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Summary 25 

Dysregulated IL-1β and IL-6 responses have been implicated in the pathogenesis of severe Coronavirus 26 

Disease 2019 (COVID-19). Innovative approaches for evaluating the biological activity of these cytokines in 27 

vivo are urgently needed to complement clinical trials of therapeutic targeting of IL-1β and IL-6 in COVID-19.  28 

We show that the expression of IL-1β or IL-6 inducible transcriptional signatures (modules) reflects the 29 

bioactivity of these cytokines in immunopathology modelled by juvenile idiopathic arthritis (JIA) and 30 

rheumatoid arthritis. In COVID-19, elevated expression of IL-1β and IL-6 response modules, but not the 31 

cytokine transcripts themselves, is a feature of infection in the nasopharynx and blood, but is not associated 32 

with severity of COVID-19 disease, length of stay or mortality.  We propose that IL-1β and IL-6 transcriptional 33 

response modules provide a dynamic readout of functional cytokine activity in vivo, aiding quantification of 34 

the biological effects of immunomodulatory therapies in COVID-19. 35 
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Introduction 40 

Severe Coronavirus Disease 2019 (COVID-19) typically occurs over a week from symptom onset, when viral 41 

titres have diminished, suggesting a dysregulated host inflammatory response may be driving the 42 

pathogenesis of severe disease (Bullard et al., 2020; Huang et al., 2020; McGonagle et al., 2020). Elevated IL-43 

1β and IL-6 responses have each been associated with disease severity (Huang et al., 2020; Liao et al., 2020; 44 

Qin et al., 2020; Ravindra et al., 2020; Zhang et al., 2020; Zhou et al., 2020b). In addition, the 45 

hyperinflammatory state in COVID-19 is reported to resemble some aspects of haemophagocytic 46 

lymphohistiocytosis (HLH), a condition that may benefit from therapeutic IL-1β blockade (Mehta et al., 47 

2020). These observations have generated hypotheses that IL-1β and/or IL-6 may be key drivers of pathology 48 

in severe COVID-19, and led to clinical trials of IL-1β and IL-6 antagonists in this context (Maes et al., 2020). 49 

Randomised studies to date investigating the role of tocilizumab, a humanised monoclonal antibody against 50 

the IL-6 receptor, have shown no clinical benefit, but immunophenotyping beyond the measurement of 51 

single cytokines, before or after drug administration, was not recorded or correlated with clinical responses 52 

at the individual patient level (Hermine et al., 2020; Salvarani et al., 2020; Stone et al., 2020). 53 

The measurement of individual cytokines at the protein or RNA level may not reflect their biological activity 54 

accurately within multivariate immune systems that incorporate redundancy and feedback loops. To address 55 

this limitation, we have previously derived and validated gene expression signatures, or modules, 56 

representing the transcriptional response to cytokine stimulation, using them to measure functional 57 

cytokine activity within genome-wide transcriptomic data from clinical samples (Bell et al., 2016; Byng-58 

Maddick et al., 2017; Dheda et al., 2019; Pollara et al., 2017). However, transcriptional modules to quantify 59 

IL-1β or IL-6 response have not been used in COVID-19 to quantify the bioactivity of these cytokine pathways 60 

in vivo.  In the present study, we have sought to address this gap , describing the derivation and validation of 61 

IL-1β and IL-6 inducible transcriptional modules, and testing the hypothesis that these modules can be used 62 

in the molecular assessment of the pathophysiology and the response to therapeutic cytokine blockade of 63 

inflammatory conditions, including COVID-19. 64 

 65 

Results 66 

Identification and validation of IL-1β and IL-6 transcriptional modules 67 

We first sought to derive transcriptional modules that identified and discriminated between the response to 68 

IL-1β and IL-6 stimulation. We have previously derived an IL-1β response module from cytokine stimulated 69 

fibroblasts (table S2) (Pollara et al., 2019). As in our prior studies (Bell et al., 2016; Pollara et al., 2017, 2019), 70 

we used the geometric mean of the constituent genes in a module as a summary statistic to describe the 71 
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relative expression of the module. We demonstrate that in both monocyte-derived macrophages (MDM) 72 

and peripheral blood mononuclear cells (PBMC) (Boisson et al., 2012; Jura et al., 2008), IL-1β stimulation 73 

induced greater expression of the IL-1β response module than either IL-6 or TNFα stimulation, where there 74 

was no increased expression above unstimulated cells (Fig 1A + B). To identify an IL-6 response module 75 

which was able to discriminate from the effects of IL-1β, we identified one study that had stimulated human 76 

