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INTRODUC TION

Since the initial discovery and description of senescent cells by 
Hayflick and Moorhead in 1961 [1], the field of senescence has 
evolved and expanded immensely. Hayflick originally observed that 

primary human fibroblast cell cultures had a finite proliferative ca-
pacity in vitro. This finite proliferative capacity is now termed rep-
licative senescence and is due to the gradual attrition of telomeres 
over serial passages [2]. It was initially proposed that replicative se-
nescence was the driver of organismal ageing due to the possible lack 
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Abstract
The study of cell senescence is a burgeoning field. Senescent cells can modify the cellular 
microenvironment through the secretion of a plethora of biologically active products re-
ferred to as the senescence-associated secretory phenotype (SASP). The consequences 
of these paracrine signals can be either beneficial for tissue homeostasis, if senescent 
cells are properly cleared and SASP activation is transient, or result in organ dysfunction, 
when senescent cells accumulate within the tissues and SASP activation is persistent. 
Several studies have provided evidence for the role of senescence and SASP in promot-
ing age-related diseases or driving organismal ageing. The hype about senescence has 
been further amplified by the fact that a group of drugs, named senolytics, have been 
used to successfully ameliorate the burden of age-related diseases and increase health 
and life span in mice. Ablation of senescent cells in the brain prevents disease progres-
sion and improves cognition in murine models of neurodegenerative conditions. The role 
of senescence in cancer has been more thoroughly investigated, and it is now accepted 
that senescence is a double-edged sword that can paradoxically prevent or promote tu-
mourigenesis in a context-dependent manner. In addition, senescence induction followed 
by senolytic treatment is starting to emerge as a novel therapeutic avenue that could 
improve current anti-cancer therapies and reduce tumour recurrence. In this review, we 
discuss recent findings supporting the role of cell senescence in the pathogenesis of neu-
rodegenerative diseases and in brain tumours. A better understanding of senescence is 
likely to result in the development of novel and efficacious anti-senescence therapies 
against these brain pathologies.
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of cell replacement and repair [3]. A few decades later, it is now clear 
that senescent cells are present in many living organisms, from mice 
to humans and their presence can either be beneficial or detrimental 
depending on the biological context [4–5] Figure 1.

Cellular senescence is a survival programme that can be induced 
by a range of damaging stress signals such as radiation, chemother-
apy, replicative stress and oncogenic signalling. Senescent cells are 
characterised by the stable and irreversible cell-cycle arrest whilst 
maintaining metabolic activity and viability [4, 6–8]. This is distinct 
from cellular quiescence, which is defined as a reversible prolifer-
ative arrest, such as adult stem cells, which can be stimulated to 
re-enter the cell-cycle by mitogenic signals [9]. In contrast, senes-
cent cells do not proliferate in respond to these signals. However, 
they can re-enter the cell cycle, mostly in the context of developing 
cancers, whereby accumulation of genetic or epigenetic alterations 
results in the disruption of the key molecular pathways maintaining 
cell-cycle arrest [10–13].

A hallmark of senescent cells is the activation of a senes-
cence-associated secretory phenotype (SASP), characterised by the 
synthesis and secretion of a plethora of biologically active molecules 
(e.g. inflammatory mediators, growth factors, extracellular matrix 
proteins) [14–16]. The SASP underpins the paracrine functions of 
senescent cells. Senescent cells are involved in essential physiologi-
cal processes such as embryonic development, immune modulation, 
tissue regeneration, cell plasticity and reprogramming [17–19]. In 
these contexts, senescent cells are present only transiently to be 
subsequently eliminated by the immune system [20–21]. In contrast, 
persistence of senescent cells within tissues results in the deteri-
oration of organ function, which can lead to disease. For instance, 
age-related conditions such as osteoarthritis, atherosclerosis, fibro-
sis of the lungs, kidney and heart, sarcopenia, glaucoma, cataracts 
and type 2 diabetes are all associated with increased numbers of 

senescent cells [22–24]. The repertoire of senescence-associated 
pathologies has recently been expanded to include neurodegenera-
tive diseases such as Alzheimer's, Parkinson's and multiple sclerosis 
[25–27]. Moreover, in addition to their role in age-related diseases, 
evidence is mounting that accumulation of senescent cells within tis-
sues may be driving organismal ageing itself [8, 28–35].

