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Abstract. In this paper, we propose an on-line state estimation method for an N -

qubit quantum system based on the continuous weak measurement and compressed

sensing. The quantum system is described by stochastic master equation. The

continuous weak measurement operators for the N -qubit quantum system, which are

indirectly acted on the quantum system, are derived according to the measurement

operator results of two-level quantum system. The on-line time-varying measurement

operators are obtained by means of the dynamic evolution equation of the system. The

quantum state is on-line estimated by solving the optimization problem of minimizing

the 2-norm with the positive definite constraints of density matrix, and we use the

non-negative least squares algorithm to solve the optimization problem. Compressed

sensing theory is used to reduce the number of the measurements in the process of on-

line state estimation. In the numerical experiments, we study the effects of external

control field, measurement rate and the different numbers of qubits on the performance

in the proposed method. The minimum required number of measurements for 2, 3,

4 and 5 qubits are found. The fidelity accuracy of our proposed method can achieve

more than 99% with small number of measurements.

1. Introduction

The fundemental task of reconstructing an unknown quantum state – known as quantum

state tomography (QST), or quantum state estimation (QSE) – has been applied

in quantum control, quantum computing and quantum information to characterize

quantum states, such as trapped ions [1] and optical entangling gate [2]. In QST,

the state of system is reconstructed based on the results of a collection of complete

measurement set [3, 4, 5]. Specifically, standard QST reconstructs quantum states from

a complete set of projective measurements with informationally complete observables

obtained from separable ensembles[6, 7]. In recent years, other QST methods have

been proposed using different measurements and technical approaches. For example,
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continuous weak measurement [8, 9, 10, 11] and sequential unsharp measurement [12]

with estimation methods such as maximum likelihood and Baysian method [13, 14, 15]

have been widely used in experiments [16, 17]. When the projective or strong

measurements are acted, the state of the system will collapse to its eigenstates, thus

one needs to reprepare the ensemble and measurement apparatus at each step [18]. The

weak measurements offer a trade-off between information gain and the disturbance of

the system [19]. Since weak measurement is not completely destructive, continuous

measurements are applicable with weak measurements [20]. On-line quantum state

estimation (OQSE) is a continuous state estimation at any moment by using continuous

weak measurements with the help of some optimization algorithms [21, 22]. Its

continues measuring process can make OQSE work together with the feedback control

theory [23, 24]. When the system dynamics are known, one can produce continuous

measurement operators in the Heisenberg picture [25, 26]. Most previous works on state

estimation are off-line [27, 28], while in OQSE the state is estimated in real time as the

system evolves dynamically [29, 30].

Compressed sensing (CS) is widely used for recovering sparse signals [31]. It focuses

on matrices that can be approximated by low-rank matrices of rank r � d, where d is

the dimension of the signal. The CS theory can be efficiently applied in standard QST

[32, 33] as well as real-time estimation [21, 34]. Without complete knowledge about

the system, CS can reconstruct the state by making use of the optimization algorithm

[35, 36]. In addition, this theory is robust to noise and continues to perform well when

the measurements are imprecise or when the state can be approximated as a low-rank

state [37]. Least square (LS) and compressed sensing are used for the estimation and

solving the optimization problem by the prevalent convex optimization toolbox [21].

In this work, we propose a method of on-line state estimation for N -qubit system

by means of continuous weak measurements and compressed sensing in real time. We

completed the OQSE for one-qubit in our previous researches [29, 30]. The dynamic

of the system is described by stochastic master equation in Schrodinger picture. The

estimated state is reconstructed by solving a convex optimization problem with physical

constraints. We verify the accuracy of the proposed estimation method by experimental

simulations for 2, 3, 4 and 5-qubit systems. To evaluate the accuracy of the estimation

we define fidelity and trace distance between actual state and estimated state. The

influences of parameters: external control field, measurement rate and number of qubits

are studied on the performance of the estimation by numerical simulations.

