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ABSTRACT
In this paper we derive a full expression for the propagation of weak lensing shape measurement biases into
cosmic shear power spectra including the effect of missing data. We show using simulations that terms higher
than first order in bias parameters can be ignored and the impact of biases can be captured by terms dependent
only on the mean of the multiplicative bias field. We identify that the B-mode power contains information on the
multiplicative bias. We find that without priors on the residual multiplicative bias 𝛿𝑚 and stochastic ellipticity
variance 𝜎𝑒 that constraints on the amplitude of the cosmic shear power spectrum are completely degenerate,
and that when applying priors the constrained amplitude 𝐴 is slightly biased low via a classic marginalisation
paradox. Using all-sky Gaussian random field simulations we find that the combination of (1 + 2𝛿𝑚)𝐴 is
unbiased for a joint EE and BB power spectrum likelihood if the error and mean (precision and accuracy) of
the stochastic ellipticity variance is known to better than 𝜎(𝜎𝑒) ≤ 0.05 and Δ𝜎𝑒 ≤ 0.01, or the multiplicative
bias is known to better than 𝜎(𝑚) ≤ 0.07 and Δ𝑚 ≤ 0.01.

1. INTRODUCTION
Measurements of the weak lensing effect can be subject to biases caused by inaccuracies in the algorithmic methods used to
determine a galaxy’s shape (Heymans et al. 2006; Massey et al. 2007; Bridle et al. 2010; Kitching et al. 2012; Mandelbaum et al.
2015), measure the point spread function of a system (Hoekstra et al. 2017b; Kannawadi et al. 2019), determine detector effects
(Antilogus et al. 2014), or detect galaxies (Hoekstra et al. 2015).
The treatment of such biases in cosmic shear power spectra is a topic that has been dealt with in several papers, for example
Amara & Réfrégier (2008); Massey et al. (2013); Cropper et al. (2013); Kitching et al. (2019b). However a full propagation of
biases into measured (observed) power spectra in the presence of survey masks (where a portion of the sky is unobserved) has
not been done. In this paper we build on the work of Kitching et al. (2019b) and include the impact of survey masks.
In Section 2 we present the formalism for propagation of biases in the presence of masks, and identify power spectrum
combinations that are dependent to varying degrees on real and imaginary bias terms; in Section 3 we test our formalism on
simulations; we discuss conclusions in Section 4.

2. METHOD
In the followingwe expand upon the derivations given in Kitching et al. (2019b). We can relate ameasured shear in real (angular)
space to the true shear – that would have been measured in the absence of systematic effects or a mask – via multiplicative and
additive fields that describe respective biases that may be introduced

𝛾̃(𝛀) =𝑊 (𝛀)𝛾̂(𝛀)
𝛾̃(𝛀) =𝑊 (𝛀){[1 + 𝑚0 (𝛀)]𝛾(𝛀) + 𝑚4 (𝛀)𝛾∗ (𝛀) + 𝑐(𝛀)}, (1)

where all quantities are a function of angular coordinates 𝛀 = (𝜃, 𝜙), with 𝜃 and 𝜙 being latitude and longitude (or R.A. and
dec). 𝑊 (𝛀) is a spin-0 mask where𝑊 (𝛀) = 1 where data exists and𝑊 (𝛀) = 0 where there is no data (we note that an optimal
weight could in principle be computed). 𝛾(𝛀) is the true spin-2 shear, 𝛾̃(𝛀) is the measured spin-2 shear, and 𝛾̂(𝛀) is the
measured spin-2 shear in the absence of a mask. 𝑚0 (𝛀) = 𝑚𝑅0 (𝛀) + i𝑚𝐼0 (𝛀) is a position-dependent multiplicative bias term that
includes a possible systematic rotation (see Kitching et al. 2019b, Appendix A), 𝑚4 (𝛀) = 𝑚𝑅4 (𝛀) + i𝑚𝐼4 (𝛀) is a possible spin-4
multiplicative bias term1, and 𝑐(𝛀) is a spin-2 position-dependent additive bias. ∗ is a complex conjugate.
The spherical harmonic coefficients for the E-mode (curl-free) and B-mode (divergence-free) parts of the shear field can be
determined via

𝛾𝐸ℓ𝑚 =
1
2

∫
d𝛀 [𝛾(𝛀) 2𝑌 ∗

ℓ𝑚 (𝛀) + 𝛾∗ (𝛀) −2𝑌 ∗
ℓ𝑚 (𝛀)]

𝛾𝐵ℓ𝑚 =
−i
2

∫
d𝛀 [𝛾(𝛀) 2𝑌 ∗

ℓ𝑚 (𝛀) − 𝛾∗ (𝛀) −2𝑌 ∗
ℓ𝑚 (𝛀)], (2)

where 𝑠𝑌ℓ𝑚 (𝛀) are spin-weighted spherical harmonics (with spin 𝑠 = 2 or −2), ℓ and 𝑚 are angular wavenumbers; note that we
†t.kitching@ucl.ac.uk, © 2020. All rights reserved.
1Wenote that if one defines amultiplicative bias like𝑚1 (𝛀)𝛾1 (𝛀)+i𝑚2 (𝛀)𝛾2 (𝛀) then𝑚1 (𝛀) = 𝑚2 (𝛀) would imply that𝑚4 (𝛀) = 0, and𝑚1 (𝛀) = −𝑚2 (𝛀)

would imply that that 𝑚0 (𝛀) = 0.
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Fig. 1.— The real part of the multiplicative bias field 𝑚𝑅 (𝛀) , in the three simulated cases investigated. Cases 1, 2, 3 are shown left to right: simple galactic
case, simple patch pattern and simple scanning pattern (see Section 3. Shown is a simulated celestial sphere, using a Mollweide Projection with 𝜃 = 𝜙 = 0 at the
North pole. The colour bar shows the amplitude of the biases, and the black regions show the regions where no data is present (i.e. the mask).

use 𝑚 as one of the spherical harmonic wavenumbers and 𝑚(𝛀) as multiplicative biases to follow convention but these should
not be confused.
As shown in Kitching et al. (2019b), and including the spin-4 terms, in the absence of any mask (i.e. 𝑊 (𝛀) = 1 ∀ 𝛀) the true
and measured shear field’s spherical harmonic coefficients can be written like

𝛾̂𝐸ℓ𝑚 = 𝛾𝐸ℓ𝑚 +
∑︁
ℓ′𝑚′

[𝛾𝐸ℓ′𝑚′ (𝑚0𝑊+
ℓℓ′𝑚𝑚′ + 𝑚4𝑊+

ℓℓ′𝑚𝑚′) + 𝛾𝐵ℓ′𝑚′ (𝑚0𝑊−
ℓℓ′𝑚𝑚′ − 𝑚4𝑊−

ℓℓ′𝑚𝑚′)] + 𝑐𝐸ℓ𝑚

𝛾̂𝐵ℓ𝑚 = 𝛾𝐵ℓ𝑚 +
∑︁
ℓ′𝑚′

[𝛾𝐵ℓ′𝑚′ (𝑚0𝑊+
ℓℓ′𝑚𝑚′ − 𝑚4𝑊+

ℓℓ′𝑚𝑚′) − 𝛾𝐸ℓ′𝑚′ (𝑚0𝑊−
ℓℓ′𝑚𝑚′ + 𝑚4𝑊−

ℓℓ′𝑚𝑚′)] + 𝑐𝐵ℓ𝑚. (3)

where we expand the spin-2 quantities like 𝑓 (𝛀) = ∑
ℓ𝑚 𝑓ℓ𝑚 2𝑌ℓ𝑚 (𝛀). Throughout we use superscript and subscript labels, but

we note that the position of the labels relative to the main symbol is not significant i.e. they are just labels. We note that the
multiplicative weight factors for the 𝐸-mode parts only depend on the sum of the multiplicative bias terms.
The weight functions are given by

𝑚𝑊+
ℓℓ′𝑚𝑚′ =

1
2
(2𝑊𝑚𝑅 ,𝑚𝑚′

ℓℓ′ +−2𝑊𝑚𝑅 ,𝑚𝑚′

ℓℓ′ ) + i(2𝑊𝑚𝐼 ,𝑚𝑚′

ℓℓ′ −−2𝑊
𝑚𝐼 ,𝑚𝑚′

ℓℓ′ )]

