 runs, the average time to generate this transac-

tion — in the standard case of one input and two outputs, one for OP_RETURN and

one for the authority’s change — was 0.03 s (σ =0.007 s). The average total time to

run commit was thus 5.93 s, as seen in Table 6.3, and it resulted in 235 bytes (the

size of the transaction) being broadcast to the network.

Next, to run prove incl, the authority proceeds in two phases: first construct-

ing the Merkle proof for their transaction within the block where it eventually ap-

pears, and next constructing the Merkle proof for each statement represented in a

transaction. The time for the first phase, averaged over 1M runs and for a block

with 6,023 transactions (our upper bound from Section 6.6.2), was 8.5 µs. This is

denoted “one-time” in Table 6.3 as it is done only once per batch. The time for the

second phase, averaged over 1M runs, was 12 µs for each individual statement (thus

denoted “per statement” in Table 6.3). Generating inclusion proofs for all the state-

ments in the batch would thus take around 12 s. In terms of bandwidth and storage,

the block may be up to 1 MB in size. In terms of the memory costs, the size of the

Merkle tree for 1M leafs in memory is 649MB.

Additionally, in order to ensure that its transaction makes it into a block

quickly, the authority may want to pay a fee. The current recommended rate is

16 satoshis/byte (https://bitcoinfees.21.co/), so for a 235-byte trans-

action the authority can expect to pay 3,760 satoshis. As of December 2019, this is

roughly 0.28 USD.

https://bitcoinfees.21.co/
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Auditor overheads

For the auditor, we considered two costs: the initial cost to retrieve the necessary

header data (sync), and the cost to verify an inclusion proof (check incl). We do

not provide performance benchmarks for the Auditor.get arch state call, as this

is a simple web request that returns a single 32-byte hash.

To run sync, auditors use the Bitcoin SPV protocol to download and verify the

headers of each block, which are 80 bytes each. As of this writing on December

2019, there are 608,000 valid mined blocks, which equates to 48.6 MB of block

headers. Once downloaded, however, the auditor needs to keep only the 32-byte

block hash, so only 19.5 MB of data needs to be stored on disk. Going forward,

the Bitcoin network generates approximately 144 blocks per day, so the amount of

downloaded data will increase by 11.5 kB daily, and the amount of stored data by

4.6 kB daily.

To verify the validity of the block headers in the chain, the client must perform

one SHA-256 hash per block header; on average, it took us on average 116 seconds

(over 5 runs) for the Python SPV client to download and verify all the block headers

from the network. This initial bootstrapping process needs to be performed only

once per auditor.

To run check incl, we again use our upper bound from Section 6.6.2 and

assume every block contains 6,023 transactions. This means the inclusion proof

contains: (1) an 80-byte block header; (2) the raw transaction data, which is 235

bytes; (3) a Merkle proof for the transaction, which consists of log(6,023)−1 32-

byte hashes (the root hash is already provided in the block header); and (4) a Merkle

proof for the statement, which consists of log(1,000,000)− 2 32-byte hashes (the

root hash is already provided in the transaction data, and the auditor computes the

statement hash itself). The total bandwidth cost is therefore around 1275 bytes.

Averaged over 1M runs, the time for the auditor to verify the inclusion proof was

224 µs (σ = 62.14 µs).

To confirm that the time to run check incl scales logarithmically with the

number of statements in the batch, we also changed this number. The results are in
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Figure 6.4: The time to verify an inclusion proof with varying numbers of state-

ments in the batch, averaged over 100K runs.

Figure 6.4 (and do confirm logarithmic scaling).

Monitor overheads

Monitors must run a Bitcoin full node in order to get a complete uncensored view of

the blockchain. As of December 2019, running a Bitcoin full node requires at least

245 GB of free disk space [98], increasing by up to 144 MB daily. It took us around

three days to fully bootstrap a Bitcoin full node and verify all the blocks, although

again this operation needs to be performed only once per monitor.