The paper’s structure is as follows. In Sec. 1 we introduce the N -qubit quantum

state on-line estimation and continuous measurement operators. In Sec. 2 numerical

simulations and results analyses are given. Finally, the conclusion is given in Sec. 3.

2. On-line quantum state estimation (OQSE) setup

In general QSE setup, one needs to apply measurements and reconstruct the state

density matrix of the system based on the results of the measurement. The measurement
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of a d-dimensional quantum state ρ is measuring the expectation probabilities of

ρ projecting on different measurement operators. The expectation probability of ρ

projecting on the measurement operator Mi is

〈Mi(ρ)〉 = Tr(ρMi) (1)

where M = {M1, M2, ..., Md2} is the set of complete measurement operators of ρ.

In QSE for an arbitrary quantum state ρ with a d ∗ d density matrix, one needs at

least d2 − 1 mutually orthogonal measurement operators to accurately reconstruct ρ as

ρ̂ =
1

d

d2∑
i=1

〈Mi〉Mi (2)

When the selected set of measurement operators is not complete, which implies that

the measurement is informationally incomplete, the solution of ρ in Eq. 2 is not unique

and one cannot use Eq. 2 to reconstruct ρ. In this case, by considering compressed

sending theory, the reconstruction problem of density matrix ρ is transformed to the

following optimization problem:

min ‖ρ̂‖∗ s.t. y = A.vec(ρ̂) (3)

where ‖ρ̂‖∗ is the nuclear-norm of ρ̂, vec(·) represents the transformation from a matrix

to a vector by stacking the matrix’s columns in order on the top of one another; A

is the matrix form of all the sampled measurement operators Mi; and vector y is the

corresponding measurement values as Eq. 1.

2.1. Weak measurement operator design

We design continuous weak measurement in presence of the dynamic evolution of the

system. We make weak measurement in an ensemble system by coupling the ensemble to

some probe which can be measured. At each instant time, the records of the expectation

values corresponding to measurement operators by the indirect results of continuous

weak measurements are obtained.

In this subsection we describe a model for measurement which consists of a

measurement device called a probe P and the coupling estimated system that is going to

be measured, called system S. The measurement is the interaction between the probe

and the system. One gets the information as the value of the system observable by

reading off the probe.

The system S has the Hamiltonian of Hs and initial state of |s〉. The probe P

is a quantum device with Hamiltonian of Hp and initial state of |p〉, with a complete,

orthonormal set of basis states |k〉 . Thus, the corresponding measurement operators of

probe are X =
∑
I ⊗ |k〉〈k|.

The probe P and system S are coupled and the initial state of the coupled system

is |Ψ〉 = |s〉 ⊗ |p〉, with the joint system Hamiltonian of H = HP ⊗HS. After the joint

evolution of S and P for time ∆t, the joint system state becomes |Ψ(∆t)〉 = U(∆t)|Ψ〉,
where U(∆t) = exp(−iξ∆tH/h̄) is the joint evolution operator , and ξ represents the
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interaction strength between system S and probe P . |Ψ(∆t)〉 is an entangled state

composed of S and P , which cannot be separately described with the states of S and

P .

At time ∆t, a measurement is performed on the entangled state with the

measurement operator X =
∑
I ⊗ |k〉〈k|. This measurement is actually a projective

measurement on P , and the outputs are the eigenvalues corresponding to |k〉. The state

of the joint system after the weak measurement becomes

|Ψk(∆t)〉= (|k〉〈k| ⊗ I • U(∆t)|p〉 ⊗ |s〉)/Θk (4)

where Θk=
√
〈Ψ(∆t)|Πk|Ψ(∆t)〉.

