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The mixture, or suspension balance, model is the most frequently used to describe
shear-induced particle migration in Newtonian fluids. The model suggests that neutrally
buoyant particles migrate only if the effective stress tensor of the solid phase is nonuniform.
In moderately dense suspensions, where direct particle contacts and interparticle forces
are negligible, this tensor originates from the velocity fluctuations of the particles. Using
Buyevich’s constitutive equation, we show that the time required by these fluctuations to
induce significant particle migration exceeds considerably the timescale of the process,
obtained experimentally. In particular, the ratio between these two timescales is propor-
tional to the reciprocal of the Reynolds number; hence, for vanishingly small values of
the Reynolds number (the case on which this work focuses), particle velocity fluctuations
cannot be responsible for particle migration. We conclude that, if direct particle contacts
and interparticle forces are absent, particle migration must have another driver. In the
literature, it has been suggested that this is the lubrication forces between the particles.
On this assumption, Morris and Boulay advanced a closure for the solid effective stress
tensor. This closure seems to predict well the migration process, but as discussed by P. R.
Nott, E. Guazzelli, and O. Pouliquen, The suspension balance model revisited, Phys. Fluids
23, 043304 (2011), it presents some conceptual issues. We investigate this matter and show
that lubrication forces can induce particle migration, and the tensor quantifying their effect
can be closed by Morris and Boulay’s equation; however, this tensor is not part of the
effective stress tensor of the solid phase.
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I. INTRODUCTION

Since the late 1970s, researchers have been investigating the migration of particles in Newtonian
liquids, experimentally, theoretically, and computationally. This phenomenon is important in many
industrial applications and laboratory measurements. For instance, in pharmaceutical and food man-
ufacturing lines, where suspensions have to be kept as uniform as possible, migration is detrimental;
similarly, in mining and oil and gas industries, where pipelines are long, it can cause severe prob-
lems, such as particle segregation and build-up. Migration also affects laboratory measurements,
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since in them mixtures must be uniform [1]. One familiar example is the measurement of the
effective viscosity of a suspension. Indeed, it was during such a measurement that particle migration
toward regions of low shear rate was first detected [2], a phenomenon known as shear-induced
particle migration.

Shear-induced particle migration is a collective effect of the fluid-mediated interactions of
several particles and occurs in (moderately) dense suspensions [3]. This process has nothing in
common with the “tubular pinch” effect reported by Segré and Silberberg [4], which results from
the interaction between an individual particle and the ambient fluid and originates from the inertia
of the fluid in its motion relative to the particles. Shear-induced particle migration is not driven
by inertia and also happens in mixtures with vanishingly small particle Reynolds number, even if
the particles are not Brownian. In fact, these mixtures—where inertial and Brownian effects are
negligible—are the target of our paper.

To describe the behavior of suspensions, and specifically shear-induced particle migration, most
researchers have adopted the mixture model (e.g., Refs. [5–12]). This treats the suspension as
an effective fluid and holds when the velocity fields of the fluid and solid phases relax to local
equilibrium rapidly; more specifically, the time the fields require to equilibrate must be much shorter
than the characteristic timescale of the flow [13,14]. This condition is usually met for suspensions
of micron-size particles in very viscous fluids, the focus of our work. The mixture model consists
of (i) a continuity equation and a linear momentum balance equation for the mixture, which yield
its density and velocity fields, (ii) a continuity equation for the solid phase, which yields its volume
fraction field, and (iii) a dynamical equation, which yields the migration velocity of the particles.
This last equation features the effective stress tensor of the solid phase (e.g., Refs. [14,15]) and
predicts that neutrally buoyant particles (the focus of this and most studies in this field) may migrate
only if this tensor is nonuniform. So to predict the migration velocity, researchers need an accurate
constitutive equation for this quantity.

Deriving such an equation is extremely challenging. The kinetic theory approach could in prin-
ciple overcome the closure problem. Based on a generalization of the Boltzmann equation [16], this
regards the solid effective stress tensor as a function of a granular temperature, a field related to the
particle velocity fluctuations and governed by a pseudointernal energy balance equation that would
complement the four balance equations of the mixture model previously discussed [13,17,18]. This
method poses two significant challenges. The first is capturing in the pseudointernal energy balance
equation all the relevant mechanisms generating and depleting particle velocity fluctuations or,
equivalently, granular internal energy. The second is relating the granular temperature and solid
effective stress tensor fields. These challenges limit the viability of this approach [3,13,14,19].

Confronted with the difficulties that a fundamental approach poses, some research groups tackled
the problem heuristically [20–22], developing the diffusive-flux model. This replaces the dynamical
equation of the mixture model yielding the migration velocity of the particles with a closure for the
migration velocity, derived via relatively simple arguments. This model gives good predictions in
flows where the velocity and shear rate change in the same direction, its results matching closely
various experimental data. Examples are pressure-driven laminar pipe flows and Couette flows. But
when velocity and shear rate change in different directions, the model fails. For instance, in parallel-
plate rheometers the model predicts an inward (from high to low shear rates) particle migration,
but experiments indicate that either no migration [23,24] or outward migration [7,25,26] occurs;
conversely, in cone-and-plate rheometers, where the shear rate field is uniform, the model predicts
no migration, but experiments indicate that outward migration occurs [27]. Therefore, even if the
diffusive-flux model is convenient, these drawbacks limit its applicability severely.

A third approach, which is neither entirely theoretical nor entirely heuristic, was proposed by
Morris and Boulay [15]. To obtain the migration velocity of the particles, they did employ the
dynamical equation of the mixture model featuring the solid effective stress tensor, but to close this
tensor, they relied on heuristic arguments based on experimental evidence. So this approach does not
involve a granular temperature field and does not require a pseudointernal energy balance equation.
Morris and Boulay focused on curvilinear flows, showing that the presence of anisotropic normal
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stresses induced by the presence of the particles is sufficient to explain particle migration. If the pa-
rameters of their constitutive equation are properly tuned, then the closure predicts well steady-state
solid concentration profiles in several viscometric flows and transient solid concentration profiles in
wide-gap Couette flows. Its main limitation is that it holds only for viscometric flows. Furthermore,
while this closure undoubtedly yields good results, its derivation poses a conceptual problem.
Recently discussed by Nott et al. [28], this arises because Morris and Boulay ascribe to the solid
effective stress tensor a contribution (the particle-presence stress tensor, which we will define and
discuss in Sec. II and Appendix A) that belongs to the effective stress tensor of the fluid phase. The
same problem, as Nott et al. [28] point out, is present in several works in this field—including the
pioneering article of Nott and Brady [17], to which Morris and Boulay refer when deriving their con-
stitutive equation. In light of this, one may rightly wonder how it is possible that the equation of Mor-
ris and Boulay predicts so well particle migration. This is a question we shall answer in this article.

Another heuristic closure of the solid effective stress tensor was suggested by Buyevich [3], who
argued that the shear-induced fluctuations of the particle velocities are responsible for the migration
of particles. The closure does not present the problem discussed above, has general validity, leads
to an anisotropic solid effective stress tensor, and predicts well the solid volume fraction profile in
a few fully developed viscometric flows [3,29]. However, in contrast to the closure of Morris and
Boulay [15], it has been tested far less and has never been employed in transient conditions. Here
we will test it in these conditions.

The idea that anisotropy in the solid phase normal stresses drives shear-induced particle migration
is popular, but it has not been proven. This idea rests on experimental evidence, but rheological
measurements inform on the effective stress tensor of the suspension—not of the solid phase. This
important point has also been discussed by Nott et al. [28], who pointed out that the anisotropy in the
normal stresses of the suspension has been wrongly interpreted in the literature as that of the normal
stresses of the solid phase. More generally, many works incorrectly split, between the effective stress
tensors of the fluid and solid phases, the several contributions making up the suspension effective
stress tensor (e.g., Refs. [8,12,17,30–33]). This aspect has been reviewed by Jamshidi et al. [14],
who based their analysis on the papers of Jackson [34] and Zhang and Prosperetti [35], landmark
investigations that stand out for their rigor, clarity, and insight. In light of this, Nott et al. [28]
disputed the notion that only normal stress differences in the solid effective stress tensor can induce
particle migration, proving that (a part of) the mean force of interaction between the fluid and the
particles can equally induce migration. In (moderately) dense suspensions, this term is related to
the mean fluid-particle interaction force associated with the lubrication films between neighboring
particles. Pursuing this idea, in this article we derive an expression for this force, showing that it
relates to the effective stress tensor of the fluid phase, more specifically to the particle-presence
stress associated with lubrication films. The resulting form of the particle migration velocity is
consistent with that obtained from the constitutive equation of Morris and Boulay [15], an outcome
that explains why their equation predicts well the migration process and that allows us to reinterpret
their closure.

The paper is organized as follows. In Sec. II, we present the two-fluid and mixture models,
focusing on the effective stress tensors of the fluid and solid phases and the terms constituting
them. In Sec. III, we examine the constitutive equations for the solid effective stress tensor of
Buyevich [3] and Morris and Boulay [15], highlighting their limitations and/or inconsistencies.
In Sec. IV, following the idea suggested by Nott et al. [28], we illustrate that particle migration can
be induced by the mean fluid-particle interaction force related to lubrication films and discuss how
this result bears on the constitutive equation of Morris and Boulay [15]. The paper also includes
three Appendixes. In the first, we briefly outline the derivation of the two-fluid equations of motion,
offering more information about the effective stress tensors of the two phases and in particular about
the particle-presence stress tensor. In the second, we connect our work to that of Batchelor [36], a
landmark paper on the effective stress of suspensions, discussing how his particle stress tensor is
related to the particle-presence stress tensor previously mentioned. In the last Appendix, we discuss
the analysis of the steady wide-gap Couette flow presented in Morris and Boulay [15].
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II. THEORY

This section presents the two-fluid and mixture models and discusses the expressions of their
unclosed terms. In Appendix A, we briefly derive the averaged equations of motion of the two-fluid
model, outlining the main passages and discussing some aspects that are closely related to our work.
For more details, we refer to the literature [34,35,37].