6.7 Use Case: Debian
To demonstrate how Contour can be used on a real system, we prototyped it for

auditing software binaries in the Debian software repository. Our results show

that Contour provides a way to add transparency to this repository without major

changes to the existing infrastructure and with minimal overheads. It could be de-

ployed on top of the Debian ecosystem today, without any participant who did not

want to opt in having to change their behaviour.
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We begin with an overview of how Debian currently works, and then go on

to explain how existing actors in the ecosystem could play the roles necessary for

Contour, along with the overheads.

6.7.1 Software distribution architecture

Debian is a popular Linux distribution used by over 32% of websites that run

Linux.6 Software packages are installed and updated on Debian machines us-

ing the apt command-line program. The Debian software repository contains

Release files for various versions of Debian, which are updated every time any

package in the repository is updated. Each Release file contains a checksum for

a Packages file, which contains a list of available software packages and their

associated checksums for integrity checking.

Software packages are downloaded as .deb archives which provide the com-

piled binaries and scripts required to install a package on a system. These files are

hosted in directories on HTTP mirrors, of which hundreds exist around the world.7

To cryptographically authenticate software packages, Debian has a set of

tools called apt-secure. Debian installations come with a built-in set of PGP

keys [69] that are used as trusted keys for validating software packages. Alongside

the Release files in the repository, there are Release.gpg files that contain

PGP signatures of the Release files under trusted PGP keys.8

Through the single signature of a Release file, apt can validate that indi-

vidual .deb packages were authorised by a trusted PGP key by checking that the

checksums of packages are included in the Packages file whose checksum is in-

cluded in the root Release file. This of course creates a central point of failure, as

the owner of the signing key can serve individual users targeted Release files —

for example, if coerced to do so by law enforcement — that link to malicious pack-

ages.

6https://w3techs.com/technologies/details/os-linux/all/all
7https://www.debian.org/mirror/list
8https://wiki.debian.org/SecureApt

https://w3techs.com/technologies/details/os-linux/all/all
https://www.debian.org/mirror/list
https://wiki.debian.org/SecureApt
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6.7.2 Authority

In the case of Debian software distribution, the most natural operators for a Contour

authority are the maintainers of the software repository. Specifically, the Contour

authority would be the owner of the PGP key, as only this entity has the power

to modify the software repository. Importantly, it is also possible for third parties

to act as Contour authorities by proxy and commit binaries to the log on behalf

of the maintainers of the Debian software repository. As committed binaries are

transparent, the third party is not trusted any more than the maintainers of the De-

bian software repository would be, as any rogue additions to the log would still be

detectable. This means it would be possible to deploy Contour today without any

intervention or permission from the Debian project itself.

To initiate the system as an authority, all the existing software packages would

first need to be committed; i.e., the authority would need to commit to the current

state of the repository. To measure the overhead needed for this step, we extracted

the software package metadata for all processor architectures and releases of Debian

from the Debian FTP archive9 over a one-week period from January 20-27 2017. At

the beginning of this period there were 976,214 unique software binaries available

for download from the Debian software repositories, constituting 1.7 TB of data,

and by the end there were 980,469.

As discussed above, the Debian package metadata already contains a SHA-256

hash for every packages, so we needed only to build a Merkle tree from these hashes

(rather than compute them ourselves first), to then commit on the blockchain. This

took approximately 6 seconds (which is in line with our benchmarks in Table 6.3

for 1M statements).

Going forward, the authority must commit batches of new and updated binaries

to the log. The Debian FTP archives are updated four times a day, which means four

batches to commit to the log per day. Recall from Section 6.6.2 that committing

one transaction to the blockchain currently costs roughly 0.28 USD in fees, so this

would cost 1.12 USD per day (although, as mentioned in Section 6.6, Bitcoin prices

9https://www.debian.org/mirror/ftpmirror

https://www.debian.org/mirror/ftpmirror
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are notoriously volatile). This is a relatively low price to pay for a system that costs

over 91M USD to attack (Section 6.5.1).

