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Abstract

The way we perceive the world is strongly influenced by our expectations. In line with this,

much recent research has revealed that prior expectations strongly modulate sensory pro-

cessing. However, the neural circuitry through which the brain integrates external sensory

inputs with internal expectation signals remains unknown. In order to understand the

computational architecture of the cortex, we need to investigate the way these signals flow

through the cortical layers. This is crucial because the different cortical layers have distinct

intra- and interregional connectivity patterns, and therefore determining which layers are

involved in a cortical computation can inform us on the sources and targets of these signals.

Here, we used ultra-high field (7T) functional magnetic resonance imaging (fMRI) to reveal

that prior expectations evoke stimulus-specific activity selectively in the deep layers of the

primary visual cortex (V1). These findings are in line with predictive processing theories pro-

posing that neurons in the deep cortical layers represent perceptual hypotheses and thereby

shed light on the computational architecture of cortex.

Introduction

Over the last decade, research using techniques as diverse as noninvasive functional magnetic

resonance imaging (fMRI) [1–4] and electro- and magnetoencephalography [5–8] in humans,

as well as invasive animal electrophysiology [9–13], has revealed that prior expectations

strongly modulate sensory processing [14]. However, it is as yet unclear what the neural mech-

anisms underlying these modulations are. To properly understand these mechanisms, we need

to go beyond studying cortical regions as a whole and study the laminar circuits involved in

these computations [15–17]. The reason for this is that the different cortical layers have differ-

ent interregional connectivity patterns, with bottom-up signals predominantly flowing from

superficial layers 2/3 to the granular layer 4 of downstream regions and feedback arising from

the deep layers 5/6 and targeting agranular layers 1 and 5/6 of upstream regions [18–20].

Therefore, determining which layers are involved in a cortical computation can inform us on

the likely sources and targets of these signals.
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For instance, this known physiology has led to predictive coding theories [21–24] proposing

that neurons in the deep cortical layers, which send feedback to upstream regions, represent

our current hypotheses of the causes of our sensory inputs. Neurons in the superficial layers,

on the other hand, are proposed to inform downstream regions of the mismatch between

these hypotheses and current sensory inputs. While these theories are intriguing, and have gar-

nered much excitement in the field [25,26], there has been no direct empirical support of these

different proposed roles of the cortical layers.

One recent proposal is that expectations evoke stimulus-specific activity patterns in early

sensory cortex [27–30], which, in turn, modulate processing of subsequent sensory inputs

[31]. The goal of the current study was to determine which layers of the primary visual cortex

(V1) contain such expectation signals and how this differs from the activity evoked by a stimu-

lus presented to the eyes. We hypothesised that merely expecting a stimulus might activate a

pattern of activity reflecting the expected stimulus in the deep layers of the visual cortex, which

have been proposed to contain perceptual hypotheses [22,24,32,33]. Alternatively, expectations

may serve to increase the synaptic gain on expected sensory signals in superficial layers, akin

to mechanisms of feature-based attention [34,35].

Results

We induced expectations by presenting a cue (orange versus cyan circle inside a fixation bull’s

eye) that predicted the orientation (45˚ versus 135˚) of a subsequently presented grating stimu-

lus (Fig 1A and 1B). This first grating was followed by a second grating which differed slightly

in orientation (mean = 3.3˚) and contrast (mean = 6.9%), determined by an adaptive staircase

(see Materials and methods). In separate runs of the experiment, human participants (N = 18)

performed 2 tasks, judging either the orientation or contrast change between the 2 gratings.

Crucially, on 25% of trials, the gratings were omitted (Fig 1C), meaning the screen stayed

empty except for the fixation bull’s eye, and participants were not required to perform any

task. Therefore, on these trials, participants had a highly specific expectation of a certain stimu-

lus appearing, but there was no corresponding input to the eyes.

We noninvasively examined the laminar profile of the activity evoked by these orientation

expectations in anatomically defined human V1, using ultra-high field (7T) fMRI with high

spatial resolution (0.8-mm isotropic). Layer-specific fMRI is a novel technique that has only

recently become feasible due to the submillimetre resolution required. It has been successfully

used to study many cognitive processes, such as attention [34–36], working memory [37,38],

spatial context [39], perceptual illusions [32,40,41], somatosensation [17], and even language

[42]. Encouragingly, results have generally been in good alignment with those obtained from

invasive animal studies [43–45].

To examine orientation-specific blood oxygen level–dependent (BOLD) activity, we divided

V1 voxels into 2 (45˚-preferring and 135˚-preferring) subpopulations depending on their ori-

entation preference during an independent functional localiser. Layer-specific time courses

during the main experiment runs were extracted for both voxel subpopulations. Specifically,

we defined 3 equivolume grey matter (GM) layers (superficial, middle, and deep; Fig 2) and

determined the proportion of each voxel’s volume in these layers (as well as in white matter

(WM) and cerebrospinal fluid (CSF)). These layer “weights” were subsequently used in a spa-

tial regression analysis to estimate layer-specific time courses of the BOLD signal in the 2 sub-

populations of V1 voxels [32,34,38,46]. This regression analysis served to unmix the signals

originating from the different layers, which were potentially mixed within individual voxels.

Finally, for both voxel subpopulations, we subtracted the activity of the 3 layers evoked by

expecting/seeing the non-preferred orientation from the activity evoked by expecting/seeing
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the preferred orientation (see S1 Fig for data before subtraction). After this subtraction,

responses were averaged over the 2 subpopulations. This procedure resulted in orientation-

specific, layer-specific BOLD signals [34,38] for both the trials on which gratings were pre-

sented and those on which the gratings were expected but omitted.

Prior expectations selectively activate deep layers of V1

The laminar profile of V1 activity evoked by purely top-down expectations, in the absence of

bottom-up input, was strikingly different from that evoked by actually presented stimuli (Fig

3A; interaction between presented versus omitted and cortical layer: F2,34 = 5.4, p = 0.0093).

Specifically, merely expecting a grating with a specific orientation evoked a BOLD signal

reflecting that orientation in the deep (t17 = 3.5, p = 0.0029), but not the middle (t17 = 0.8,

p = 0.45) or superficial (t17 = 0.7, p = 0.48) layers of V1. In fact, the expectation-evoked orienta-

tion-specific BOLD signal was significantly stronger in the deep layers than in the middle (t17

= 2.8, p = 0.012) and superficial (t17 = 2.5, p = 0.025) layers. When a grating was actually pre-

sented to the eyes, this evoked orientation-specific activity in all layers of V1 (deep: t17 = 4.5,

p = 0.00035; middle: t17 = 3.6, p = 0.0022; superficial: t17 = 4.2, p = 0.00063), as would be

expected.

