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Huntington’s disease is a severe but slowly progressive hereditary illness for which only symptomatic treatments are presently avail-

able. Clinical measures of disease progression are somewhat subjective and may require years to detect significant change. There is

a clear need to identify more sensitive, objective and consistent measures to detect disease progression in Huntington’s disease clin-

ical trials. Whereas Huntington’s disease demonstrates a robust and consistent gene expression signature in the brain, previous

studies of blood cell RNAs have lacked concordance with clinical disease stage. Here we utilized longitudinally collected samples

from a well-characterized cohort of control, Huntington’s disease-at-risk and Huntington’s disease subjects to evaluate the possible

correlation of gene expression and disease status within individuals. We interrogated these data in both cross-sectional and longitu-

dinal analyses. A number of changes in gene expression showed consistency within this study and as compared to previous reports

in the literature. The magnitude of the mean disease effect over 2 years’ time was small, however, and did not track closely with

motor symptom progression over the same time period. We therefore conclude that while blood-derived gene expression indicators

can be of value in understanding Huntington’s disease pathogenesis, they are insufficiently sensitive to be of use as state

biomarkers.
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Introduction
Huntington’s disease is a chronic, incurable and ultimate-

ly fatal neurodegenerative disease affecting an estimated

12 individuals per 100 000 in the UK (Evans et al.,
2013), and �6 per 100 000 in the USA, Europe and

Australia (Pringsheim et al., 2012). It is caused by an

expanded CAG trinucleotide repeat within the huntingtin
(HTT) gene inherited in an autosomal dominant manner

(Huntington’s Disease Collaborative Research Group,

1993). This gives rise to an extension of a polyglutamine

tract near the N-terminus of the HTT protein, which is

expressed ubiquitously throughout the body.

Huntington’s disease pathogenesis is complex, involving

multiple cellular mechanisms including protein aggrega-

tion, mitochondrial dysfunction and transcriptional dysre-

gulation (Luthi-Carter, 2007).

Mutant HTT (mHTT) has a progressive and ravaging

effect on the central nervous system, to the greatest ex-

tent in the striatum (Ross and Tabrizi, 2011). Cell death

and dysfunction in Huntington’s disease brain regions

give rise to a range of motor signs and symptoms, includ-

ing chorea, alongside cognitive, behavioural and psychi-

atric disturbances (Walker, 2007; Stout et al., 2011).

Current treatments rely on symptomatic relief, although

several promising experimental treatments are being

developed that show potential to slow the disease

(Dickey and La Spada, 2018).

Having an established trait marker, the extended CAG

repeat, makes Huntington’s disease unusual among neu-

rodegenerative disorders. Presymptomatic predictive genet-

ic testing can confirm whether an individual is carrying

this mutation, providing an opportunity to study

Huntington’s disease development before onset and the

possibility of presymptomatic treatment (Paulsen et al.,
2008). However, measuring presymptomatic Huntington’s

disease progression is difficult; insidious non-motor

changes often precede more apparent extrapyramidal

signs, although these effects can occur in either order

(Tippett et al., 2017).

Estimating the prospective age of disease onset from

the length of the individual’s CAG repeat can serve as a

Graphical Abstract
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Blood RNA levels are poor correlates 
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crude proxy for disease state before diagnosis (Langbehn

et al., 2004) as age of onset is inversely correlated with

the length of CAG expansion [with mitigating effects of

interruption by a CAA codon (Wright et al., 2019)].

This approach nonetheless has very limited precision,

since the CAG repeat length only accounts for a max-

imum of 60% of variation in disease onset (Wexler

et al., 2004), and has an even lower effect in individuals

carrying disease alleles with fewer than 50 repeats, which

comprise the majority of Huntington’s disease patients.

Remaining heritable variation in age of onset may be

accounted for in part by mutations in DNA maintenance

genes (Genetic Modifiers of Huntington’s Disease

Consortium, 2019).

In manifest Huntington’s disease, measurement of dis-

ease progression is also complicated by extensive vari-

ation of the clinical phenotype and the slow rate of

progression. The Unified Huntington’s Disease Rating

Scale (UHDRS), a combined clinical assessment of motor

function, functional capability, cognition and behaviour

(Huntington Study Group, 1996) is the predominant

method of tracking disease severity over time.

Observational scales are subjective, however, and there-

fore prone to bias and inter-rater variability (Henley

et al., 2005). More sensitive, robust and objective meth-

ods of tracking Huntington’s disease progression are

therefore urgently needed to make the most of longitudin-

al clinical studies and especially to assess the potential

benefits of new therapies in clinical trials.

Several different approaches have been taken to develop

Huntington’s disease biomarkers that can monitor

Huntington’s disease progression, both before and after

disease manifestation. For these to be useful they should

be highly reproducible, show little variability, and show

quantitative, sensitive association with disease progression

(Weir et al., 2011). Such biomarkers would considerably

reduce the number of participants needed for clinical tri-

als and aid the identification of effective treatments

(Paulsen et al., 2006). Furthermore, the search for bio-

markers could give further insight into the pathology of

Huntington’s disease and potentially reveal novel targets

for treatment.

Transcriptional dysregulation is a hallmark of

Huntington’s disease, thereby making RNA measurements

an attractive area for potential biomarker development.