𝑚𝑊−
ℓℓ′𝑚𝑚′ =

i
2
(2𝑊𝑚𝑅 ,𝑚𝑚′

ℓℓ′ −−2𝑊
𝑚𝑅 ,𝑚𝑚′

ℓℓ′ ) + i(2𝑊𝑚𝐼 ,𝑚𝑚′

ℓℓ′ +−2𝑊𝑚𝐼 ,𝑚𝑚′

ℓℓ′ )], (4)

for 𝑚 = 𝑚0 or 𝑚4.
In a similar way the impact of the mask can be related to the measurement in the absence of a mask using a standard pseudo-𝐶ℓ
expression (Lewis et al. 2002; Zaldarriaga & Seljak 1997; Grain et al. 2012; Brown et al. 2005)

𝛾̃𝐸ℓ𝑚 =
∑︁
ℓ′𝑚′

[𝛾̂𝐸ℓ′𝑚′
𝑤𝑊+

ℓℓ′𝑚𝑚′ + 𝛾̂𝐵ℓ′𝑚′
𝑤𝑊−

ℓℓ′𝑚𝑚′]

𝛾̃𝐵ℓ𝑚 =
∑︁
ℓ′𝑚′

[𝛾̂𝐵ℓ′𝑚′
𝑤𝑊+

ℓℓ′𝑚𝑚′ − 𝛾̂𝐸ℓ′𝑚′
𝑤𝑊−

ℓℓ′𝑚𝑚′] . (5)

The weight functions within the sums represent the mode-mixing caused by the mask and are given by

𝑤𝑊+
ℓℓ′𝑚𝑚′ =

1
2
[(2𝑊𝑊 ,𝑚𝑚′

ℓℓ′ +−2𝑊𝑊 ,𝑚𝑚′

ℓℓ′ )

𝑤𝑊−
ℓℓ′𝑚𝑚′ =

i
2
[(2𝑊𝑊 ,𝑚𝑚′

ℓℓ′ −−2𝑊
𝑊 ,𝑚𝑚′

ℓℓ′ ), (6)

note that for the spin-0 mask the additional imaginary terms do not exist, but that all of these quantities are complex. These
quantities in equations (4) and (6) are formed from combinations of integrals on the sphere over the mask or multiplicative bias
field multiplied by spin-weighted spherical harmonic functions and are given by

𝑠𝑊
𝑓 ,𝑚𝑚′

ℓℓ′ =

∫
d𝛀 𝑠𝑌

∗
ℓ′𝑚′ (𝛀) 𝑓 (𝛀)𝑠𝑌ℓ𝑚 (𝛀); (7)

where the function on the sphere 𝑓 (𝛀) in the integrand is labelled in the superscript.
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By combining equations (3) and (5) we can find an expression that includes the effect of both biases and a mask

𝛾̃𝐸ℓ𝑚 =
∑︁
ℓ′𝑚′

{𝛾𝐸ℓ′𝑚′ +
∑︁
ℓ′′𝑚′′

[𝛾𝐸ℓ′′𝑚′′ (𝑚0𝑊+
ℓℓ′𝑚𝑚′ + 𝑚4𝑊+

ℓℓ′𝑚𝑚′) + 𝛾𝐵ℓ′′𝑚′′ (𝑚0𝑊−
ℓℓ′𝑚𝑚′ − 𝑚4𝑊−

ℓℓ′𝑚𝑚′)] + 𝑐𝐸ℓ′′𝑚′′}𝑤𝑊+
ℓℓ′𝑚𝑚′

+
∑︁
ℓ′𝑚′

{𝛾𝐵ℓ′𝑚′ +
∑︁
ℓ′′𝑚′′

[𝛾𝐵ℓ′′𝑚′′ (𝑚0𝑊+
ℓℓ′𝑚𝑚′ − 𝑚4𝑊+

ℓℓ′𝑚𝑚′) − 𝛾𝐸ℓ′′𝑚′′ (𝑚0𝑊−
ℓℓ′𝑚𝑚′ + 𝑚4𝑊−

ℓℓ′𝑚𝑚′)] + 𝑐𝐵ℓ′𝑚′}𝑤𝑊−
ℓℓ′𝑚𝑚′

𝛾̃𝐵ℓ𝑚 =
∑︁
ℓ′𝑚′

{𝛾𝐵ℓ′𝑚′ +
∑︁
ℓ′′𝑚′′

[𝛾𝐵ℓ′′𝑚′′ (𝑚0𝑊+
ℓℓ′𝑚𝑚′ − 𝑚4𝑊+

ℓℓ′𝑚𝑚′) − 𝛾𝐸ℓ′′𝑚′′ (𝑚0𝑊−
ℓℓ′𝑚𝑚′ + 𝑚4𝑊−

ℓℓ′𝑚𝑚′)] + 𝑐𝐵ℓ′𝑚′}𝑤𝑊+
ℓℓ′𝑚𝑚′

−
∑︁
ℓ′𝑚′

{𝛾𝐸ℓ′𝑚′ +
∑︁
ℓ′′𝑚′′

[𝛾𝐸ℓ′′𝑚′′ (𝑚0𝑊+
ℓℓ′𝑚𝑚′ + 𝑚4𝑊+

ℓℓ′𝑚𝑚′) + 𝛾𝐵ℓ′′𝑚′′ (𝑚0𝑊−
ℓℓ′𝑚𝑚′ − 𝑚4𝑊−

ℓℓ′𝑚𝑚′)] + 𝑐𝐸ℓ′′𝑚′′}𝑤𝑊−
ℓℓ′𝑚𝑚′] . (8)

By comparing equations (3) and (8) it can already be seen that the presence of a mask causes additional E and B-mode terms to
occur in the power spectra.
To simplify these expressions we note that the true BB field 𝐶𝐵𝐵

ℓ
� 𝐶𝐸𝐸

ℓ
. Schneider et al. (2002) show that source redshift

clustering can cause a small 𝐵-mode component, approximately three orders of magnitude less than the 𝐸-mode component over
scales with ℓ ≤ 5000. Therefore the terms that contain multiplicative bias terms combined with the 𝐵-mode should be small i.e.
we set terms O(𝑚𝛾𝐵) = 0, but the unaffected 𝐵-mode component may be non-negligible. In this case these expressions simplify
to

𝛾̃𝐸ℓ𝑚 =
∑︁
ℓ′𝑚′

{𝛾𝐸ℓ′𝑚′ +
∑︁
ℓ′′𝑚′′

𝛾𝐸ℓ′′𝑚′′
𝑚0+𝑚4𝑊+

ℓℓ′𝑚𝑚′ + 𝑐𝐸ℓ′′𝑚′′}𝑤𝑊+
ℓℓ′𝑚𝑚′ +

∑︁
ℓ′𝑚′

{𝛾𝐵ℓ′𝑚′ −
∑︁
ℓ′′𝑚′′

𝛾𝐸ℓ′′𝑚′′
𝑚0+𝑚4𝑊−

ℓℓ′𝑚𝑚′ + 𝑐𝐵ℓ′𝑚′}𝑤𝑊−
ℓℓ′𝑚𝑚′

𝛾̃𝐵ℓ𝑚 =
∑︁
ℓ′𝑚′

{𝛾𝐵ℓ′𝑚′ −
∑︁
ℓ′′𝑚′′

𝛾𝐸ℓ′′𝑚′′
𝑚0+𝑚4𝑊−

ℓℓ′𝑚𝑚′ + 𝑐𝐵ℓ′𝑚′}𝑤𝑊+
ℓℓ′𝑚𝑚′ −

∑︁
ℓ′𝑚′

{𝛾𝐸ℓ′𝑚′ +
∑︁
ℓ′′𝑚′′

𝛾𝐸ℓ′′𝑚′′
𝑚0+𝑚4𝑊+

ℓℓ′𝑚𝑚′ + 𝑐𝐸ℓ′′𝑚′′}𝑤𝑊−
ℓℓ′𝑚𝑚′ . (9)

We combine the weight factors for the 𝑚0 and 𝑚4 terms and note that in this expression the real and imaginary parts of these fields
propagate as sums i.e. one can write a total multiplicative bias field like𝑚𝑅 (𝛀) = 𝑚𝑅0 (𝛀)+𝑚𝑅4 (𝛀) and𝑚𝐼 (𝛀) = 𝑚𝐼0 (𝛀)+𝑚𝐼4 (𝛀).