As the archive was updated, we kept track of the package hashes being added

and created a new batch for each update. The average batch size was 1,040 pack-

ages, and the average time to build a Merkle tree for the batch was 0.0052 seconds.

Finally, the proof of inclusion of each software package would need to be

stored alongside each software package (.deb) file as metadata to be downloaded

by Debian machines. At 980K software packages, this would require a maximum

of 1.3 kB of extra storage per package, or 1.3 GB of extra storage to store the proofs

of inclusion for all packages. Given the current storage requirements of (at least)

1.7 TB, this is only a 0.07% overhead.

6.7.3 Auditors

On the end-user side, the apt program would need to be modified to integrate

the Auditor.check incl and Auditor.sync calls, as implemented and analyzed in

Section 6.6. This would ensure that downloaded packages are in the log before

being installed.

In terms of overhead for end-user Debian machines, as discussed above this

would require an extra 1.3 kB of bandwidth per package downloaded or updated.

Given that the average package size is 1337 kB, the average overhead is 0.1% per

package. We stress that this is a bandwidth requirement only, as once the proofs of

inclusion are verified they do not need to be stored on the client’s machine.

On a freshly installed Debian 8.8 system there are 520 packages installed by

default, with a total .deb archive size of 190 MB. Verifying that each of these are

in the log would require an extra 698.1 kB of bandwidth, and would take under two

minutes.

6.7.4 Monitors

Debian’s reproducible builds project allows any interested parties to verify that bina-

ries published in the software repositories are compiled from a given source code.10

10https://wiki.debian.org/ReproducibleBuilds

https://wiki.debian.org/ReproducibleBuilds


6.7. Use Case: Debian 181

There are no specific parties assigned to the role of monitoring builds to see if they

can be built from the source code. Similarly in Contour, any parties vested in the

security of Debian may act as a monitor. Aside from end users, we anticipate that

large organizations supplying critical infrastructure using Debian, national CERTs,

and NGOs such as the Electronic Frontier Foundation would have an interest in

monitoring the log.

Generally, any party that wants extra guarantees about the software updates

they are installing — e.g., in order to be sure that the updates that have been pushed

to their machines are the same as those that have been pushed to other machines —

should run a monitor. For example, if a party running Debian receives update1 and

update3 on their machine for some software package, but the log contains update1,

update2, and update3, then this raises a red flag as to why they did not receive

update2. In particular, update2 may be a malicious update targeted to specific ma-

chines, and the party can check to see if the contents of update2 have been made

available by the authority. If they have not, then the authority is considered to be

misbehaving. prevent auditors from accepting the update altogether.

6.7.5 Summary

In summary, Contour could be deployed on top of the existing system for Debian

software distribution with minimal changes to the existing infrastructure. Costs are

minimal, with only a 0.07% storage overhead required for the authority, and a 0.1%

bandwidth overhead for the end user. The computational costs for these users are

minimal as well.

One distinguishing feature of Contour is that no existing parties in the Debian

infrastructure are required to participate if they do not want to, and as discussed

earlier the security assumptions of the system would remain the same even if a third

party acted as an authority. This places Contour in contrast to existing proposals

for transparency, as they require the initial setup of some Sybil-free set of nodes. In

contexts such as the distribution of Debian software packages, this assumption —

and the security implications if it is violated — presents a significant obstacle to

deployability, and avoiding this obstacle was one of our main goals in designing
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Contour.

6.8 Discussion and Extensions
Selective disclosure. When releasing software updates that patch critical security

vulnerabilities, some software vendors may prefer not to reveal to potential attackers

that, in the window of time in which a commitment has not yet been included in

the blockchain, they can take advantage of victims with this vulnerable software

installed. In such a case, Contour accounts for this by allowing the authority to

commit to a batch of binaries visibly on the blockchain, but delay the publication of

the binaries themselves until the commitment is sufficiently deep in the blockchain.

