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Abstract 
 
Anomia (word finding difficulties) is the hallmark of aphasia 
an acquired language disorder, most commonly caused by 
stroke. Assessment of speech performance using pijcture 
naming tasks is therefore a key method for identification of the 

disorder and monitoring patient’s response to treatment 
interventions. Currently, this assessment is conducted manually 
by speech and language therapists (SLT). Surprisingly, despite 
advancements in ASR and artificial intelligence with 
technologies like deep learning, research on developing 
automated systems for this task has been scarce. Here we 
present an utterance verification system incorporating a deep 
learning element that classifies ‘correct’/’incorrect’ naming 
attempts from aphasic stroke patients. When tested on 8 native 

British-English speaking aphasics the system’s performance 
accuracy ranged between 83.6% to 93.6%, with a 10 fold cross 
validation mean of 89.5%. This performance was not only 
significantly better than one of the leading commercially 
available ASRs (Google speech-to-text service) but also 
comparable in some instances with two independent SLT 
ratings for the same dataset. 
Index Terms: speech disorders, word naming, aphasia 

1. Introduction 

Word retrieval difficulties, or anomia, is the most pervasive 
symptom of post-stroke aphasia [1]. Recent data suggests there 
are around 350,000 people in the UK alone who have chronic 
aphasia post-stroke [2]. Despite the prevalence of aphasia, few 
patients receive a sufficient dose of speech and language 
therapy to recover maximally. For example, in the UK through 
the National Health Service patients receive on average 8-12 
hours when the recommended dose to see a significant change 

is in the order of 100 hours [3]. Assessment of patients’ spoken 
picture naming abilities and then practising repetitively over 
time a range of vocabulary using spoken picture naming tasks 
is an integral part of anomia treatment [4]. The intervention is 
primarily administered by a speech and language therapist 
(SLT), and the patient is confronted with a picture or drawing 
of an object to name. An Automated Speech Recognition 
system (ASR) that could reliably assess patient’s speech 

performance on these picture naming tests would not only offer 
increased consistency and sensitivity to changes in patient’s 
speech abilities but also enable patients to perform these tests 
independent of SLTs, potentially remotely away from the clinic 
in the comfort of their own home.  This would not only ‘free-
up’ clinicians to deliver more complex interventions in their 

‘face-to-face’ time but also support more patients who are 

unable to travel into the clinic, a need which has become more 
pressing in light of recent COVID-19 travel restrictions.  

1.1. ASR for aphasic’s single word naming performance 

Different to single and isolated spoken word recognition, 
assessing spoken picture naming performance has the 
advantage that the target word is known. Therefore, the 
challenge for ASR in this context is actually to verify that a 
particular target word is uttered in a given segment of speech 
[5]. Furthermore, an ASR-based system, or utterance verifier 
system, within a therapy app must immediately provide a binary 

response ‘correct’/’incorrect’ feedback to the patient for each 
spoken naming attempt, often 1000s of trials repeatedly over 
time. 

To the best of our knowledge, only two groups have used 
and assessed an ASR-based system of such type in aphasic’s 
single word picture naming performance. In the project Vithea 
[6], researchers developed an aphasia treatment app for 
Portuguese speakers. Their in-house ASR-engine called 

AUDIMUS [7] using a keyword spotting technique to score 
spoken naming attempts as ‘correct’/’incorrect’ reported an 
average accuracy of 82%, with ranges between 69% and 93% 
across patients [5]. The second group [8] evaluated a digitally 
delivered picture naming intervention in native Australian 
English speaking people with apraxia plus aphasia. They used 
the open-source ASR engine CMU PocketSphinx [9] to provide 
patients with ‘correct’/’incorrect’ feedback. For 124 words, 

which were phonetically different, they reported an overall 
ASR accuracy of 80% and a range of scores between 65.1% and 
82.8% across patients, depending on impairment severity. Both 
these systems provide useful ‘proof-of-concept’ data that ASR 
systems for anomia assessment are feasible. Still, the high error 
rate and variable performance across aphasic patients meant its 
clinical utility remained low.  

This project aims to present and assess the feasibility of a 
tailor-made system incorporating a deep learning element to 

assess word naming attempts in people with aphasia. We will 
provide an open-access implementation of our system and 
trained models online for researchers, therapists and clinicians 
interested in adopting this approach.  

2.  An utterance verifier for word naming 

Given the scarcity of speech corpora in aphasia, we used a 
template-based system for picture naming verification.  We 
built on the framework developed by Ann Lee and James Glass 
in “A comparison-based approach to mispronunciation 

detection” [10]. Their ASR system was developed to detect 

3Technical Consultant at SoftV, U.K. 