Senescence and SASP play a critical role in cancer [36–37]. An 
early landmark study revealed that the expression of oncogenic RAS, 
induces premature senescence in primary cell cultures, a process now 
known as oncogene-induced senescence (OIS) [38]. This has been 
further corroborated in different in vivo studies, where oncogenic 
mutations in different contexts lead to the accumulation of senes-
cent cells [36, 39–43]. Activation of a senescence phenotype con-
stitutes an excellent cell autonomous barrier against development of 
cancer, by preventing the proliferation of cells harbouring DNA mu-
tations Figure 2A. Cancer progression is understood to require the 
inactivation of cell-cycle inhibitors (e.g. p53 and p16INK4a) resulting 
in senescence escape, cell-cycle re-entry and tumour cell prolifer-
ation [13, 44] Figure 2B. However, this view has been challenged,it 
has been shown that loss of p53 may not be sufficient for senescence 
escape, but p53-defficient cells are able to bypass the establishment 
of a senescence programme when targeted to express oncogenic 
mutations [36, 45–46] Figure 2C. Beyond the cell autonomous role 
of senescence in cancer prevention and progression through senes-
cence escape or bypass, the paracrine activities of senescent cells 
can be pro-tumourigenic Figure 2D. Evidence from in vitro and in 
vivo studies has demonstrated a critical role of SASP in tumour ini-
tiation, progression to malignancy and metastasis [37, 47–50]. In 
addition to these cell autonomous and non-autonomous roles of se-
nescent cells in cancer pathogenesis, the senescence response is rel-
evant in the context of cancer therapy. Several standard anti-cancer 
treatments such as DNA-damaging chemotherapy, radiotherapy and 

F I G U R E  1  Timeline of research on senescence indicating the number of published papers and milestones  
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even specific targeted therapies against critical pathogenic cancer 
drivers can trigger therapy-induced senescence (TIS) in cancer cells 
or in the microenvironment [51–52] Figure 2E. New compounds ca-
pable of selectively killing senescent cells, termed senolytics, have 
been identified [5]. These chemical drugs inhibit pathways that 
are essential for survival of senescent cells but are dispensable in 
non-senescent cellular states. Exploiting these new vulnerabilities in 
cancer is a very exciting area of research, which is likely to lead to 
novel, efficacious anti-cancer therapies. Finally, senescent cells can 
remodel the tumour microenvironment through the SASP creating a 
permissive setting that allows tumours to progress Figure 2F [37, 53].

In this review we will discuss the role of senescent cells in brain 
pathologies, in particular age-associated neurodegenerative dis-
eases such as Alzheimer's disease, Parkinson's disease and multiple 
sclerosis, as well as brain tumours, specifically craniopharyngioma, 
low-grade glioma, glioblastoma multiforme, medulloblastoma and 
diffuse midline glioma. We will present evidence accumulated from 
in vitro and in vivo studies in both mice and humans. The translational 

implications of such studies will also be discussed. For further read-
ing, we recommend other reviews in the field [4–5, 37, 54–55].

CELLUL AR SENESCENCE AND SA SP

The permanent cell-cycle arrest of senescent cells is mediated prin-
cipally by the p16INK4a/Rb and p21Cip1/p53 pathways in response to 
stress stimuli [56–59]. Expression of p53 due to cellular stress signals 
activates a multitude of responses, including cell-cycle arrest, which 
is mediated by the p53 target p21Cip1. p16INK4a mediates cell-cycle 
arrest by inhibiting CDK4/6 leading to hypo-phosphorylation of RB 
and inhibition of cell-cycle progression into S phase. p16INK4 has been 
termed the master regulator of cell-cycle arrest in senescent cells 
[57–58]. Activation of the senescence programme leads to further 
molecular changes: (i) chromatin remodelling (e.g. presence of senes-
cence-associated chromatin foci), (ii) activation of a DNA damage re-
sponse (e.g. expression of γH2AX), (iii) enlargement of the lysosomal 