After the projective measurement, the entanglement between S and P disappears,

and the state of S at time ∆t becomes |sk(∆t)〉. The state of the joint system after the

weak measurement can be represented as

|Ψk(∆t)〉=|k〉 ⊗ |sk(∆t)〉 (5)

By substituting Eq. 5 into Eq. 4, we can obtain the state of the system after

measurement as

|sk(∆t)〉=〈k| ⊗ I • U(∆t)|p〉 ⊗ |s〉/Θk (6)

The weak measurement operator mk is defined as

mk = 〈k| ⊗ I · U(∆t) · |p〉 ⊗ I (7)

which is a Kraus operator and satisfies
∑

km
†
kmk = 1. In this case, Θk becomes

Θk=
√
〈s|mk

†mk|s〉 (8)

In such a way, we obtain the weak measurement operator mk in Eq. 7 on the system

S.

Measurement operators in on-line state estimation are not a constant matrix group,

but they are a set of time varying measurement operatorsmk(t). Here, we need to deduce

the time varying measurement operators used in OQSE.

In the joint evolution operator U(∆t) = exp(−iξ∆tH/h̄), λ = ξ∆t denotes the

weak measurement strength, where h̄ = 1 and both the interaction strength ξ and the

evolution time ∆t are small values. When ξ∆t → 0 the measurement is weak. The

Taylor expansion of U by neglecting more than three orders of magnitude is

U(∆t) ≈ I ⊗ I − iξ∆tH − (ξ∆t)2H2
/

2 (9)

By replacing Eq.9 in Eq.7 we can obtain the expression of the weak measurement

operator as

mk(∆t) ≈ I 〈k| p〉 − iξ∆tHS 〈k| HP |p〉 − (ξ∆t)2H2
S 〈k| H2

P |p〉
/

2 (10)

Assume rk = (ξ∆t)H2
S 〈k| H2

P |p〉 /2, k = 1, 2, ..., d , hence the general form of the

weak measurement operator becomes:

mk(∆t) = I 〈k| p〉 − [rkλ/2 + iλHS 〈k| HP |p〉 ] (11)
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Suppose 〈j | p〉 = 1 when k = j, we can obtain mj(t) as : mj(∆t) = I − (ξrk=j/2 +

iξHS)∆t; and all the other measurement operators of k 6= j can be combined as one

operator as: mk 6=j(∆t) = mj⊥(∆t) =
√
rk 6=j∆t, where mj⊥ and mj are orthogonal

and satisfy (mj⊥)2+(mj)
2 = I. For the continuous weak measurements of a two-level

quantum system, the measurement operator group contains two operators: m0(∆t) and

m1(∆t). With a given operator L, the corresponding continuous weak measurement

operators m0(∆t) and m1(∆t) can be constructed, respectively, as

m0(∆t) = mj − i(1− ξ)HS∆t

= I − (ξrk/2 + iH(t)) ∆t

= I −
(
L†L

/
2 + iH(t)

)
∆t

m1(∆t) = mk 6=j = L ·
√

∆t

(12)

where L†L = ξrk.

For N -qubit system, one needs 2N measurement operators, which can be calculated

by tensor products of m0 and m1 given in Eq. 12.

M0(∆t) = m0(∆t)⊗ . . .⊗m0(∆t)⊗m0(∆t)︸ ︷︷ ︸
N

M1(∆t) = m0(∆t)⊗ . . .⊗m0(∆t)⊗m1(∆t)︸ ︷︷ ︸
N

...
...

M2N−1(∆t) = m1(∆t)⊗ . . .⊗m1(∆t)⊗m1(∆t)︸ ︷︷ ︸
N

(13)

where
∑2N−1

j=0 Mj(∆t) = 1.