2.1. Power Spectra
The power spectra estimates for the measured shear can now be computed by taking the correlation of the spherical harmonic
coefficients from equation (9) where

𝐶𝐺𝐻ℓ,𝑖 𝑗 ≡
1

2ℓ + 1
∑︁
𝑚

𝛾̃𝐺ℓ𝑚,𝑖 𝛾̃
𝐻,∗
ℓ𝑚, 𝑗

(10)

for 𝐺 = (𝐸, 𝐵) and 𝐻 = (𝐸, 𝐵), where 𝑖 and 𝑗 are labels tomographic bins delineating galaxy populations defined by redshift or
colour Kitching et al. (2019a).
We will assume that the true 𝐸𝐵 and 𝐵𝐸 power spectra are zero 𝐶𝐸𝐵

ℓ,𝑖 𝑗
= 𝐶𝐵𝐸

ℓ,𝑖 𝑗
= 0, which should be the case in all but the most

exotic dark energy models that cause parity-violating modes (Amendola et al. 2013). Given this assumption, the estimated 𝐸𝐸
power spectra is given by

𝐶𝐸𝐸ℓ,𝑖 𝑗 =
∑︁
ℓ′
M++

ℓℓ′,𝑖 𝑗 [𝐶
𝐸𝐸
ℓ′,𝑖 𝑗 + 𝐶

𝑐𝐸𝑐𝐸
ℓ′,𝑖 𝑗 + 𝐶

𝐸𝑐𝐸
ℓ′,𝑖 𝑗 + 𝐶

𝑐𝐸𝐸

ℓ′,𝑖 𝑗 ] +M+−
ℓℓ′,𝑖 𝑗 [𝐶

𝐸𝑐𝐵
ℓ′,𝑖 𝑗 + 𝐶

𝑐𝐸𝐵

ℓ′,𝑖 𝑗 ]

+M−−
ℓℓ′,𝑖 𝑗 [𝐶

𝐵𝐵
ℓ′,𝑖 𝑗 + 𝐶

𝑐𝐵𝑐𝐵
ℓ′,𝑖 𝑗 + 𝐶

𝐵𝑐𝐵
ℓ′,𝑖 𝑗 + 𝐶

𝑐𝐵𝐵

ℓ′,𝑖 𝑗 ] +M−+
ℓℓ′,𝑖 𝑗 [𝐶

𝑐𝐵𝐸

ℓ′,𝑖 𝑗 + 𝐶
𝐵𝑐𝐸
ℓ′,𝑖 𝑗 ]

+ (𝑃+++
ℓℓ′,𝑖 𝑗 + 𝑃

+++,∗
ℓℓ′,𝑖 𝑗 )𝐶

𝐸𝐸
ℓ′,𝑖 𝑗 − (𝑃+−−

ℓℓ′,𝑖 𝑗 + 𝑃
+−−,∗
ℓℓ′,𝑖 𝑗 )𝐶

𝐸𝐸
ℓ′,𝑖 𝑗

+ (𝑇+++
ℓℓ′,𝑖 𝑗 + 𝑇

+++,∗
ℓℓ′,𝑖 𝑗 )𝐶

𝑐𝐸𝐸

ℓ′,𝑖 𝑗 + (𝑇−−+
ℓℓ′,𝑖 𝑗 + 𝑇

−−+,∗
ℓℓ′,𝑖 𝑗 )𝐶

𝑐𝐸𝐸

ℓ′,𝑖 𝑗 + (𝑇++−
ℓℓ′,𝑖 𝑗 + 𝑇

++−,∗
ℓℓ′,𝑖 𝑗 )𝐶

𝐸𝑐𝐵
ℓ′,𝑖 𝑗 + (𝑇−−−

ℓℓ′,𝑖 𝑗 + 𝑇
−−−,∗
ℓℓ′,𝑖 𝑗 )𝐶

𝐸𝑐𝐵
ℓ′,𝑖 𝑗

+ (𝑄++++
ℓ,𝑖 𝑗 +𝑄−−−−

ℓ,𝑖 𝑗 )𝐶𝐸𝐸ℓ′,𝑖 𝑗 − (𝑄−++−
ℓ,𝑖 𝑗 +𝑄

−++−,∗
ℓ,𝑖 𝑗

)𝐶𝐸𝐸ℓ′,𝑖 𝑗 . (11)

The various terms in the full expression are

M𝑋𝑌
ℓℓ′,𝑖 𝑗 =

1
2ℓ + 1

∑︁
𝑚𝑚′

𝑤𝑊𝑋
ℓℓ′𝑚𝑚′,𝑖

𝑤𝑊
𝑌 ,∗
ℓℓ′𝑚𝑚′, 𝑗

𝑃𝑋𝑌 𝑍ℓℓ′,𝑖 𝑗 =
1

2ℓ + 1
∑︁
𝑚𝑚′

∑̃︁
ℓ𝑚̃

𝑤𝑊𝑋
ℓℓ′𝑚𝑚′,𝑖

𝑚0+𝑚4𝑊𝑌 ,∗
ℓ̃ℓ′𝑚̃𝑚′, 𝑗

𝑤𝑊
𝑍,∗
ℓℓ̃𝑚𝑚̃, 𝑗

𝑇𝑋𝑌 𝑍ℓℓ′,𝑖 𝑗 =
1

2ℓ + 1
∑︁
𝑚𝑚′

∑̃︁
ℓ𝑚̃

𝑤𝑊𝑋

ℓℓ̃𝑚𝑚′,𝑖
𝑚0+𝑚4𝑊𝑌

ℓ̃ℓ′𝑚′𝑚̃, 𝑗
𝑤𝑊

𝑍,∗
ℓℓ′𝑚𝑚̃, 𝑗

𝑄𝑊𝑋𝑌𝑍
ℓℓ′,𝑖 𝑗 =

1
2ℓ + 1

∑︁
𝑚𝑚′

∑̃︁
ℓ𝑚̃

∑̃︁
ℓ′𝑚̃′

𝑚0+𝑚4𝑊𝑊

ℓℓ̃′𝑚̃𝑚′,𝑖
𝑤𝑊𝑋

ℓℓ̃𝑚𝑚̃,𝑖

𝑚0+𝑚4𝑊𝑌 ,∗
ℓ̃′ℓ′𝑚̃′𝑚′, 𝑗

𝑤𝑊
𝑍,∗
ℓℓ̃′𝑚𝑚̃′, 𝑗

(12)
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where𝑊 = (+,−), 𝑋 = (+,−), 𝑌 = (+,−), 𝑍 = (+,−). Power spectra in equation (11) are labelled in their superscripts e.g. 𝐸𝐸 ,
𝐸𝐵, 𝐵𝐵 or 𝑐𝐸𝑐𝐸 , 𝑐𝐸𝑐𝐵, 𝑐𝐵𝑐𝐵 for additive bias terms. On the left hand side of equation (11) we define the measured power
spectrum and compare this to the power spectrum that would have been measured in the absence of systematic effects. We note
however that terms in the window functions (𝑚0+𝑚4𝑊𝑋

ℓℓ′𝑚𝑚′ and 𝑤𝑊𝑋
ℓℓ′𝑚𝑚′) are derived via the ensemble-average of equation

(10), and make use of the statistical rotational invariance of the ensemble-averaged harmonic modes. Therefore equation (11) is
a hybrid of ensemble-averaged terms and terms that are not averaged which may be non-zero only for a given realisation. This is
tested numerically in Section 3. We do not present the EB and BB equivalents here since, as demonstrated later in the paper a
linear decoupled-field expression is sufficient to characterise the impact of biases. Whilst equation (11) gives the full tomographic
expression, for the remainder of this paper we will only consider a non-tomographic case for simplicity i.e. 𝑖 = 𝑗 .