F I G U R E  2  Proposed roles of senescence and SASP in tumourigenesis. (A) Tumour suppressor mechanism. Oncogenic signalling leads to 
transient proliferation followed by senescence induction (oncogene-induced senescence). Senescent cells activate SASP and attract immune 
cells that clear them from the tissues, thus preventing subsequent tumour development. (B) Tumour progression by senescence escape or 
reversion. Following senescence induction, one cell accumulates further mutations (e.g. TP53, encoding p53, or CDKN2A, encoding p16INK4a) 
resulting in senescence escape, cell-cycle re-entry, proliferation and tumour formation. (C) Tumour progression by senescence bypass or 
evasion. Upon oncogenic signalling and initial proliferation burst, most of the cells become senescent but one cell continues proliferating due 
to pre-existing mutations in key senescence regulators (e.g. p53 or p16) that prevents the establishment of a senescence response. (D) SASP-
mediated tumour initiation. Senescent cells, through the SASP, create a pro-tumourigenic microenvironment that leads to cell transformation 
of a non-tumour cell and tumour formation. (E) Therapy-induced senescence. Following irradiation, chemotherapy and targeted therapy, 
most of the cells in the tumour bed are killed (e.g. by apoptosis) or induced into senescence with some cells being unaffected (green cell). 
Senescent cells will eventually contribute to tumour recurrence either in a paracrine manner through SASP-mediated tumour growth, or by 
senescence escape or bypass. (F) SASP-mediated tumour microenvironment alterations. Senescent cells, through the SASP, can remodel 
the tumour microenvironment. For instance, by (i) modulating the immune response to create immunosuppressive environment (e.g. M2 
macrophage polarisation, T-reg recruitment), (ii) driving extracellular matrix remodelling and tumour vascularisation and (iii) promoting the 
development of metastatic niches
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compartment (e.g. increased expression of GLB1 and lipofuscin ac-
cumulation); (iv) macromolecular damage (e.g. telomere attrition); (v) 
deregulated metabolism (e.g. a shift from oxidative phosphorylation 
to glycolysis); (vi) anti-apoptotic response (e.g. increased expression 
of BCL-2 family proteins and inhibition of caspase 3) [4, 6]. Resistance 
to apoptotic death is primarily mediated through the stress-induced 
p53 pathway, which upregulates the expression of anti-apoptotic 
BCL-2 proteins [60–61]. Additionally, the p53-transcriptional target 
p21Cip1 has been shown to be able to directly inhibit caspase 3, hence 
contributing to apoptotic resistance [62].

A main feature of senescent cells is the activation of the SASP 
[63–65]. SASP factors include cytokines and chemokines (e.g. IL1A, 
IL1B, IL6, L8, CCL2, CCL5, CCL20 TGFβ and TNFα), growth factors 
(e.g. EGF, bFGF, HGF, VEGF), proteases (e.g. MMP-1, −3, −10, −12, 
−13, −14), extra cellular matrix components (e.g. fibronectin, colla-
gens, laminin) and non-protein components such as lipids and prosta-
glandins [36, 63, 66–67]. The SASP is dependent on several signalling 
pathways such as NFκB, p38MAPK, mTOR, NOTCH, C/EBPβ and 
activation of the cGAS-STING pathway [68–74]. There is no unique 
SASP, on the contrary the composition and intensity of the SASP de-
pends on the cell type, the senescence-inducing stimulus and the tim-
ing after SASP activation [75]. SASP factors reinforce the senescent 
phenotype by autocrine or paracrine signalling, but can also affect the 
microenvironment via paracrine signalling [53, 64]. Senescent cells 
can also affect their neighbouring cells via juxtacrine NOTCH signal-
ling or by the transfer of cellular cargo by either cytoplasmic bridges 
or exosome production [14]. The consequences of SASP activation 
can be either beneficial or detrimental depending on the biological 
context. For example, senescent cells in skin secrete the SASP fac-
tor PDGF-AA upon wounding, which is important for optimal healing 
[76]. Furthermore, senescent cells and the expression of SASP can 
contribute to the dedifferentiation and reprogramming on non-senes-
cent adjacent cells [19]. Dysregulated and chronic SASP is detrimental 
and can cause age-related diseases, organismal ageing and cancer[37].

The identification of senescence in vivo is difficult, and no sin-
gle marker can unambiguously be used to define senescent cells. 
Initially the expression of β-D galactosidase and its detection in a 
colorimetric enzymatic assay at acidic pH (SA-β-Gal) was used to de-
fine senescent cells. However, this staining can be unreliable in vivo. 
Therefore, a consensus has been published, where a combination of 
markers is recommended to assess cellular senescence [5] Table 1.

ANTI-SENESCENCE AND ANTI-SA SP 
STR ATEGIES

After the discovery of the detrimental role that senescent cells play 
in ageing and in numerous pathologies, it soon became relevant to 
develop specific targeted strategies. The first proof-of-concept that 
the ablation of senescent cells was beneficial and reduced ageing-
associated disorders was published in 2011 [28, 77]. This was fol-
lowed by studies showing that the selective killing of senescent cells 
using chemical compounds improves organ function in ageing mice 

[33, 78–79]. A non-exhaustive list of current and promising strate-
gies is presented in Table 2. There are four main approaches of anti-
senescence and anti-SASP strategies currently being investigated.