A. The two-fluid model

Consider a suspension of identical particles with radius a and density ρs dispersed in an
incompressible, isothermal, Newtonian liquid with density ρe and constant viscosity μe. For the
fluid, the mass and linear momentum balance equations read:

∂t εe = − ∂x · (εe〈u〉e), (1)

ρe∂t (εe〈u〉e) = − ρe∂x · (εe〈u〉e〈u〉e) − ∂x · 〈S〉e − n〈 f 〉p + εeρe g, (2)

where εe and 〈u〉e are the volume fraction and mean velocity of the fluid, respectively, 〈S〉e is the fluid
effective stress tensor, n〈 f 〉p is the mean fluid-particle interaction force, with n denoting the particle
number density, and g is the gravitational acceleration. The expression for 〈S〉e comes directly from
the averaging procedure:

〈S〉e(x, t ) ≡ εe(x, t )〈σ〉e(x, t ) + εe(x, t )ρe〈ûû〉e(x, t ) + n(x, t )〈A〉p(x, t )

− (1/2)∂x · [n(x, t )〈B〉p(x, t )], (3)

where:

n(x, t )〈A〉p(x, t ) ≡ a
∑

r

[
ψ (|x − zr (t )|)

∫
∂�r

kr (z, t )kr (z, t ) · σe(z, t )dsz

]
, (4)

n(x, t )〈B〉p(x, t ) ≡ a2
∑

r

[
ψ (|x − zr (t )|)

∫
∂�r

kr (z, t )kr (z, t )kr (z, t ) · σe(z, t )dsz

]
. (5)

Here 〈σ〉e is the volume average of the point stress tensor σe of the fluid, 〈ûû〉e is the volume
average of the dyadic product of the fluid velocity fluctuations, ψ is the weighting function used
in the volume averaging procedure, zr is the (time-dependent) position of the center of the generic
particle r, and kr is the outward unit normal to the surface ∂�r bounding particle r. The summation
is over all the particles in the suspension.

The first term on the right-hand side of Eq. (3) arises because, before the averaging is carried
out, the liquid phase is already a fluid—and so it is already endowed with a point stress tensor
(no analogous term features in the effective stress tensor of the solid phase). The second term is a
Reynolds stress type of contribution. The last two terms are related to the fluid dynamic interaction
between the fluid and the particles (through the traction force exerted by the fluid on the particle
surfaces). These terms are not solely related to the fluid phase, but involve the particles; for this
reason their combined contribution has been referred to as particle-presence stress [30]. Note that
we did not choose to ascribe this quantity to the effective stress tensor of the fluid—this is a direct
result of volume averaging, a formal mathematical procedure. So the particle-presence stress is not
part of the effective stress tensor of the solid phase. Note as well that this conclusion is unaffected
by the averaging method adopted; as shown by Zhang and Prosperetti [35], ensemble averaging
leads unambiguously to the same conclusion. Many researchers (e.g., Refs. [8,12,15,17,30–33])
have ascribed this contribution to the solid effective stress tensor, an error that often occurs because
one misinterprets some terms featuring in the averaged equations of motion (in particular, the
average fluid-particle interaction force). This point, clearly raised by Jackson [34], has been recently
discussed by Nott et al. [28] (refer also to Appendix A). It is a detail, but it is a crucial one with
important consequences.
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Note that, as Eq. (3) reveals, the effective stress tensor of the fluid does not coincide with the
average of the point stress tensor of the fluid; that is, 〈S〉e �= εe〈σ〉e. The particle-presence stress
is caused by the presence of the particles, but this does not mean that it belongs to the solid
effective stress tensor. In Batchelor [36], the particle-presence stress tensor is part of the tensor that
Batchelor calls particle stress. But Batchelor never stated that the particle stress tensor coincides
with the effective stress tensor of the solid phase; he just grouped in the particle stress tensor all the
contributions to the stress tensor of the suspension caused by the particles. In his paper, Batchelor
addressed the problem of closure of the stress tensor of the suspension. As discussed in Appendix B,
his results are consistent with those reported in Jackson’s work. But Batchelor did not address the
problem of closure of the effective stress tensors of the fluid and solid phases, and did not discuss to
which phasic effective stress tensor the terms included in the suspension stress tensor should belong.

For the solid phase, the mass and linear momentum balance equations read:

∂t εs = − ∂x · (εs〈u〉s ), (6)

ρs∂t (εs〈u〉s ) = − ρs∂x · (εs〈u〉s〈u〉s ) − ∂x · 〈S〉s + n〈 f 〉p + εsρs g, (7)

where εs and 〈u〉s are the volume fraction and mean velocity of the solid, respectively, and 〈S〉s is
the solid effective stress tensor. This is given by:

〈S〉s (x, t ) ≡ εs(x, t )ρs〈ûû〉s (x, t ) + n(x, t )〈C〉p(x, t ) − (1/2)∂x · [n(x, t )〈D〉p(x, t )], (8)

with:

n(x, t )〈C〉p(x, t ) ≡ a
∑

r

[
ψ (|x − zr (t )|)

∑
s �=r

krs(t ) f rs(t )

]
, (9)

n(x, t )〈D〉p(x, t ) ≡ a2
∑

r

[
ψ (|x − zr (t )|)

∑
s �=r

krs(t )krs(t ) f rs(t )

]
, (10)

where f rs is the contact force exerted by particle r on the generic particle s and krs is the unit vector
pointing from the center of particle r to that of particle s.

The first contributor to the solid effective stress tensor is referred to as kinetic stress. It is related
to the solid velocity fluctuations ûs and arises from the Reynolds decomposition of the advection
term in the solid-phase averaged dynamical equation. The other two contributors constitute the
particle-contact stress, which stems from direct particle contacts. These can be of two kinds: nearly
instantaneous contacts that form during particle collisions and enduring contacts that establish when
suspensions become very dense. The first kind gives rise to the collisional stress and captures the
transfer of linear momentum over the distance 2a between the centers of two colliding particles,
while the second kind brings about the frictional stress, which, as said, becomes important solely
when particles are close to their maximum packing. Note that Eq. (8) does not account for stress
induced by interparticle forces (that is, action at a distance forces, such as electrostatic forces).
Should these forces be significant, Eq. (8) would have to include a new term, whose expression
would be similar to that of the particle-contact stress, provided the interparticle force range is far
shorter than the weighting function radius. In this article, we assume that these forces are negligible.
Moreover, we focus on (moderately) dense mixtures where the effect of direct particle contacts is
insignificant compared to that of fluid-mediated (via lubrication films) particle interactions, our
emphasis being on the regions B and F of the rheophysical regime classification of Coussot and
Ancey [1].

The two-fluid modeling approach has been used to model liquid-particle suspensions. We men-
tion, for instance, the work of Municchi et al. [32], where the fluid effective stress tensor is closed
with the Newtonian closure and a constant viscosity, while the solid effective stress tensor comprises
two parts, one accounting for the kinetic and collisional stresses, closed via the kinetic theory model
of Gidaspow [18], and one accounting for the stress anisotropy (i.e., the normal stress differences),
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expressed via the closure of Morris and Boulay. Hence, in this paper the particle-presence stress is
ascribed to the solid effective stress tensor, a choice that, as we discussed, we believe is incorrect.
Also, the part of the particle-presence stress tensor resulting in the viscosity correction of Einstein
[38] seems to be missing, since it can neither arise from the kinetic and collisional stresses nor from
the anisotropic stress.

Another interesting work based on the two-fluid modeling approach is that of Drijer et al. [39].
Here particle migration is modeled through a force fulfilling the action and reaction principle (a
force present in the dynamical equations of both phases with opposite signs). This is close to what
we will suggest at the end of this article. The difference is in how the force is modelled: Drijer et al.
use the diffusion-flux model, while we relate it to the particle-presence stress tensor.

B. The mixture model

The mixture model treats the suspension as an effective fluid. For its derivation, we refer to the
literature (for instance, see Ref. [14]). The mass and linear momentum balance equations for the
mixture read:

∂t ρm = − ∂x · (ρm〈u〉m), (11)

∂t (ρm〈u〉m) = − ∂x · (ρm〈u〉m〈u〉m) − ∂x · 〈S〉m + ρm g, (12)

where:

ρm ≡ εeρe + εsρs; ρm〈u〉m ≡ εeρe〈u〉e + εsρs〈u〉s . (13)

The effective stress tensor of the mixture, denoted by 〈S〉m, comprises three contributions:

〈S〉m ≡ 〈S〉e + 〈S〉s + 〈S〉d . (14)

〈S〉d is called diffusion stress tensor [40] and arises because each phase moves at a velocity that
differs from that of the mixture. It is defined as follows:

〈S〉d ≡ ρmωeωs (〈u〉s − 〈u〉e)(〈u〉s − 〈u〉e), (15)

where ωe and ωs are the mass fractions of the fluid and solid phases, respectively. Its effect is usually
negligible compared to that of the phasic effective stress tensors.