MDM with either IL-1β (15 ng/ml) or IL-6 (25 ng/ml) for 4 hours (Jura et al., 2008). Hierarchical clustering 77 

identified genes induced by IL-6 but not IL-1β, and we termed this the IL-6 response module (table S2). 78 

Internal validation of this module confirmed increased expression in IL-6 stimulated MDM (fig 1A). Testing 79 

the IL-6 module in other datasets demonstrated elevated expression following IL-6, but not TNFα, 80 

stimulation of human kidney epithelial and macrophage cell lines (Das et al., 2020; O’Brown et al., 2015) (figs 81 

1C+D), whereas no elevated expression of the IL-6 module was observed following IL-1β or TNFα stimulation 82 

of MDM or PBMC (figs 1A+B). These findings demonstrated that the IL-1β and IL-6 response modules could 83 

detect the effects of their cognate cytokines, and discriminate these from each other and from an 84 

alternative inflammatory cytokine stimulus, TNFα. 85 

 86 

IL-1β and IL-6 module expression in chronic inflammation 87 

To determine whether IL-1β and IL-6 response modules were able to detect elevated cytokine bioactivity in 88 

vivo, we assessed the blood transcriptome of juvenile idiopathic arthritis (JIA) and rheumatoid arthritis (RA) 89 

patients. These are conditions in which elevated IL-1β and IL-6 activity are considered to play a key role in 90 

disease pathogenesis, evidenced by clinical improvement following therapeutic antagonism of these 91 

cytokines (De Benedetti et al., 2012; Fleischmann, 2017; Nikfar et al., 2018; Ruperto et al., 2012). The blood 92 

transcriptome of untreated JIA patients displayed elevated IL-1β and IL-6 bioactivity (fig 2A) (Brachat et al., 93 

2017), but this was not consistently evident in several RA blood transcriptome datasets (fig S1) (Lee et al., 94 

2020; Macías-Segura et al., 2018; Tasaki et al., 2018). Discrepancies between molecular changes in blood and 95 

tissues have been previously described in RA (Lee et al., 2020), and therefore we tested the hypothesis that 96 

in contrast to blood, elevated IL-1β and IL-6 bioactivity was a feature of the synovium in RA. Consistent with 97 

this hypothesis, a separate transcriptomic dataset of synovial membrane biopsies from patients with RA 98 

(Broeren et al., 2016) showed elevated levels of both IL-1β and IL-6 response module expression compared 99 

to non-RA synovium (fig 2B). 100 

We used the elevated cytokine activity in the blood of JIA patients to test the hypothesis that therapeutic 101 

cytokine modulation would result in changes in cytokine bioactivity as determined by module expression. 102 

We made use of the blood transcriptome of JIA patients 3 days following administration of canakinumab, a 103 

human monoclonal antibody to IL-1β (Brachat et al., 2017). Patients who had a therapeutic response to 104 
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canakinumab showed elevated IL-1β module expression which reduced 3 days after canakinumab 105 

administration (fig 3A). In contrast, in those who had no treatment response, IL-1β module expression was 106 

lower at baseline and was unaffected by canakinumab (fig 3A). Unlike the differences seen in the IL-1β 107 

module between responders and non-responders, there were no differences between these groups in IL-6 108 

module expression at baseline (fig 3B). This indicated that these two cytokine response modules quantified 109 

two distinct biological processes. Interestingly, expression of the IL-6 module was also diminished after 110 

canakinumab treatment in patients who responded to treatment, suggesting that IL-6 activity may be 111 

downstream of IL-1β in this context. Of note in these populations, the expression of the IL1B gene correlated 112 

with that of the IL-1β response module, but the same was not evident between IL-6 module and IL6 gene 113 

expression (fig 3C), illustrating an example in which cytokine gene expression itself may not necessarily 114 

reflect the functional activity of that cytokine. 115 

IL-1β and IL-6 bioactivity in COVID-19 116 

We tested the hypothesis that elevated IL-1β and IL-6 bioactivity is a feature of COVID-19 disease. We 117 

initially explored the induction of IL-1β and IL-6 activity at the site of COVID-19 disease, by profiling 118 