Generalized transparency. Although we have designed Contour for the specific

application of binary transparency, the system is general enough to be applied to

other applications requiring transparency. It can even be applied to the setting of

certificate transparency, using CAs as authorities.

6.9 Conclusion
We have proposed Contour, a system that provides proactive transparency, scales

logarithmically for auditors, and does not require the initial coordination of a Sybil-

free set of nodes. To the best of our knowledge, it is also the first system for pro-

viding binary transparency.

We have demonstrated that, even for attackers that are capable of perform-

ing (for free) persistent man-in-the-middle attacks and are targeted a single device,

compromising the integrity of the system requires roughly 65M USD in energy and

hardware costs. We also saw that Contour could be applied today to the Debian

software repository with relatively minimal changes and overhead to existing in-

frastructure, with the main extra cost being the storage requirements of archival

nodes that mirror the repository data. The overheads for end users, in contrast, are

quite minimal, with the proof of inclusion for a binary within a batch of size 1M

being only 1.3 kB and taking only 224 µs to verify.



Chapter 7

Conclusion

Amen.

The Bible

In this thesis, we designed and evaluated techniques to build scalable and se-

cure decentralised on-chain protocols.

In Chapter 3 we introduced Chainspace, a sharded blockchain protocol that

splits the state of the ledger into multiple chains so that blocks can be produced

in parallel, thereby increasing on-chain transaction throughput. We introduced S-

BAC, an atomic cross-shard transaction protocol, and showed that the overall sys-

tem scales linearly with the number of shards. Our modest test-bed of 60 nodes

achieved 350 transactions per second, compared to Bitcoin’s 7 transactions per sec-

ond over 5,000+ nodes.

We then tackled the problem of scaling block validation in Chapter 4, so that

under-resourced nodes can efficiently make use of the public verifiability properties

of blockchain systems with high on-chain throughput. We proposed a system of

fraud proofs, which allows light clients to receive compact proofs that blocks con-

tain invalid state transitions, instead of directly replaying the chain. Additionally,

we also introduced the concept of data availability proofs, a technique to enable light

clients to efficiently verify that block data was published, so that the data necessary

to generate fraud proofs is available. We showed that with modest parameters, only

0.4% of block data needs to be downloaded to detect that a block is unavailable with

greater than 99% probability, per client.
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In Chapter 5 we used our new data availability proofs primitive to design a

new layer one architecture for blockchains. In this architecture, the chain is solely

used as ‘verifiable log’ used for transaction ordering and data availability, and all

execution of transactions applications is performed client-side. We showed that this

has several advantages, including the fact users of one application do not need to

download or verify the state of other unrelated applications.

Finally, in Chapter 6 we designed an efficient verifiable log application that

does not require any transaction execution, relying on Bitcoin’s layer one network

for economic anti-equivocation security. We proposed the application of software

binary transparency, an application that is uniquely suited for Bitcoin due to the

need for a proactive transparency mechanism. We showed that by using the Bitcoin

chain for economic anti-equivocation guarantees, a malicious actor would require

65M USD in energy and hardware costs to target a device with a targeted software

update without detection.

7.1 Future Research Directions
In this section, we propose some topics that may be interesting directions of future

research, continuing the research done in this thesis.

Validity Proofs

In Chapter 4, we used fraud proofs for (i) detecting invalid state transitions in blocks

and (ii) detecting incorrectly generated erasure coded Merkle roots for data avail-

ability proofs.

One of the disadvantages of relying on fraud proofs in such protocols is (i)

fraud proofs cause finality delays, as the user must wait for a period in case there is

a fraud proof and (ii) it requires a synchronous gossiping network. Instead of using

fraud proofs, protocols can use validity proofs to efficiently prove that block data is

valid, so that no such waiting period is necessary.

There have been advances in succinct proofs of computation, including zk-

SNARKs [24] and more recently zk-STARKs [23], which allow a prover to prove

that f (x,W ) = y for some provided x and y, where even if the witness W is very
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large in size and the computation f takes a very long time to compute, the proof

itself has only logarithmic or constant size and takes logarithmic or constant time to

verify.