In addition to the continuity equation for the suspension, another mass balance equation is
necessary to track the volume fractions of the phases. Usually, this equation is written for the solid
phase and reads:

∂t εs = − ∂x · (εs〈u〉m) − ∂x · [εsωe (〈u〉s − 〈u〉e)]. (16)

The term in square brackets on the right-hand side of this equation arises because the solid does not
move at the same velocity as the mixture. This term can be interpreted as a diffusive flux, but it does
not usually obey Fick’s law.

As shown, diffusive fluxes (of mass and linear momentum) arise in Eqs. (12) and (16). These
terms are unclosed, because instead of the suspension velocity, they involve the fluid-particle slip
velocity. This velocity calls for an additional (dynamical) equation. If the fluid and solid velocity
fields relax to local equilibrium rapidly, it is:

〈u〉s − 〈u〉e = − (1/β )[εe∂x · 〈S〉s − εs (ρs − ρm)(g − Dt 〈u〉m)]. (17)

This equation is approximate and is based on an asymptotic expansion on the particle Stokes
number, which, for the systems of interest here, is assumed to be much smaller than unity; for
details, we refer to the literature (for instance, see Refs. [13,14,40]).

In Eq. (17), Dt 〈u〉m represents the substantial derivative of the mixture velocity field and β is the
drag force coefficient, for which many closures are available in the literature [13,41,42]. Here we
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report that of Wen and Yu [43]:

β = 3

4
CD(Re)

ρeεs |〈u〉s − 〈u〉e|
2a

ε−1.65
e , (18)

where:

Re ≡ ρeεe |〈u〉s − 〈u〉e|(2a)

μe

(19)

and

CD(Re) =
{

(24/Re)(1 + 0.15Re0.687 ) for Re < 1000

0.44 for Re � 1000
. (20)

Here Re is the particle Reynolds number. Under the conditions in which the mixture model holds,
the fluid and solid mean velocities are equal at leading order in the Stokes number, and the slip
velocity vanishes; thus, Re ≪ 1, CD(Re) → 24/Re and for neutrally buoyant particles of constant
density dispersed in a fluid of constant viscosity, Eq. (16) reduces to:

∂tεs = − ∂x · (εs〈u〉m) − 2a2/(9μe)∂x · (
ε4.65

e ∂x · 〈S〉s

)
. (21)

This is the equation usually used to describe shear-induced particle migration. As discussed in Sec. I,
this equation suggests that neutrally buoyant particles migrate toward regions of low shear rate only
if 〈S〉s is nonuniform.

III. CLOSURES FOR THE SOLID EFFECTIVE STRESS TENSOR

Equation (17) indicates that particle migration can be induced by gravity, inertia, and gradients
in the solid effective stress tensor. For neutrally buoyant particles, the first two have no effect;
if we trust Eq. (17), then we conclude that particle migration is driven solely by gradients in
〈S〉s . Hence, the key to describing particle migration correctly is having an accurate closure for
this tensor, a closure that accounts accurately for all the phenomena generating stress in the solid
phase. As Eq. (8) reveals, several phenomena contribute: particle velocity fluctuations (which gen-
erate kinetic stress), particle collisions and/or enduring particle contacts (which together generate
particle-contact stress), and, if present, interparticle forces. We have assumed that the effects of the
last three are negligible. This is not always true, but experimental evidence indicates that migration
starts to be appreciable in moderately dense mixtures falling in the region B of the rheophysical
regime classification of Coussot and Ancey [1], where these three contributions are negligible. We
investigate the cause of migration in these conditions, where particle-contact and interparticle-force
stresses can be ruled out, because we want to focus on the role played by the kinetic stress. Our
analysis will show that this part of the solid effective stress tensor cannot be the main driver of
particle migration, a result revealing that migration must have fluid dynamic origin. Assuming
that migration is induced by the lubrication forces between particles, we will then prove that the
migration velocity is related to the gradients in the particle-presence stress tensor associated with
such forces. Since lubrication forces, direct particle contact forces, and interparticle forces are all
pointwise and pairwise, extending our results to cases where the last two forces are present would
be straightforward.

A. The closure of Buyevich

For the systems of interest in our study, it seems that particle migration must be driven by
the kinetic stress induced by particle velocity fluctuations. Buyevich [3] agreed with this idea.
When studying particle migration, he thus focused on developing a constitutive equation for 〈S〉s
accounting solely for the kinetic stress. He argued that in shear flows this originates from the
fluid-mediated interactions between particles when adjacent mixture layers move past one another.
These interactions yield random particle displacements of the order of the particle size, leading
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to “shear-induced” particle velocity fluctuations. With heuristic arguments based on this idea, he
proposed the following closure:

〈S〉s = Cρsa2ϕ(εs)[(π 2/4 − 1)〈γ̇〉s · 〈γ̇〉s + |〈γ̇〉s |2I]. (22)

Here C is an unknown coefficient. Because the closure was developed with scaling arguments, this
coefficient was expected to be of unit order of magnitude. But later, by fitting the model results to
experimental data for a two-dimensional channel flow, Buyevich and Kapbsov [29] suggested the
value of 0.016. In Eq. (22), 〈γ̇〉s is twice the deformation rate tensor of the solid mean velocity field,
and |〈γ̇〉s| is its magnitude; these quantities can be replaced with the equivalent ones for the mixture
velocity field (i.e., 〈γ̇〉m and |〈γ̇〉m|) inasmuch as at leading order the two velocity fields are equal.
Finally, it is:

ϕ(εs) = ε3
s

[
1 + εs + ε2

s − ε3
s

(1 − εs)3
+ 2.9

(εs/ε
�
s )3

1 − (εs/ε
�
s )

][
1 − 0.5εs

(1 − εs)3
+ 1.08

(εs/ε
�
s )3

1 − (εs/ε
�
s )

]2

, (23)

where ε�
s is the maximum value that the solid volume fraction can attain when the suspension reaches

packing conditions. This value is often taken to be (around) 0.65.
Equation (22) predicts the fully developed solid volume fraction profiles in wide-gap Couette

flows and pressure-driven laminar pipe flows fairly well [3,29]; notwithstanding, it does present two
problems, which have not been reported in the literature.

The first is related to the timescale of the migration process predicted by this equation. To
investigate this problem, we considered a wide-gap Couette flow of a dense suspension of neutrally
buoyant particles between two vertical concentric cylinders, the inner (radius κR) rotating with
angular velocity 
 around its axis and the outer (radius R) being motionless. The flow is laminar,
and we may take the mixture velocity field to be tangent to the angular coordinate lines. If we also
assume cylindrical symmetry and neglect end effects, then we can take the velocity and the solid
volume fraction fields to depend only on the radial coordinate (and, for transient flows, on the time).
With these assumptions, adopted by most of the researchers modeling this flow, the first term on the
right-hand side of Eq. (21) vanishes (that is, convection plays no role) and the equation reduces to:

∂tεs = − 2a2/(9μe)∂r

{
rε4.65

e [∂r 〈S〉
s,rr

+ (1/r)(〈S〉
s,rr

− 〈S〉
s,θθ

)]
}
, (24)

where 〈S〉
s,rr

and 〈S〉
s,θθ

denote the rr and θθ components of the tensor 〈S〉s . We solved this equation
numerically, using Eqs. (22) and (23) to close 〈S〉s .

The evolution of the solid volume fraction profile in this flow was obtained experimentally by
Phillips et al. [22]. In their setup R = 2.38 cm and κ = 0.27, and the suspension consisted of
polymethylmethacrylate particles with density ρs = 1182 kg/m3 dispersed in a liquid with the same
density and viscosity μe = 4.95 Pa s. The mean diameter of the particles was either 100 or 675 μm.
The suspension was initially homogeneous with a solid volume fraction ε̄s of either 0.50 or 0.55.

Figure 1(a) reports the solid volume fraction profile, obtained from the solution of Eq. (24) for
a mixture with 2a = 675 μm and ε̄s = 0.5 and the inner cylinder rotating at 
 = 17 rmp, after
470 min from the start of rotation, a time equivalent to 8000 revolutions of the inner cylinder. As
we can see, if in Eq. (22) we set C = 1 (the order of magnitude that Buyevich [3] initially expected
for C), then the model predicts very weak migration, the solid volume fraction remaining uniform
over most of the flow domain (except close to the inner wall). Setting C = 0.016, as suggested by
Buyevich and Kapbsov [29], predicts even weaker migration, because smaller values of C result in
smaller migration fluxes. Equation (22) fails to capture correctly the timescale of migration, unless
the value of C is increased significantly. As Fig. 1(a) shows, for C = 103 the numerical results do
match the experimental data sufficiently well, but such a high value for C is physically unjustified.

Figure 1(b) reports the solid volume fraction profiles for the same system, but with ε̄s = 0.55,
after 200, 800, and 12 000 revolutions of the inner cylinder. The numerical results, obtained for
C = 103, again match the experimental data quite well, an outcome that appears to confirm the
higher order of magnitude found for the coefficient C.
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(a) (b)

FIG. 1. Solid volume fraction profiles in a wide-gap Couette flow. The outer cylinder is stationary, while
the inner one rotates at angular velocity 
. The suspensions, of neutrally buoyant particles with mean radius a,
are initially uniform with solid volume fraction ε̄s. Model curves from Eqs. (22) and (24). Experimental data
from Phillips et al. [22].