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-2265706



 

word-level mispronunciations in non-native speech. It was 

initially designed to be language agnostic. It works by 
comparing a word uttered by a native speaker, or teacher, with 
the same word uttered by a non-native speaker or student. It 
relies on posteriorgram based pattern matching via a dynamic 
time warping (DTW) algorithm to compare the utterances. Our 
system replaced their Gaussian Mixture Model trained on 
unlabeled corpora with an acoustic model based on a deep 
neural architecture trained on English corpora from healthy 

speakers to generate phone-based posteriors.  Then, similar to 
Lee’s teacher-versus-student framework, we compare healthy-
versus-aphasic utterances. We defined a posteriorgram as a 
vector of posterior probabilities over phoneme classes in the 
English language for which we employed the ARPAbet system 
as used in the BEEP dictionary [11] consisting of 45 symbols: 
44 ARPAbet symbols plus silence. To enable future clinical 
utility of our system, we developed it to run embedded on 
mobile devices without sophisticated model compression 

techniques. 

2.1. Signal pre-processing and acoustic modelling 

Speech recordings were pre-processed in overlapping frames of 
30 milliseconds every 10 milliseconds, and a fast Fourier 

transform size of 64 milliseconds after a pre-emphasis filter of 
0.95 to obtain a vector of 26 acoustic features per frame: 12 
Mel-frequency cepstral coefficients (with a final liftering step 
with a coefficient of 23 applied to them), energy and 13 deltas. 
See step 1 and 2 in Figure 1. 

To train our acoustic model, we used a corpus of healthy 
British speakers WSJCAM0 [12] to match the native spoken 
language of our patients. WSJCAM offers phone-level 

transcriptions using the ARPAbet phone set for British English. 
We then used Keras deep learning framework [13] with 
TensorFlow [14] as the back-end. All our models used batch 
normalisation, dropout rate of 0.5 and a categorical cross-
entropy over 45 classes as the loss function. Training lasted 
until there was no improvement in accuracy for 50 epochs. We 
explored several types and configurations of recurrent neural 
networks and choose our final model as the one with the lowest 

Phone Error Rate (PER) on the WSJCAM0 test set. Our 
winning model was a Bidirectional GRU [15] of 128 units and 
7 layers of depth trained with the Adam optimiser [15] resulting 
in around 2 million parameters and achieving a segment-based 
phone error rate (PER) of 15.85%. See step 3 in Figure 1. 

 

 

Figure 1. From signal to posterior probabilities. Left to right: 

speech signal is fragmented into frames every 10 milliseconds 

of a window size of 30 milliseconds (1), from each frame a 

vector of acoustic features is extracted (2) then each vector is 
fed to a Deep Neural Network (3) which outputs a vector of 
posterior probabilities or posteriorgram (4). 

2.2. Comparison of utterances 

Our system uses two recordings from native healthy speakers 
for each target word, which are transformed into posteriorgrams 
offline via our DNN, as shown in Figure 1 (steps 1-4). Each 
naming attempt by an aphasic speaker is transformed into 

posteriorgrams using our DNN and then compared to each of 
the posteriorgrams from the two healthy speakers via the DTW 
algorithm as in [10], see Figure 2. Adapting Lee’s notation, 
given a sequence of posteriorgrams for the healthy speaker  

𝐻 = (𝑝ℎ1,𝑝ℎ2,,… , 𝑝ℎ𝑛,)  and the aphasic speaker 𝐴 =

(𝑝𝑎1,𝑝𝑎2, ,… , 𝑝𝑎𝑚,) , a 𝑛 ×𝑚  distance matrix can be defined 

using the following inner product: 

𝜑ℎ𝑎(𝑖, 𝑗)= −log(𝑝ℎ𝑖 ∗ 𝑝𝑎𝑗)                               (1) 

 For such a distance matrix, DTW will search for the path from 
(1,1)  to (𝑛,𝑚)  that minimises the accumulated distance. 
Different from Lee’s work, we used the minimum of the DTW 

accumulated distances for all comparisons with the two healthy 
speakers to make a final decision. 
 