Interestingly, the strength of the expectation signals was dependent on the task the partici-

pants were performing in that experimental run (Fig 3B; interaction between stimulus pre-

sented versus omitted, task, and cortical layer: F2,34 = 3.3, p = 0.048). This effect was driven by

the fact that orientation-specific BOLD signals evoked by expected-but-omitted gratings had a

different laminar profile in the 2 tasks (interaction between task and cortical layer, omission

trials only: F2,34 = 3.6, p = 0.039; Fig 3B, top panel). That is, orientation expectations evoked

Fig 1. Experimental paradigm. (A) Each trial started with a coloured dot that predicted the orientation of the

subsequent grating stimulus (45˚ or 135˚). On 75% of trials, a set of gratings was then presented, the first of which had

the expected orientation and the second differed slightly in orientation and contrast. In separate experimental runs,

participants discriminated either the orientation or the contrast difference between the gratings. (B) The colour of the

fixation circle (cyan or orange) predicted the orientation of the subsequent grating stimulus (45˚ or 135˚) with 75%

validity. (C) In the remaining 25% of trials, the gratings were omitted. On these trials, there was an expectation of a

particular visual stimulus but no actual visual input. Participants had no task in these trials, except for holding central

fixation.

https://doi.org/10.1371/journal.pbio.3001023.g001
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stimulus-specific activity in the deep (t17 = 3.0, p = 0.0086), but not the middle (t17 = 1.1,

p = 0.28; deep versus middle: t17 = 2.6, p = 0.020) and superficial (t17 = 0.1, p = 0.92; deep ver-

sus superficial: t17 = 3.5, p = 0.0026) layers of V1 when participants were preparing to perform

Fig 2. Analysis approach. (A) Illustration of ROI selection on sagittal slice of the mean functional scan of 1

participant. Overlaid red and yellow lines indicate pial and WM boundaries, respectively, as determined by registering

anatomical boundaries to the mean functional image using RBR. Within V1 (white), active voxels were selected based

on significant activation in the functional grating localiser (green). From these active voxels, we selected the 500 most

strongly 45˚-preferring (pink) and 135˚-preferring (blue) voxels, respectively. With all voxels in these 2 ROIs, we

determined how their volume was distributed over the superficial, middle, and deep cortical layers. (B) Schematic

example of a voxel (red square) and the distribution of its volume over the 3 GM layers. This layer volume distribution

was determined for each voxel and used as the basis of a regression approach in order to obtain layer-specific BOLD

time courses (see Materials and methods). (C) Deep, middle, and superficial cortical layers indicated in coloured

ribbons. Cytoarchitectural image of V1 adapted from [88]. BOLD, blood oxygen level–dependent; GM, grey matter;

RBR, recursive boundary registration; ROI, region of interest; V1, primary visual cortex; WM, white matter.

https://doi.org/10.1371/journal.pbio.3001023.g002
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an orientation discrimination, while this effect was absent when they were preparing to dis-

criminate the contrast of the gratings (deep: t17 < 0.1, p = 0.98, middle: t17 = −0.2, p = 0.88,

superficial: t17 = 0.7, p = 0.49). Though it should be noted that the differences in omission-

evoked activity between the 2 tasks were not significant in any of the layers (deep: t17 = 1.5,

p = 0.16; middle: t17 = 0.8, p = 0.44; superficial: t17 = −0.4, p = 0.68). The laminar profile of

stimulus-evoked (rather than omission-evoked) activity did not differ between the 2 tasks

(interaction between task and cortical layer, stimulus present trials only: F2,34 = 1.8, p = 0.18;

Fig 3B, bottom panel). Given that accuracy and reaction times did not differ between the 2

tasks (accuracy: 79.6% versus 78.9%; t17 = 0.4, p = 0.72; RT: 689 ms versus 676 ms; t17 = 1.2,

p = 0.23), the difference in the laminar profiles evoked by expected-but-omitted gratings are

unlikely to be due to task difficulty or engagement, but more likely due to the fact that the

expected feature, orientation, was task relevant in 1 task but not the other. We are cautious to

overinterpret this effect given that some previous studies with similar experimental designs

have not shown it [1,29], but this could indicate that expectation signals are stronger when

they pertain to a task-relevant or attended feature [47].

Control analyses

Balancing the laminar design matrices. We found that, on average, a larger proportion

of the volume of the voxels in our region of interests (ROIs) overlapped with the superficial

(28 +/− 3%, mean +/− SD over participants) than the middle (21% +/− 2%) and deep (16%

+/− 1%) layers. This is likely the result of the well-known bias towards superficial layers in the

BOLD signal as measured with gradient echo sequences due to venous blood draining from

the deeper layers towards the surface [48,49]. While such a bias is unlikely to explain our main

Fig 3. Layer-specific BOLD response in V1 for presented and expected stimuli. (A) Orientation-specific BOLD response to presented (blue) and expected-but-omitted

(orange) gratings in the different layers of V1, averaged over tasks. (B) Orientation-specific BOLD response to expected-but-omitted (orange, top panel) and presented

(blue, bottom panel) gratings, separately for the orientation (solid lines, filled shapes) and contrast (dashed lines, open shapes) tasks. Dots represent individual

participants, and curved shapes indicate density. Error bars indicate within-subject SEM. Data are available at osf.io/k54p3. BOLD, blood oxygen level–dependent; SEM,

standard error of the mean; V1, primary visual cortex.

https://doi.org/10.1371/journal.pbio.3001023.g003
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results, which in fact reveal a dominance of the deep layers in activity evoked by prior expecta-

tions, we nevertheless repeated our analyses after correcting for this imbalance. That is, for

each ROI, we retained a subset of the selected voxels such that all layers were represented

equally, by iteratively removing voxels from the most overrepresented layer until a 1-way

ANOVA on the remaining voxels in a given ROI (with independent variable “layer”) no longer

revealed a significant (p> 0.1) imbalance. This resulted in the exclusion of 80 (+/− 31, mean

+/− SD) voxels per ROI on average. This control analysis yielded qualitatively the same effects

as our main analysis. That is, the laminar profile of orientation-specific BOLD signal evoked

by expectations, in the absence of bottom-up input, was significantly different from that

evoked by actually presented gratings (F2,34 = 4.62, p = 0.017). Specifically, expectations evoked

orientation-specific BOLD signal in the deep (t17 = 3.32, p = 0.0040), but not in the middle (t17

= 1.29, p = 0.21) and superficial (t17 = 0.10, p = 0.92) layers. As expected, actually presented

gratings evoked activity in all layers of V1 (deep: t17 = 4.39, p = 0.00040; middle: t17 = 3.69,

p = 0.0018; superficial: t17 = 3.41, p = 0.0034).