But when this larger value of C is used to predict the migration of particles with a mean diameter
of 100 μm, the model fails to reproduce the experimental data, again predicting very weak migration
and a solid volume fraction profile uniform over most of the flow domain. In this case, as Fig. 2
shows, the value required for a good match is C = 4.5 × 104. As 4.5 × 104/103 is nearly equal to
(675/100)2, this suggest that C ∝ 1/a2, a dependence that is inconsistent with the derivation of
Eq. (22), where C must be a constant (that is, its value cannot depend on the properties of the
suspension). Note that in Couette flows the steady-state particle volume fraction profile does not
depend on the coefficient C [3], and so the issue just discussed did not arise when Buyevich tested
his closure on these stationary flows.

The second problem posed by Eq. (22) is about the incorrect direction of the migration flux
in parallel-plate rheometers. Consider a dense suspension in one of such rheometers (plates in the
r, θ plane) with a gap size H (in the z direction). The bottom plate is stationary, and the top one

FIG. 2. Solid volume fraction profiles in a wide-gap Couette flow. The outer cylinder is stationary, while
the inner one rotates at angular velocity 
. The suspensions, of neutrally buoyant particles with mean radius a,
are initially uniform with solid volume fraction ε̄s. Model curves from Eqs. (22) and (24). Experimental data
from Phillips et al. [22].
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FIG. 3. Steady-state solid volume fraction profile in a plate-plate rheometer for a dense suspension with
initial homogenous concentration ε̄s = 0.4 obtained using Eq. (25) and by assuming ε�

s = 0.68. This equation
predicts an inward flux of particles that contradicts experimental observations. The horizontal line at εs = 0.4
is plotted to guide the eye.

rotates with angular velocity 
 around the z axis. Because at leading order the mean velocities of
the solid and the mixture are equal, we can assume 〈γ̇〉s = 〈γ̇〉m. Also, neglecting the secondary flow
in the rheometer, we may take 〈u〉m,r = 〈u〉m,z = 0 and 〈u〉m,θ = 
rz/H (in Sec. III C, using scaling
analysis, we prove the effects of secondary flow are negligible). Using these assumptions, we can
obtain the stress tensor of the solid phase from Eq. (22) and use it to solve Eq. (24) in steady-state
conditions. This leads to the following equation, which yields the radial profile of the solid volume
fraction:

dεs

dr
= π2 − 12

4r

ϕ(εs)

dϕ(εs)/dεs

with
2

R

∫ R

0
εs(r )r dr = ε̄s. (25)

The condition on the right ensures the total mass of solid is conserved. Here R is the radius of the
plates in the rheometer, and ε̄s is the initial bulk solid concentration.

Since ϕ(εs) is always positive and increases monotonically with εs, diverging for εs → ε�
s , we

conclude that dεs/dr < 0. This implies that the particles migrate toward the rotation axis (inward
migration). As an example, Fig. 3 reports the solid volume fraction profile obtained from Eq. (25) for
a suspension that is initially uniform, with ε̄s = 0.4 (and ε�

s = 0.68). As we see, for r → 0, εs → ε�
s ,

since dεs/dr → ∞. This steady-state result is independent of the value of the coefficient C, the
closure adopted for the drag coefficient, and the fluid and solid physical properties. The inward flux
predicted by Eq. (25), similarly to that obtained from the diffusive-flux model, is incorrect, because
experiments show that in this setup particles either do not migrate [23,24] or migrate away from the
rotation axis [7,25,26].

In light of these results, we conclude that either Eq. (22) is incorrect or the kinetic stress is not
the main driver of particle migration. As the arguments of Buyevich [3] in his derivation appear to
be sound and compelling, we favor the second explanation. This is in line with the idea proposed by
Lhuillier [44] and followed by Nott et al. [28].

We conclude with the following consideration. The study just conducted reveals that the kinetic
stress cannot be the main driver of migration. This suggests that migration must have fluid dynamic
origin. If we require that the order of magnitude of 〈S〉s in Eq. (22) be equal to ϕ(εs)μe|〈γ̇〉s |, which
is expected to estimate well the order of magnitude of the viscous stress in the suspension, we
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obtain:

Cρsa
2ϕ(εs)|〈γ̇〉s |2 ∼ ϕ(εs)μe |〈γ̇〉s |, (26)

whence:

C ∼ μe

ρsa
2|〈γ̇〉s |

∼ μe

ρea2|〈γ̇〉s |
∼

(
L

a

)2(
μe

ρeU L

)
≡

(
L

a

)2 1

ReL

, (27)

where U and L are the velocity and length scales of the flow of the suspension. This result confirms
our previous finding: C ∝ 1/a2. It also indicates that the time required by the particle kinetic stress
to induce significant particle migration exceeds considerably the timescale of the migration process,
the ratio between these two timescales being proportional to the reciprocal of the Reynolds number.
For vanishingly small values of the Reynolds number, particle velocity fluctuations clearly cannot
be responsible for particle migration.

B. The closure of Morris and Boulay

The problem of closure for the solid effective stress tensor was addressed heuristically by Morris
and Boulay [15], who aimed to investigate the effect of normal stresses in concentrated mixtures on
shear-induced particle migration. Assuming that the dominant stresses originate from fluid dynamic
lubrication forces between particle pairs (and contact forces, which for the systems of interest in
our work are negligible), Morris and Boulay suggested the following constitutive equation:

〈S〉s = − ηp(εs)〈γ̇〉m + ηn(εs)|〈γ̇〉m|Q. (28)

The first term on the right is the Newtonian part of the solid stress tensor; ηp(εs) represents the
particle contribution to the suspension shear viscosity (in the dilute limit, this coincides with the
Einstein correction to the mixture viscosity [38]). The second term accounts for the presence of
viscous normal stresses; ηn(εs) is the normal stress viscosity, and Q is a diagonal, anisotropic
material property tensor featuring two fitting parameters.

Morris and Boulay showed that if these parameters are properly tuned, then Eq. (28) predicts
well steady-state solid volume fraction profiles in a number of viscometric flows and transient solid
volume fraction profiles in wide-gap Couette flows. Nevertheless, their closure presents a conceptual
problem: It ascribes the particle-presence stress to the solid phase.

As discussed in Sec. II, the particle-presence stress tensor [the sum of the terms in Eqs. (4) and
(5)] is part of the fluid effective stress tensor—this being a direct result of the averaging procedure
used to derive the multifluid equations of change (see, for instance, Refs. [14,28,34,45]). The
particle-presence stress tensor captures the contribution of the lubrication films between particle
pairs; this contribution, therefore, belongs to the fluid effective stress tensor, 〈S〉e (an aspect
discussed at length in Nott et al. [28] and Jamshidi et al. [14]). Hence, it seems Eq. (28) does
pose a problem. But the numerical results of Morris and Boulay agree with experimental data. How
can this be explained?

In their calculations, it appears that the authors did not use the correct expression for ηp. In
Eq. (28), instead of using ηp (the particle contribution to the mixture shear viscosity), they used the
mixture shear viscosity (equal to ηp plus the shear viscosity of the ambient fluid, μe). Hence, they
did not employ the closure they had proposed. Moreover, they solved the linear momentum balance
equation for the solid phase only, without considering the corresponding equation for the fluid phase.
For instance, consider the steady wide-gap Couette flow, studied in Sec. III B of Ref. [15]. Because
the flow is steady and laminar, and the particles are neutrally buoyant, the following dynamical
equations hold:

∂x · 〈S〉e = ρm g; (29a)

∂x · 〈S〉s = 0. (29b)
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The divergence of the solid effective stress tensor vanishes insofar as in Eq. (17) the slip velocity
(on the left) and the inertial and gravitational terms (on the right) are zero. In the “angular direction,”
Eq. (29a) yields:

(∂x · 〈S〉e)
θ
= (1/r2 )∂r (r2〈S〉

e,rθ
) + (1/r)∂θ 〈S〉

e,θθ
+ ∂z〈S〉

e,zθ
= 0. (30)

An identical relation holds for the effective stress tensor of the solid phase. Then, eliminating the
terms that vanish, we obtain:

d (r2〈S〉
e,rθ

)

dr
= 0; (31a)

d (r2〈S〉
s,rθ

)

dr
= 0. (31b)

Morris and Boulay solved only the equation for the solid (that is, the second equation above).
Here we shall consider also the equation for the fluid, since both equations must be satisfied. We
now use Eq. (28) to express the solid effective stress tensor (considering, as we should, the shear
viscosity owing to the particles presence only). With Morris and Boulay, we assume the effective
shear viscosity of the fluid coincides with the shear viscosity of the ambient fluid (an expression
which is at variance with the analyses of Jackson [34] and Zhang and Prosperetti [35], because in
these works the shear viscosity due to the particles presence contributes to the effective viscosity
of the fluid; this is again related to the particle-presence stress tensor and its being part of 〈S〉e).
Therefore, we write:

〈S〉
e,rθ

= −μe〈γ̇ 〉m; (32a)

〈S〉
s,rθ

= −ηp(εs)〈γ̇ 〉m, (32b)

where 〈γ̇ 〉m is the shear rate. Being μe a constant, Eq. (31a) yields d (r2〈γ̇ 〉m)/dr = 0. Equa-
tion (31b) consequently yields:

ηp(εs)
d (r2〈γ̇ 〉m)

dr
+ r2〈γ̇ 〉m

dηp(εs)

dr
= r2〈γ̇ 〉m

dηp(εs)

dr
= 0, (33)

whence:

ηp(εs) = const. (34)

This means that at steady-state the solid volume fraction is uniform, so that no migration has
occurred, a result that is incorrect.