Over almost two decades, genome-wide expression techni-

ques have built a comprehensive picture of the transcrip-

tional alterations mHTT provokes in the brain through

multiple cellular mechanisms (reviewed in Seredenina and

Luthi-Carter, 2012). Extensive changes in mRNA expres-

sion across human Huntington’s disease brain regions has

been associated with vulnerability to degeneration, estab-

lishing close links between transcriptional dysregulation

and Huntington’s disease pathology (Hodges et al.,

2006). Several studies have identified parallel changes in

Huntington’s disease mouse models (Luthi-Carter et al.,

2000; Kuhn et al., 2007) which show progression over

time and correlation with losses in motor function and

behavioural disturbances (Luthi-Carter et al., 2002a;

Kuhn et al., 2007; Giles et al., 2012). Not all expression

changes contribute to the disease process; some changes

appear to have no pathological effect (Rudinskiy et al.,

2009), while others are compensatory (Seredenina et al.,

2011).

The transcriptional regulatory pathways known to be

altered by mHTT are involved in gene expression in mul-

tiple tissues throughout the body in model systems

(Sugars and Rubinsztein, 2003). Parallel gene expression

changes have been observed in R6/2 mouse and human

Huntington’s disease muscle (Luthi-Carter, et al., 2002b;

Strand et al., 2005) and correlate with muscle atrophy.

Expression changes have also been observed in

Huntington’s disease mouse liver and pancreas

(Andreassen et al., 2002; Chiang et al., 2011), and

brown and white adipose tissues (Weydt et al., 2006;

Phan et al., 2009), including genes related to energy ex-

penditure (McCourt et al., 2016) that could contribute to

weight loss. Data from model systems provide evidence

that mHTT accumulation in peripheral tissues may cause

functional abnormalities independently of neurodegenera-

tion, including muscle strength, osteoporosis, cardiac fail-

ure and impaired glucose tolerance (van der Burg et al.,

2009). Transcriptional changes have also been described

in human Huntington’s disease fibroblasts (Marchina

et al., 2014).

Peripheral blood, being a renewable, easy-to-collect tis-

sue, is an attractive substrate for biomarker development.

Several exploratory studies have reported transcriptomic

changes in Huntington’s disease blood and highlighted

specific RNAs as potential biomarkers. These have used

both genome-wide (microarray, DeepSAGE) and targeted

reverse transcription real-time quantitative PCR gene ex-

pression analyses (Borovecki et al., 2005; Runne et al.,

2007; Lovrecic et al., 2010; Hu et al., 2011; Cesca et al.,

2015; Mastrokolias et al., 2015). Despite the number of

potential biomarkers identified, there has been little over-

lap between the reported signatures across these studies.

Results of focused attempts to cross-validate results have

also been largely negative (Runne et al., 2007; Lovrecic

et al., 2009; Mastrokolias et al., 2015; Zadel et al.,

2018).

Additional studies have taken a somewhat different ap-

proach by considering transcriptional changes within the

contexts of identified etiologic processes in Huntington’s

disease (Krzyszto�n-Russjan et al., 2013; Träger et al.,

2014; Miller et al., 2016). If differential expression of

genes identified by these studies can be replicated, they

may also warrant consideration as potential biomarkers.

Lack of concordance across these studies has hindered

the implementation of RNA-based Huntington’s disease

biomarkers. Discrepancies have been attributed to techno-

logical limitations, methodological inconsistencies and

human blood sample variability (Rodrigues et al., 2018).

Blood mRNAs longitudinally in Huntington’s BRAIN COMMUNICATIONS 2020: Page 3 of 14 | 3
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The development of blood-based state biomarkers for

Huntington’s disease has also been limited by the lack of

longitudinal studies. On the positive side, sequential anal-

yses of samples from individual subjects might minimize

effects of patient-to-patient variability (Tabrizi et al.,
2009). On the other hand, cross-sectional studies may

maximize detection of RNA changes in Huntington’s dis-

ease versus control subjects because they reflect a long

and cumulative process of mHTT exposure (Weir et al.,

2011). To be useful, however, longitudinal measures need

to detect changes that occur in a timeframe relevant for

clinical trials, e.g. 1–3 years.

It has also been suggested that independence of neuro-

logical and peripheral Huntington’s disease pathologies

might fundamentally limit the utility of using transcrip-

tional changes in the blood to track the progression of

Huntington’s disease (Zadel et al., 2018). However, pre-

vious claims of parallels between transcriptional dysregu-

lation in the blood and brain have challenged this notion

(Mastrokolias et al., 2015; Mina et al., 2016). One study

purported to show similarities between Huntington’s dis-

ease blood and brain expression signatures through gene

set enrichment analysis (GSEA) (Hensman Moss et al.,

2017). However, none of the individual genes within

these sets was significantly differentially expressed in

Huntington’s disease compared to controls after appropri-

ate false discovery rate (FDR) correction, raising caveats

in these conclusions. Questions therefore remain over the

nature and degree of similarities between neurological

and peripheral transcriptional dysregulation, and whether

these changes progress at rates that allow blood mRNA

to be used as a reliable predictor of neurological disease

progression.

This study aimed to evaluate potential mRNA state

biomarkers for Huntington’s disease in human blood

samples collected in the TRACK-HD study (Tabrizi

et al., 2009). TRACK-HD was a large multi-site observa-

tional study in which quantitative MRI, cognitive, motor

and neuropsychiatric assessments were collected in more

than 350 subjects, comprising individuals with an

Huntington’s disease diagnosis, individuals at risk for

Huntington’s disease (carrying an expanded HTT allele)

and control subjects. The high standardization of these

measures across sites and the relatively long 24-month

follow up time with individual subjects provided an op-

portunity to compare established clinical indicators with

additional phenotypic measures. We therefore undertook

transcriptomic analyses in this well-characterized subject

population.