2.2. Dynamical model of the system

The dynamic model of open quantum system is presented by stochastic master equation

in Schrodinger picture as [38]

ρ(t+ ∆t)− ρ(t) = − i
h̄
[H(t), ρ(t)]dt+

∑ [
Lρ(t)L† −

(
1
2
L†Lρ(t) + 1

2
ρ(t)L†L

)]
dt

+
√
η
∑ [

Lρ(t) + ρ(t)L†
]
dw , ρ0 = ρ(0)

(14)

where ρ(t) is the density matrix of the system; H(t) is the total Hamiltonian of the

system which is H(t) = HS + HP ; HS is the measured system Hamiltonian and HP

the Hamiltonian of the probe system. Let D[L, ρ] = LρL† − (1/2)
(
L†Lρ+ ρL†L

)
,

which is the decoherence effect of the measurement process, and a drift term expressed

as a Lindblad form; H[L, ρ] = Lρ + ρL†, is the stochastic diffusion term introduced

by the measurement process expressed as a disturbance to the state of the quantum

system, also known as the reverse effect (Back-action). In the condition of homodyne

measurement, the noise produced by measurement output for zero error measurement

is a one-dimensional Wiener process and it satisfies E(dW ) = 0, E[(dW )2] = dt. Based

on the continuous weak measurement principles of the quantum system, measurement

process contains the system evolution, so the continuous weak measurement operator
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M0(∆t) contains the system total Hamiltonian H(t). The evolution operators of the

system by considering both system random noise and measurement efficiency are:

a0(∆t) = m0(∆t) +
√
ηL · dW

a1(∆t) = m1(∆t) +
√
ηL · dW

(15)

where ∆t represents the very short time interval required for the weak measurement,

L · dW denotes the noise caused by the continuous weak measurements, η is the

measurement efficiency which satisfies 0 < η ≤ 1, dW is Gaussian white noise and W (t)

is a Weiner process with zero mean E [W (t)] = 0 and unit variance E[(W (t))2] = δ.

Explicitly, the evolution operators of the N -qubit system are:

A0(∆t) = a0(∆t)⊗ . . .⊗ a0(∆t)⊗ a0(∆t)︸ ︷︷ ︸
N

A1(∆t) = a0(∆t)⊗ . . .⊗ a0(∆t)⊗ a1(∆t)︸ ︷︷ ︸
N

...
...

A2N−1(∆t) = a0(∆t)⊗ . . .⊗ a1(∆t)⊗ a1(∆t)︸ ︷︷ ︸
N

(16)

The discrete-time dynamic evolution equation of the stochastic N -qubit open

quantum system S can be written by setting t = k ×∆t as:

ρ(k + 1) = A0ρ(k)A†0 + A1ρ(k)A†1 + . . .+ A2N−1ρ(k)A†2N−1 (17)

where k is the sampling times in which we apply the continuous measurement and

estimation.

Our objective is to estimate the state from continuous measurement records and

dynamic of the system. The continuous weak measurement in Schrodinger picture is

equivalent to the measurement of a constant state ρ(0) with a continuously evolving

measurement operator M(t) in Heisenberg picture, by ignoring the noise and diffusion

[26]. Hence, we transform system of Schrodinger picture in Eq. 14 to that of

Heisenberg picture, where the measurement operator evolves continuously over time and

the quantum state keeps constant. Note, this is not same as the standard Heisenberg

picture, because we omit the decoherence during the dynamical evolution [25]. The

evolution equation of the measurement operator M(t) in Heisenberg picture is:

Ṁ(t) =
i

h̄
[H(t),M(t)]− 1

2

(
L†LM(t) +M(t)L†L

)
+ L†M(t)L (18)

Therefore, the corresponding discrete-time evolution equation of continuous weak

measurement operators for N -qubit can be written as:

M(k + 1) = M0
†M(k)M0 +M1

†M(k)M1 + . . .+M2N−1
†M(k)M2N−1 (19)

One needs to set the amount of the initial measurement operator M(0), and

calculate the rest of the measurement operators by recursive Eq. 19. We study the

effect of initial measurement operator M(0) on the performance of our estimation later.
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2.3. OQSE estimator

As we discussed in the introduction, to reconstruct the state, we need to solve Eq. 3.