Results based on raw voxel time courses. For the main analysis, individual voxel time

courses were normalised and weighted by how orientation selective they were (see Materials

and methods for details) before applying the layer extraction. In a control analysis, we con-

ducted our analyses on the raw voxel time courses, omitting the normalisation and weight-

ing steps. This analysis qualitatively reproduced our main results: The laminar profile of

orientation-specific BOLD signal evoked by expected-but-omitted gratings was significantly

different from that evoked by actually presented gratings (F2,34 = 8.68, p = 0.00090; S2 Fig).

As in our main analysis, expectations evoked orientation-specific BOLD signal in the deep

(t17 = 3.30, p = 0.0042), but not in the middle (t17 = 0.21, p = 0.84) and superficial (t17 =

0.22, p = 0.82) layers, while actually presented gratings evoked activity in all layers of V1

(deep: t17 = 4.13, p = 0.00070; middle: t17 = 2.88, p = 0.010; superficial: t17 = 3.71,

p = 0.0017).

Estimating layer-specific time courses through interpolation rather than spatial

GLM. To rule out that our results were driven by the specifics of the laminar regression

method, we repeated our main analyses on layer-specific time courses extracted through inter-

polation rather than a spatial general linear model (GLM; see Materials and methods for

details). As for the other control analyses, this yielded qualitatively the same results as our

main analysis: The laminar profile of orientation-specific BOLD signal evoked by expected-

but-omitted gratings was significantly different from that evoked by actually presented grat-

ings (F2,34 = 9.11, p = 0.00068; S3 Fig). This was driven by the fact that expected-but-omitted

gratings evoked orientation-specific BOLD signal in the deep (t17 = 2.74, p = 0.014), but not in

the middle (t17 = 1.17, p = 0.26) and superficial (t17 = 1.00, p = 0.33) layers, while actually pre-

sented gratings evoked activity in all layers of V1 (deep: t17 = 4.23, p = 0.00057; middle: t17 =

4.13, p = 0.00070; superficial: t17 = 4.27, p = 0.00052).

Voxel selection. The main results were based on the 500 V1 voxels most selective for 45˚

and 135˚ oriented gratings, respectively. In order to establish whether the results depended on

the exact number of voxels selected, we conducted a control analyses which quantified the ori-

entation-selective BOLD response evoked by presented and expected-but-omitted gratings as

a function of the number of selected voxels, ranging from 100 to 1,000 voxels per orientation.

Even though the orientation-selective BOLD response overall decreased as more less-selective

voxels were added, the main results were qualitatively similar over the range of selected voxels

(S4 Fig), establishing that the layer-specific effects of expectation did not depend on the exact

number of selected voxels.
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Discussion

In short, we found that prior expectations evoke stimulus-specific activity selectively in the

deep layers of V1. Interestingly, this selective activation of the deep layers matches that evoked

by illusory Kanizsa figures, which have been suggested to be the result of an automatic struc-

tural expectation in the visual system [32]. However, since the expectations in the current

experiment were signalled by a conditional cue, V1 activity is more likely to be the result of

feedback from higher-order regions outside of the visual cortex, possibly involving the hippo-

campus [27,50–52]. Speculatively, the fact that these very different types of “expectations”

evoke highly similar layer-specific activity in visual cortex may point to a common computa-

tional role in V1.

Cortico–cortical feedback connections preferentially target layers 1 and 5/6 in upstream

regions [19,20]. While feedback connections to layers 5/6 may explain our current findings,

feedback signals in layer 1 may be more difficult to detect directly using fMRI, since layer 1 is

very thin and sparsely populated with neurons. Rather, feedback connections to layer 1 likely

modulate activity in other layers, by targeting dendritic tufts of layers 2/3 and 5 pyramidal cells

extending into layer 1 [19]. These feedback connections, which target apical dendritic tufts far

from the soma, are unlikely to drive activity in pyramidal neurons by themselves, but have

rather been suggested to have a modulatory function, such as coincidence detection [53].

However, in the omission trials in the current study, there were no bottom-up sensory signals

to be modulated. This might explain why we here observe (driving) effects of feedback to deep

layers, but no (modulatory) effects in the superficial layers of V1. This is in line with previous

findings where feedback in the absence of bottom-up input activated only the deep layers of

V1 (as here), but feedback in the presence of bottom-up input led to modulations in both deep

and superficial layers [32]. Therefore, we hypothesise that if, instead of omitting the predicted

stimuli, one would present unexpected stimuli, this would lead to modulations in both deep

and superficial layers. Future studies will be needed to test this hypothesis.

One proposed neural implementation of perceptual inference is predictive coding [22,23], a

theory that proposes that each cortical region houses separate subpopulations of neurons cod-

ing for perceptual hypotheses (predictions) and mismatches between these hypotheses and

bottom-up sensory input (prediction errors) [10,11]. Since feedback mainly arises from the

deep layers, prediction units are suggested to reside predominantly in the deep layers, while

prediction error units dominate in the middle and superficial layers [21,24]. The current

results are in line with this proposed arrangement, since a prediction in the absence of any bot-

tom-up input was found to evoke stimulus-specific signals in only the deep layers of V1. How-

ever, it is important to point out that our findings are not exclusive support for predictive

coding theories but are in line with other theories that suggest that predictive feedback plays a

crucial role in sensory processing as well (e.g., [33,54]). In future work, it will be crucial to test

whether or not cortex indeed calculates explicit prediction errors during sensory processing,

as proposed by predictive coding theories.

Notably, stimulus-specific V1 activity evoked by maintaining a grating stimulus in working

memory has a strikingly different laminar profile, activating both the deep and the superficial

(but not the middle) layers [38]. The MRI data acquisition and analysis methods in the current

study closely matched those used in the study by Lawrence and colleagues [38], rendering an

explanation in terms of methodological differences unlikely. The recruitment of the deep lay-

ers by both expectation and working memory could represent the use of internally generated

stimulus representations in both processes. In addition, the conscious effort of maintaining a

stimulus in working memory for goal-directed behaviour may require feature-based attention,

which has been suggested to modulate activity in the superficial layers [34,35]. Therefore,
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speculatively, working memory may be a compound process, activating deep and superficial

layers for different computational reasons. More broadly, it has been suggested that expecta-

tion and attention may be separable neural processes [55–57], with distinct computational

roles: activating hypotheses and boosting relevant inputs, respectively [58,59]. Layer-specific

fMRI offers the opportunity to directly address these questions in the human brain for the first

time [16].

Recent work has revealed that mental imagery can also induce stimulus-specific signals

selectively in the deep layers of V1 [60]. This suggests that perhaps the crucial factor determin-

ing the involvement of the superficial layers in top-down modulations lies in whether they

involve keeping a presented stimulus online (as in most working memory tasks) or generating

a stimulus presentation de novo (as in mental imagery tasks and in the omission trials in the

current study). Further research will be needed to address this question, as well as determine

whether or not mental imagery and expectation involve distinct neural mechanisms [61].