We performed both cross-sectional and longitudinal

microarray gene expression analyses of TRACK-HD

blood samples from Huntington’s disease subjects in early

clinical stages of disease, presymptomatic carriers of the

Huntington’s disease mutation, and controls, collected

from the same set of individuals 2 years apart (see also

Cohort below). These data were analysed cross-sectionally

at both timepoints and also used to construct a

longitudinal analysis of gene expression and disease pro-

gression. Both of these analyses were then interrogated to

identify novel candidate biomarker genes, and to test pro-

gressive differential expression of genes identified in pre-

vious studies, using publicly available datasets (Borovecki

et al., 2005; Runne et al., 2007; Lovrecic et al., 2010;

Hu et al., 2011; Krzyszto�n-Russjan et al., 2013; Träger

et al., 2014; Cesca et al., 2015; Mastrokolias et al.,

2015; Miller et al., 2016; Zadel et al., 2018), as well as

an independent TRACK-HD sample cohort. Finally, we

sought to shed new light on, or to reproduce previous

evidence of, molecular mechanisms of Huntington’s dis-

ease pathogenesis identified using GSEA (Hensman Moss

et al., 2017). We confirm that blood RNA changes may

reflect small Huntington’s disease-related effects, but find

that such measures are likely to be unsatisfactory as clin-

ical state biomarkers of Huntington’s disease.

Materials and methods

Study cohort

Whole blood samples were collected from participants in

the Track-HD in London and Vancouver (Supplementary

Tables 1 and 2) into PAXgene Blood RNA tubes

(Qiagen). Presymptomatic subjects [UHDRS Total Motor

Score (TMS) �5] were further stratified based on their

estimated time to diagnosis based on their current age

and their estimated age of onset (calculated using the re-

peat length of their expanded HTT allele) according to

(Langbehn et al., 2004). Subjects were then classified as

farther (>10.8 years) from predicted onset (preHD A) or

nearer (<10.8 years) to predicted onset (preHD B)

(Supplementary Table 3). Diagnosed early symptomatic

Huntington’s disease participants were classified by the

Total Functional Capacity score of the UHDRS into

Stage 1 (zHD1, Total Functional Capacity ¼ 11–13) and

Stage 2 (zHD2, Total Functional Capacity ¼ 7–10) dis-

ease subgroups (Tabrizi et al., 2009, 2012). The subset

of samples represented balanced numbers of preHD and

HD cases at each stage. The study was approved by the

local ethics committees and written informed consent was

obtained from each subject according to the Declaration

of Helsinki.

Microarray analyses

DNA microarray analyses were conducted using

Affymetrix Human Genome U133 Plus 2.0 Arrays.

Expression values were normalized using the RMA algo-

rithm included in the Limma package (Bioconductor). A

linear regression model was fitted and adjusted to remove

the effects of sample origin (London or Vancouver), gen-

der and age. P-values were adjusted using the FDR

method (Benjamini and Hochberg, 1995).
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Cross-sectional comparisons of microarray gene expres-

sion in Huntington’s disease versus control samples at

each time-point were performed using R. Cross-sectional

microarray analyses of differential expression were per-

formed in Year 1 samples of 37 diagnosed Huntington’s

disease subjects (18 zHD1, 19 zHD2) versus 24 controls.

Year 3 samples were tested in the same manner and

included 32 diagnosed HD subjects (16 zHD1, 16 zHD2)

and 20 controls. The Year 3 samples were collected from

a subset of participants whose samples had been analysed

in Year 1. We also conducted cross-sectional analyses

including all presymptomatic samples (data not shown),

but did not draw conclusions from these analyses, as no

differential expression could be detected.

Analyses of gene expression versus
disease state

Cohorts for longitudinal analyses comparing microarray

expression and TMS were selected by comparing mean

TMSs of sample groups to the control group using

Dunnett’s multiple comparisons test of an ordinary one-

way ANOVA, performed using Prism 7 (GraphPad;

Supplementary Table 3). On this basis, we excluded

preHD A samples, as the median TMSs of these groups

were not significantly different from that of the control

group.

Longitudinal analyses included samples from 15 pre-

symptomatic Huntington’s disease gene carriers (all

preHD B) and 32 diagnosed Huntington’s disease subjects

(16 zHD1, 16 zHD2). An additional longitudinal analysis

of gene expression was performed in samples from a con-

trol cohort of 20 individuals for sake of comparison; as

expected, this group of individuals did not show a

change in TMS over the 2-year period.

Microarray gene expression data was analysed and nor-

malized using R, as described above. Expression values

were unlogged and the change in gene expression

(DExpression) was calculated for each individual across 2

years. Change in TMS (DTMS) was plotted against

DExpression and fitted with a linear regression model.

Pearson’s correlation coefficient was calculated and the P-

values were also adjusted using FDR. A cross-sectional

analysis of relationship between gene expression and

TMS was performed at each individual time-point (Year

1, Year 3). A longitudinal gene expression analysis was

also performed on the control samples (without consider-

ation of DTMS).