 

Figure 2. An utterance verification system for word naming. 
Given a naming attempt, e.g. target word tree, the voice of an 
aphasic patient is recorded and processed through our DNN to 
generate posteriorgrams (1). The system keeps posteriorgrams 
of previously recorded healthy speakers’ utterances for each 

target word, (2a and 2b). Posteriorgrams are compared using 
the DTW algorithm yielding a distance number between 0 and 
+∞ (3a and 3b). The minimum of both distances is selected (4) 

and compared to a set threshold (5) calibrated per speaker, in 
this example 0.675. If the distance is less than the threshold then 
the decision is that the aphasic speaker has uttered the target 
word correctly, otherwise it is classified as incorrect. 
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3. Experiment and data 

3.1.  Participants 

Eight native English speakers, 6 male, with chronic anomia post 
aphasic stroke were recruited. Demographics are shown in 
Table 1 below. Inclusion criteria were chronic aphasia in the 
absence of speech apraxia (severe motor speech impairment) as 
evidenced by: (i) impaired naming ability on the object naming 
subtest of the Comprehensive Aphasia Test [16]; scores below 
< 38 are classified as impaired ; (ii) good single word repetition 
from the same test; normative cut-off>12. All patients gave 

written consent, and data were processed in accordance with 
current GDPR guidelines. Ethical approval was granted 

by NRES Committee East of England– Cambridge, 18/EE/228.  

Table 1. Demographic and clinical data of the patients 

Patient 

ID 
Sex Age 

Months 

post-

stroke 

CAT 

Object 

naming 

CAT 

Repetition 

P1 M 65 108 32 19 

P2 M 58 90 19 22 

P3 M 70 91 10 28 

P4 F 62 21 28 24 

P5 M 64 14 6 25 

P6 M 59 98 30 31 

P7 M 57 109 27 24 

P8 F 82 38 29 23 

Mean 

(SD)   
65 
(8) 

71 
(40) 

23 
(10) 

25 
(4) 

3.2. Stimuli 

Picture naming stimuli consisted of 220 coloured drawings. 
They were selected from the top 2000 most frequent words 
using the Zipf index of the SUBTLEX-UK corpus [17] keeping 

the same distribution of parts of speech for nouns, verbs and 
adjectives. 

3.3. Dataset Collection 

We used a tailor-made gamified picture naming treatment app 

developed in Unity on an Android tablet Samsung SM-T820 to 
deliver the picture stimuli and record the patients’ speech 
responses. Patients wore a Sennheiser headset SC 665 USB to 
obtain the speech recordings at 16 kHz which were then stored 
in a compliant WAVE-formatted file using a 16 bit PCM 
encoding.  

Patients were instructed to name each item presented 
on screen as quickly and accurately as possible using a single 

word response.  They were given up to 6 seconds to complete 
each picture naming attempt. The item presentation order was 
randomised across patients. A SLT was present throughout the 
assessment and scored the naming responses online in a 
separate file without giving the patient any performance 
feedback.  A total of 1760 speech recordings (220 words x 8 
patients) were acquired. 

3.4. Procedure 

The SLT classified all naming attempts into one of the 
following categories: “Correct”, “No Response”, “Filler”, 
“Phonological Error”, “Circumlocution” and “Other”. When 
patients produced multiple speech responses, only the most 
representative response was selected. For example, when a 

patient response was scored as ‘Filler’, and the corresponding 

recording comprised of multiple ‘um’, ‘ah’, ‘eh’, only one of 
those attempts was selected to create a single-utterance naming 
attempt per item. These single-utterance recordings were the 
data used to evaluate our spoken word verification system and 
the baseline. Each naming attempt was then re-labelled as 
‘correct’ or ‘incorrect’, and this last classification was used as 
the ground truth to evaluate our system’s performance and 
baseline. Figure 3 describes the dataset and each of the patient’s 

naming performance.    

    

 

Figure 3. Each patient’s picture naming performance on the 
220 item test, as classified by a speech and language therapist 
(SLT). 

3.4.1. Inter-SLT-rater Agreement 

A second SLT independently rated all patients’ naming 
attempts to obtain a SLT ‘gold-standard’ performance metric.  
Inter-SLT-rater reliability was high overall, with an overall 
Cohen’s kappa of 0.92 ranging between 0.84 and 0.99 across 
patients. To compare our system to the gold-standard, the 
performance between SLT raters was calculated across all 
reported metrics (accuracy, F1-score, Pearson’s r).   

3.4.2. ASR Baseline 

We used to a commercially available ASR-engine, Google 
standard speech-to-text service configured with British English 
(date used: 24/3/20) to create a baseline with which to compare 
the performance of our utterance verification system. For each 

aphasic patient’s naming attempt, the same recording to test our 
system was send to Google’s server and a transcription 
obtained, if the target word was found in the transcript, then the 
attempt was classified as ‘correct’, otherwise ‘incorrect’.  