Here we propose an OQSE estimator which combines the non-negative least squares

estimator of minimizing the 2-norm with the positive definite constraints of density

matrix:

arg min ‖A · vec(ρ̂)− y‖2

s.t. ρ̂ ≥ 0, tr(ρ̂) = 1
(20)

The vector y and matrix A can be expressed according to the current measurement

configurations as:

y(l) = (〈M(1)〉 , 〈M(2)〉 , · · ·, 〈M(l)〉)T , l = 1, 2, ..., k (21)

and

A(l) =
(
vec(M(1))T vec(M(2))T · · · vec(M(l))T

)
, l = 1, 2, ..., k (22)

where the sampling matrix A is the matrix form of all the sampled measurement

operators in the l -th measurement as M(l), l = 1, 2, ..., k, calculated by Eq. 19, with k

as the sampling times; The sampling vector y is the vector form of the corresponding

observation values 〈M(l)〉.
We can estimate the quantum state on-line, with a small number of time-evolving

measurement operators 〈M(l)〉, l = 1, 2, ..., k and corresponding measured records y(l),

l = 1, 2, ..., k by solving the optimization problem Eq. 20 with an appropriate algorithm.

To solve Eq. 20 we used CVX, a package for specifying and solving convex programs

[39, 40].

The number of measurements m is increasing as the sampling times increases, which

makes the estimation process becomes time consuming. For instance at sampling times

k = 100, we have 100 measurement operators Eq. 22 and corresponding records Eq.

21 which are used in the estimator. The estimator needs to estimate density matrix

parameters, which are d2 elements of density matrix in a d-dimensional Hilbert space.

When the number of measurement outcomes are equal to d2 the measurement set is

known as informationally-complete, and if it’s less than the number of elements, the

measurement set is named as informationally-incomplete set. The measurement rate is

defined as:

β =
m

d2
(23)

where m is the number of measurements, and d is the dimension of density matrix.

Hence, for each state estimation we choose the last m number of measurements

and discard the others. The measurement rate is proportional to the number of

measurements and when β = 1 the measurement set is informationally-complete set.

To study the performance of our state estimation scheme, we use fidelity and trace

distance between actual state and estimated state as

F = Tr
√
ρ̂(t)1/2ρ(t)ρ̂(t)1/2 and Td =

1

2
tr (|ρ(t)− ρ̂(t)|) (24)
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where ρ̂(t) is the estimated state and ρ(t) the actual state of the system at time t.

Generally, the trace distance Td ∈ [0, 1] is a measure of how much two states are close

and fidelity F ∈ [0, 1] measures how much two states overlap each other. A trace

distance of 0 (fidelity of 1) means the states are identical, whereas the trace distance of

1 (fidelity of 0) means the states are orthogonal.

3. Numerical experiments evaluation

To show the accuracy of the proposed estimation method, we perform numerical

experiments. We study the effects of external control field, measurement rate and

number of qubits on the performance of the OQSE by numerical simulations. In our

numerical experiments, the Lindblad operator L in Eq. 12 is chosen from the Stokes

measurements set as:

B0 = |H〉〈H|+ |V 〉〈V |, B1 = |H〉〈H|, B2 = |D〉〈D|, B3 = |R〉〈R| (25)

where |H〉 ≡ |0〉 =

(
1

0

)
is horizontal polarization, |V 〉 ≡ |1〉 =

(
0

1

)
is

vertical polarization, |D〉 ≡ (|H〉+ |V 〉)
/√

2 is diagonal polarization, and |R〉 ≡
(|H〉+ i|V 〉)

/√
2 is right-circular polarization.