transcriptional responses in nasopharyngeal swabs from 495 control and 155 SARS-CoV-2 infected 119 

individuals (Butler et al., 2020; Ramlall et al., 2020). Gene set enrichment analysis (GSEA) was used as an 120 

alternate method of module enrichment scoring (Subramanian et al., 2005), in line with previous analyses of 121 

this data set (Ramlall et al., 2020). While the IL-1β response module was modestly induced by SARS-CoV-2 122 

infection, the IL-6 response module was significantly enriched in transcriptional programs induced by this 123 

viral infection (fig 4). Moreover, we found that SARS-CoV-2 viral loads were positively associated with 124 

cytokine activity, with enrichment of IL-1β and IL-6 responses observed in individuals with the upper tertile 125 

of measured viral loads, while patients with the lowest tertile viral titres did not show induction of responses 126 

to either cytokine (fig 4). The greatest IL-6 responses were in fact observed in individuals with intermediate 127 

viral titres, in whom significant induction of IL-1β activity was not seen (fig 4). Together, these findings 128 

suggest that both IL-1β and IL-6 activity are a feature of the host response at the site of SARS-CoV-2 129 

infection, and are likely to be driven by increasing viral replication in vivo. 130 

As clinical deterioration in COVID-19 occurs after peak viral replication in the airways has subsided, we 131 

tested the hypothesis that IL-1β and IL-6 activity was also related to disease severity. We initially explored IL-132 

1β and IL-6 activity in the blood of 3 patients with mild-moderate COVID-19 disease who were admitted to 133 

hospital and recovered (Ong et al., 2020). This dataset was generated using the Nanostring system and 134 

consisted of 579 mRNA targets, which included only 7/57 (12.2%) and 7/41 (17.1%) constituent genes of the 135 

IL-1β and IL-6 response modules respectively (table S2). We demonstrated that IL-1β and IL-6 submodules, 136 

generated from these shorter lists of constituent genes, were still able to recapitulate all the findings from 137 

fig 3 (fig S2). The expression of these submodules in the blood transcriptome of this small number of COVID-138 

Jo
urn

al 
Pre-

pro
of



IL-1 and IL-6 response modules in COVID-19 

 

6 

19 patients revealed variation in IL-1β and IL-6 bioactivity over the period of hospitalisation, with higher 139 

expression seen earlier during hospital admission and a reduction as patients recovered (Fig 5A). This time-140 

associated relationship with clinical recovery was not seen for the expression of the IL1A, IL1B and IL6 genes 141 

(fig 5A). We extended these analyses by assessing the transcriptome of blood samples collected at the time 142 

of hospital admission from 32 COVID-19 patients presenting with varying levels of disease severity (Hadjadj 143 

et al., 2020). These data, also collected using the Nanostring system, revealed expression of the IL-1β and IL-144 

6 cytokine submodules was clearly elevated in COVID-19 compared to healthy controls (fig 5B). However, 145 

strikingly, there was only minimal variability in IL-1β and no variability in IL-6 submodule expression between 146 

the different levels of COVID-19 disease severity (fig 5B). 147 

Finally, we tested the hypothesis that elevated IL-1β and IL-6 transcriptional activity in blood could predict 148 

clinical outcome in COVID-19. We assessed the transcriptome of blood leucocytes from 101 COVID-19 and 24 149 

non-COVID-19 patients admitted to hospital (Overmyer et al., 2020). As seen in the whole blood 150 

transcriptome analysis (fig 5), leucocytes from COVID-19 patients also demonstrated elevated IL-1β and IL-6 151 

module activity compared to controls (fig 6A), and once again this distinction was not seen in IL1A, IL1B and 152 

IL6 gene expression (fig S3). Clinical outcome in this cohort was determined from the number of hospital free 153 

days at day 45 (HFD-45) following hospital admission, whereby zero days indicated continued admission or 154 

death (Overmyer et al., 2020). Prognostication models have identified decreased lymphocyte counts as 155 

predictors of clinical deterioration (Gupta et al., 2020). Focusing on COVID-19 patients not requiring ICU 156 

admission, we reproduced this observation, demonstrating a positive correlation between HFD-45 and the 157 

expression of a transcriptional module that reflects T cell frequency in vivo (Pollara et al., 2017) (fig 6B). In 158 

contrast, neither IL-1β nor IL-6 response module expression at the time of study recruitment was associated 159 

with HFD-45, indicating that, in this dataset, transcriptional activity of these cytokines was not predictive of 160 

clinical outcome from COVID-19 infection (fig 6B).  161 

Discussion  162 

The protracted clinical course, inverse relationship between viral load and symptom progression, and the 163 

association between inflammation and worse clinical outcomes support a hypothesis whereby severe 164 