Pathway analyses

GSEA (Broad Institute; Subramanian et al., 2005) was

performed on expression data of 97 Year 1 samples,

implementing the analysis parameters of Hensman Moss

et al. (2017). This included a control group of 24 sam-

ples and a Huntington’s disease group of 73 samples

(including all four presymptomatic and symptomatic

Huntington’s disease groups). Genes were ranked by

t-test of differential expression between the Huntington’s

disease and control groups. We then tested 5519 overlap-

ping pathway gene sets obtained from the Gene

Ontology, REACTOME, Kyoto Encyclopedia of Genes

and Genomes, NCI Pathway Interaction Database and

BioCarta databases, focusing testing on sets containing

between 3 and 500 genes. The GSEA method calculated

enrichment scores for each set reflecting representation of

that pathway at the top and bottom of the ranked gene

list (i.e. the most probably differentially expressed genes

in Huntington’s disease, both increased and decreased).

To estimate the statistical significance of the GSEA

enrichment scores obtained, we used a sample label

permutation strategy to estimate the null distribution (as

recommended by Mooney and Wilmot, 2015). This

involved permuting the phenotype labels 1000 times and

generating enrichment scores and P-values in the same

manner. Finally, q-values were calculated from the P-

value distributions. q-Values were calculated separately

for up- and downregulated gene sets.

Data availability

The NCBI Gene Expression Omnibus accession number

for the microarray data reported in this paper is GSE

135589.

Results

Microarray differential expression
analyses in Huntington’s disease
versus control subjects from the
TRACK-HD study

The Track-HD study provided an opportunity to obtain

a considerable number of samples collected in a highly

standardized manner from a clinically well-characterized

patient cohort (Tabrizi et al., 2009). We reasoned that

analyses of TRACK-HD samples therefore maximized the

chances of discovering or validating blood RNA bio-

markers for Huntington’s disease progression. To this

end, microarray gene expression analyses were conducted

from Year 1 total blood RNA samples from 37 manifest

Huntington’s disease subjects, 35 presymptomatic

Huntington’s disease gene carriers and 24 controls

(Tabrizi et al., 2009) (see also Materials and Methods

and Supplementary Tables 1 and 2 for further details).

As most of these subjects would carry on participating in

the study to its completion, we also had the opportunity

to perform longitudinal analyses of Year 3 samples (see

below).

To highlight the largest potential disease-related

changes, we first conducted analyses of samples from

symptomatic Huntington’s disease subjects versus

Blood mRNAs longitudinally in Huntington’s BRAIN COMMUNICATIONS 2020: Page 5 of 14 | 5
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controls. For the Year 1 microarray data, these com-

prised samples from 37 Huntington’s disease subjects and

24 controls, while Year 3 data comprised 32 of

Huntington’s disease subjects and 20 controls. A linear

regression model was fitted to analyse the relationship be-

tween expression and condition. The model also included

gender, age and sample collection site (London or

Vancouver) to avoid confounding effects.

Analyses of Year 1 samples detected 2575 probesets of

54 675 that reported differential expression at cutoff of

nominal P< 0.05 between the control and Huntington’s

disease groups [1125 increased and 1450 decreased in

Huntington’s disease (Fig. 1 and Supplementary Table

4)]. Supplementary Table 4 also lists the 20 probesets

with most significant differential expression and the func-

tions of proteins encoded by the genes they represent,

which include gene expression (RORC, ZFP42) and in-

volvement in cell structure (IQCA1, DYNC1I2). This

number of changes does not convincingly exceed chance

levels, however. Also consistent with the null hypothesis,

multiple testing correction by a well-established method

assigned all FDR P-values (q-values) to be greater than

0.05.

Because most participants remained in the study for its

duration, analyses of RNA samples from most of the

same subjects were analysed again after a 2-year interval

(TRACK-HD study Year 3). In the Year 3 analysis, 3261

probesets showed a potentially significant change of ex-

pression between control and Huntington’s disease sub-

jects [by the criterion of nominal P< 0.05; 1962

upregulated, 1299 downregulated (Fig. 1 and

Supplementary Table 5)], but still no individual probesets

showed differential expression that could be considered

significant after correction for multiple testing.

The 20 probesets with the lowest P-values in comparisons

between Huntington’s disease and control samples are also

listed in Supplementary Table 5; these include probes for

genes whose products are involved in gene regulation

(FOXK2, MRGBP), are active as serine/threonine kinases

(SGK494, AKT3, ATM) and comprise another glutamine-

rich protein (QRICH1). Despite the apparent low level of

differential expression signal, there was a small overlap of

differential gene expression signatures between the two

time-points (Table 1). Of the probesets meeting criteria of

nominal P< 0.05 in the Year 1 data, 299 meet the same

criteria for differential expression in Year 3, with 270 of

these the changing in the same direction. The high ratio of

concordant versus discordant changes across two separate

experimental analyses suggests that these positive results are

not due to technical variability.

Figure 1 Gene expression of four probesets that showed the strongest evidence of differential expression in Huntington’s

disease subjects compared to controls. Asterisks indicate nominal P< 0.05. Adjusted P-values >0.05 for all genes. Error bars represent

SEM. Expression signals are unlogged for display purposes.
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Focused analyses of blood RNA
differential expression measures
identified by previous Huntington’s
disease studies

A disease state biomarker should ideally be universally

applicable, such that it is detectable in Huntington’s dis-

ease versus control samples in different laboratories and

independent sample cohorts. Replication of potential

blood RNA biomarker signatures in Huntington’s disease

has been generally inconsistent in this regard. We none-

theless examined whether RNA changes identified as po-

tential biomarkers in previous studies were represented in

our analyses of differential expression between

Huntington’s disease subjects and controls

(Supplementary Table 6). This included a panel of 12 po-

tential biomarker genes identified through microarray

analysis of whole blood by (Borovecki et al., 2005) and

2 further genes discovered through machine learning ana-

lysis of the same microarray data (Lovrecic et al., 2010).