The initial state of each qubit is ρ(0) = [ 3/4 −
√

3
/

4; −
√

3
/

4 1/4 ], hence,

the initial state of N -qubit system is ρN(0) = ρ(0)⊗ · · · ⊗ ρ(0)︸ ︷︷ ︸
N

. The strength of the

measurement is set as ξ = 0.5, the interval between two adjacent moments as ∆t = 0.1,

the measurement efficiency as η = 0.5, and the noise dW is random generated Gauss

white noise with variance being 0.02. The Hamiltonian of ρ(t) is H = H0 + ucHc where

H0 = σz is the free Hamiltonian of the system and ucHc is the control Hamiltonian;

σx =

[
0 1

1 0

]
, σy =

[
0 −i
i 0

]
and σz =

[
1 0

0 −1

]
are the Pauli operators.

3.1. The requirement of external control field to gain high fidelity

As a first set of experiments, we compare the performance of the proposed OQSE for

two-qubit initial state ρ2(0), with and without external control field. External control

field appears in Hamiltonian of the system as H = H0 + uxHx. When ux = 0 (ux = 1)

the Hamiltonian is without (with) external control field, respectively. In the experiment,

the measurement rate is set as β = 1, which is 16 number of measurements for two-qubit

system. The definition of measurement rate β can be found in Method Section.

As Fig. 1 depicted the fidelity of estimation is higher with external control field.

By adding external control field, the amount of fidelity improves for different amounts

of the Lindblad operator L and initial measurement operator M(0).

Now, we intend to find the reason of increase in the amount of fidelity by adding

external control field. So we explain the relation between Hamiltonian of the system,

Lindblad operator and the measurement operator m0(∆t). As we can see from Eq. 12,



New Journal of Physics 9

10 20 30 40 50

Sampling times

0.4

0.6

0.8

F
id

e
li

ty

L=0.5*B3, M(0)=B2*B2

U
x
=0

U
x
=1

(a)

10 20 30 40 50

Sampling times

0.5

0.6

0.7

0.8

0.9

F
id

e
li

ty

L=0.5*B1, M(0)=B0*B3

U
x
=0

U
x
=1

(b)

10 20 30 40 50

Sampling times

0.65

0.7

0.75

0.8

0.85

F
id

e
li
ty

L=0.5*B0, M(0)=B1*B3

U
x
=0

U
x
=1

(c)

Figure 1: Fidelity between estimated state and actual state with and without external

control field, for different amounts of Lindblad and initial measurement operator. The

blue curve is the fidelity without external control, where H = H0 = σz , and the red

curve is the fidelity with external control field, where H = H0 + uxHx, H0 = σz is the

free Hamiltonian of the system, uxHx is the control Hamiltonian where ux = 1.

the Hamiltonian of the system has effects on the amount of m0(∆t) for one-qubit and

consequently on Mj(∆t) in Eq. 13 for N -qubit. While Hamiltonian is without external

control, H = σz, the amount of m0(∆t) for all Lindblad operators, is in the x− z plane

of the Bloch sphere and does not have y-component ( for L = 0.5 ∗B3 the y-component

is so small 0.01 according to Table 1). Hence, the estimated states are in the x − z

plane and are not close to the actual states of the system. However, by adding external

control field as H = σz +σx, the measurement operator m0(∆t) has y-component for all

Lindblad operators and can be in any plane of the Bloch sphere, as shown in Table 1.

Therefore, the estimated states become closer to the actual states of the system, which

can be in any plane of the Bloch sphere.

Table 1: The amount of y-component of measurement operator m0 with and without

external control for different Lindblad operators.

Lindblad operator
H = σz H = σz + σx

y-component of m0(∆t) y-component of m0(∆t)

L = 0.5B0 0 -0.2

L = 0.5B1 0 -0.2

L = 0.5B2 0 -0.2

L = 0.5B3 0.0125 -0.1875

3.2. The effects of measurement rate on the performance of OQSE

In order to find the behavior of our estimation method by changing the number of

measurements, we do the simulation for initial two-qubit state ρ2(0) with different

measurement rates. The definition of measurement rate β can be found in Method

Section. In Fig. 2 the behavior of fidelity for different measurement rates β =

0.2, 0.3, 0.5, 1 is given. The Hamiltonian is set as H = σz + σx, the Lindblad operator
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as L = 0.5B3 and the initial measurement operator as M(0) = B2 ⊗B2.
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Figure 2: Fidelity between estimated state and actual state of two-qubit state ρ2(0) for

different measurement rates.