COVID-19 disease is predominantly driven by an exaggerated inflammatory response (Bullard et al., 2020; 165 

Huang et al., 2020). Both IL-1β and IL-6 may play a role in this process (Huang et al., 2020; Liao et al., 2020; 166 

Qin et al., 2020; Ravindra et al., 2020; Zhang et al., 2020; Zhou et al., 2020a), and cytokine modulating 167 

therapies are now being tested in COVID-19 clinical trials. In this study we utilised transcriptional modules 168 

derived from cytokine stimulated cells to demonstrate that their expression, but not that of their cognate 169 

cytokine genes, provided a quantitative readout for cytokine bioactivity in vivo, both in the context of 170 

COVID-19 and chronic inflammatory conditions. 171 
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We show that in COVID-19, IL-1β and IL-6 cytokine activity is detectable at a site of disease, the nasopharynx, 172 

where greater IL-6 bioactivity in particular is associated with higher levels of SARS-CoV-2 detected. This 173 

finding indicates that the presence of viral antigen is associated with IL-6 mediated inflammation, although 174 

we cannot ascertain from these experiments whether IL-6 inflammation persists in tissues in the later stages 175 

of severe COVID-19 when viral titres diminish (Bullard et al., 2020). The elevated cytokine responses seen in 176 

nasopharyngeal tissues were also detectable in the transcriptome of whole blood and isolated leucocytes 177 

from COVID-19 patients compared to the control populations available, although this analysis merits being 178 

extended to include a wider array of conditions associated with hyperinflammation (Leisman et al., 2020). 179 

Although a reduction in cytokine activity tracked clinical recovery from illness, IL-1β and IL-6 activity at the 180 

time of hospital attendance was not predictive for clinical outcome, and, in contrast to the association seen 181 

with circulating levels of IL-6 protein (Thwaites et al., 2020), we observed no clear gradient of IL-1β or IL-6 182 

response module expression with disease severity. Our findings may help explain the recent results from 183 

randomised studies whereby neutralisation of IL-6 activity by tocilizumab did not show a benefit in mortality 184 

or clinical recovery in patients with severe COVID-19 (Hermine et al., 2020; Salvarani et al., 2020; Stone et 185 

al., 2020). However, these studies did not record IL-6 activity before or after tocilizumab administration, 186 

precluding associations between cytokine activity, neutralisation efficiency and clinical outcomes. We 187 

propose that future randomised trials will need to incorporate assessments of cytokine activity in study 188 

protocols to permit mechanistic correlations between immunomodulatory interventions and disease 189 

outcomes, promoting a stratified medicine approach to host-directed therapies in COVID-19. 190 

A consistent observation in our work was that transcriptional modules identified differences between 191 

patient groups that would not otherwise have been detected by assessment of cognate gene transcripts. An 192 

interpretation of these findings is that the downstream response to cytokine stimulation is more persistent 193 

than the expression of the cytokine gene mRNA, the stability of which is subject to trans-regulatory factors 194 

and feedback loops (Iwasaki et al., 2011; Seko et al., 2006). Moreover, transcriptional modules are 195 

intrinsically composed of genes with co-correlated expression, minimising technical confounding of single 196 

gene measurements, demonstrated by the strongly concordant expression between the full and Nanostring 197 

subset IL-1β and IL-6 response modules. These factors may explain the discordance recorded between IL-6 198 

gene expression and protein secretion in COVID-19 (Hadjadj et al., 2020). Moreover, cytokine levels after 199 

modulation in vivo do not necessarily reflect bioactivity, exemplified by the rise in IL-6 in blood following 200 

administration of tocilizumab (Nishimoto et al., 2008). We propose that cytokine response modules 201 

overcome both issues by integrating the culmination of cytokine signalling events, and may be used as an in 202 

vivo biomonitor of cytokine activity (Hedrick et al., 2020).  203 
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Limitations of study 204 