Instead of relying on fraud proofs of incorrectly generated erasure codes, we

can require block headers to come with such a proof to show that they are correctly

erasure coded, removing the need for fraud proofs. Also note that the only signif-

icant advantage of the 2D Reed Solomon scheme over the 1D scheme is smaller

fraud proofs, so if succinct proofs are used switching back to 1D may be optimal

(constructing a legitimate erasure code takes only O(n log(n)) computation time for

n shares if Fast Fourier Transforms are used [97, 127]). Similarly, we can also

require block headers to come with such a proof to show that the all the state tran-

sitions in the block are valid.

Layer One Censorship Resistance

Current design paradigms for consensus mechanisms cannot guarantee liveness in

the presence of a dishonest majority of consensus participants. In particular, this

creates the possibility of transaction censorship, as block producers may refuse to

include certain transactions in blocks. Although this is seen as a liveness failure

from the perspective of a layer one chain, this can result in safety failures for layer

two sidechain protocols that rely on the layer one chain.

For example, some designs for optimistic rollup sidechains (see Section 5.2.4)

rely on fraud proofs of invalid state transitions being processed by a smart contract

on the main chain, in the event that an invalid sidechain block is created [1]. This

fraud proof must be included in the chain within a defined challenge period, af-

ter which sidechain blocks are considered final. Therefore a dishonest consensus

majority on the main chain can censor the inclusion of this fraud proof within the

chain, thus causing a safety failure in the main chain.

An important topic of future research is therefore designing layer one systems

that are censorship resistant in the presence of a dishonest majority of consensus

participants. Two potential research directions for this include:

• Designing a chain for smart contracts where all transactions use privacy-
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preserving zero-knowledge proofs such as zk-SNARKs [24], in such a man-

ner so that all transactions are indistinguishable from each other. If all transac-

tions are indistinguishable from each other, then block producers cannot cen-

sors transactions based on their content. Blockchains such as Zcash [77] use

zk-SNARKs to enable anonymous transactions, however anonymous transac-

tions are optional and only payments are supported.

• Designing a chain with a fork-choice rule or block validity rule that prevents

censorship of transactions deemed to be important (such as state transition

fraud proofs for sidechains). One proposed design for this [5] introduces a

block validity rule where blocks that do not contain important transactions

known by the transaction memory pool of the network at a certain point in

time, are invalid. This requires a weak subjectivity assumption, which means

that if a node goes offline for too long, they must ask another trusted node for

the correct fork of the chain. This is because the offline node does not know

which transactions were in the network’s memory pool at the time when it

was offline.

More Efficient Data Availability Proofs

The 2D data availability proof scheme in Section 4.5 requires clients to download

2
√

n Merkle roots for a n-sized block. Additionally, downloading a fraud proof

of an incorrectly generated erasure code in the 2D scheme requires downloading

a
√

n-sized row or column. It is worth exploring alternative designs with lower

overheads.

One such design that is based on this work is SPAR [156], which proposes a

Merkle tree where the intermediate nodes at each level are encoded using an LDPC

code [68]. Compared to our 2D Reed-Solomon scheme, only one Merkle root needs

to be downloaded per block, and the fraud proof size is O(log(n)). However, a

greater number of samples are required to achieve the same level of data availability

confidence. With similar parameters, SPAR requires 35 samples to achieve 99%

confidence, whereas the 2D scheme requires only 17.
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An important topic of future work would therefore be to design data availability

schemes that are more efficient in terms of sampling cost, fraud proof size and

overhead costs, while minimising any trade-offs in these costs.

Fraud Proofs and Sharding

In Chapter 4 we proposed a generic system of fraud proofs for invalid state tran-

sitions. However, we did not explore in much detail how such a system could be

applied within a sharding protocol such as Chainspace in Chapter 3. We leave this

to future work, and provide some discussion here.