Layer-specific fMRI is a novel technique that is not without its challenges, such as the non-

linear relationship between layer-specific neural activity and the BOLD signal, due to the com-

plex microvasculature of cortex (e.g., draining veins). For this reason, it is crucial to compare

laminar profiles between experimental conditions that isolate a specific effect of interest, since

a single laminar BOLD profile can be challenging to interpret. Encouragingly, results from

studies that have done so have generally been in good alignment with invasive animal electro-

physiology [43–45]. For instance, Lawrence and colleagues [38] reported effects of working

memory in deep and superficial layers of V1, in line with macaque studies [62], while stimulus

contrast most strongly modulated responses in the middle layers [34], as would be expected

given that layer 4 is the main bottom-up input layer. Finally, Fracasso and colleagues [43]

reported that estimated V1 centre and surround receptive field sizes are smallest in the middle

layers and larger in agranular layers, in line with reports of macaque V1 [63]. Additionally,

efforts are ongoing to correct for known effects of vasculature using more sophisticated analy-

sis techniques [48,64]. Further research will be needed to corroborate the results from human

layer-specific fMRI studies using invasive electrophysiology. Human neuroimaging and inva-

sive neurophysiology are highly complementary approaches that often do not sufficiently

interact, and layer-specific fMRI and other high-resolution neuroimaging methods provide an

excellent opportunity to start bridging this gap.

It is interesting to note that the presence of the expectation signals depended on the task the

participants were performing, suggesting that expectation signals were stronger when they per-

tained to an attended feature (i.e., during the orientation task) than to an unattended feature

(during the contrast task) [47]. (Though note that the deep layer signals were not significantly

stronger in the orientation task than in the contrast task, prompting caution in interpreting

these effects.) This dependency was not found in recent studies using a very similar experi-

mental design investigating expectation signals using magnetoencephalography [29] and

effects of expectation on stimulus processing in V1 using fMRI [1]. Furthermore, several previ-

ous studies have reported early sensory signals evoked by task-irrelevant predictions

[30,65,66]. One possibility is that these previous studies simply were not able to detect these

task modulations because they lacked laminar resolution; note that the task dependence here is

expressed as an interaction between task and cortical layer. An alternative possibility is that

attention may boost the gain of expectation signals, perhaps even promoting them from activ-

ity-silent synaptic plasticity to being reflected in neural firing [67,68], but that this does not

change the consequences of these modulations for subsequent stimulus processing [1]. Future

layer-specific research orthogonally manipulating attention and expectation validity will be

needed to distinguish these possibilities.
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How might prediction signals in the deep layers modulate processing of incoming sensory

inputs? One potential mechanism for this is through inhibitory connections from the deep lay-

ers to the middle and superficial layers [19,69–71], which might cause a reduction in activity

throughout the entire cortical column [72] as a result of the excitatory pathways from layer 4

to layers 2/3 and from there to layers 5/6 [18,19]. In the absence of sensory input to layer 4, as

is the case in the omission trials here, this modulation would not occur, and top-down feed-

back signals would be restricted to the deep layers. An alternative mechanism could be through

feedback connections terminating on inhibitory neurons in layer 1, which, in turn, inhibit

pyramidal neurons in layers 2/3 [21,73,74]. Possibly in line with this, a recent laminar fMRI

study of contextual effects in non-stimulated human V1 reported effects in the most superficial

layers, potentially reflecting layer 1 [39].

The finding that prior expectations evoke stimulus-selective signals selectively in the deep

layers of visual cortex sheds light on the neural circuit by which the brain performs perceptual

inference [21,24,33], that is, combines sensory signals with internal expectations to generate a

best guess of what is out there in the world. Ultimately, future work building on these findings

may be able to reveal how this delicate balance between internal and external signals can go

awry, as it does in disorders such as autism [75–77] and psychosis [16,78,79].

Materials and methods

Ethics statement

The study was approved by the Oxford University Medical Sciences Interdivisional Research

Ethics Committee (R61495/RE001) and was conducted according to the principles of the Dec-

laration of Helsinki. All participants gave written informed consent prior to participation and

received monetary compensation.

Participants

Twenty-three healthy human volunteers with normal or corrected-to-normal vision partici-

pated in the 7T fMRI experiment. One participant was excluded because they responded to

<50% of trials during the fMRI session. One further participant was excluded because the cal-

carine sulcus was not in the field of view for the entire fMRI session due to large head move-

ments between runs. Finally, 3 participants were excluded due to our strict head motion

criteria of no more than 10 movements larger than 1.0 mm in any direction between successive

functional volumes. For the remaining participants, the maximum change in head position in

any direction over the course of the fMRI runs was within 4 mm (1.9 +/− 0.8 mm, mean

+/− SD over participants) of the mean head position (to which the anatomical boundaries

were registered). The final sample consisted of 18 participants (10 female; age 25 ± 4 years;

mean ± SD).

Stimuli

Grayscale luminance-defined sinusoidal Gabor grating stimuli were generated using MATLAB

(MathWorks, Natick, Massachusetts, United States of America, RRID:SCR_001622) and the

Psychophysics Toolbox [80]. During the behavioural session, the stimuli were presented on a

MacBook Pro (Apple, Cupertino, California, USA; 1280 × 800 screen resolution, 60-Hz refresh

rate). In the fMRI scanning session, stimuli were projected onto a rear projection screen using

an Eiki LC-XL100 projector with custom throw lens (Eiki Industrial, Itami, Hyogo, Japan;

1024 × 768 screen resolution, 60-Hz refresh rate) and viewed via a mirror (view distance 60

cm). Visual prediction cues consisted of a circular region within a white fixation bull’s eye
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(0.7˚ diameter) turning either cyan or orange for 250 ms. On valid trials (75%), cues were fol-

lowed by a set of 2 gratings (1.5-cpd spatial frequency, 250-ms duration each, and separated by

a 500-ms blank screen), displayed in succession in an annulus (outer diameter: 10˚ of visual

angle, inner diameter: 1˚, contrast decreasing linearly to 0 over 0.7˚ at the inner and outer

edges), surrounding a fixation bull’s eye (0.7˚ diameter). The central fixation bull’s eye was

presented throughout the trial, as well as during the intertrial interval (ITI; jittered exponen-

tially between 2,150 and 5,150 ms).

Experimental procedure

Trials consisted of a coloured prediction cue, followed by 2 consecutive grating stimuli on 75%

of trials (750-ms stimulus onset asynchrony (SOA) between cue and first grating) (Fig 1A).

The coloured cue (cyan or orange) predicted the orientation of the first grating stimulus (45˚

or 135˚) (Fig 1B). On valid trials (75%), 2 consecutive grating stimuli were presented following

the coloured cue. The first grating had the orientation predicted by the cue (45˚ or 135˚) and a

luminance contrast of 80%. The second grating differed slightly from the first in terms of both

orientation and contrast (see below), as well as being in antiphase to the first grating (which

had a random spatial phase). On the remaining 25% of trials, no gratings were presented

(omission trials; Fig 1C), and the screen remained empty except for the fixation bull’s eye. Par-

ticipants had no task on these trials, except for holding central fixation. The contingencies

between the cue colours and grating orientations were flipped halfway through the experiment

(i.e., after 2 runs), and the order was counterbalanced over participants.