Morris and Boulay [15] did find a good match between numerical results and experimental data,
but this is because in Eq. (32b) they inadvertently replaced ηp with ηs ≡ μe + ηp (in Ref. [15], see
the untagged equation after Eq. (28); notice that there ηs denotes the shear viscosity of the mixture)
and the only equation they solved is as follows:

∂x · [ηs(εs)〈γ̇〉m − ηn(εs)|〈γ̇〉m|Q] = 0. (35)

In the work of Morris and Boulay, the results of this equation matched well the experimental data. In
Sec. IV, we shall show why this equation is sound. More details about the above considerations are
given in Appendix C, where, to avoid any misunderstandings, we employed the notation of Morris
and Boulay [15].

C. Secondary flow effects

To conclude this analysis, we investigate the competition between the particle segregation
induced by shear-induced particle migration and the particle mixing induced by convection. We
focus on parallel-plate rheometers. In them, mixing is caused by the secondary flow due to inertia,
for the primary flow does not move particles radially via convection.
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In this type of rheometer, experiments reveal that either no migration [23,24] or outward
migration [7,25,26] occurs. To match the experimental data, Morris and Boulay [15] tuned the
fitting parameters in Eq. (28), neglecting the contribution of the secondary flow. Doing this is
impossible with the closure of Buyevich [3], for it always predicts inward particle migration.
Buyevich maintained that the wrong direction of the migration flux did not imply his closure
was incorrect. He argued that the secondary flow mixes the particles, counteracting the effect of
shear-induced particle migration. The net result is no particle migration. In other words, Buyevich
claimed that the convective mixing induced by the secondary flow erases the effect of shear-induced
particle migration keeping the solid concentration uniform.

To test Buyevich’s argument, we use scaling analysis, comparing the timescales of the two
processes. To estimate the timescale of shear-induced particle migration, we avoid Eq. (22), because,
with the original value of the coefficient C, it predicts the migration time incorrectly. Instead,
we employ the constitutive equation in Eq. (35). At leading order, the radial and axial velocity
components are zero and 〈u〉m,θ = 
rz/H , so that |〈γ̇m〉| = 
r/H . Then, from Eqs. (16) and (17),
the migration timescale results to be

τM ∼ R

ωe (〈u〉
s,r

− 〈u〉
e,r

)
∼

(
9μeεs

2a2ε4.65
e

)
HR

ηn

. (36)

To estimate the timescale of the mixing process caused by the secondary flow, we employ the
expression for the secondary-flow radial velocity derived by Savins and Metzner [46] (see also
Ref. [25]), which holds for parallel-plate rheometers with H/R ≪ 1. This yields:

τC ∼ R

〈u〉
m,r

∼ 100ηm

ρm(
H )2
. (37)

For a mixture of neutrally buoyant particles with a = 100 μm, ρm = 1000 kg/m3, μe = 1 Pa s,
εs = 0.40 and ε�

s = 0.65 in a rheometer with R = 1 cm and H = 1 mm, with a plate rotating at
the typical angular velocity 
 = 0.1 rad /s, if to obtain the normal shear viscosity and the mixture
shear viscosity we employ the expressions suggested by Morris and Boulay [15] (not shown for
brevity), we obtain τM ∼ 105 s and τC ∼ 108 s. Consequently, the mixing caused by the secondary
flow cannot counterbalance the segregation induced by shear-induced particle migration. Buyevich’s
argument seems not to stand.

D. Summary

We have investigated two well-known closures for the solid effective stress tensor. That of
Buyevich [3] is based on the assumption that the solid stress stems from the particle velocity
fluctuations generated by particle interactions occurring in shear flow when adjacent mixture layers
move past one another. The closure was derived heuristically, but on solid arguments, and predicted
well the fully developed solid volume fraction profile in a number of viscometric flows. But it
had not been used to predict the time evolution of solid volume fraction profiles. Our analysis
revealed two shortcomings of the Buyevich closure: It predicts the timescale of shear-induced
particle migration incorrectly, and in parallel-plate rheometers, it predicts the migration direction
incorrectly. The argument put forward by Buyevich to justify the second shortcoming, related
to secondary-flow convective mixing, seems inadequate. These findings, in our opinion, do not
mean that Buyevich’s closure is incorrect: They mean that kinetic stress is not the main driver of
shear-induced particle migration.

Morris and Boulay [15] agreed with this viewpoint. They believed the driver of the process was
the particle-presence stress—in particular the part stemming from the lubrication forces between
particle pairs (we are referring to systems where particle collisions, enduring particle contacts and
interparticle forces are absent or negligible). Accordingly, the driver has viscous nature. As pointed
out by Nott et al. [28] (and more recently in Ref. [14]), this closure presents a problem on theoretical
grounds, since the particle-presence stress contributes to the effective stress tensor of the fluid phase,
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while the shear-induced particle migration is related to the nonuniformity of the effective stress
tensor of the solid phase [see Eq. (17)]. Notwithstanding, in the form given in Eq. (35), the closure
does yield good results. This outcome has to be investigated further.

IV. THE ROLE OF THE FLUID-PARTICLE INTERACTION FORCE
IN SHEAR-INDUCED PARTICLE MIGRATION

As said before, our analysis is restricted to suspensions where the effect of direct particle contacts
is insignificant compared with that of fluid-mediated (via lubrication films) particle interactions. In
other words, the particle-contact stress (a contributor to the effective stress of the solid) is negligible.
In the discussion above, we concluded that the kinetic stress in the solid phase (the only other
contributor to the effective stress of the solid) is also negligible in promoting shear-induced particle
migration. So, in Eq. (17), the term related to 〈S〉s appears to be insignificant. But for suspensions
of neutrally buoyant particles this is the only term on the right-hand side of the equation that is
nonzero. If we neglect it, the migration velocity vanishes. It seems, therefore, that in Eq. (17) the
term representing the main driver of particle migration is missing. This is the conclusion reached by
Nott et al. [28], who after proposed a convincing solution to this hurdle. Their idea is that migration
is driven by the part of the fluid-particle interaction force arising from the lubrication films between
the particles (we refer to Ref. [28] for further details). Building on this notion, we now show that
this force is closely related to the particle-presence stress—the very term that Morris and Boulay
[15] had identified as the main driver of migration. In the end, our analysis will explain why Eq. (35)
did predict steady solid volume fraction profiles correctly.

The starting point in our analysis is the expression that volume averaging provides for the fluid-
particle interaction force [34]. This reads:

n(x, t )〈 f 〉p(x, t ) ≡ −
∑

r

[
ψ (|x − zr (t )|)

∫
∂�r

kr (z, t ) · σe(z, t )dsz

]
(38)

in which σe is the point stress tensor of the fluid, ψ is the weighting function employed in the
volume-averaging procedure, zr is the position of the center of the generic particle r, while kr is
the unit vector, pointing into the fluid, normal to the surface ∂�r bounding particle r. The surface
integral is calculated over the dummy variable z.

The force n〈 f 〉p arises from the gradients of the point velocity of the ambient fluid present over
the surface of the particles. Following Nott et al. [28], we divide this force into two parts: one related
to the distortion of the fluid streamlines caused by the particles and one related to the lubrication
films between particle pairs. Accordingly, we write:

n〈 f 〉p = n〈 f 〉�p + n〈 f 〉•p. (39)

The second term on the right is the contribution of the lubrication films, which vanishes in dilute
suspensions.

Now, in a dense suspension, let us consider particle r. We may assume this is located very close
to a number of other particles with which it forms lubrication films. Each film spans a tiny portion of
the particle surface, so for convenience we regard these portions as points. Since the fluid dynamic
force acting on these small regions is finite, we must assume that in these points the stress diverges.
In the rest of the particle surface, where lubrication films are absent, the stress is finite. But if
lubrication regions are points, then the rest of the particle surface coincides with the entire particle
surface (for a finite collection of points occupies no surface). Therefore, we can write:

n(x, t )〈 f 〉�p(x, t ) ≡ −
∑

r

[
ψ (|x − zr (t )|)

∫
∂�r

kr (z, t ) · σ�
e(z, t )dsz

]
, (40)

n(x, t )〈 f 〉•p(x, t ) ≡ −
∑

r

[
ψ (|x − zr (t )|)

∫
∂�r

kr (z, t ) · σ•
e (z, t )dsz

]
. (41)
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Over the particle surface, except for the points where lubrication films are located, σ�
e = σe; the

value of σ�
e in the points just mentioned is immaterial, since σ�

e is not a delta function. On the other
hand, over the particle surface σ•

e is nonzero solely where lubrication films are located (and, in these
point regions, it diverges).

Many constitutive equations are available for the part of n〈 f 〉p related to the distortion of the
streamlines. Here we report the equation below, accounting for the buoyancy, drag, lift, and virtual
mass forces:

n〈 f 〉�p = − εs∂x · 〈S〉e + β (〈u〉e − 〈u〉s ) + εsρeζ [(Dt 〈u〉e − Dt 〈u〉s ) − (∂x × 〈u〉e) × (〈u〉e − 〈u〉s )].

(42)

The drag coefficient β can be closed with Eq. (18), a relation suggested by Wen and Yu [43], but
many other options are available in the literature. ζ is the coefficient for the virtual mass and lift
forces, often assumed to be equal to 1/2.