Our study has limitations. Despite drawing on four independent COVID-19 datasets, the sample sizes 205 

assessed in our study were still modest, especially for longitudinal samples, but this was limited by the data 206 

available. Assessments of the transcriptome from leucocytes and whole blood in COVID-19 may not be 207 

interchangeable and will need cross-validating, although both datasets demonstrated no association 208 

between IL-1β or IL-6 activity and severity of disease. Determining the sensitivity and specificity of the IL-1β 209 

and IL-6 response modules for their respective cognate cytokines was limited by the available datasets and 210 

the range of cytokine stimulation conditions performed in those experiments. Comparing the expression of 211 

these modules across a wider range of biologically paired cytokine stimulations will allow refinement of their 212 

accuracy. As the modules were generated from in vitro experiments, we sought to determine their 213 

applicability in vivo, assessing neutralisation of cytokine activity following immunomodulation with biologic 214 

agents in vivo. IL-1β activity in blood and in tissues was diminished days after canakinumab (fig 3) and 215 

anakinra (Pollara et al., 2019) administration respectively, but no equivalent datasets were available to 216 

assess the IL-6 response module in the same manner. Biobanked samples from ongoing tocilizumab clinical 217 

trials in COVID-19 and other diseases may provide an opportunity to validate IL-6 module performance in 218 

this way.  219 

Conclusions 220 

Our data demonstrate elevated activity of the inflammatory cytokines IL-1β and IL-6 in COVID-19 in blood 221 

and tissues, and demonstrate the utility of cytokine transcriptional response modules in providing a dynamic 222 

readout of the activity of these pathways in vivo. We propose that use of these modules may enhance 223 

efforts to investigate the pathology of COVID-19, support development of methods to stratify patients’ risk 224 

of clinical progression, and aid quantification of the biological effects of host-directed immunomodulatory 225 

therapeutics in COVID-19. 226 

  227 

Jo
urn

al 
Pre-

pro
of



IL-1 and IL-6 response modules in COVID-19 

 

9 

Resource availability 228 

Lead Contact 229 

Further information and requests for resources and reagents should be directed to and will be fulfilled by 230 

the Lead Contact, Dr Gabriele Pollara (g.pollara@ucl.ac.uk). 231 

Materials Availability 232 

The current study made use of transcriptional modules derived from two open access publications (Jura et 233 

al., 2008; Pollara et al., 2019). The gene content for each module is available in table S2. The R code used to 234 

calculate geometric mean expression of modules has been previously published (Pollara et al., 2017) and is 235 

freely available (https://github.com/MJMurray1/MDIScoring).  236 

Data and Code Availability 237 

This study did not generate new datasets or code. The title, DOI, accession number and repository for all 238 
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Figure legends 390 

Figure 1. Validation of cytokine response modules. Geometric mean module expression in A) MDM 391 

stimulated in vitro with either IL-1β (15 ng/ml) or IL-6 (25 ng/ml) for 4 hours (Jura et al., 2008), B) PBMC 392 

stimulated with TNFα (20 ng/ml) or IL-1β (10 ng/ml) for 6 hours (Boisson et al., 2012), C) human renal 393 

proximal tubular epithelial (HK-2) cells stimulated with IL-6 (200 ng/ml) or TNFα (100 ng/ml) for 1.5 hours 394 

(O’Brown et al., 2015) and D) human macrophage cell lines (THP-1) stimulated with IL-6 (50 ng/ml) or TNFα 395 

(10 ng/ml) for 2 hours (Das et al., 2020). Transcriptomic datasets are designated adjacent to figure panels. * 396 

= p < 0.05 by Mann-Whitney test. 397 

Figure 2. Cytokine response module expression in chronic inflammatory conditions. Geometric mean 398 

expression of IL-1β and IL-6 cytokine response modules in A) blood of patients with JIA compared to healthy 399 

controls (Brachat et al., 2017), and B) in the synovium of RA patients compared to that of healthy controls 400 

(Broeren et al., 2016). Transcriptomic datasets are designated adjacent to figure panels. * = p < 0.05 by 401 

Mann-Whitney test.   402 

Figure 3. Effect of canakinumab on expression of cytokine response modules and genes. A) Geometric mean 403 

expression of IL-1β and IL-6 cytokine response modules in JIA patients before and 3 days after administration 404 

of canakinumab (Brachat et al., 2017). Patients were subdivided into good responders (90-100% 405 

improvement) and non-responders (0-30% improvement). Dotted lines indicate median module or gene 406 

expression in healthy controls (HC) population in same dataset. * = p < 0.05 by Mann-Whitney test.  B) 407 