Prevention of senescent cell accumulation

The chronic reduction of total calorie intake has been reported to 
counteract several age-associated alterations, through molecular 
and physiological effects, including prevention of senescent cells 
accumulation [80–82]. As a consequence, caloric restriction mimet-
ics are studied in the context of ageing, particularly among them the 
modulation of glucose metabolism by 2-deoxy-D-glucose, which has 
been shown to reduce degeneration of dopaminergic neurons in a 
Parkinson's disease mouse model [83]. Resveratrol and other polyphe-
nols are also able to suppress the formation of reactive oxygen species 
(ROS) and to limit cellular senescence in neurons [84–85]. Cells treated 
with caloric restriction mimetics express molecular pathways similar 
to cells affected by long-term calorie restriction or short-term fasting, 
including the autophagy pathway. The crosstalk between autophagy 
and SASP production is an important element to investigate to better 
understand the regulation of cell senescence by these drugs.

Ablation of senescent cells: senolytics

Among the senescence hallmarks, the anti-apoptotic programme is 
not only required for senescent cell survival, but also the easiest to 
target. Thus, the first senolytic drugs that have been reported are in-
hibitors of the anti-apoptotic B cell lymphoma 2 (BCL-2) protein fam-
ily [33, 78–79]. Two of these promising drugs, ABT-263 and ABT-737, 
have been shown to be capable of selective elimination of senescent 
cells and causing therapeutic benefits in several physiological and 
disease contexts (e.g. regeneration [86], cancer [87], type 1 diabetes 
[88], and atherosclerosis [89]. Other anti-apoptotic pathways have 
been investigated, in particular the inhibition of the MDM2/p53 in-
teraction (e.g. UBX0101 [90] and USP7 inhibitor [91]. In mouse mod-
els, UBX0101 is able to attenuate the development of osteoarthritis 
by selective clearance of senescent cells, however a phase II trial 
did not replicate these results (NCT04129944) [92]. Recently, high 
throughput drug screenings have uncovered the senolytic activity of 
cardiac glycosides, through a process mediated by induction of the 
pro-apoptotic BCL2-family protein NOXA [93–94]. Another class of 
senolytics take advantage of the high lysosomal β-galactosidase ac-
tivity of senescent cells to deliver more specifically cytotoxic drugs 
to senescent cells and reduce the toxic side effects [95–96].

Making senescent cells harmless: SASP-
modulating drugs

An additional approach to interfere with the detrimental effects of se-
nescent cells is the modulation of their secretome, either by disrupting 
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TA B L E  1  Detection of senescence: senescence hallmarks, markers, biological consequences and limitations

Senescence hallmarks Markers Limitations Biological consequences

Cell-cycle withdrawal Ki67 negativity, phopho-histone H3 negativity, EdU 
exclusion

Also in quiescence Irreversible cell-cycle 
arrest

p21Cip1 positivity, CDKN1A upregulation Also in quiescence CDK2 inhibitor p21Cip1 
accumulation

p16INK4a positivity, CDKN2A upregulation Express by non-senescent 
cells (macrophages), 
not express by all 
senescent cells

CDK4/6 inhibitor p16INK4A 
accumulation

p15INK4b positivity, CDK2B upregulation Other cyclin inhibitors 
accumulation

Cyclin-A2 (CCNA2) and Cyclin-E2 (CCNE2) 
downregulation

Decreased expression of 
cyclins

Persistent activation of RB family proteins (e.g 
phosphorylation of RB1, p107, p130)

Also in quiescence Stability of the senescent 
state

Heterochromatinization of E2F target genes

Macromolecular 
damage

Telomere shortening DNA Damage

Persistent nuclear DNA damage foci

Expression of γ-H2AX and PARP-1

Phosphorylation of DNA-PKcs and ATM

Ubiquitin proteasome system active Protein Damage

Autophagy

Fatty acids and free cholesterol increase/phospholipids 
and cholesteryl decrease

High variability of the 
senescence-associated 
lipid profile

Lipid Damage

Secretory phenotype 
(SASP)

NF-κB, C/EBPβ, GATA4, mTOR and p38MAPK signaling 
pathways (phosphorylation of IkBa, p38,…)

High Variability: duration, 
cell type, inducer 
stimuli, and cell-to-cell 
variability

Activation of transcription 
factors

IL6; IL7; IL1; IL1B; IL13; IL15 ; TGFβ; GM-CSE; G-CSE; 
IFN-γ; BLC; MIF

Pro-inflammatory 
cytokines release

IL8; GRO-a, -b, -g; MCP-2; MCP-4; MIP-1a; MIP-3a; HCC-
4; eotaxin; eotaxin-3; TECK; ENA-78; I-309; I-TAC

Chemokines production

Amphiregulin; epiregulin; heregulin; EGF; bFGF; HGF; 
KGF (FGF7); VEGF; angiogenin; SCF; CXCL12; PIGF; 
NGF; IGFBP2, IGFBP3, IGFBP4, IGFBP6, IGFBP7