2.2. Linear Decoupled expressions
Here we simplify the analysis by exploring two assumptions. The first is a linearity assumption that terms of order 𝑚2, 𝑐2 or

𝑚𝑐 and higher are negligible. The second is a decoupled assumption that the spherical harmonic transform of the mask has no
correlation with the spherical harmonic transform of the multiplicative bias field.
In comparison with Kitching et al. (2019b) we can identify the 𝑃 terms to be similar to the linear multiplicative bias terms in
that paper, which were shown to only depend on the mean of the multiplicative bias field. In the case of masks these linear terms
do not in general reduce to the mean of the multiplicative bias field since the mask may be coupled to the multiplicative bias field;
this is something we numerically investigate in Section 3. However, if the multiplicative bias field is constant and/or not strongly
coupled to the mask, then

𝑃𝑋+𝑍ℓℓ′ = 〈𝑚𝑅 (𝛀)〉M𝑋𝑍
ℓℓ′

𝑃𝑋−𝑍ℓℓ′ =−〈𝑚𝐼 (𝛀)〉M𝑋𝑍
ℓℓ′ (13)

where 〈𝑚𝑅 (𝛀)〉 = 〈𝑚𝑅0 (𝛀)〉 + 〈𝑚𝑅4 (𝛀)〉 and 〈𝑚𝐼 (𝛀)〉 = 〈𝑚𝐼0 (𝛀)〉 + 〈𝑚𝐼4 (𝛀)〉 are the mean of the real and imaginary parts of the
sum of the multiplicative bias fields respectively.
Assuming no coupling and to linear order in biases we find that

𝐶𝐸𝐸ℓ ≈
∑︁
ℓ′
M++

ℓℓ′ [(1 + 2〈𝑚
𝑅 (𝛀)〉)𝐶𝐸𝐸ℓ′ + 2𝐶𝐸𝑐𝐸

ℓ′ ] +M−−
ℓℓ′ [𝐶

𝐵𝐵
ℓ′ + 2𝐶𝐵𝑐𝐵

ℓ′ ]

𝐶𝐵𝐵ℓ ≈
∑︁
ℓ′
M−−

ℓℓ′ [(1 + 2〈𝑚
𝑅 (𝛀)〉)𝐶𝐸𝐸ℓ′ + 2𝐶𝐸𝑐𝐸

ℓ′ ] +M++
ℓℓ′ [𝐶

𝐵𝐵
ℓ′ + 2𝐶𝐵𝑐𝐵

ℓ′ ]

𝐶𝐸𝐵ℓ ≈
∑︁
ℓ′
M++

ℓℓ′ [𝐶
𝐸𝑐𝐵
ℓ′ + 𝐶

𝑐𝐸𝐵

ℓ′ − 〈𝑚𝐼 (𝛀)〉𝐶𝐸𝐸ℓ′ ] +M−−
ℓℓ′ [𝐶

𝑐𝐵𝐸

ℓ′ − 𝐶
𝐵𝑐𝐸
ℓ′ + 〈𝑚𝐼 (𝛀)〉𝐶𝐸𝐸ℓ′ ]

+M+−
ℓℓ′ [(1 + 2〈𝑚

𝑅 (𝛀)〉)(𝐶𝐸𝐸ℓ′ + 2𝐶𝐸𝑐𝐸
ℓ′ )] +M−+

ℓℓ′ [𝐶
𝐵𝐵
ℓ′ + 2𝐶𝐵𝑐𝐵

ℓ′ ]

𝐶𝐵𝐸ℓ ≈
∑︁
ℓ′
M++

ℓℓ′ [𝐶
𝐸𝑐𝐵
ℓ′ + 𝐶

𝑐𝐸𝐵

ℓ′ − 〈𝑚𝐼 (𝛀)〉𝐶𝐸𝐸ℓ′ ] +M−−
ℓℓ′ [𝐶

𝑐𝐵𝐸

ℓ′ − 𝐶
𝐵𝑐𝐸
ℓ′ + 〈𝑚𝐼 (𝛀〉𝐶𝐸𝐸ℓ′ ]

+M−+
ℓℓ′ [(1 + 2〈𝑚

𝑅 (𝛀)〉)(𝐶𝐸𝐸ℓ′ + 2𝐶𝐸𝑐𝐸
ℓ′ )] +M+−

ℓℓ′ [𝐶
𝐵𝐵
ℓ′ + 2𝐶𝐵𝑐𝐵

ℓ′ ] . (14)

where we assume that𝐶𝐸𝑐𝐸
ℓ′ = 𝐶

𝑐𝐸𝐸

ℓ′ and similar for other times (i.e. a non-tomographic case), and we note thatM+−
ℓℓ′ +M

−+
ℓℓ′ = 0.

2.3. Unlensed random ellipticity contribution
To include the effect of the stochastic ellipticity field (i.e. the random uncorrelated and unlensed ellipticities of galaxies) in
the expressions above we add a term to the true shear 𝛾(𝛀) + 𝑛(𝛀). We note that the presence of a multiplicative bias in the
measurement will affect the observed stochastic ellipticity component

𝛾̃(𝛀) =𝑊 (𝛀){[1 + 𝑚0 (𝛀)] [𝛾(𝛀) + 𝑛(𝛀)] + 𝑚4 (𝛀) [𝛾∗ (𝛀) + 𝑛∗ (𝛀)] + 𝑐(𝛀)}, (15)

here 𝑛(𝛀) is the true underlying uncorrelated galaxy ellipticity. This contribution is the zero-lag intrinsic ellipticity field
(Crittenden et al. 2001; Larsen & Challinor 2016; Blazek et al. 2015), which in the case of a finite number of galaxies is expressed
as a shot noise term; see Blazek et al. (2019) for a discussion.
The shot noise component of the uncorrelated ellipticity term for a finite number of galaxies in a sample has the properties that

𝑛𝐸ℓ𝑚 = 𝑛𝐵ℓ𝑚

𝑁ℓ = 〈𝑛𝑋ℓ𝑚𝑛
𝑌 ,∗
ℓ𝑚

〉 =
𝛿𝐾
𝑋𝑌

𝛿𝐾
ℓℓ
𝛿𝐾𝑚𝑚𝜎

2
𝑒

𝑁gal

𝑁ℓ = 〈𝑛𝑋ℓ𝑚𝛾
𝑌 ,∗
ℓ𝑚

〉 = 0 (16)

where 𝜎2𝑒 is the intrinsic (unlensed) variance of the ellipticities, 𝑁gal is the effective number of galaxies in the observations (for a
discussion of the effective number density see Blazek et al. 2019; Chang et al. 2013), and 𝑋 and 𝑌 are (𝐸, 𝐵). We note that any
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additional noise caused by the measurement process itself (e.g. sky noise, detector noise etc.) is already captured in a stochastic
contribution to the 𝑐(𝛀) term.
In this case we have a general expression that is

𝐶𝐸𝐸ℓ ≈
∑︁
ℓ′
M++

ℓℓ′ [(1 + 2〈𝑚
𝑅 (𝛀)〉)(𝐶𝐸𝐸ℓ′ + 𝑁ℓ′) + 2𝐶𝐸𝑐𝐸ℓ′ ] +M−−

ℓℓ′ [𝐶
𝐵𝐵
ℓ′ + (1 + 2〈𝑚𝑅 (𝛀)〉)𝑁ℓ′ + 2𝐶𝐵𝑐𝐵ℓ′ ]

𝐶𝐵𝐵ℓ ≈
∑︁
ℓ′
M−−

ℓℓ′ [(1 + 2〈𝑚
𝑅 (𝛀)〉)(𝐶𝐸𝐸ℓ′ + 𝑁ℓ′) + 2𝐶𝐸𝑐𝐸ℓ′ ] +M++

ℓℓ′ [𝐶
𝐵𝐵
ℓ′ + (1 + 2〈𝑚𝑅 (𝛀)〉)𝑁ℓ′ + 2𝐶𝐵𝑐𝐵ℓ′ ]

𝐶𝐸𝐵ℓ ≈
∑︁
ℓ′
M++

ℓℓ′ [𝐶
𝐸𝑐𝐵
ℓ′ + 𝐶

𝑐𝐸𝐵

ℓ′ − 〈𝑚𝐼 (𝛀)〉(𝐶𝐸𝐸ℓ′ + 𝑁ℓ′)] +M−−
ℓℓ′ [𝐶

𝑐𝐵𝐸

ℓ′ − 𝐶
𝐵𝑐𝐸
ℓ′ + 〈𝑚𝐼 (𝛀)〉(𝐶𝐸𝐸ℓ′ + 𝑁ℓ′)]

+M+−
ℓℓ′ [(1 + 2〈𝑚

𝑅 (𝛀)〉)(𝐶𝐸𝐸ℓ′ + 𝑁ℓ′ + 2𝐶𝐸𝑐𝐸ℓ′ )] +M−+
ℓℓ′ [𝐶

𝐵𝐵
ℓ′ + (1 + 2〈𝑚𝑅 (𝛀)〉)𝑁ℓ′ + 2𝐶𝐵𝑐𝐵ℓ′ ]