Equation (41), which defines the part of the fluid-particle interaction force related to lubrication
films, can be written as:

n(x, t )〈 f 〉•p(x, t ) = −
∑

r

[
ψ (|x − zr (t )|)

∑
s �=r

f •
rs(t )

]
, (43)

where f •
rs is the force exerted by particle r on particle s through the lubrication film between them;

this force is equal and opposite to that exerted by particle s on particle r through the same lubrication
film. The second summation is over all the particles s with which particle r forms lubrication films.
Now, with 2zrs ≡ zs − zr , the following relation holds:

∑
r

[
ψ (|x − zrs(t )|)

∑
s �=r

f •
rs(t )

]
= 0. (44)

We now expand the weighting function in a Taylor series around the center zr of the generic particle
r. Since lubrication films are thin, zrs − zr ≈ akrs. Thus, it is:

ψ (|x − zrs(t )|) = ψ (|x − zr (t )|) − akrs(t ) · ∂xψ (|x − zr (t )|)
+ (1/2)a2krs(t )krs(t ) : ∂x∂xψ (|x − zr (t )|) − · · · . (45)

The particle radius a is far smaller than the radius of the weighting function (which in turn is far
smaller than the shortest significant macroscopic length scale L associated with the flow); so, with
small error, we can truncate the Taylor series at the second-order term. Then, if we introduce Eq. (45)
in Eq. (44) and use Eq. (43), we obtain:

n〈 f 〉•p = − ∂x · 〈M〉e (46)

with:

〈M〉e(x, t ) ≡ n(x, t )〈E〉p(x, t ) − (1/2)∂x · [n(x, t )〈F〉p(x, t )] (47)

and where:

n(x, t )〈E〉p(x, t ) ≡ a
∑

r

[
ψ (|x − zr (t )|)

∑
s �=r

krs(t ) f •
rs(t )

]
, (48)

n(x, t )〈F〉p(x, t ) ≡ a2
∑

r

[
ψ (|x − zr (t )|)

∑
s �=r

krs(t )krs(t ) f •
rs(t )

]
. (49)

Equation (39) thus becomes:

n〈 f 〉p = n〈 f 〉�p − ∂x · 〈M〉e. (50)
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The derivation of Eq. (17) neglects the second term on the right-hand side of Eq. (50). Details are
found in Jamshidi et al. [14]. If this term is included, then one obtains:

〈u〉s − 〈u〉e = − (1/β ){εe∂x · [〈S〉s + 〈M〉e] − εs (ρs − ρm)(g − Dt 〈u〉m)}. (51)

Based on what we discussed before, we see that in suspensions of neutrally buoyant particles
changes in space of the tensor 〈M〉e are the main cause for particle migration.

Following similar passages to those shown for the force n〈 f 〉p, we split the particle-presence
stress tensor in two parts, writing:

n(x, t )〈A〉p(x, t ) = n(x, t )〈A〉�p(x, t ) + n(x, t )〈A〉•p(x, t ), (52)

n(x, t )〈B〉p(x, t ) = n(x, t )〈B〉�p(x, t ) + n(x, t )〈B〉•p(x, t ). (53)

The two starred terms involve σ�
e and are related to the viscous dissipation generated by the distortion

of the fluid streamlines around the particles; these terms are always present, also in very dilute
suspensions, where they give the Einstein correction for the mixture viscosity [34]. The other two
terms account for the viscous dissipation associated with the lubrication films and are dominant in
dense suspensions. From Eqs. (4) and (5), it is:

n(x, t )〈A〉•p(x, t ) ≡ a
∑

r

[
ψ (|x − zr (t )|)

∫
∂�r

kr (z, t )kr (z, t ) · σ•
e (z, t )dsz

]
, (54)

n(x, t )〈B〉•p(x, t ) ≡ a2
∑

r

[
ψ (|x − zr (t )|)

∫
∂�r

kr (z, t )kr (z, t )kr (z, t ) · σ•
e (z, t )dsz

]
. (55)

But being σ•
e a delta function in a numerable set of points over the surfaces of the particles, these

expressions reduce to those in Eqs. (48) and (49). So, it is:

〈M〉e(x, t ) = n(x, t )〈A〉•p(x, t ) − (1/2)∂x · [n(x, t )〈B〉•p(x, t )], (56)

As anticipated, we see that 〈M〉e coincides with the part of the particle-presence stress tensor related
to the lubrication films. In suspensions of neutrally buoyant particles—in conditions where direct
particle contacts and interparticle forces are negligible—the divergence of 〈M〉e is the main driver
of migration.

A. More on the closure of Morris and Boulay

Morris and Boulay [15] suggested their closure for the effective stress tensor of the solid on
the assumptions that (a) shear-induced particle migration is caused by nonuniformity in this tensor
and (b) the dominant stresses in the solid phase originate from the lubrication forces between the
particles. Our analysis suggests that their constitutive equation should be used to close the tensor
〈M〉e, which is part of the fluid effective stress tensor 〈S〉e.

Let us consider again the steady wide-gap Couette flow. Equation (31) still holds. If for the solid
phase we neglect the kinetic stress induced by particle velocity fluctuations, the solid effective stress
tensor vanishes and Eq. (31b) is automatically satisfied. Thus, we need a closure only for 〈S〉e. This
tensor is defined by Eq. (3), shown here for convenience:

〈S〉e ≡ εe〈σ〉e + εeρe〈ûû〉e + n〈A〉p − (1/2)∂x · (n〈B〉p).

For the flow investigated, the Reynolds stress is negligible. Also, as discussed in Jackson [34], the
first term on the right is closed and equal to:

εe〈σ〉e = εe〈 p〉eI − μe〈γ̇〉v, (57)

in which 〈 p〉e is the fluid mean pressure, I is the unit tensor, and 〈γ̇〉v is twice the deformation rate
tensor of the following velocity field:

〈u〉v ≡ εe〈u〉e + εs〈u〉s . (58)
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For mixtures of neutrally buoyant particles (where the velocity fields relax rapidly), the mean
velocities of the phases are equal at leading order in the Stokes number and so 〈u〉v and 〈u〉m
coincide. The last two terms on the right-hand side of Eq. (3) embody the particle-presence stress
tensor. If we neglect the viscous part related to the distortion of the fluid streamlines, an assumption
that can be accepted in dense mixtures, then we obtain:

n〈A〉p − (1/2)∂x · (n〈B〉p) ≈ εs〈 p〉eI + 〈M〉e. (59)

Employing the constitutive equation of Morris and Boulay [15] to express the tensor 〈M〉e, we then
obtain:

〈S〉e = 〈 p〉eI − ηs(εs)〈γ̇〉m + ηn(εs)|〈γ̇〉m|Q, (60)

where, as mentioned before, ηs(εs) ≡ μe + ηp(εs) denotes the shear viscosity of the mixture.
Reminding that the dynamical equation for the solid phase is automatically satisfied, the only
equation which has to be solved to determine the steady-state solid volume fraction profile in the
wide-gap Couette flow is:

∂x · [ηs(εs)〈γ̇〉m − ηn(εs)|〈γ̇〉m|Q] = ∂x〈 p〉e − ρm g. (61)

This equation differs from Eq. (35), but only because of the gravitational and pressure terms on the
right-hand side of the equation above. These affect the vertical pressure distribution, but vanish in
the θ direction. Hence, they do not alter the solid volume fraction profile, given by Eq. (31a). We
thus recover the results obtained by Morris and Boulay [15].

B. The closure of Gillissen and Wilson

Another constitutive equation that can be employed for the tensor 〈M〉e has been recently derived
by Gillissen and Wilson [47], who developed a model for the microstructure and stress in dense
suspensions of non-Brownian, smooth spheres at vanishing small particle Reynolds number. Their
closure reads:

〈M〉e = − α(εs)μe〈γ̇〉m : 〈pppp〉, (62)

where α(εs), referred to as stress magnitude, is a function that diverges as the mixture nears maxi-
mum packing, p is the orientation unit vector, which joins the centers of particle pairs separated by
lubrication films, while 〈· · ·〉 is the average operator involving the probability density function of the
vector p between interacting particles. To calculate the fourth-order moment 〈pppp〉, one must first
evaluate the second-order moment 〈pp〉, which is referred to as microstructure tensor. An evolution
equation for the latter is reported in Ref. [47], to which we refer for further details. Equation (62)
successfully captures the typical non-Newtonian behavior of dense mixtures, including normal
stress differences in steady shear flows and time-dependent stress in abruptly reversed shear flows
and oscillating shear flows.

V. CONCLUSIONS

In its original form, the mixture model suggests that shear-induced migration of neutrally buoyant
particles is induced solely by gradients in the solid effective stress tensor. In dense mixtures where
direct particle contacts and interparticle forces are negligible, the solid stress arises from the particle
velocity fluctuations generated when adjacent suspension layers move past one another, and thus
coincides with the solid kinetic stress. Using Buyevich’s [3] closure for the solid kinetic stress
tensor, we found that the time needed by the kinetic stress to cause appreciable particle migration
exceeds significantly the timescale of the migration process, a result showing that, if direct particle
contacts and interparticle forces are negligible, particle migration must have another driver. Many
believe that this is the lubrication forces between the particles. On this assumption, Morris and
Boulay [15] proposed a constitutive equation for the solid effective stress tensor, a closure that
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seems to predict well the migration process. However, their equation poses a conceptual problem,
because the effect of lubrication forces is captured by the effective stress tensor of the fluid, not of
the solid, a matter thoroughly discussed by Nott et al. [28]. Building on their ideas, we investigated
this aspect further, showing that lubrication forces may induce particle migration, and the tensor
quantifying their effect (the part of the particle-presence stress tensor related to lubrication films)
can be closed by Morris and Boulay’s constitutive equation.
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APPENDIX A: DERIVATION OF THE TWO-FLUID EQUATIONS OF MOTION

In this Appendix, we derive the two-fluid equations of motion using volume averages; the
treatment is similar to that of Jackson [34], but for the solid phase, instead of using particle-phase
averages, we adopt solid-phase averages, so that the fluid and solid phases are treated equally.
This choice allows connecting the results of this analysis to those of Batchelor [36] for particle
suspensions. The results are equivalent to those derived by Zhang and Prosperetti [35] via ensemble
averaging.