In separate runs (2 blocks of 64 trials each, approximately 13 minutes), participants per-

formed either an orientation or a contrast discrimination task on the 2 gratings. When perform-

ing the orientation task, participants had to judge whether the second grating was rotated

clockwise or anticlockwise with respect to the first grating. In the contrast task, a judgement

had to be made on whether the second grating had lower or higher contrast than the first one.

These tasks were explicitly designed to avoid a direct relationship between the perceptual expec-

tation and the task response. Furthermore, these 2 different tasks were designed to manipulate

the task relevance of the grating orientations, to investigate whether the effects of orientation

expectations depend on the task relevance of the expected feature. Participants indicated their

response (response deadline: 750 ms after offset of the second grating) using an MR-compatible

button box. The orientation and contrast differences between the 2 gratings were determined

by an adaptive staircase procedure [81], being updated after each trial. This was done to yield

comparable task difficulty and performance (approximately 75% correct) for the different tasks.

Staircase thresholds obtained during 1 task were used to set the stimulus differences during the

other task in order to make the stimuli as similar as possible in both contexts.

All participants completed 4 runs (2 of each task, alternating every run, order was counter-

balanced over participants) of the experiment, yielding a total of 512 trials, 256 per task. At the

start of each block, the relationship between the cue and the stimulus was shown by presenting

the predicted orientation within an appropriately coloured circle. The staircases were kept

running throughout the experiment. Prior to entering the scanner, as well as in between runs 2

and 3, when the contingencies between cue and stimuli were flipped, participants performed a

short practice run containing 32 trials of both tasks (approximately 4.5 minutes).

Participants underwent a behavioural practice session just prior to entering the scanner to

ensure knowledge of the task and how to respond. In the practice session, participants were

given written and verbal instructions about the task requirements. During the practice runs,

the coloured cues predicted the orientation of the first grating stimulus of the pair with 100%

validity (45˚ or 135˚; no omission trials).
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After the main experiment, participants performed a functional localiser task inside the

scanner. This consisted of flickering gratings (2 Hz), presented at 100% contrast, in blocks of

approximately 14.3 seconds (4 TRs). Each block contained gratings with a fixed orientation

(45˚ or 135˚). The 2 orientations were presented in a pseudorandom order followed by an

approximately 14.3-second blank screen, containing only a fixation bull’s eye. Participants

were tasked with responding whenever the white fixation dot briefly dimmed to ensure central

fixation. All participants were presented with 16 localiser blocks.

fMRI data acquisition

Functional images were acquired on a Siemens Magnetom 7T MRI system (Siemens Health-

care GmbH, Erlangen, Germany) with a single-channel head coil for localised transmission

with a 32-channel head coil insert for reception (Nova Medical, Wilmington, USA) at the

Wellcome Centre for Integrative Neuroimaging (University of Oxford) using a T2�-weighted

3D gradient-echo EPI sequence (volume acquisition time of 3,583 ms, TR = 74.65 ms,

TE = 29.75 ms, voxel size 0.8 × 0.8 × 0.8 mm, 16˚ flip angle, field of view 192 × 192 × 38.4 mm,

in-plane GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) acceleration fac-

tor 4, in-plane partial Fourier 6/8, echo spacing 1.27 ms). Anatomical images were acquired

using a Magnetization Prepared Rapid Acquisition Gradient Echo (MPRAGE) sequence

(TR = 2,200 ms, TE = 2.96 ms, TI = 1,050 ms, voxel size 0.7 × 0.7 × 0.7 mm, 7˚ flip angle, field

of view 224 × 224 × 179.2 mm, in-plane GRAPPA acceleration factor 2).

Preprocessing of fMRI data

The first 4 volumes of each run were discarded. The functional volumes were cropped to cover

only the occipital lobe to reduce the influence of severe distortions in the frontal lobe. The

cropped functional volumes were spatially realigned within scanner runs, and subsequently

between runs, to correct for head movement using SPM12. Temporal signal-to-noise ratio

(tSNR, defined as mean signal/SD over time) of in-brain voxels was significantly higher after

(12.5 +/− 1.6, mean +/− SD over participants) than before (9.2 +/− 1.6) spatial realignment.

FSL FAST [82] was used to correct the bias field and remove intensity gradients in the

MPRAGE anatomical image.

Segmentation and coregistration of cortical surfaces

Freesurfer (http://surfer.nmr.mgh.harvard.edu/) was used to detect boundaries between grey

and WM and CSF, respectively, on the basis of the bias-corrected MPRAGE. Manual correc-

tions were made to remove dura incorrectly included in the pial surface when necessary. The

GM boundaries were registered to the mean functional volume in 2 steps: (1) a conventional

rigid body boundary-based registration (BBR) [83]; and (2) recursive boundary registration

(RBR) [84] (S5 Fig). During RBR, BBR was applied recursively to increasingly smaller parti-

tions of the cortical mesh. Here, we applied affine BBR with 7 degrees of freedom: rotation and

translation along all 3 dimensions and scaling along the phase-encoding direction. In each iter-

ation, the cortical mesh was split into 2, and the optimal BBR transformations were found and

applied to the respective parts. Subsequently, each part was split into 2 again and registered.

The specificity increased at each stage and corrected for local mismatches between the struc-

tural and the functional volumes that are due to magnetic field inhomogeneity-related distor-

tions. Here, we ran 6 such iterations. The splits were made along the cardinal axes of the

volume, such that the number of vertices was equal for both parts. The plane for the second

cut is orthogonal to the first, the third orthogonal to the first 2. The median displacement was
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taken after running the recursive algorithm 6 times, in which different splitting orders where

used, comprised of all 6 permutations of x, y, and z.

Definition of regions of interest

The V1 surface label, defined by Freesurfer based on the anatomy of the MPRAGE image, was

projected into volume space covering the full cortical depth plus a 50% extension into WM

and CSF, respectively. The V1 ROI was constrained to only the most active voxels in response

to the grating stimuli by applying a temporal GLM to the preprocessed data from the func-

tional localiser run. Blocks of 45˚ and 135˚ gratings were modelled separately as regressors and

contrasted together against baseline to identify voxels that exhibited a significant response to

the grating stimuli (t> 2.3, p< 0.05; 6,009 +/− 2,033 voxels, mean +/− SD over participants).