𝐶𝐵𝐸ℓ ≈
∑︁
ℓ′
M++

ℓℓ′ [𝐶
𝐸𝑐𝐵
ℓ′ + 𝐶

𝑐𝐸𝐵

ℓ′ − 〈𝑚𝐼 (𝛀)〉(𝐶𝐸𝐸ℓ′ + 𝑁ℓ′)] +M−−
ℓℓ′ [𝐶

𝑐𝐵𝐸

ℓ′ − 𝐶
𝐵𝑐𝐸
ℓ′ + 〈𝑚𝐼 (𝛀〉(𝐶𝐸𝐸ℓ′ + 𝑁ℓ′)]

+M−+
ℓℓ′ [(1 + 2〈𝑚

𝑅 (𝛀)〉)(𝐶𝐸𝐸ℓ′ + 𝑁ℓ′ + 2𝐶𝐸𝑐𝐸ℓ′ )] +M+−
ℓℓ′ [𝐶

𝐵𝐵
ℓ′ + (1 + 2〈𝑚𝑅 (𝛀)〉)𝑁ℓ′ + 2𝐶𝐵𝑐𝐵ℓ′ ] . (17)

We note that the noise term adding to the BB part is multiplied by (1 + 2〈𝑚𝑅 (𝛀)〉), but recall that we have assumed that terms
that contain multiplicative bias terms combined with the true 𝐵-mode should be small i.e. O(𝑚𝐶𝐵𝐵

ℓ
) = 0.

2.4. Power spectrum combinations
Equation (17) is the most general case, however to simplify further one can make several reasonable assumptions. The first is
that there is no true BB field 𝐶𝐵𝐵

ℓ
= 0 which should be a good approximation; however we reiterate that Schneider et al. (2002)

show that source redshift clustering can cause a small 𝐵-mode component. The second is that the correlation between the additive
bias and the shear field is small, which given that the majority of additive biases have a source in instrumental or optical effects,
is a reasonable assumption.
We apply these approximations to the EE and BB cases, and we take some combinations of power spectra to highlight the
inter-relationships between them,

𝐶𝐸𝐸ℓ ≈ [1 + 2〈𝑚𝑅 (𝛀)〉]
∑︁
ℓ′
{M++

ℓℓ′ [(𝐶
𝐸𝐸
ℓ′ + 𝑁ℓ′)] +M−−

ℓℓ′𝑁ℓ′}

𝐶𝐵𝐵ℓ ≈ [1 + 2〈𝑚𝑅 (𝛀)〉]
∑︁
ℓ′
{M−−

ℓℓ′ [(𝐶
𝐸𝐸
ℓ′ + 𝑁ℓ′)] +M++

ℓℓ′𝑁ℓ′}

𝐶𝐸𝐸ℓ + 𝐶𝐵𝐵ℓ ≈ [1 + 2〈𝑚𝑅 (𝛀)〉]
∑︁
ℓ′

[M++
ℓℓ′ +M−−

ℓℓ′] [𝐶
𝐸𝐸
ℓ′ + 2𝑁ℓ′]

𝐶𝐸𝐸ℓ − 𝐶𝐵𝐵ℓ ≈ [1 + 2〈𝑚𝑅 (𝛀)〉]
∑︁
ℓ′

[M++
ℓℓ′ −M−−

ℓℓ′]𝐶
𝐸𝐸
ℓ′

𝐶𝐸𝐵ℓ + 𝐶𝐵𝐸ℓ ≈−2〈𝑚𝐼 (𝛀)〉
∑︁
ℓ′

[M++
ℓℓ′ −M−−

ℓℓ′]𝐶
𝐸𝐸
ℓ′ + [1 + 2〈𝑚𝑅 (𝛀)〉]

∑︁
ℓ′

[M+−
ℓℓ′ +M−+

ℓℓ′] [𝐶
𝐸𝐸
ℓ′ + 2𝑁ℓ′]

𝐶𝐸𝐵ℓ − 𝐶𝐵𝐸ℓ ≈ [1 + 2〈𝑚𝑅 (𝛀)〉]
∑︁
ℓ′

[M+−
ℓℓ′ −M−+

ℓℓ′]𝐶
𝐸𝐸
ℓ′ , (18)

where we have chosen the combinations that highlight the interrelations clearly. We note that in the case that there is no mask
M++

ℓℓ′ = 𝛿𝐾
ℓℓ′ and M

−−
ℓℓ′ = M+−

ℓℓ′ = M−+
ℓℓ′ = 0 these expressions reduce to the unmasked case given in Kitching et al. (2019b)

(equation 12). Finally we note that in generalM+−
ℓℓ′ ≈ 0 andM

−+
ℓℓ′ ≈ 0.

2.5. Discussion
There are many combinations of cosmic shear power spectra that can be made each of which will depend on the multiplicative
bias and the stochastic variance of the ellipticity field in a different way, both of which are unknown quantities. The most
commonly used approached is to use the EE only power spectrum and use the BB power as a consistency test of the level of
systematic effects in the data. However, as we have shown the BB power contains information on the multiplicative bias via the
observed stochastic ellipticity component. Therefore one can construct a joint EE and BB likelihood where the likelihoods of the
EE and BB cases would be summed to form a combined likelihood. A third approach is to subtract the BB from the EE power to
form EE-BB which will be dependent on 𝑚 but not 𝜎𝑒. We summarise these in Table 1. These combinations are applicable even
after deconvolving the mask (mask deconvolution is a separate point compared to the fact that BB power provides information on
the multiplicative bias).
Since these statistics depend on unknown parameters𝑚 and𝜎𝑒 these parameters need to bemarginalised over, and the degeneracy
with cosmological parameters will vary between the statistics. We note that marginalisation will always need to be performed in
a final likelihood analysis since at best calibration simulations will provide calibration of 𝑚 with some uncertainty. To mitigate
degeneracies, and as may be available from previous simulation/calibration data, one should apply a prior to these parameters. In
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Fig. 2.— The fractional difference between the residual power spectrum calculated analytically 𝛿𝐶𝐴
ℓ
and that found using a forward model 𝛿𝐶𝐹

ℓ
for the three

cases considered. The fractional error is with respect to the input cosmic shear power spectrum. For the analytic case we compute the full expression (using
equation 11), and using the linear decoupled approximation (equation 14). We plot the cosmic variance error on the cosmic shear power spectrum for comparison.
In upper panels we include both calculations for 𝐿 = 64 (limited due to the complexity of the calculations in the full expression), in the lower panels we include
only the linear decoupled approximation for 𝐿 = 2048.

Statistic Observables Model Variance/V2

EE Only 𝐶𝐸𝐸
ℓ

(1 + 2𝑚) [𝐶𝐸𝐸
ℓ

+ 𝑁ℓ ] (𝐶𝐸𝐸
ℓ

)2 + 𝑁 2
ℓ

EE-BB 𝐶𝐸𝐸
ℓ

−𝐶𝐵𝐵
ℓ

(1 + 2𝑚) [𝐶𝐸𝐸
ℓ

] (𝐶𝐸𝐸
ℓ

)2 + 2𝑁 2
ℓ

EE and BB (joint likelihood) 𝐶𝐸𝐸
ℓ
, 𝐶𝐵𝐵

ℓ
(1 + 2𝑚) [𝐶𝐸𝐸

ℓ
+ 𝑁ℓ ],(1 + 2𝑚)𝑁ℓ (𝐶𝐸𝐸

ℓ
)2 + 𝑁 2

ℓ
, 𝑁 2

ℓ

TABLE 1
A summary of the various ways that the EE and BB power spectra can be combined. This is a summary of equations (14) in the all-sky case. The
Gaussian part the variance on each estimator is shown in the all-sky case is shown (normalised by the cosmic variance, equation 21) which is

used in the Gaussian random field simulations in Section 3.

Appendix A we show that the estimation of a cosmic shear amplitude 𝐴 will be biased by imposing a prior on 𝑚. We investigate
these degeneracies and the impact of priors numerically in Section 3.2.
Throughout we do not attempt to estimate the true power spectrum via inversion of the mixing matrices. This is because when a
large fraction of the sky is masked some modes are not observable (i.e. they are in the mask) leading to singular mixing matrices.
The standard approach to mitigating this effect is to use band-powers, but such an approach is leads to a loss of information (Hivon
et al. 2002).