1. Fluid phase

The fluid volume fraction and the fluid-phase volume average of a generic point variable ζ (x, t )
are defined as follows:

εe(x, t ) ≡
∫

�e

ψ (|x − z|)dz; 〈ζ 〉e(x, t ) ≡ 1

εe(x, t )

∫
�e

ζ (z, t )ψ (|x − z|)dz, (A1)

where �e is the domain occupied by the fluid phase at time t and ψ (|x − z|) is the weighting
function. Now, consider the equation of motion for the fluid:

ρe∂t ue = − ρe∂x · (ueue) − ∂x · σe + ρe g, (A2)

where we have assumed the fluid is incompressible. Here ue and σe are the point (that is, nonaver-
aged) velocity and stress tensor of the fluid. Let us multiply both sides by ψ (|x − z|) and integrate
over �e with respect to z; this gives:

εeρe〈∂t u〉e = − εeρe〈∂x · (uu)〉e − εe〈∂x · σ〉e + εeρe g. (A3)

To manipulate it, we use the following transport theorems, whose proofs are in the literature (for
instance, see Ref. [48] or Ref. [49]):

εe〈∂t u〉e + εe〈∂x · (uu)〉e = ∂t (εe〈u〉e) + ∂x · (εe〈uu〉e), (A4)

εe〈∂x · σ〉e = ∂x · (εe〈σ〉e) −
∑

r

∫
∂�r

kr (z, t ) · σe(z, t )ψ (|x − z|)dsz. (A5)

With these results, we can write Eq. (A3) as follows:

ρe∂t (εe〈u〉e) = − ρe∂x · (εe〈uu〉e) − ∂x · (εe〈σ〉e) +
∑

r

∫
∂�r

kr · σeψ (|x − z|)dsz + εeρe g. (A6)

We now arrive at a key point of the analysis: The third term on the right-hand side does not represent
the mean fluid-particle interaction force. The definition that reflects the physical meaning we ascribe
to the mean force exerted by the fluid on the particles and that is used in numerical simulations to
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calculate this force (for instance, see Ref. [50] and Ref. [51]) is as follows:

n(x, t )〈 f 〉p(x, t ) ≡ −
∑

r

[∫
∂�r

kr (z, t ) · σe(z, t )dsz

]
ψ (|x − zr (t )|), (A7)

where zr is the location of the center of particle r at time t . In Eq. (A7), one first calculates the force
exerted by the fluid on particle r, after weights it using the value of the weighting function in zr ,
and finally sums over all the particles in the suspension. By contrast, in the corresponding term in
Eq. (A6), the fluid-particle interaction force on each differential surface element of each particle is
weighted using the value of the weighting function at the location where the infinitesimal force acts.
To make n〈 f 〉p appear in Eq. (A6), we expand ψ in a Taylor series about zr , obtaining:

∑
r

∫
∂�r

kr · σeψ (|x − z|)dsz = − n〈 f 〉p − ∂x · [n〈A〉p − (1/2)∂x · (n〈B〉p)] , (A8)

where n〈A〉p and n〈B〉p are defined by Eqs. (4) and (5). The tensor appearing in square brackets in
Eq. (A8) is referred to as particle-presence stress and is related to the direct fluid-particle interaction
occurring on the surfaces of the particles. Using Eq. (A8), we obtain:

ρe∂t (εe〈u〉e) = −ρe∂x · (εe〈u〉e〈u〉e) − ∂x · [εe〈σ〉e + εeρe〈ûû〉e + n〈A〉p

− (1/2)∂x · (n〈B〉p)] − n〈 f 〉p + εeρe g, (A9)

where we have decomposed the convective term into the sum of two terms involving the dyad of
the average velocities and the average of the velocity fluctuations dyad. In this form, the equation
reveals that the expression of the fluid effective stress tensor is given by Eq. (3). For liquid-particle
suspensions, usually the dominant term is n〈A〉p, the leading part of the particle-presence stress
tensor.

2. Solid phase

For the dispersed phase, one can adopt two types of averages. The solid volume fraction and the
solid-phase volume average of a generic point variable ζ (x, t ) are defined as follows:

εs(x, t ) ≡
∑

r

∫
�r

ψ (|x − z|)dz; 〈ζ 〉s (x, t ) ≡ 1

εs(x, t )

∑
r

∫
�r

ζ (z, t )ψ (|x − z|)dz. (A10)

The particle number density and the particle-phase volume average of a generic property ζr (t ) of
(the entire) particle r are defined as follows:

n(x, t ) ≡
∑

r

ψ (|x − zr (t )|); 〈ζ 〉p(x, t ) ≡ 1

n(x, t )

∑
r

ζr (t )ψ (|x − zr (t )|). (A11)

These averages are discussed in detail in the literature [35]. Here, we use solid-phase averages, so
that the fluid and solid phases are treated equally. Consider the equation of motion for the solid
phase, which holds in every point occupied by the solid material:

ρs∂t us = − ρs∂x · (usus) − ∂x · σs + ρs g. (A12)

Here us and σs denote the point velocity and stress tensor of the solid. Multiply both sides by
ψ (|x − z|) and integrate with respect to z over the region of space occupied by the particles; this
gives:

ρsεs〈∂t u〉s = − ρsεs〈∂x · (uu)〉s − εs〈∂x · σ〉s + εsρs g. (A13)
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An analogous version of Eq. (A4) holds; this allows us to manipulate the accumulation and
convective terms. Also, using Eq. (A10), we can write:

εs〈∂x · σ〉s ≡
∑

r

∫
�r

∂z · σs(z, t )ψ (|x − z|)dz. (A14)

Now we expand the weighting function in a Taylor series about the center zr of the generic particle
r. Doing so yields the following series, of which we retain the first two terms:

εs〈∂x · σ〉s =
∑

r

[∫
�r

∂z · σsdz
]
ψ (|x − zr |) − ∂x ·

∑
r

[∫
�r

(z − zr )∂z · σsdz
]
ψ (|x − zr |)

+ (1/2)∂x∂x :
∑

r

[∫
�r

(z − zr )(z − zr )∂z · σsdz
]
ψ (|x − zr |) − · · · . (A15)

In the first term on the right-hand side, we may manipulate the volume integral using the divergence
theorem. Doing so yields: ∫

�r

∂z · σsdz =
∫

∂�r

kr · σsdsz. (A16)

Notice that the surface integral on the right-hand side of this equation is not equal to the force that
the particle exerts on the surrounding fluid, insofar as the stress tensor featuring in the integrand
is that pertaining to the solid material. Because the particle exerts a force also on the particles
with which it is in direct contact at any given time, the surface integral above differs from the
fluid-particle interaction force. To eliminate the stress tensor of the solid material, and make
the fluid-particle interaction force appear, we use the linear momentum jump condition holding
at the particle surface:

kr · σs = kr · σe + cr . (A17)

Here cr denotes the surface density of the contact force that particle r exerts on the particles that are
in direct contact with it. Then, we obtain:∑

r

[∫
�r

∂z · σsdz
]
ψ (|x − zr |) =

∑
r

[∫
∂�r

kr · σedsz +
∫

∂�r

cr dsz

]
ψ (|x − zr |). (A18)

The term associated with the first integral on the right-hand side is the average force that the particles
exert on the fluid. For the other term, it is:∑

r

[∫
∂�r

cr dsz

]
ψ (|x − zr |) =

∑
r

[ ∑
s �=r

f rs

]
ψ (|x − zr |) = ∂x · [n〈C〉p − (1/2)∂x · (n〈D〉p)].

(A19)

The last passage is proved in Mazzei [52]. Here f rs is the direct contact force that particle r exerts
on particle s. Furthermore, the tensors n〈C〉p and n〈D〉p are defined by Eqs. (9) and (10). With these
results, we finally obtain:∑

r

[∫
�r

∂z · σsdz
]
ψ (|x − zr |) = − n〈 f 〉p + ∂x · [n〈C〉p − (1/2)∂x · (n〈D〉p)]. (A20)

To eliminate the stress tensor of the solid material from the second term featuring on the right-hand
side of Eq. (A15), we use Eq. (A12), writing:∑

r

[∫
�r

(z − zr )∂z · σsdz
]
ψ (|x − zr |) =

∑
r

[∫
�r

(z − zr )(ρs g − ρsu̇s)dz
]
ψ (|x − zr |)

= −
∑

r

[∫
�r

(z − zr )(ρsu̇s)dz
]
ψ (|x − zr |), (A21)
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in which u̇s denotes the substantial derivative of the local velocity of the particle material. The
gravitational field gives no contribution because it is constant (and the particle is spherical). Since
the particle is assumed to be rigid, the following kinematic equation holds:

u̇s = u̇r − (z − zr ) × ω̇r − (z − zr )(ωr · ωr ) + (z − zr ) · ωr ωr, (A22)

where ur is the velocity of the center of particle r and ωr is the angular velocity of particle r (both
functions only of t , differently from us, which depends also on the space coordinates), while u̇r and
ω̇r are their time derivatives. Replacing this in Eq. (A21) gives:

∑
r

[∫
�r

(z − zr )∂z · σsdz
]
ψ (|x − zr |)