Relationship between expression of cytokine response modules and cytokine genes. Statistical assessment of 408 

correlation made by Spearman Rank correlation. r = correlation coefficient. Transcriptomic dataset 409 

designated adjacent to figure panels. 410 

Figure 4. Cytokine response modules at the site of disease in COVID-19. A) Gene set enrichment analysis 411 

(GSEA) of the IL-1β and IL-6 modules was applied to nasopharyngeal swabs from SARS-CoV-2 infected and 412 

uninfected individuals. Patients were stratified into low (pink), medium (orange) and high (red) viral loads as 413 

previously described (Ramlall et al., 2020). GSEA was used to determine the level of engagement for the 414 

respective modules in the context of SARS-CoV-2 infection (Subramanian et al., 2005), in line with previously 415 

published analysis of this data set (Ramlall et al., 2020). Normalised enrichment scores (NES) are shown on 416 

the x axes and measurement of statistical significance (false detection rate q-value) is shown on the y axes. 417 

The threshold for significance (q=0.05) is shown by the dotted lines; data points below the dotted lines are 418 

significantly enriched for the relevant module in each group of SARS-CoV-2 positive patients, in comparison 419 

to the control group. B) Leading edge enrichment plots from GSEA of the cytokine modules for each 420 

comparison. 421 
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Figure 5. Cytokine response module and gene expression in COVID-19 blood samples. A) Geometric mean 422 

expression of IL-1β and IL-6 response module and IL1A, IL1B and IL6 gene expression in patients admitted 423 

with COVID-19 (Ong et al., 2020). Number of patient samples at each timepoint designated on first plot of 424 

each row, but applicable for all panels. Where more than one sample was available at any time point, the 425 

mean expression +/- SEM is plotted.  Kruskal-Wallis test was performed on binned time points 4-6, 7-9, 10-426 

12 and 12+ days following hospitalisation, corresponding to 4, 7, 8 and 3 samples in each of these categories. 427 

The p values shown represent Kruskal-Wallis tests with time since hospital admission as the independent 428 

variable, where a threshold of 0.01 (corrected for multiple testing by the Bonferroni method) is required  for 429 

a single test to be classed as significant (significant p-values indicated in bold text). B) Geometric mean 430 

expression of IL-1β and IL-6 response modules in whole blood transcriptomic profiles from patients admitted 431 

with moderate (n=11) severe (n=10) or critical (n=11) COVID-19, in comparison to healthy controls (n=13) 432 

(Hadjadj et al., 2020). In this study, samples were collected from patients at the time of admission to 433 

hospital, a median of 10 days (IQR 9 – 11 days) from symptom onset. A Mann-Whitney test was used to 434 

assess differences in module expression between all COVID-19 patients and healthy controls (* = p < 0.05), 435 

and a Kruskal-Wallis test was used to determine variability in module expression between the grades of 436 

COVID-19 disease severity. 437 

Figure 6. Relationship between cytokine response module expression at admission in COVID-19 and clinical 438 

outcome. A) Geometric mean expression of IL-1β and IL-6 response modules in transcriptomic profiles of 439 

blood leucocytes collected from 101 COVID-19 and 24 non-COVID-19 patients. In this study, samples were 440 

collected from patients at a median of 3.37 days from admission to hospital (Overmyer et al., 2020) . B) In 441 

patients from this cohort who were not admitted to ITU, the relationship between expression of cytokine 442 

response modules, or a previously validated T-cell module (Pollara et al., 2017), and the number of hospital 443 

free days at day 45 (HFD-45) following hospital admission (whereby zero days indicated continued admission 444 

or death) is shown. Statistical assessment of correlation made by Spearman Rank correlation. r = correlation 445 

coefficient. 446 
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Transcriptional response modules characterise IL-1β and IL-6 activity in COVID-19 

Highlights 

• Transcriptional response modules reflect IL-1β and IL-6 activity in vivo 

• Response modules are superior to single gene transcripts in measuring cytokine activity 

• Elevated IL-1β and IL-6 activity are a feature of COVID-19 disease in blood and tissues 

• COVID-19 disease severity is not associated with greater IL-1β or IL-6 activity 
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