3. SIMPLE SIMULATIONS
In this Section we use simple simulations to test whether a linear multiplicative bias assumption is applicable, i.e. that higher
order terms O(𝑚2) can be ignored, and whether the linear decoupled assumptions are reasonable (equation 14); and also to
investigate marginalisation over an unknown residual multiplicative bias and ellipticity variance.
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Fig. 3.— The constraints on 𝑚, 𝐴 and 𝜎𝑒 for Gaussian random field simulations described in Section 3.2 for those statistics in Table 1. In this case the contours
are 1, 2, 3-𝜎 and the gray shading shows the density of the MCMC points. In this case only flat priors on all parameters are used with −1 ≤ 𝑚 ≤ 1, 0 ≤ 𝐴 ≤ 2
and 0 ≤ 𝜎𝑒 ≤ 1. The blue lines show the input values and the dashed lines in the 1D histograms show the 1-𝜎 errors about the median.
We use the same extreme multiplicative shear fields used to test the full-sky formalism in Kitching et al. (2019b), except
with 𝑐(𝛀) = 0 and 𝑚𝐼 (𝛀) = 0 which as discussed in Kitching et al. (2019b) are reasonable approximations. The cases we
consider are shown below. Note that we express these in terms of an arbitrary amplitude 𝛼 since these are all normalised to have
〈𝑚𝑅 (𝛀)〉 = 2 × 10−3. The cases are:

• Case1 : Simple Galactic Plane, 𝑚𝑅 (𝛀) = 𝛼[𝜋 − |𝜙 − 𝜋 |]

• Case 2: Simple Patch Pattern, 𝑚𝑅 (𝛀) = 10𝛼 sin(100|𝜙 − 𝜋 |) sin(100|𝜃 − 𝜋 |),

• Case 3: Simple Scanning Pattern, 𝑚𝑅 (𝛀) = 𝛼𝑖, where i is an iterative pixel number count, which is reset when 𝑖 = 10.

We use a mask that removes data from less than 20◦ in both the galactic and ecliptic planes; and also 20% of pixels at random, to
represent an all sky-like mask with random patches removed – this gives a total observed sky fraction of 𝑓sky = 0.4. We show the
masked bias fields in Figure 1.
We compute2 the original 𝛾(𝛀) field using a Gaussian random field using a Planck ΛCDM cosmology (Planck Collaboration
et al. 2018). The theoretical EE power spectrum, subject to the Limber (Limber 1953; Kitching et al. 2017; Lemos et al. 2017),
flat-sky (Kamionkowski et al. 1998), flat-universe (Taylor et al. 2018), prefactor-unity (Kitching et al. 2017) and reduced shear
(Deshpande & Kitching 2020) approximations is:

𝐶𝐸𝐸ℓ =

∫ 𝜒H

0
d𝜒

𝑞2 (𝜒)
𝜒2

𝑃𝛿

(
ℓ + 1/2

𝜒
, 𝜒

)
, (19)

where 𝜒 is the comoving distance, 𝜒H is the comoving distance to the horizon, 𝑃𝛿 is the matter power spectrum, and 𝑞 is the
lensing kernel:

𝑞(𝜒) = 3
2
ΩM

𝐻20
𝑐2

𝜒

𝑎(𝜒)

∫ 𝜒H

𝜒

d𝜒′ 𝑛(𝜒′) 𝜒
′ − 𝜒

𝜒
, (20)

where ΩM is the present-day dimensionless total matter density of the Universe, 𝐻0 is the Hubble constant, 𝑐 is the speed of light
in a vacuum, 𝑎 is the scale factor of the Universe, and 𝑛(𝜒) is the galaxy distribution function of the survey. In this work, we use
the photometric DES Year 1 galaxy distribution3 (Abbott et al. 2018). The matter power spectrum is calculated using the publicly
available CAMB cosmology package (Lewis et al. 2000), for the Planck ΛCDM cosmology (Planck Collaboration et al. 2018). We
include the corrections fromMead et al. (2015) for the non-linear corrections in the matter power spectrum. In these calculations,
the comoving distance at a given redshift is determined using the astropy package (Astropy Collaboration et al. 2018, 2013).

3.1. Linear decoupled approximation test
Here we use the simulations to test the linear decoupled approximation of equation (14) compared to the full expression in
equation (12). In these simulated tests we use a maximum multipole of 𝐿 = 64 when calculating this full expressions, this is
limited by the complexity of computing the 𝑃 and 𝑄 terms in equation (12) that scale like 𝐿6 and since we are testing the linear
decoupled approximation we cannot use the numerical advantages described in Brown et al. (2005). We also compare difference
between the measured change in EE power spectrum computed using a forward model and the analytic predictions using the linear
decoupled approximation alone in which case we can use a higher maximum multipole of 𝐿 = 2048.
In Figure 2 we show the difference between the measured EE power spectrum (computed using a forward model) and the analytic
predictions using the full calculation and the linear decoupled approximation. When forward modelling we create measured shear

2We use the massmappy code (Wallis et al. 2017), SSHTMcEwen et al. (2013), and sample the sphere using the sampling scheme of McEwen &Wiaux (2011).
3 Data available at http://desdr-server.ncsa.illinois.edu/despublic/y1a1_files/redshift_bins/
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Fig. 4.— The bias on an inferred amplitude of the amplitude parameter 𝐴 where the true EE power is 𝐴𝐶𝐸𝐸
ℓ
as a function of the width of a prior distribution

on the multiplicative bias 𝑚 (left for 𝑚 = 0, centre for 𝑚 = 0.002, and right for 𝑚 = 0.05). We use the Gaussian random field simulations described in Section 3.
We show results for the joint EE and BB analysis (blue), EE Only (red), and EE-BB (green). The we show 1-𝜎 error bars on 𝐴 for the joint EE and BB analysis
only, these are similar for the EE-BB and EE Only points. The EE-BB is in some cases biased low by more than the plot axes, which we truncate to highlight the
small remaining biases for the EE and BB, and EE Only analyses.

data using equation (1) and then compute measured power spectra via equations (3) and (10). We find that in all cases the
difference between the analytic expressions and the forward model is at least three to four orders of magnitude smaller than the
cosmic variance error, given by (Weinberg 2008)

V =

[
2

𝑓skyΔℓ(2ℓ + 1)

]1/2
, (21)

where Δℓ is any bandwidth in ℓ-modes used, and 𝑓sky is the fraction of the sky observed. We also find that the difference between
the full expression (equation 11), and using the linear decoupled approximation (equation 14), is negligible over the tested
range compared to cosmic variance terms and for most modes the predictions are indistinguishable (the very small difference is
attributable to numerical rounding errors caused in the sums in equation 12).
Our comparison with the cosmic variance is made on a mode-by-mode basis, however in the propagation into cosmological
parameter estimation a sum over all modes is performed. The residual shown between the forward model and the linear decoupled
case will propagate into cosmological parameter as a residual power spectrum change of the form 2𝑚𝐶ℓ − (𝛿𝐶𝐴

ℓ
− 𝛿𝐶𝐹

ℓ
)𝐶ℓ i.e.

a correction term. Since previous work has found that 𝑚 ' 10−2–10−3 (e.g. Amara & Réfrégier 2008), using linear decoupled
assumptions, our result that (𝛿𝐶𝐴

ℓ
− 𝛿𝐶𝐹

ℓ
) ≈ 10−5𝐶ℓ means that any difference with the full case will lead to a negligible overall

bias on cosmological parameter estimation when summed over all modes.