From Fig. 2, we can see that the higher the measurement rate becomes, the

higher fidelity gains. However, even with measurement rate β = 0.3, our estimation

method gains high fidelity. By higher measurement rates the increase in the amount

of fidelity is not much. According to Eq. 23, for the measurement rate β = 0.2, the

number of measurements is m = 3; thus, after sampling times k = 3, only the last

three measurement operators and corresponding results are using in the optimization

algorithm. That is why we see a drop in the amount of fidelity after sampling times

k = 3 for β = 0.2. However, As the sampling times increases, the amount of fidelity

for all different measurement rates becomes closer, which is close to complete fidelity

100%. Table 2 is the specific amounts of fidelity at different sampling times for different

measurement rates.

Table 2: Fidelity for two-qubit initial states ρ2(0) at different sampling times for

different measurement rates.

Measurement rate
Sampling times

k = 3 k = 5 k = 10 k = 50 k = 100

β = 0.2 0.443 0.6741 0.9299 0.9955 0.9988

β = 0.3 0.4499 0.9981 0.9999 0.9989 0.9998

β = 0.5 0.4367 0.9984 0.9999 0.9983 0.999

β = 1 0.4474 0.9999 0.9979 0.9971 0.9999

As Table 2 shows, with β = 0.3 or higher measurement rates, the amount of fidelity

is more than 99% after sampling times 5. Hence, to gain high fidelity at low sampling

times, measurement rate β = 0.3 is enough.

3.3. Density matrix of the system during sampling times

Here, we study the behavior of the state during the sampling times. Fig. 3 shows the

density matrix of the two-qubit state ρ2(0) at sampling times 10, 50 and 100. Also
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the behavior of fidelity and trace distance between the actual state and the estimated

state during sampling times is given. The experimental simulation is done by setting

variables as follow: M(0) = B2 ⊗ B2, L = 0.5B3, and the total sampling times

of the continuous weak measurement is 100 in the experiments. The Hamiltonian

of ρ(t) is H = σz + σx which has the external control field. The measurement

rate is set as β = 0.3. The density matrix of the system at sampling times 100 is

ρ100 =


0.1393 0.0176 + 0.007i 0.0176 + 0.007i 0.0019 + 0.0018i

0.0176− 0.007i 0.2339 0.0026 0.0296 + 0.0118i

0.0176− 0.007i 0.0026 0.2339 0.0296 + 0.0118i

0.0019− 0.0018i 0.0296− 0.0118i 0.0296− 0.0118i 0.3929

.
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Figure 3: Density matrix of the two-qubit state, fidelity and trace distance between

actual state and estimated state at different sampling times.

As Fig. 3 depicted, the fidelity between actual state and estimated state is higher

than 99% after sampling times 5. We note that, in the first sampling times, the

number of measurements and corresponding records are not enough for the estimator to

reconstruct the state of the system accurately. However, after enough sampling times,

the fidelity of the OQSE method reaches the highest amount, which is complete fidelity

100%.

The diagonal elements of the density matrix changes during the evolution of the

system and continuous measurements. Fig. 4 shows the behavior of the diagonal

elements of ρ2(0) over sampling times. Since the actual and estimated state are equal,

we plot the elements of one of the density matrices. After sampling times 100 the specific

amounts of the diagonal elements of the density matrix are: ρ11 = 0.1393, ρ22 = 0.2339,

ρ33 = 0.2339 and ρ44 = 0.3929.