It also examined the expression of the histone gene

H2AFY identified by (Hu et al., 2011) and subsequently

analysed in (Mastrokolias et al., 2015). Five additional

differentially expressed blood RNAs identified by

(Mastrokolias et al., 2015) using DeepSAGE were also

evaluated. Finally, we tested seven other RNAs showing

differential expression by microarray analyses of

Huntington’s disease and control blood samples published

recently by (Zadel et al., 2018).

We also considered the results of five additional RNA

studies that focused on putative mechanisms of disease.

One RNA was included from a previous study of inflam-

matory processes in lymphocytes (Runne et al., 2007).

Two further candidates were chosen from a study that

considered Ca2þ homeostasis and neuroprotection using

mononuclear blood cells (Cesca et al., 2015). Six genes

were identified based on a study of metabolic- and cellu-

lar stress-related RNA measures in whole blood com-

pared to other clinical, anthropometric and biochemical

parameters (Krzyszto�n-Russjan et al., 2013). Larger gene

sets were also considered based on data from

Huntington’s disease monocytes: these comprised the 20

most significantly dysregulated genes from a quantitative

PCR study of the NFjB pathway (Träger et al., 2014)

and the top 20 from a full RNA-Seq analysis (Miller

et al., 2016).

All of these candidate genes had been previously sub-

ject to technical validation using quantitative PCR in

their respective initial reports. The majority of genes from

earlier studies had been selected for independent valid-

ation in additional cohorts, with limited success. To the

best of our knowledge this study is the first to attempt to

reproduce the positive biomarker study results of Cesca

et al. (2015) and Krzyszto�n-Russjan et al. (2013).

In total, 70 unique transcripts identified in previous

studies were tested in our two cross-sectional differential

expression analyses. In the Year 1 Huntington’s disease

versus control analysis, 8 of these showed statistically sig-

nificant differential expression (P< 0.05, without FDR

correction). However, only two of these transcripts

(SAP30 and ENSA) were dysregulated in the same direc-

tion as reported in their original studies. The protein

encoded by SAP30 is a subunit of the histone deacetylase

complex, noteworthy due to the well-established interfer-

ence by mHTT of the regulatory machinery of gene ex-

pression. ENSA, which has been suggested as a candidate

gene for insulin dependent diabetes mellitus (Héron et al.,

1999), encodes the endogenous ligand of the ABCC8

regulatory subunit of KATP channels. The Year 3 analysis

showed even less concordance: 6 genes were significantly

dysregulated, yet only LTBR (which encodes the lympho-

toxin-b receptor) showed a change in the same direction

as previously reported. The candidate biomarker panel

identified by Krzyszto�n-Russjan et al. (2013) showed a

high proportion of statistically significant transcripts in

both years; however all of these were dysregulated in the

opposite direction to that which was originally reported,

which suggests that these are genes that show a large de-

gree of heterogeneity of expression (or detection) between

individuals, independent of Huntington’s disease status.

Table 1 Top 5 most significant probesets from each year showing significant differential expression at the other

time point

Gene symbol Probeset Protein function Year 1 Year 3

logFC P logFC P

HSA277841 1560855_at ELG protein �0.34 1.5E�04 0.24 0.038

MARCH8 231933_at Ubiquitin ligase �0.57 8.7E�04 �0.36 0.046

TRIM58 215047_at Ubiquitin ligase �0.59 8.8E�04 �0.44 0.013

TOMM34 201870_at Transport across mitochondrial membrane 0.23 9.1E�04 0.25 5.5E�03

LIMS1 207198_s_at LIM and senescent cell antigen-like domains �0.25 1.3E�03 �0.18 0.027

SESN3 235683_at TORC1, TORC2 signalling pathways �0.41 0.042 �0.68 2.7E�04

ELL2 214446_at Elongation factor for RNA polymerase II �0.44 8.6E�03 �0.55 3.0E�04

CYP19A1 239459_s_at Cytochrome P450 family member �0.27 0.038 �0.58 7.3E�04

CCDC15 220466_at (Unknown) �0.33 0.046 �0.49 7.3E�04

N4BP2L2 214753_at (Unknown, associated with immunity) 0.19 3.7E�03 0.20 7.4E�04

P-values have not been adjusted for multiple testing. EST. Protein function is inferred from GeneCards Human Gene Database.
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Global longitudinal analysis of gene
expression versus TMS

It is essential for a disease state biomarker to show a

clear relationship to disease progression. A robust way of

assessing this is to identify and evaluate potential bio-

markers is to follow this potential relationship in a single

cohort longitudinally. This also provides a means of test-

ing biomarkers that largely circumvents the interference

of inter-individual variability.

Along with blood RNA microarray data, the Track-HD

study collected clinical measurements including TMS, the

component of UHDRS that assesses 31 motor symptoms

of Huntington’s disease; the higher the score, the more

severe the disease state (Huntington Study Group, 1996).