4. Results 

4.1. System Performance 

As indicated in section 2, our system utilised a set threshold to 
make a final decision on marking a patient’s naming attempt 
either ‘correct’ or ‘incorrect’. Two ways of calculating the best 
threshold were evaluated offline: one that was fixed after 
optimising it across all patients, and one that was adapted per 
patient after optimising for each patient separately. 
Performance results are shown in Table 2. Where significant a 

pairwise McNemar post-hoc test with Bonferroni correction 
was calculated. Fixed and adapted versions of our system were 
significantly better than the baseline with p<0.05 and p<0.005, 
respectively. 
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Table 2. Overall performance of our system (fixed and adapted 

versions) and the commercial baseline. A second SLT scoring 
(SLT2) is also shown.  

System Accuracy F1-Score Pearson’s r 

baseline 0.882 0.795 0.727 

fixed  0.905 0.855 0.784 

adapted  0.913 0.871 0.807 

SLT2 0.965 0.947 0.921 

 
Performance per patient is illustrated in Figure 4, and the 
significance of these results is shown in Table 3.  
 

 

Figure 4. Comparison of performance between (i) a commercial 
baseline,(ii) the ‘fixed’ version of our system, (iii) the ‘adapted’ 

version, and (iv) a second independent SLT. The higher the 
score, the better the performance. 

Table 3. Post hoc significance testing per patient; pairwise 
McNemar test with Bonferroni correction. *** p<0.0005,  
** p<0.005, * p<0.05 and NS, non-significant. 

Pair P1 P2 P3 P4 P5 P6 P7 P8 

fixed-

baseline 
NS NS NS NS NS ** * ** 

adapted-

baseline 
NS NS NS NS NS *** * *** 

fixed-

adapted 
NS NS NS NS NS NS NS NS 

baseline-

SLT2 
*** ** * NS NS *** *** *** 

fixed-

SLT2 
* ** ** * *** NS NS NS 

adapted-

SLT2 
* ** ** NS ** NS NS NS 

 

The fixed and adapted versions performed significantly better 
than the baseline and comparable to the second SLT rater for 
patients 6, 7 and 8. For the rest of the patients, there are no 
significant differences in performance. The fixed and adapted 
versions were not significantly different from each other.  

4.2. System Cross-validation 

Generalisation of the adapted version of our system to unseen 
data using offline data was assessed using cross-validation. The 
assumption, in this case, was that previously collected speech 
samples from patients could be used to optimise the system’s 
deciding threshold. For each patient, a 10-fold cross-validation 

                                                             

 
1 https://github.com/DavidBarbera/WNUVforPWA 

procedure was applied, and the average performance across 

folds is reported, see Table 4. Accuracies for all patients was 
high, above 84% with a range of 10% and a group average of 
89.5%  

Table 4. Results for a 10-fold cross-validation for each patient 
of the adapted system. For each patient the average across all 

folds is reported as Mean (±SD). 

Patient Accuracy F1-Score Pearson's r 

P1 0.93(±0.068) 0.89(±0.106) 0.85(±0.149) 

P2 0.84(±0.082) 0.78(±0.116) 0.67(±0.162) 

P3 0.88(±0.055) 0.51(±0.247) 0.46(±0.278) 

P4 0.94(±0.055) 0.89(±0.088) 0.85(±0.123) 

P5 0.87(±0.060) 0.61(±0.247) 0.56(±0.261) 

P6 0.93(±0.071) 0.91(±0.104) 0.85(±0.150) 

P7 0.87(±0.081) 0.90(±0.065) 0.72(±0.183) 

P8 0.90(±0.038) 0.85(±0.067) 0.79(±0.087) 

Mean(SD) 0.895(0.03) 0.790(0.14) 0.718(0.14) 

Min 0.836 0.506 0.462 

Max 0.936 0.905 0.852 

Range 0.1 0.399 0.389 

5. Conclusion 

We present here a tailor-made system based on a deep 
learning architecture to automatically assess word naming 
attempts for people with aphasia. In a sample of eight patients’ 

1760 naming attempts, our system performed significantly 
better than the commercial baseline (Google STT service) and, 
in some instances comparable to the gold-standard SLT scoring. 
Given the scarcity of aphasic speech corpora, this represents a 
significant step towards creating a reliable and automatic 
spoken word assessment system for aphasic speakers and offers 
clinical practice a deployable preliminary solution for further 
research and optimisation of similar systems.  

Future work will focus on analysing the effects of live 
feedback on digitally delivered naming interventions. We will 
adapt our current system to parse large volumes of aphasic 
speech recordings of word naming attempts offline. Also, given 
the language-agnostic framework our system is based upon, it 
will be interesting to see if our system can be used in other 
languages despite being initially trained in English. This would 
offer an invaluable tool for aphasic speakers of under-
researched languages.  

Our system is available open-source to encourage 
reproducibility and further development in this field; we 
welcome further insights and collaborations1. 
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