= (1/2)
∑

r

I × Is ω̇r ψ (|x − zr |) + (Is/2)(n〈ω · ω〉pI − n〈ωω〉p), (A23)

where I is the unit tensor and Is is the moment of inertia of the particle. To manipulate the term
involving the angular acceleration of the particle, we employ the angular momentum balance
equation for the particle. Hence, we write:

∑
r

I × Is ω̇r ψ (|x − zr |) = −
∑

r

[∫
∂�r

aI × kr × (kr · σe)dsz

]
ψ (|x − zr |)

−
∑

r

[ ∑
s �=r

aI × krs × f rs

]
ψ (|x − zr |). (A24)

Since it is:

I × a × b = ba − ab (A25)

for any vectors a and b, if we use this tensorial relation and the definitions given in Eqs. (4) and (9),
we reach the following result:∑

r

I × Is ω̇r ψ (|x − zr |) = (
n〈A〉p − n〈A〉T

p

) + (
n〈C〉p − n〈C〉T

p

)
, (A26)

whence:∑
r

[∫
�r

(z − zr )∂z · σsdz
]
ψ (|x − zr |)

= (1/2)
[(

n〈A〉p − n〈A〉T
p

) + (
n〈C〉p − n〈C〉T

p

) + Is(n〈ω · ω〉pI − n〈ωω〉p)
]
. (A27)

For convenience, we denote this tensor as n〈�〉p. We neglect the third term in Eq. (A15), since
following Jackson [34], we omit terms that are small of O(a2/L2 ) relative to those retained (where
L is the shortest significant macroscopic length scale associated with the flow). Thus, Eq. (A15)
reduces to:

εs〈∂x · σ〉s = − n〈 f 〉p + ∂x · [n〈C〉p − (1/2)∂x · (n〈D〉p) − n〈�〉p] . (A28)

Introducing all these results in Eq. (A13), and decomposing the convective term as we did for the
fluid phase, leads to the following equation:

ρs∂t (εs〈u〉s ) = −ρs∂x · (εs〈u〉s〈u〉s ) − ∂x · [εsρs〈ûû〉s + n〈C〉p − (1/2)∂x · (n〈D〉p)

− n〈�〉p] + n〈 f 〉p + εsρs g. (A29)
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The order of magnitude of n〈�〉p depends on that of the particle mean angular velocity, 〈ω〉p. If
this and ∂x × 〈u〉e have equal order of magnitude, a common situation for liquid-particle mixtures,
|〈ω〉p|/|〈u〉e| is O(1/L) and n〈�〉p is O(a2/L2 ). So, this tensor can be neglected. Then, from
Eq. (A29), we arrive at the definition of solid effective stress tensor given in Eq. (8).

Note that if to derive the equation of motion for the solid phase one uses particle-phase averages
(for this, see Ref. [34]), the resulting expression for the solid effective stress tensor is as follows:

〈S〉p(x, t ) ≡ εs(x, t )ρs〈ûû〉p(x, t ) + n(x, t )〈C〉p(x, t ) − (1/2)∂x · [n(x, t )〈D〉p(x, t )]. (A30)

So, when |〈ω〉p|/|〈u〉e| is O(1/L), we see that 〈S〉s = 〈S〉p + O(a2/L2 ); thus, at the level of approx-
imation adopted, the two tensors are equal.

APPENDIX B: CONNECTION WITH THE WORK OF BATCHELOR

In Batchelor [36], the goal is deriving an expression for the stress tensor of a fluid-particle
suspension. The result [Eq. (4.5)] can be written as follows:

� = εe〈 p〉eI − μe〈γ̇〉v + �( p) = εe〈σ〉e + �( p). (B1)

As we can see, �( p) groups together all the contributions to the effective stress tensor of the
suspension related to the particles (plus the fluid-phase kinetic stress). �( p) is referred to as particle
stress tensor and comprises four terms:

�( p) = �( p)
1 + �( p)

2 + �( p)
3 + �( p)

4 , (B2)

where:

�( p)
1 (x, t ) ≡ (1/V )a

∑
r

∫
∂�r

kr (z, t )kr (z, t ) · σe(z, t )dsz, (B3)

�( p)
2 (x, t ) ≡ (1/V )

∑
r

∫
∂�r

μe [ue(z, t )kr (z, t ) + kr (z, t )ue(z, t )]dsz, (B4)

�( p)
3 (x, t ) ≡ (1/V )

∑
r

∫
�r

(z − zr )ρsas(z, t )dz, (B5)

�( p)
4 (x, t ) ≡ (1/V )

∫
�e

ρeue(z, t )ue(z, t )dz + (1/V )
∑

r

∫
�r

ρsus(z, t )us(z, t )dz. (B6)

Here V denotes the volume of the region over which the average is performed (in Batchelor’s
analysis, this is the entire region occupied by the suspension, since the suspension is assumed to
be statistically uniform) and as is the solid point acceleration relative to the mean value of the
acceleration in V (in the case studied, this value is uniform). The summations are over all the
particles in the suspension.

As Batchelor states, for rigid particles �( p)
2 is zero; hence, since we are interested in rigid

particles, we disregard this term. Also, he employs the weighting function ψ (|x − z|) = 1/V .
Therefore, we can write:

�( p)
1 (x, t ) = a

∑
r

[∫
∂�r

kr (z, t )kr (z, t ) · σe(z, t )dsz

]
ψ (|x − zr |), (B7)

�( p)
3 (x, t ) =

∑
r

[∫
�r

(z − zr )ρsu̇sdz
]
ψ (|x − zr |). (B8)

�( p)
4 (x, t ) =

∫
�e

ρeu(z, t )u(z, t )ψ (|x − z|)dz +
∑

r

∫
�r

ρsu(z, t )u(z, t )ψ (|x − z|)dz. (B9)

In Eq. (B8), we have replaced as with the solid point acceleration u̇s, since the two differ by a
constant vector that contributes nothing to the integral in Eq. (B8).
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�( p)
1 = n〈A〉p, the leading part of the particle-presence stress tensor; the part ∂x · (n〈B〉p) is not

recovered because is zero for statistically uniform suspensions. Moreover, as shown in Appendix A
[see Eqs. (A21) and (A27)], �( p)

3 = − n〈�〉p, a term that (as discussed) often can be neglected.
Finally, it is as follows:

�( p)
4 = εeρe〈ûû〉e + εsρs〈ûû〉s. (B10)

The collisional stress tensor does not appear in the particle stress tensor because Batchelor did not
account for particle collisions. With these results, we then obtain:

�( p) = n〈A〉p + εeρe〈ûû〉e + εsρs〈ûû〉s − n〈�〉p. (B11)

We conclude that if |〈ω〉p|/|〈u〉e| is O(1/L), so that n〈�〉p is O(a2/L2 ), and if we neglect the kinetic
stress terms, the particle stress tensor coincides with (the leading part of) the particle-presence stress
tensor. But in general these two tensors differ.

APPENDIX C: ON THE STEADY WIDE-GAP COUETTE FLOW SOLUTION
PRESENTED IN MORRIS AND BOULAY

In Sec. III B, to be consistent with the rest of our work, we have not used the notation adopted
by Morris and Boulay [15]. We briefly repeat the analysis of the steady wide-gap Couette flow
solution employing the original notation and clarifying a few additional aspects. The starting point
is Eq. (31), which we now write as follows:

d (r2� f ,rθ )

dr
= 0; (C1a)

d (r2�p,rθ )

dr
= 0. (C1b)

Both equations must be satisfied, but Morris and Boulay consider only the second. This is reported
at page 1222, at the beginning of Section A, where the authors state “The steady or developed flow
which occurs after particle migration is complete satisfies ∇ · �p = 0. In Secs. III A–C, we shall
only need to consider the particle contributions to the stress and the subscript p will be dropped
from the particle stress.”

So, based on what the authors say, from page 1223 when they write ∇ · � = 0, they mean ∇ · �p =
0. Now their closures are:

� f = 2ηE; (C2a)

�p = 2ηηp(φ)E − ηγ̇ Q(φ), (C2b)

where η is the fluid viscosity, a constant. As we said, Morris and Boulay did not consider Eq. (C1a),
but this equation must be satisfied. Using Eq. (C2a) in Eq. (C1a) yields d (r2 γ̇ )/dr = 0. Considering
this result, let us use Eq. (C1b). From it, we obtain:

2ηηp(φ)
d (r2 γ̇ )

dr
+ 2ηr2 γ̇

dηp(φ)

dr
= 0 ⇒ dηp(φ)

dr
= 0. (C3)

This means that ηp(φ) does not change with r, which in turn means that φ is uniform. That is, no
migration has taken place, a result that is incorrect. Note that this problem is related to the closure
of � f , in which the viscosity is a constant.

In Sec. III B, when modeling the steady wide-gap Couette flow, Morris and Boulay did find that
migration occurs and did obtain good results because (a) they did not solve Eqs. (C1a) and (b) in the
(un-tagged) equation below Eq. (28) of their article, they used ηs(φ) = 1 + ηp(φ) instead of ηp(φ).
Morris and Boulay solved only the following equation:

d

dr
[2ηηs(φ)r2 γ̇ ] = 0. (C4)
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This is the very equation one obtains when using the following closures, where �p is set to zero and
the particle-presence stress is ascribed to the fluid effective stress tensor:

� f = −〈 p〉eI + 2ηηs(φ)E − ηγ̇ Q(φ); (C5a)

�p = 0, (C5b)

where, in Eq. (C5a), we have accounted for the pressure term. So the equation that Morris and
Boulay solved is consistent with what we argue in our article.
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