For three-qubit system, eight measurement operators are needed. The initial
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Figure 4: Diagonal elements of density matrix ρ2(0) over sampling times.

density matrix of the three-qubit system is ρ3(0). The results of experimental simulation

are shown in Fig. 5. The initial measurement operator is set as M(0) = B2 ⊗ B2 ⊗ B2

and the measurement rate is β = 0.3.
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Figure 5: Density matrix of the three-qubit system and fidelity between actual state

and estimated state at different sampling times.

As one can see from Fig. 3 and Fig. 5, the state of the system changes during

the sampling times because of the evolution of the system. According to the amount of

fidelity, the OQSE estimates the state of the system accurately, in real time as the state

changes.

3.4. N-qubit OQSE with minimum measurement rate

The question here arises as, what is the minimum measurement rate (number of

measurements) for each number of qubits to gain high fidelity. We note that as
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the sampling times proceed, the number of measurement operators and corresponding

records, used in optimization algorithm, increase. For instance, at sampling times 50,

optimization algorithm is using 50 measurement operators and corresponding records.

To find the minimum measurement rate for each number of qubits to gain high fidelity,

we do the estimation process without dropping any measurement records. In this case,

sampling times are equal to the number of measurements. In Table 3 we give the first

time that the amount of fidelity reaches 98% and 99% for each number of qubits, also

the corresponding measurement rates according to Eq.21 is given.

Table 3: The sampling times and corresponding measurement rate, where the amount

of fidelity reaches 98% and 99% for different number of qubits.

Number of qubits
Reaching fidelity 98% Reaching fidelity 99%

Sampling times Corresponding measurement rate Sampling times Corresponding measurement rate

2-qubit 5 0.31 5 0.31

3-qubit 20 0.31 44 0.68

4-qubit 38 0.14 44 0.17

5-qubit 39 0.03 47 0.04

As Table 3 shows, for higher number of qubits, the amount of fidelity reaches 99%

in longer sampling times. However, the measurement rate is smaller. For instance,

5-qubit density matrix has 1024 elements, which means the estimator must estimate

1024 elements. As we show in Table 3, OQSE gains 99% fidelity by 47 measurement

operators and corresponding records which is measurement rate 0.04.

To better demonstrate the behavior of the performance of the proposed estimation

method for different number of qubits, the fidelity for different number of qubits

N = 2 , 3, 4 and 5 is given in Fig. 6. The measurement rate for each number of

qubits is set according to Table 3. For 2, 3, 4 and 5-qubit the measurement rate is set

as 0.31, 0.68, 0.17 and 0.04, respectively.
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Figure 6: Fidelity for different number of qubits N = 2, 3, 4 and 5.

As one can see from Fig. 6, by increasing the number of qubits, since the size of

the density matrix increases and the estimator needs to estimate more elements, the

complete fidelity gains at longer sampling times. However, as the number of qubits

increases (consequently the size of the estimated density matrix increases), OQSE

estimates the state with fidelity 99% by smaller measurement rate.
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Discussion

The proposed OQSE estimates the N -qubit quantum states in real time with high

fidelity and small number of measurements. We study the OQSE with continuous weak

measurements and compressed sensing. The indirect weak measurements are used and

the time dependent measurement operators in presence of dynamic evolution of the

system are derived. The dynamic of the system is presented by stochastic master

equation in Schrodinger picture; and the continuous weak measurements in presence

of dynamic evolution of the system are given by transforming the system of Schrodinger

picture to that of Heisenberg picture. We verified the proposed OQSE by simulation

experiments and used least square algorithm to calculate the results.

The simulation results show that in order to obtain high fidelity for estimation,

one needs to add external control field to Hamiltonian of the system. By adding the

external control field, the estimated states are located in the same plane of the actual

states which makes the OQSE more accurate. We study the behavior of the density

matrix of the system during the continuous weak measurement and on-line estimation

for 2 and 3-qubits. The results of study show that the state becomes mixed during the

sampling times of the estimation. In addition, the minimum measurement rate to gain

high fidelity is given for N -qubit system. We show that the proposed OQSE can gain

fidelity higher than 99% with small number of measurements.
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