3.2. Multiplicative bias tests
As described in Section 2.4 one can either use the EE only power, or combine the likelihood of the EE and BB power to gain
additional information on the multiplicative bias.
Here we test and compare these approaches on Gaussian random field simulations, we use an all-sky survey with a maximum

ℓ-mode of 𝐿 = 2048 and use 20 logarithmic spaced bins between [2, 𝐿]. For the shear field we use the Planck cosmology used
in the previous section, and scale the input power spectrum with an amplitude 𝐴𝐶𝐸𝐸

ℓ
with a fiducial value of 𝐴 = 1. For the

noise field we assume 𝜎𝑒 = 0.3 and 𝑁gal = 148510660𝑛0 with 𝑛0 = 30 galaxies per square arcminute as a fiducial case. After
creating a Gaussian random field we then include a constant multiplicative bias, which needs to be marginalised or removed
from the inference. The free parameters are (𝑚, 𝜎𝑒, 𝐴), and in all cases we assume a Gaussian likelihood. We will show
results of estimating the parameters from the Gaussian random field simulations; we use emcee (Foreman-Mackey et al. 2013;
Foreman-Mackey 2016) for the parameter estimation and use 50,000 samples in each test (removing the first 100 points and using
32 walkers), we assume uniform prior ranges of −1 ≤ 𝑚 ≤ 1, 0 ≤ 𝐴 ≤ 2 and 0 ≤ 𝜎 ≤ 1 except where otherwise stated.
In Figure 3 we show the constraints when only the flat priors are used on 𝑚 and 𝜎𝑒. In this case we find that the all three
parameters are completely degenerate and no meaningful constraint on the amplitude is possible. Therefore a constraint on the
cosmic shear amplitude is only possible with either a prior on 𝑚, a prior on 𝜎𝑒 or both. If the prior on 𝑚 or 𝜎𝑒 is too large, or
centred on the incorrect value, then the constraints on 𝐴 will be biased and the error bar larger.
The fact that constraints on 𝜎𝑒 and 𝐴 are completely degenerate depends on the statistic used. For EE only we have

(1 + 2𝑚) (𝐴𝐶𝐸𝐸
ℓ

+ 𝜎2𝑒𝑁𝑙), and so the observed EE power only constrains the total combination of these amplitudes; (1 + 2𝑚) is
degenerate with 𝐴 from the signal contribution and 𝜎2𝑒 from the noise part and hence the three parameter space is degenerate. For
the EE and BB case the terms (1 + 2𝑚)𝜎2𝑒 and (1 + 2𝑚) (𝐴𝐶𝐸𝐸

ℓ
+ 𝜎2𝑒𝑁ℓ) are independently constrained by the EE and BB power

respectively in the joint likelihood.
In Appendix A we show that in general the marginalisation over 𝑚 will result in biases on the inferred amplitude of 𝐴, caused
by a classical marginalisation paradox, but that the total amplitude of the power spectrum (1 + 2𝛿𝑚)𝐴 should be unbiased, where
𝛿𝑚 is a residual bias that is consistent with zero. In Figure 4 we demonstrate this by applying priors to 𝑚 for the three statistics
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Fig. 5.— The bias on an inferred amplitude 𝐴 compared to the estimator (1 + 2[𝑚 − 〈𝑚〉])𝐴 as a function of the width of a prior distribution on the stochastic
ellipticity variance bias 𝜎 (𝜎𝑒) (left for 𝑚 = 0.002, and centre for 𝑚 = 0.05) and Δ𝜎𝑒 (right for 𝑚 = 0.05). We use the Gaussian random field simulations
described in Section 3. We show results for the joint EE and BB analysis (blue) and EE Only (red). The fainter error bars are the 1-𝜎 error on (1 + 2𝑚)𝐴 for the
joint EE and BB analysis.

we investigate (we only apply the uniform prior on 𝜎𝑒 and 𝐴 in this case). We test this for the cases that the true value of 𝑚 = 0,
𝑚 = 0.002 and 𝑚 = 0.05, and vary 𝜎(𝑚) with the prior centred on the true value. This leads to asymptotic estimates of 𝐴 for
small 𝜎(𝑚), however these are biased low due to the marginal distribution of 𝐴 being biased, and this bias is larger for smaller
𝑚 values as shown in Appendix A. We find that the EE-BB is affected more than the EE only and joint EE and BB likelihood,
because in this case there is no additional information from the stochastic ellipticity term.
To avoid the biases in the marginal distribution of 𝐴 we can instead characterise the total amplitude using (1 + 2𝛿𝑚)𝐴 where

𝛿𝑚 is a residual bias. This estimator should be an unbiased for 𝐴 if 𝛿𝑚 is zero. To estimate the residual bias from two-point
statistics one can do this in two ways

• Measure this from simulations, such that 𝛿𝑚 → 0 with some uncertainty 𝜎(𝑚),

• Infer 𝛿𝑚 from the BB power spectrum with a sufficiently good prior on 𝜎𝑒. In this case it is better to have no prior on 𝑚
(which may bias any inference of (1 + 2𝛿𝑚)𝐴), and we only need to characterise a prior on 𝜎𝑒,

or going beyond two-point statistics to include higher-order or point-estimate terms may also help to lift the degeneracies. We
therefore construct an estimator for 𝐴 that is

𝐴̃' (1 + 2𝛿𝑚)𝐴
𝐴̃' (1 + 2[𝑚 − 〈𝑚〉])𝐴 (22)

where 〈𝑚〉 is the mean 𝑚 measured either from simulations or inferred from the BB power. This should be unbiased by the effect
of marginalisation if there is a good estimate of 〈𝑚〉.
In Figure 5 we show the bias on the amplitude 𝐴 as a function of the width and centre of the prior on 𝜎𝑒 and find that indeed the
bias is consistent with zero when 𝜎(𝜎𝑒) ≤ 0.05 and Δ𝜎𝑒 ≤ 0.01. We also find that this is not dependent on the overall amplitude
of the bias. Constraining 𝜎𝑒 to this level may be possible using deep field observations (see e.g. Viola et al. 2014). A prior on
𝜎𝑒 leads to a lifting of the degeneracy in the contribution (1 + 2𝑚)𝜎2𝑒 coming from the 𝑁ℓ contribution to the various statistics,
leading to a constraint on (1 + 2𝑚) in the (𝑚, 𝜎𝑒) sub-space, this in turn constrains the combination (1 + 2𝑚)𝐴 and hence 𝐴.
In Figure 6 we show the bias on the amplitude 𝐴 as a function of the width and centre of the prior on 𝑚 and also find that the
bias is consistent with zero when 𝜎(𝑚) ≤ 0.07 and Δ𝑚 ≤ 0.01. We also find that this is not dependent on the overall amplitude
of the bias. In practice one will have a prior from calibration simulations Π(𝑚 |〈𝑚〉, 𝜎(𝑚)), and an unbiased estimate of 𝐴 would
then be (1 + 2(𝑚 − 〈𝑚〉))𝐴 when marginalised over 𝑚 with the prior.

4. CONCLUSIONS
In this paper we have extended previous work to write down an expression for the propagation of multiplicative and additive
weak lensing biases into cosmic shear power spectra. This expression includes terms that couple the multiplicative bias field
and the survey mask, which in principle cause scale-dependent behaviour that is linear in multiplicative bias. By testing on
simulations, which include some extreme cases of multiplicative bias fields, we find that the two assumptions of using only linear
terms in multiplicative bias, and assuming no coupling between the bias field and the mask, are sufficient to capture any impact
of multiplicative biases on cosmic shear power spectra for low-ℓ modes.
In deriving this result we find several combinations of power spectra that are dependent on biases to varying degrees, and we
identify that the BB power is sensitive to the multiplicative bias via the stochastic ellipticity field. We find that without prior
information on either the multiplicative bias or the variance of the stochastic ellipticity that measurement of the amplitude 𝐴 of the
cosmic shear power spectrum is completely degenerate. When applying priors to the multiplicative bias we find that this biases
any inference of the amplitude parameters. However we find that the combination of (1 + 2𝛿𝑚)𝐴 is unbiased for a joint EE and
BB likelihood if the stochastic ellipticity variance is known to better than 𝜎(𝜎𝑒) ≤ 0.05 and Δ𝜎𝑒 ≤ 0.01 or the multiplicative
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Fig. 6.— The bias on an inferred amplitude 𝐴 compared to the estimator (1+2[𝑚− 〈𝑚〉])𝐴 as a function of the width of a prior distribution on the multiplicative
bias 𝜎 (𝑚) (left for 𝑚 = 0.002, and centre for 𝑚 = 0.05) and Δ𝑚 (right for 𝑚 = 0.05). We use the Gaussian random field simulations described in Section 3. We
show results for the joint EE and BB analysis (blue) and EE Only (red). The fainter error bars are the 1-𝜎 error on (1 + 2𝑚)𝐴 for the joint EE and BB analysis.

bias is known better than 𝜎(𝑚) ≤ 0.07 and Δ𝑚 ≤ 0.01. This will be generalised to a tomographic analysis and the assessment of
the bias on cosmological parameters in future work.
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APPENDIX