To focus our analysis on individuals with significantly

progressive disease, the cohort for the longitudinal ana-

lysis was selected through analysis of the mean TMS

change across 2 years of each sample group

(Supplementary Table 3). As such, the analysis included

15 presymptomatic HTT mutation carriers and 32 diag-

nosed Huntington’s disease subjects. In this analysis,

DTMS was used as a scale of disease progression across

the 2 years and was plotted against DExpression in each

individual. For each microarray probeset, a linear regres-

sion analysis was performed to model the slope and stat-

istical significance of the relationship between the two

variables (Fig. 2). Pearson’s correlation coefficient was

used to determine the degree to which they were related.

The 20 probesets that showed most significant correl-

ation are displayed in Table 2; 4273 probesets, out of a

total of 54 675, showed a statistically significant correl-

ation (P< 0.05) (Supplementary Table 7); 2962 of these

showed positive correlation and 1311 an inverse relation-

ship. Furthermore, 394 probesets showed very highly sig-

nificant correlation (P< 0.005). Notably, however, when

multiple testing correction was applied, the significance of

association for all probesets was P> 0.05. The most sig-

nificant 20 probesets included genes that encoded pro-

teins involved in mitochondrial maintenance (HSPA9),

transcriptional regulation (NACC1) and cell signalling

pathways (LYPD6).

To further assess the genes identified for their ability to

detect Huntington’s disease progression, a comparative

longitudinal analysis was performed in a group of 20

controls from the Track-HD study. It would be expected

that expression changes associated with Huntington’s dis-

ease progression would not be seen in a control group.

However, in this analysis, 5392 probesets showed very

highly statistically significant (adj. P< 0.005) differential

expression. These included 319 of the 4273 statistically

significant probesets identified in the Huntington’s disease

correlation analysis. This result suggests that some of the

signal observed might be due to technical variation (e.g.

due to microarray batch processing).

The utility of a potential biomarker would be increased

if it displayed a clear association with disease state at

cross-sectional time-points, to inform clinical trial recruit-

ment, for example. Therefore, cross-sectional analyses of

the relationship between TMS and expression were also

conducted. These included the sample groups with a sig-

nificantly different mean TMS than the control group (at

both timepoints) (Supplementary Table 3). In the Year 1

samples, 3991 probesets showed statistically significant

(P< 0.05) association with TMS, including 467 of the

changes identified in the longitudinal correlation analysis

(Supplementary Table 8). At Year 3, the number of pro-

besets with a statistically significant (P< 0.05) relation-

ship between TMS and expression was 1601. Of these,

255 probesets had been also identified as significant in

our longitudinal profiling (Supplementary Table 9).

Evaluation of gene signatures from
previous studies in our longitudinal
analysis

Along with a lack of replication of potential

Huntington’s disease blood biomarkers across independ-

ent cohorts, longitudinal assessments of these potential

biomarkers have not previously been carried out.

Therefore, candidate genes from three cross-sectional

studies were evaluated in our longitudinal analysis cohort

to provide further evaluation of their suitability as

Huntington’s disease biomarkers (Supplementary Table

10). It would be expected that if a gene is differentially

expressed between controls and Huntington’s disease in

these studies, it would be correlated with disease progres-

sion in the same direction.

Of the same 70 transcripts described above, the expres-

sion of only four changed at a rate that could be statis-

tically significantly associated with disease progression

over the 2-year interval (P< 0.05 without FDR correc-

tion). These are plotted in Fig. 3, and Table 3 summa-

rizes their functions and correlation statistics.

ROCK1, which encodes a protein serine/threonine kin-

ase (Borovecki et al., 2005), showed the strongest correl-

ation of any of the previously identified candidate

biomarkers in our longitudinal analysis. To the contrary,

however, it was not detected as differentially expressed in

our cross-sectional differential gene expression analyses

(nominal P> 0.05), where it showed a trend in the op-

posite direction.

SAP30 also showed an upregulation over the 2-year

interval that was significantly associated with disease pro-

gression. This corroborates the findings of (Zadel et al.,

2018) and was also detected in the cross-sectional ana-

lysis our Year 1 samples.

Likewise, LTBR showed significant positive correlation

with TMS progression, consistent with a previous study

of NFjB pathway disturbances in Huntington’s disease

(Träger et al., 2014). LTBR also showed upregulation

(nominal P< 0.05) in our Year 3 differential expression

analysis.
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The other gene showing significant correlation with dis-

ease progression was IL23A, which encodes an inflamma-

tory cytokine. However, IL23A was reported to be

upregulated in the original paper (Miller et al., 2016),

but showed negative association with disease progression

in our analysis.

Functional pathway analyses of a
putative Huntington’s disease
signature

Several studies have interrogated specific functional path-

ways represented in gene expression signatures from

Huntington’s disease blood using GSEA. In their analysis

of Huntington’s disease monocytes, Miller et al. (2016)

demonstrated significant enrichment of upregulated genes

relating to inflammation, immunity and intracellular sig-

nalling, and downregulated genes relating to vacuolar

and catabolic functions.