The Chainspace sharding system in Chapter 3 was shown to provide linear

scalability under a threat model where all shards are assumed to be honest. However

under a threat model where shards are not assumed to be honest, fraud proofs would

be required to allow each shard to detect invalid blocks from other shards. This

would require each shard to run a light client for every shard, and download the

block headers for each block in every shard. This requires an overhead of O(s)

where s is the number of shards in the system, per block. Therefore, there is a

limit to the number of shards that the system may have, due to the bookkeeping of

other shards required by each shard. Exploring such limits, and whether they can

be overcome, is a topic of future research.

Designs for real-world sharding systems such as Ethereum 2.0 have similar

limitations. In Ethereum 2.0 there is a ‘beacon chain’ that keeps track of all the

block headers for all shards. The beacon chain can be thought of as a shard in its

own right. Therefore if the computational capacity of each node in the network in-

creases by n, then the beacon chain can keep track of n times more shards, and each

shard can process n times more transactions. Therefore the transaction throughput

of the system increases by n2 – this is known as ‘quadratic sharding’ [137].

The state transition fraud proof system proposed in Chapter 4 was designed in

the context of a single-chain system. When considering a sharded system, the cross-

shard communication protocol must be taken into account, in case that any dishonest

shard does not follow the protocol correctly. In the case of S-BAC, a shard may

violate the protocol by committing a transaction that has been rejected by an input
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shard, or aborting a transaction that has been accepted by all shards. To prevent

this, the transcript of the S-BAC protocol written into each shard’s blockchain could

also include a Merkle inclusion proof for each cross-shard message, justifying each

shard’s actions. These Merkle proofs are similar to the proofs of acceptance and

rejection in OmniLedger [87]. This transcript can be used as an audit log, such that

if an invalid transcript is published on a shard, this can be used as a fraud proof.

7.2 Closing Thoughts

At the start of this thesis, we posed the problem of scaling the base layer of

blockchains, while at the same time not trading off the security and decentralisa-

tion properties that give blockchains their purpose. As was mentioned in Chapter 1,

we were specifically concerned about the ability of end-users to verify (directly or

indirectly) that the chain is valid.

The scaling solutions we proposed introduce new limitations and security as-

sumptions compared to existing blockchains such as Bitcoin [109]. Therefore, it

can be argued that some security was traded to achieve scalability. Whether the new

limitations and assumptions are acceptable is often a subjective matter that depends

on the real-world context where the systems are being deployed.

The work on sharding in Chapter 3 increases the resources required by end-

users to ensure the validity of the state of the system. Fraud and data availability

proofs in Chapter 4 alleviate this, but this introduces assumptions about the mini-

mum number of light clients in the network. We have argued in Section 4.5 that in

practice this assumption is very likely to be met. Additionally, fraud proofs increase

transaction latency as clients must wait to see if they receive a fraud proof before

accepting new blocks.

The work on LazyLedger in Chapter 5 makes use of data availability proofs

and thus relies on the same assumptions. On the other hand, the work on Contour

in Chapter 6 does not have these limitations as it makes use of Merkle roots pegged

on the Bitcoin blockchain for security, but this is only suitable for applications that

do not require any execution.
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To conclude, we have found that it is possible to increase on-chain throughput

with better security and decentralisation trade-offs than simply increasing block

size, but ultimately a trade-off is still required. It is time for us to consider what

trade-offs are acceptable and worth making to bring cryptocurrencies to the levels

of scalability required for mainstream adoption.
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A.1 Computation of index in Step 4 of VerifyCodecFraudProof
In Step 4 of VerifyCodecFraudProof in Section 4.5.7, index can be computed as

follows:

• If axis= 0 and axx = 0, index= j ∗matrixWidthi +posx.

• If axis= 1 and axx = 0, index= posx ∗matrixWidthi + j.

• If axis= 1 and axx = 1, index= 1
2dataLengthi+ j ∗matrixWidthi +posx.

• If axis= 0 and axx = 1, index= 1
2dataLengthi+posx ∗matrixWidthi + j.
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