To estimate the orientation preference of each voxel, the 2 orientation regressors were con-

trasted against each other. We selected the 500 voxels with the most positive T values (45˚ pre-

ferring) and the 500 voxels with the most negative T values (135˚ preferring) in the contrast

and created separate masks for each. Finally, we z-scored the time course data from each voxel

and multiplied this time course with the absolute T-value from the orientation contrast (45˚

versus 135˚) in order to weight the results towards the voxels with the most robust orientation

preference [34,38]. These ROI definitions were identical to those used in previous studies that

successfully resolved orientation-specific BOLD signals with layer specificity [34,38]. We

matched our analysis approach to these previous studies to be able to compare our effects of

prior expectations on orientation-specific BOLD signals to the effects of working memory [38]

and attention [34].

Definition of the cortical layers

GM was divided into 3 equivolume layers using the level set method (described in detail in

[46,85,86]) following the principle that the layers of the cortex maintain their volume ratio

throughout the curves of the gyri and sulci [87]. Briefly, the level set function is a signed dis-

tance function (SDF), where points on the same surface equal 0 and values on 1 side of the sur-

face are negative and values on the other are positive. The level set function for the GM–CSF

and GM–WM boundaries is calculated, and then intermediate surfaces can be defined by mov-

ing the surface to intermediate cortical depths. The equivolume model transforms a desired

volume fraction into a distance fraction, taking the local curvature of the pial and WM surfaces

at each voxel into account [46]. Here, we calculated 2 intermediate surfaces between the WM

and pial boundaries, yielding 3 GM layers (deep, middle, and superficial). In human V1, these

3 laminar compartments are expected to correspond roughly to layers I to III, layer IV, and

layers V and VI, respectively [88] (Fig 2C). Based on these surfaces, we calculated 4 SDFs, con-

taining for each functional voxel its distance to the boundaries between the 5 cortical compart-

ments (WM, CSF, and the 3 GM layers). This set of SDFs (or “level set”) allowed the

calculation of the distribution of each voxel’s volume over the 5 compartments [46]. This layer

volume distribution provided the basis for the laminar GLM discussed below.

Extraction of layer-specific time courses

Since our fMRI data consisted of 0.8-mm isotropic voxels, they will almost certainly contain

signals from several layers. Therefore, simply interpolating the fMRI signal at different depths

will lead to contamination from neighbouring layers. To deal with this partial volume problem,

we decomposed the layer signals by means of a spatial GLM [32,34,38,46]. For each ROI, a

laminar n × k design matrix X represents the layer volume distribution, i.e., the distribution of

the k layers over the n voxels within the ROI. Every row of X gives the distribution of a given
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voxel volume over the layers, and every column (regressor) represents the volume of the corre-

sponding layer across voxels. This laminar design matrix can be used in a spatial GLM to sepa-

rate the voxels’ BOLD signal for each of the 5 compartments through ordinary least squares

(OLS) regression [46]:

Y ¼ X � Bþ ε

Y is a vector of voxel values from an ROI, X is the laminar design matrix, and B is a vector

of layer signals. For each ROI and each functional volume, the layer signal B̂ was estimated by

regressing Y against X, yielding 5 depth-specific time courses per ROI and functional run.

In order to confirm that the method correctly identified GM, we quantified the raw signal

in the EPI volumes for each of the 3 GM layers, as well as WM and CSF. As expected, the signal

intensity was higher in the 3 GM layers (deep: 455 +/− 80; middle: 456 +/− 86; superficial: 461

+/− 80; mean +/− SD over participants) than in WM (427 +/− 83; lower than mean GM: t17 =

5.17, p = 7.7 × 10−5) and outside of the brain (430 +/− 78; lower than mean GM: t17 = 3.81,

p = 0.0014).

In a control analysis, we extracted laminar time courses using an interpolation method

rather than a spatial GLM. Interpolating a volume at different cortical depths effectively

weights for all voxels in an ROI with respect to the layers:

B̂interpolation ¼ XT � Y=N

N is the number of voxels. The results of this analysis qualitatively replicated those of the

main analysis and are presented in S3 Fig.

Estimating effects of interest per layer

We estimated the effects of interest in the 3 GM layers using a temporal GLM (S6 Fig). Regres-

sors of interest (presentation/omission of 45˚ or 135˚ gratings, separately for orientation and

contrast task runs) were constructed by convolving stick functions representing the onsets of

the trials with SPM12’s canonical haemodynamic response function. Regressors of no interest

included head motion parameters, their derivatives, and the square of the derivatives. Both the

data and design matrix were high-pass filtered (cutoff = 128 seconds) to remove low-frequency

signal drifts. The GLM explained close to half of the variance in each cortical layer (deep: R2 =

0.43 +/− 0.09, middle: R2 = 0.44 +/− 0.08, superficial: R2 = 0.46 +/− 0.09; mean +/− SD over

participants). The parameter estimates for the regressors of interest were the basis of our main

analyses, described below.

To calculate orientation-specific BOLD responses for each ROI (e.g., the 45˚-preferring V1

ROI), the estimated BOLD response for conditions in which the non-preferred orientation

was presented/expected (e.g., a 135˚ expected-but-omitted grating) was subtracted from the

response for the corresponding condition in which the preferred orientation was presented/

expected (e.g., a 45˚ expected-but-omitted grating). After this subtraction, responses were

averaged over the 2 V1 ROIs, yielding layer-specific orientation-specific BOLD responses to

each of the conditions of interest (expected-and-presented and expected-but-omitted gratings

per task). These estimated BOLD responses were subjected to a 3-way repeated measures

ANOVA with factors stimulus type (presented versus omitted), cortical layers (deep, middle,

and superficial), and task (orientation versus contrast). Our main effect of interest, namely

whether laminar BOLD profiles differed for presented and expected-but-omitted stimuli, was

tested by the interaction of stimulus type (presented versus omitted) and cortical layer (deep,

middle, and superficial). The 3-way interaction of stimulus type, layer, and task tested whether

expectation effects were task dependent. To follow up a significant 3-way interaction, we
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conducted 2-way repeated-measures ANOVAs with factors task (orientation versus contrast

task) and cortical layer (deep, middle, and superficial) separately for the “stimulus present”

and “stimulus omitted” conditions. Significant interactions were followed up with paired-sam-

ple t tests. To visualise the relevant across-subject variance for the within-subject ANOVA,

errors bars in all figures show within-subject standard error of the mean (SEM) [89,90].

Supporting information

S1 Fig. Layer-specific BOLD response in V1 for presented and expected stimuli separately

for voxel subpopulations preferring (solid lines, filled shapes) and non-preferring (dashed

lines, open shapes) the current orientation. BOLD responses are higher in subpopulations

preferring the (expected) orientation in all layers for presented stimuli and deep layers only for

expected-but-omitted stimuli. Note that the omission responses are overall negative. This is

likely the result of the fact that the current study employed a fast event-related design without

an explicit baseline period. Specifically, in this type of design, the baseline is effectively the

mean signal, and when a stimulus is omitted, during a run in which stimuli are presented most

of the time, the signal in V1 is likely to be lower than average. Essentially, this type of design is

optimal for detecting differences between conditions (stimulus vs. omission or 45˚ stimulus/

omission vs. 135˚ stimulus/omission), which was our main interest here, but suboptimal for

detecting main effects of single conditions (e.g., stimulus vs. baseline or omission vs. baseline).