Hensman Moss et al. (2017) conducted a GSEA of dif-

ferentially expressed genes from a cohort of 186

Huntington’s disease and preHD subjects and 49 control

blood samples, a subset of which were also analysed in

this study. They reported significant associations of RNA

measures with TMS that represented pathways similar to

those reported by Miller et al. (2016). However, as in

Figure 2 The four probesets with the strongest correlation between disease progression and differential expression over 2

years. These analyses are based on data from preHD B (n¼ 15; mean age at Year 3 6 SD: 39.9 6 8.9 years; mean TMS change 6 SD:

4.67 6 4.47) and diagnosed Huntington’s disease subjects zHD stage 1 (n¼ 16; 50.0 6 9.3 years; 6.56 6 6.74) and zHD stage 2 (n¼ 16; 54.5 6 6.6;

7.13 6 6.16). Correlation calculated using Pearson’s correlation coefficient (r). When the significance of correlation was calculated and multiple

testing correction performed, adjusted P> 0.05 in all probesets. (A) AQR: r ¼ �0.61; nominal P¼ 4.3� 10�6. (B) LMNA: r ¼ þ0.58; nominal

P¼ 1.6� 10�5. (C) ELAVL3: r ¼ þ0.58; nominal P¼ 2.3� 10�5. (D) TMEM5: r ¼ �0.56; nominal P¼ 4.9� 10�5.
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our study, they did not observe statistically significant

differential expression in individual genes between

Huntington’s disease subjects and controls.

We first conducted GSEAs of differentially expressed

genes across our entire Year 1 cohort. Of the 5519 gene

sets tested, none were found to be statistically significant-

ly overrepresented (q-value cutoff of 0.05)

(Supplementary Tables 11 and 12). We then repeated the

analysis with the exclusion of samples in the presympto-

matic groups (as we did not observe statistically signifi-

cant difference in mean TMSs in this group compared to

controls). Again, we did not observe any significant en-

richment of pathways (Supplementary Tables 13 and 14).

We discuss possible biological and technical explanations

for these discrepancies below.

Discussion
In this study, we aimed to identify a transcriptional sig-

nature in whole blood that could be used as a

Huntington’s disease state biomarker, and to evaluate

candidate RNA biomarkers identified in previous studies.

These aims were pursued through differential expression

analyses of blood samples from manifest Huntington’s

disease subjects, presymptomatic subjects carrying the

Huntington’s disease mutation and control subjects. Both

cross-sectional and longitudinal analyses were applied

and correlated with UHDRS measures. To our know-

ledge, this is the first time a longitudinal analysis in a

single Huntington’s disease cohort has been used to try

to identify novel transcriptional Huntington’s disease bio-

markers and to test previously reported candidates.

The high level of variability in blood RNA expression

may be a substantial barrier to the clinical application of

gene expression changes as clinical biomarkers. Here, dif-

ferential expression in Huntington’s disease subjects ver-

sus controls was investigated using multiple linear

regression modelling, to attempt to assign potential con-

founding effects of collection site, gender and age a pri-

ori. The P-values discussed here are not adjusted for

multiple testing, because adjustments using the standard

FDR method resulted in P-values greater than 0.05 and

therefore would not have aided us in discriminating top

candidates. This likely reflects the disease effect sizes

being very small, particularly considering the available

sample numbers and other variables (Ideker et al., 2011).

Quality control measures of the microarray data showed

low technical variability, which was thus ruled out as a

confounding factor.

Furthermore, our pathway analyses did not show con-

vincing evidence of dysregulation of any particular func-

tional cellular or molecular pathways. This does not

exclude the possibility of functional pathway dysregula-

tion (Hensman Moss et al., 2017), but differences from

previous approaches and their caveats need to be consid-

ered. Here, we randomized the disease status assignments

of the samples to evaluate the background signal in our

analyses. These maintain the data structure of the defined

background, thereby circumventing confounding effects

due to tissue-specific gene expression. For example, in

blood, signatures are dominated by immune cell and re-

ticulocyte RNAs, which would typically represent specific

biological pathways compared to randomly sampled gene

sets. In such a case, false-positive assignments of disease-

Table 2 Top 20 probesets with strongest correlation longitudinal analysis of gene expression and TMS progression

Gene symbol Probeset Protein function Correlation P-value

AQR 212584_at Intron-binding spliceosomal factor �0.61 4.3E�06

LMNA 214213_x_at Component of nuclear lamina 0.58 1.6E�05

ELAVL3 206338_at Cell differentiation 0.58 2.2E�05

TMEM5 204808_s_at Transmembrane protein �0.56 5.0E�05

HSPA9 200690_at Stress response, mitochondrial

maintenance

�0.55 5.4E�05

(EST) 242526_at (Unknown) �0.55 6.6E�05

NACC1 235047_x_at Apoptosis, transcriptional regulation 0.55 7.2E�05

PRX 220024_s_at Axon ensheathment 0.54 8.2E�05

LINC00691 1561059_a_at (Non-protein coding) 0.54 1.1E�04

IGFBP1 237989_at IGF-binding protein 0.53 1.1E�04

(EST) 239312_at (Unknown) 0.53 1.2E�04

(EST) 220129_at (Unknown) 0.53 1.4E�04

MGC16025 1553747_at (Non-protein coding) 0.53 1.5E�04

LYPD6 227763_at Interacts with nAChR subunits 0.52 1.6E�04

MAPRE3 203841_x_at Regulation of microtubule cytoskeleton 0.52 1.8E�04

TSGA10 223838_at (Unknown) �0.52 1.9E�04

(EST) 237213_at (Unknown) �0.52 2.0E�04

CCDC150 1553459_at (Unknown) 0.52 2.1E�04

(EST) 1557505_a_at (Unknown) 0.51 2.2E�04

CNTN1 1554784_at Neuronal cell adhesion 0.51 2.5E�04

These analyses are based on data from 15 preHD B and 32 diagnosed Huntington’s disease subjects. Correlations were calculated using Pearson’s correlation coefficient. P-values

have not been adjusted. ESTand signifies microarray tags for which the gene they represent is currently unknown. Protein function from GeneCards Human Gene Database.