A. MARGINALISATION OVER DEGENERATE PARAMETERS

It is well known that marginal distributions may be biased in a prior-dependent manner (Dawid et al. 1973) (the so-called
marginalisation paradox).
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Inverse z-Gaussian Distribution

z-Gaussian Distribution

Fig. 7.— Left: Some examples of the inverse z-Gaussian distribution (equation A6, top) and z-Gaussian distribution (equation A5, bottom), with various mean
values of 𝐵 with 𝑧̄ = 1, 𝜎𝑧 = 0.1 and 𝜎𝑥 = 0.1. Centre: The median of the inverse z-Gaussian distribution compared to the mode for various values of 𝜎𝐵 with
𝑧̄ = 1, 𝜎𝑧 = 0.1 (top) and for the z-Gaussian distribution (bottom); the black dashed lines show the case that the median is equal to the mode (i.e. the Gaussian
case). Right: The mode of the distributions as a function of the centre of the Gaussian prior 𝐵̄, for various 𝜎𝐵 . In the inverse case the dashed line is 1/𝐵̄ and in
the non-inverse case proportional to 𝐵̄.
Given some angular power spectrum 𝐶ℓ we introduce two amplitude parameters 𝐴 and 𝐵 such that

𝐶ℓ = 𝑧𝐶ℓ = 𝐴𝐵𝐶ℓ (A1)

where 𝐶ℓ is the modified power spectrum, ℓ is an angular multipole, and 𝑧 = 𝐴𝐵. In general if 𝐴 or 𝐵 are fixed then assuming
a linear dependence on the amplitude parameters the inferred distribution of the other parameter (𝐵 or 𝐴 respectively) will be
Gaussian (Taylor et al. 2019).
However, when jointly estimating 𝐴 and 𝐵 any decrease in 𝐴 will be compensated in the fit by an increased 𝐵, and vice versa,
with singularities at both 𝐴 = 0 (with 𝐵 → ∞) and 𝐵 = 0 (with 𝐴 → ∞) in this simple case. This means that in the joint fit the
marginalised distributions of 𝐴 and 𝐵 are no longer Gaussian, but bounded by [0,∞). This could be generalised further where
there is a constraint on the hyperbolic angle (i.e. the length of the ‘banana’ rather than the width) as well as 𝑧, but in this case we
consider the hyperbolic angle to be unconstrained.
Assuming a Gaussian distribution in 𝑧 the likelihood of 𝑧, which is also the joint probability of 𝐴 and 𝐵 in this setup, can be
written like

𝑝(𝑧) = 𝑝(𝐴, 𝐵) = 1
(2𝜋)1/2𝜎𝑧

exp
(
− (𝑧 − 𝐴𝐵)2

2𝜎2𝑧

)
(A2)

where 𝑧 is the mean of 𝑧 and 𝜎𝑧 an uncertainty. If there is prior information on one variable Π(𝐵), then we can construct a
posterior which in the case of a Gaussian prior is

𝑝(𝐴, 𝐵)Π(𝐵) = 1
(2𝜋)𝜎𝑧𝜎𝐵

exp

(
− (𝑧 − 𝐴𝐵)2

2𝜎2𝑧
− (𝐵̄ − 𝐵)2

2𝜎2
𝐵

)
, (A3)

where 𝐵̄ is the mean of the prior and 𝜎𝐵 the uncertainty. The marginalised distribution of 𝐴 and 𝐵 are then given by

𝑝(𝐴) =
∫ ∞

0
𝑝(𝐴, 𝐵)Π(𝐵)d𝐵, and 𝑝(𝐵) =

∫ ∞

0
𝑝(𝐴, 𝐵)Π(𝐵)d𝐴. (A4)
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Fig. 8.— Left: The expected change in the mode of amplitude of the cosmic shear power spectrum Δ𝐴 a function of the width of a prior on 𝑚, for various value
of the true 𝑚 value assuming the prior is centred on the true value, with a fixed 𝜎𝑧 = 0.1. Right: The expected mode of the amplitude of the cosmic shear power
spectrum a function of the true 𝑚 for various 𝜎 (𝑚) values, assuming that 𝜎𝑧 = 0.1.

We note that we use the most general normalisations such the probability distributions 𝑝(𝑧) and Π(𝐵) are normalised over
(−∞,∞), but that we only consider the marginalised distributions over (0,∞) in the case we consider because 𝑧 > 0 and 𝐴 > 0
i.e. the overall amplitude is positive.
In the Gaussian case the marginalised distribution is given by

𝑝(𝐵) = 1
𝐵(8𝜋)1/2𝜎𝐵

(
1 + erf

[
𝑧

√
2𝜎𝑧

])
exp

(
− (𝐵 − 𝐵̄)2

2𝜎2
𝐵

)
(A5)

where 𝑧 is the mean of 𝐴𝐵 with some error 𝜎𝑧 , and we have imposed a prior on 𝐵 with mean 𝐵̄ and error 𝜎𝐵. In this case the
marginalised distribution of the unconstrained parameter 𝐴 is

𝑝(𝐴) = 1
(8𝜋𝛼(𝐴, 𝜎𝑧 , 𝜎𝐵))1/2

(
1 + erf

[
𝜎2
𝐵
𝐴𝑧 + 𝜎2𝑧 𝐵̄

(2𝛼(𝐴, 𝜎𝑧 , 𝜎𝐵))1/2𝜎𝑧𝜎𝐵

])
exp

(
− (𝑧 − 𝐵̄𝐴)2
2𝛼(𝐴, 𝜎𝑧 , 𝜎𝐵)

)
(A6)

where 𝛼(𝐴, 𝜎𝑧 , 𝜎𝐵) = 𝐴2𝜎2
𝐵
+ 𝜎2𝑧 . We refer to equations (A5) and (A6) as the z-Gaussian and inverse z-Gaussian distributions

respectively (although they are not technically related via an inverse relation). Both of these are described by four free parameters
(𝐵̄, 𝜎𝐵, 𝑧, 𝜎𝑧).
In Figure 7 we show some examples of the z-Gaussian and inverse z-Gaussian distributions for (𝑧 = 1, 𝜎𝐵 = 0.1, 𝜎𝑧 = 0.1).
We also show in Figure 7 the difference between the median and the mode/maximum of the distributions, for various values of
𝜎𝐵 (keeping 𝑧 = 1 and 𝜎𝑧 = 0.1), where in general the mean and medians are skewed to larger values than the mode, which is
much more pronounced for the inverse z-Gaussian distribution. This shows that 𝐵 is close to a Gaussian distribution but that 𝐴 is
non-Gaussian. We also show the mode of the distributions compared to the centre of the Gaussian prior 𝐵̄ and find that both the
z-Gaussian distribution and inverse z-Gaussian modes are always biased low i.e. the z-Gaussian distribution is close to Gaussian
but with a mode shifted away from the input Gaussian case.
Therefore we conclude that if one performs parameter estimation on 𝑧 directly with no prior on any parameter this this should
be unbiased. However when jointly fitting the degenerate free parameters 𝐴 and 𝐵 to data 𝐴 and 𝐵 will be biased towards lower
values, and the mode of 𝑧 can be biased.

A.1. Application to Cosmic Shear
To explore this formalism we consider the cosmic shear power spectrum (equation 19) where the overall amplitude of the cosmic
shear power spectrum is 𝑧 ∝ (1 + 2𝛿𝑚)𝐴, where we include the affect of a residual multiplicative bias 𝛿𝑚 (see equations 14).
So in this case we have that 𝐴 is the fiducial (unbiased power spectrum) amplitude and 𝐵 = (1 + 2𝛿𝑚) will be marginalised
over. For an unbiased case 𝛿𝑚 = 0 and we have the 𝐵̄ = 1, and for a biased case 𝛿𝑚 > 0 we have that 𝐵̄ > 1. Therefore we expect
from the discussion in Section A that the amplitude of the power spectrum should be biased low when such marginalisation is
performed, and the bias should decrease as the true value of nuisance parameter 𝑚 increases.
In Figure 8 we show how the mode of amplitude will change as a function of the width of the prior on 𝛿𝑚 for various cases of

𝜎(𝑚) and the true value of 𝛿𝑚. We find that for reasonable value of 𝜎𝑚 and 𝜎𝑧 , for a best case that 𝛿𝑚 = 0 that the mode of the
marginalised amplitude value can be biased low by up to ∼ 1–2%. In all cases we assume a best-case that the prior is centred
on the true value of 𝛿𝑚, which in reality may not be the case. However the use of simulations (Hoekstra et al. 2017a) and/or
additional information from the noise (B-mode) power spectrum will enable calibration of the mean of 𝑚, which we explore in
Section 3.
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