Dots represent individual participants, and curved shapes indicate density. Error bars indicate

within-subject SEM. Data are available at osf.io/k54p3. BOLD, blood oxygen level–dependent;

SEM, standard error of the mean; V1, primary visual cortex.

(TIF)

S2 Fig. Layer-specific BOLD response in V1 for presented and expected stimuli based on

raw voxel time courses. Normalising and weighting voxel time courses by orientation selectiv-

ity was omitted in this control analysis. (A) Orientation-specific BOLD response to presented

(blue) and expected-but-omitted (orange) gratings in the different layers of V1, averaged over

tasks. (B) Orientation-specific BOLD response to expected-but-omitted (orange, top panel)

and presented (blue, bottom panel) gratings, separately for the orientation (solid lines, filled

shapes) and contrast (dashed lines, open shapes) tasks. Dots represent individual participants,

and curved shapes indicate density. Error bars indicate within-subject SEM. Data are available

at osf.io/k54p3. BOLD, blood oxygen level–dependent; SEM, standard error of the mean; V1,

primary visual cortex.

(TIF)

S3 Fig. Layer-specific BOLD response in V1 for presented and expected stimuli deter-

mined by interpolation rather than spatial GLM. (A) Orientation-specific BOLD response

to presented (blue) and expected-but-omitted (orange) gratings in the different layers of V1,

averaged over tasks. (B) Orientation-specific BOLD response to expected-but-omitted

(orange, top panel) and presented (blue, bottom panel) gratings, separately for the orientation

(solid lines, filled shapes) and contrast (dashed lines, open shapes) tasks. Dots represent indi-

vidual participants, and curved shapes indicate density. Error bars indicate within-subject

SEM. Data are available at osf.io/k54p3. BOLD, blood oxygen level–dependent; GLM, general

linear model; SEM, standard error of the mean; V1, primary visual cortex.

(TIF)

S4 Fig. Layer-specific BOLD response in V1 for presented and expected as a function of

the number of selected voxels. (A) Orientation-specific BOLD response to expected-but-

omitted gratings in the different layers of V1, averaged over tasks. (B) Orientation-specific
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BOLD response to presented gratings in the different layers of V1, averaged over tasks. Error

bars indicate within-subject SEM. Data are available at osf.io/k54p3. BOLD, blood oxygen

level–dependent; SEM, standard error of the mean; V1, primary visual cortex.

(TIF)

S5 Fig. Registration of cortical boundaries to mean EPI for all participants. Registrations

are shown after rigid-body registration only (BBR), as well as after RBR. RBR increased abso-

lute GM–WM contrast (c) in all participants. Arrows highlight locations where RBR improved

registration. BBR, boundary-based registration; EPI, echo planar imaging; GM, grey matter;

RBR, recursive boundary registration; WM, white matter.

(TIF)

S6 Fig. Illustration of temporal GLM method. Example model and data shown for 1 partici-

pant (P1) and 1 ROI (V1, 135 degree preferring voxels). Left, top panel: regressors used in the

temporal GLM. Coloured time courses indicate regressors for the 4 conditions of interest, and

grey time courses indicate nuisance regressors (i.e., head motion). Left, 3 bottom panels: fMRI

time courses in each of the 3 GM layers (solid grey) and time courses fit by GLM (dashed

black). Right, 3 bottom panels: parameter estimates for the 4 regressors of interest, quantifying

the amplitude of the BOLD response evoked by the 4 conditions. These parameter estimates

constitute the main results as shown in Fig 3. Data are available at osf.io/k54p3. BOLD, blood

oxygen level–dependent; fMRI, functional magnetic resonance imaging; GLM, general linear

model; GM, grey matter; ROI, region of interest.

(TIF)
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Allows Mapping of Laminar Activity and Connectivity of Cortical Input and Output in Human M1. Neuron.

2017; 96:1253–1263.e7. https://doi.org/10.1016/j.neuron.2017.11.005 PMID: 29224727

45. Self MW, van Kerkoerle T, Goebel R, Roelfsema PR. Benchmarking laminar fMRI: Neuronal spiking

and synaptic activity during top-down and bottom-up processing in the different layers of cortex. Neuro-

image. 2019; 197:806–817. https://doi.org/10.1016/j.neuroimage.2017.06.045 PMID: 28648888

46. Van Mourik T, Van Der Eerden JP, Bazin P-L, Norris DG. Laminar signal extraction over extended corti-

cal areas by means of a spatial GLM. PLoS ONE. 2019; 14:e0212493. https://doi.org/10.1371/journal.

pone.0212493 PMID: 30917123

PLOS BIOLOGY Expectations evoke activity in deep layers of V1

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001023 December 7, 2020 17 / 19

https://doi.org/10.1017/S0140525X12000477
http://www.ncbi.nlm.nih.gov/pubmed/23663408
https://doi.org/10.1016/j.neuron.2018.10.003
http://www.ncbi.nlm.nih.gov/pubmed/30359606
https://doi.org/10.1038/nn.4284
http://www.ncbi.nlm.nih.gov/pubmed/27065363
https://doi.org/10.1162/jocn%5Fa%5F00562
http://www.ncbi.nlm.nih.gov/pubmed/24392894
https://doi.org/10.1073/pnas.1705652114
http://www.ncbi.nlm.nih.gov/pubmed/28900010
https://doi.org/10.1038/s41467-018-07882-8
http://www.ncbi.nlm.nih.gov/pubmed/30602773
https://doi.org/10.1038/nrn3838
http://www.ncbi.nlm.nih.gov/pubmed/25315388
https://doi.org/10.1016/j.cub.2015.12.038
https://doi.org/10.1016/j.cub.2015.12.038
http://www.ncbi.nlm.nih.gov/pubmed/26832438
https://doi.org/10.1364/josaa.20.001434
http://www.ncbi.nlm.nih.gov/pubmed/12868647
https://doi.org/10.7554/eLife.44422
http://www.ncbi.nlm.nih.gov/pubmed/31063127
https://doi.org/10.1073/pnas.1507552112
http://www.ncbi.nlm.nih.gov/pubmed/26668397
https://doi.org/10.1016/j.neuroimage.2018.04.055
http://www.ncbi.nlm.nih.gov/pubmed/29709626
https://doi.org/10.1038/s41593-019-0487-z
https://doi.org/10.1038/s41593-019-0487-z
http://www.ncbi.nlm.nih.gov/pubmed/31551596
https://doi.org/10.1016/j.cub.2018.08.043
https://doi.org/10.1016/j.cub.2018.08.043
http://www.ncbi.nlm.nih.gov/pubmed/30344121
https://doi.org/10.1016/j.cub.2015.08.057
http://www.ncbi.nlm.nih.gov/pubmed/26441356
https://doi.org/10.1371/journal.pone.0032536
http://www.ncbi.nlm.nih.gov/pubmed/22448223
https://doi.org/10.7554/eLife.50933
https://doi.org/10.7554/eLife.50933
http://www.ncbi.nlm.nih.gov/pubmed/32496189
https://doi.org/10.1073/pnas.1907858116
http://www.ncbi.nlm.nih.gov/pubmed/31570628
https://doi.org/10.1016/j.neuroimage.2016.06.048
https://doi.org/10.1016/j.neuroimage.2016.06.048
http://www.ncbi.nlm.nih.gov/pubmed/27374728
https://doi.org/10.1016/j.neuron.2017.11.005
http://www.ncbi.nlm.nih.gov/pubmed/29224727
https://doi.org/10.1016/j.neuroimage.2017.06.045
http://www.ncbi.nlm.nih.gov/pubmed/28648888
https://doi.org/10.1371/journal.pone.0212493
https://doi.org/10.1371/journal.pone.0212493
http://www.ncbi.nlm.nih.gov/pubmed/30917123
https://doi.org/10.1371/journal.pbio.3001023