10 | BRAIN COMMUNICATIONS 2020: Page 10 of 14 C. T. Mitchell et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/2/2/fcaa172/5926975 by U

C
L, London user on 15 D

ecem
ber 2020

https://academic.oup.com/braincommsarticle-lookup/doi/10.1093/braincomms/fcaa172#supplementary-data
https://academic.oup.com/braincommsarticle-lookup/doi/10.1093/braincomms/fcaa172#supplementary-data


related differential gene expression to pathways of im-

mune cell signalling and inflammation become more

likely.

We also evaluated the relationship between differential

expression attributed to Huntington’s disease and con-

tinuous quantitative measures of disease status (UHDRS

TMS) using linear correlation. The slopes of the resultant

lines were also low, further supporting a small

Huntington’s disease effect size. The small effect size

could however reflect the proportion of blood cell

subtypes susceptible to Huntington’s disease-related

changes (BjöRkqvist et al., 2008; Wild et al., 2011).

We nonetheless entertained the possibility that small

transcriptional changes in peripheral blood cells might be

informative as state biomarkers in individual

Huntington’s disease patients. However, longitudinal

analyses of the 70 genes identified by previous cross-sec-

tional studies [not including those from Hensman Moss

et al. (2017), whose cohort overlapped with our own]

detected only three that showed significant association

Figure 3 Probesets representing genes found to be dysregulated in previously transcriptomic Huntington’s disease blood

studies that showed significant association between disease progression and differential expression in our longitudinal analysis.

These analyses are based on data from preHD B (n¼ 15; mean age at Year 3 6 SD: 39.9 6 8.9 years; mean TMS change 6 SD: 4.67 6 4.47) and

diagnosed Huntington’s disease subjects zHD stage 1 (n¼ 16; 50.0 6 9.3 years; 6.56 6 6.74) and zHD stage 2 (n¼ 16; 54.5 6 6.6; 7.13 6 6.16).

Correlation calculated using Pearson’s correlation coefficient (r). When the significance of correlation was calculated and multiple testing

correction performed, adjusted P> 0.05 in all probesets. (A) ROCK1: r ¼ þ0.36; nominal P¼ 0.013. (B) SAP30: r ¼ þ0.35; nominal P¼ 0.017.

(C) IL23A: r ¼ �0.33; nominal P¼ 0.022. (D) LTBR: r ¼ þ0.29; nominal P¼ 0.049.
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with disease state in the same direction (ROCK1, SAP30,

LTBR). The very minimal overlap of Huntington’s dis-

ease-associated gene expression changes from previous

studies in our 2-year longitudinal analyses in does not

bode well for their suitability as biomarkers. Again, the

most likely explanation is that the small Huntington’s

disease effect size is insufficient compared to the inherent

biological and technical variability of blood RNA differ-

ential expression measures.

The functions of the proteins encoded by genes with

the most reproducible differential expression in

Huntington’s disease samples are nonetheless consistent

with idea that mHTT has pathological effects in blood.

For example, ROCK1 is a member of the Rho kinase

pathway and is involved in cell motility and cytoskeleton

organization. This pathway has previously been docu-

mented to be dysregulated in Huntington’s disease blood,

post-mortem brain samples and mouse models

(Narayanan et al., 2016).

SAP30 is a component of the histone deacetylase com-

plex, and its dysregulation may relate to changes in the

post-translational modification of histone proteins, which

are known to occur in Huntington’s disease and

Huntington’s disease model systems (Glajch and Sadri-

Vakili, 2015; Naia et al., 2017). Likewise, dysregulation

of LTBR, a receptor involved in cytokine release, contrib-

utes to the wider evidence of dysregulated inflammation

in Huntington’s disease (Miller et al., 2016; Hensman

Moss et al., 2017). Clearly, these changes and their func-

tional consequences could help understand Huntington’s

disease pathology in peripheral tissues, and how this dif-

fers from, or is similar to, mHTT’s effects in the brain

(Weir et al., 2011).

Intra- and inter-individual variation and the potential

for uncorrelated peripheral and central pathologies seem

to be at the root of difficulties discerning a temporal as-

sociation between blood gene expression and the neuro-

logical symptoms of Huntington’s disease. In contrast,

other biomarker approaches may prove more useful.

These include neuroimaging (Rees et al., 2013), alterna-

tive measures of motor function (e.g. speeded tapping,

tongue force and eye movements) (Tabrizi et al., 2009)

and other molecular analyses, including measurements of

neurofilament proteins (Byrne et al., 2018; Johnson et al.,

2018), HTT protein (Wild et al., 2015; Byrne et al.,

2018), oxidative stress markers, inflammatory proteins

and endocrine markers (BjöRkqvist et al., 2008; Wild

et al., 2011; Scahill et al., 2012).

In conclusion, changes in mRNA expression in whole

blood showed limited association with Huntington’s dis-

ease pathology and progression. These changes may re-

flect interesting pathological or compensatory roles within

blood cells, but their effect sizes in whole blood are very

small, thereby constraining their deployment as state bio-

markers for Huntington’s disease.
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