47. Richter D, De Lange FP. Statistical learning attenuates visual activity only for attended stimuli. Kahnt T,

editor. Elife. 2019; 8:e47869. https://doi.org/10.7554/eLife.47869 PMID: 31442202

48. Markuerkiaga I, Barth M, Norris DG. A cortical vascular model for examining the specificity of the lami-

nar BOLD signal. Neuroimage. 2016; 132:491–498. https://doi.org/10.1016/j.neuroimage.2016.02.073

PMID: 26952195

49. Duvernoy HM, Delon S, Vannson JL. Cortical blood vessels of the human brain. Brain Res Bull. 1981;

7:519–579. https://doi.org/10.1016/0361-9230(81)90007-1 PMID: 7317796

50. Kok P, Turk-Browne NB. Associative Prediction of Visual Shape in the Hippocampus. J Neurosci. 2018;

38:6888–6899. https://doi.org/10.1523/JNEUROSCI.0163-18.2018 PMID: 29986875

51. Kok P, Rait LI, Turk-Browne NB. Content-based Dissociation of Hippocampal Involvement in Prediction.

J Cogn Neurosci. 2020; 32:527–545. https://doi.org/10.1162/jocn_a_01509 PMID: 31820676

52. Schapiro AC, Kustner LV, Turk-Browne NB. Shaping of Object Representations in the Human Medial

Temporal Lobe Based on Temporal Regularities. Curr Biol. 2012; 22:1622–1627. https://doi.org/10.

1016/j.cub.2012.06.056 PMID: 22885059

53. Larkum M. A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex.

Trends Neurosci. 2013; 36:141–151. https://doi.org/10.1016/j.tins.2012.11.006 PMID: 23273272

54. Raizada RDS, Grossberg S. Towards a Theory of the Laminar Architecture of Cerebral Cortex: Compu-

tational Clues from the Visual System. Cereb Cortex. 2003; 13:100–113. https://doi.org/10.1093/cercor/

13.1.100 PMID: 12466221

55. Gordon N, Tsuchiya N, Koenig-Robert R, Hohwy J. Expectation and attention increase the integration

of top-down and bottom-up signals in perception through different pathways. PLoS Biol. 2019; 17:

e3000233. https://doi.org/10.1371/journal.pbio.3000233 PMID: 31039146

56. Summerfield C, Egner T. Expectation (and attention) in visual cognition. Trends Cogn Sci. 2009;

13:403–409. https://doi.org/10.1016/j.tics.2009.06.003 PMID: 19716752

57. Summerfield C, Egner T. Feature-Based Attention and Feature-Based Expectation. Trends Cogn Sci.

2016; 20:401–404. https://doi.org/10.1016/j.tics.2016.03.008 PMID: 27079632

58. Feldman H, Friston KJ. Attention, Uncertainty, and Free-Energy. Front Hum Neurosci. 2010; 4:215.

https://doi.org/10.3389/fnhum.2010.00215 PMID: 21160551

59. Kok P, Rahnev D, Jehee JFM, Lau HC, De Lange FP. Attention Reverses the Effect of Prediction in

Silencing Sensory Signals. Cereb Cortex. 2012; 22:2197–2206. https://doi.org/10.1093/cercor/bhr310

PMID: 22047964

60. Bergmann J, Morgan AT, Muckli L. Two distinct feedback codes in V1 for ‘real’ and ‘imaginary’ internal

experiences. bioRxiv. 2019;664870. https://doi.org/10.1101/664870

61. Pearson J, Westbrook F. Phantom perception: voluntary and involuntary nonretinal vision. Trends

Cogn Sci. 2015; 19:278–284. https://doi.org/10.1016/j.tics.2015.03.004 PMID: 25863415

62. Van Kerkoerle T, Self MW, Roelfsema PR. Layer-specificity in the effects of attention and working mem-

ory on activity in primary visual cortex. Nat Commun. 2017; 8:13804. https://doi.org/10.1038/

ncomms13804 PMID: 28054544

63. Bijanzadeh M, Nurminen L, Merlin S, Clark AM, Angelucci A. Distinct Laminar Processing of Local and

Global Context in Primate Primary Visual Cortex. Neuron. 2018; 100:259–274. https://doi.org/10.1016/

j.neuron.2018.08.020 PMID: 30220509

64. Heinzle J, Koopmans PJ, den Ouden HEM, Raman S, Stephan KE. A hemodynamic model for layered

BOLD signals. Neuroimage. 2016; 125:556–570. https://doi.org/10.1016/j.neuroimage.2015.10.025

PMID: 26484827

65. Ekman M, Kok P, Lange FP de. Time-compressed preplay of anticipated events in human primary

visual cortex. Nat Commun. 2017; 8:15276. https://doi.org/10.1038/ncomms15276 PMID: 28534870

66. Den Ouden HEM, Friston KJ, Daw ND, McIntosh AR, Stephan KE. A Dual Role for Prediction Error in

Associative Learning. Cereb Cortex. 2009; 19:1175–1185. https://doi.org/10.1093/cercor/bhn161

PMID: 18820290

67. Rose NS, LaRocque JJ, Riggall AC, Gosseries O, Starrett MJ, Meyering EE, et al. Reactivation of latent

working memories with transcranial magnetic stimulation. Science. 2016; 354:1136–1139. https://doi.

org/10.1126/science.aah7011 PMID: 27934762
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