Growth modulators, 
angiogenic factors

MMP-1, -3, -10, -12, -13, -14; TIMP-1; TIMP-2; PAI-1, -2; 
tPA; uPA; cathepsin B

Proteases, matrix 
metalloproteinases

ICAM-1, -3; OPG; sTNFRI; sTNFRII; TRAIL-R3; Fas; uPAR; 
SGP130; EGF-R ; Fibronectin; collagens; laminin

Secretion of other factors

Deregulated 
metabolism

Increase number, decreased membrane potential, 
increased proton leak

Less functional 
mitochondria

PML nuclear bodies (isoform IV) Also during apoptosis Reactive oxygen species 
(ROS) production

Senescence-associated beta-galactosidasde (SA-β-gal) 
activity

Not required for the 
senescent phenotype

Lysosomes increase in 
number and size

Galactosidase, beta 1 (GLB1) upregulation

LAMP1, LAMP2, Lysozime C upregulation

Senescence-associated 
epigenetic

H4K16ac, H3.3, H4K20me3 and H3K9me3 Global increase in 
chromatin accessibilitySenescence-associated heterochromatin foci (SAHFs)

Global loss of linker histone H1

Lamin B1 (LMNB1) loss and reduced nuclear integrity

Upregulation of specific miRNAs (e.g. miR-504, miR-605) Change in miRNAs 
expression

(Continues)
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the overall production, maturation or secretion of SASP factors, or 
by the selective blockade of specific components. The NF-κB inhibi-
tor Metformin, the mTOR inhibitor Rapamycin and the JAK/STAT in-
hibitor Ruxolitinib have been shown to suppress SASP activation by 
inhibition of critical pro-SASP cascade signalling [71, 97–98]. The 
blockade of specific SASP factors (e.g. IL1B and IL6) or their receptors 
has the potential to reduce off-target effects, and anti-inflammatory 
drugs inhibiting these factors have already been clinically approved 
(e.g. Tocilizumab against the IL6 receptor, Anakinra against IL1B). 
However, the redundancy and pleiotropic functions of SASP factors 
may make it difficult to target SASP therapeutically and no trials have 
yet been successfully conducted using this strategy.

Enhancing organismal anti-senescence systems: 
immune clearance

Senescence activates the innate and adaptive immune responses, 
which result in elimination of senescent cells in physiological con-
texts (i.e. immune clearance). However, decline of immune system 
surveillance associated with ageing or immunosuppressive microen-
vironments results in immune evasion of senescent cells leading to 
tissue accumulation and subsequent deterioration of organ function 
[20, 99–101]. Boosting immune surveillance through the use of bio-
therapeutics, such as engineered immune cells (e.g. chimeric antigen 
receptor T (CarT) cells or natural killer cells) has been successfully 
used for the treatment of human cancer [102]. Similar approaches 
could be effective against membrane-bound proteins that are pre-
sent in senescent cells (e.g. uPAR [103] and DPP4) [104], although 
toxicity may hamper the potential therapeutic use of this strategy.

More research is needed to identify safe and efficacious anti-se-
nescence therapies able to counteract the detrimental effects of age-
ing and cancer. As previously mentioned, senescent cells are highly 
heterogeneous and the activation of specific transcriptomic pro-
grammes is dependent on cell type, stress inducers and duration of 
senescent induction [75, 105]. Therefore, the identification of the best 
anti-senescence approach may need to be tailored to the specific cel-
lular context, whether ageing, specific degenerative disease or cancer.

SENESCENCE IN NEURODEGENER ATIVE 
DISE A SES

Age is the most common risk factor for neurodegenerative diseases 
[106]. The incidence of conditions such as Alzheimer's and Parkinson's 

disease, which are characterised by cognitive decline and loss of neu-
rons and synaptic connections, increases with age [107]. Age is also a 
risk factor for inflammatory diseases such as multiple sclerosis, which 
show loss of axons, dendrites, and neurons [108]. Senescent cells have 
been identified in different cell types of the nervous system, including 
neural stem cells, neurons, astrocytes, oligodendrocytes and microglia 
[109–115]. Although neurons are characterised by permanent exit of 
the cell cycle, they have been shown to accumulate DNA damage and 
acquire additional features that typify senescence, including SASP 
activation [113]. These senescent cell types have been implicated in 
the pathogenesis of Alzheimer's disease, Parkinson's disease, multiple 
sclerosis, frontotemporal dementia and ischaemia/stroke. Cellular se-
nescence may contribute to the initiation and/or progression of neu-
rodegenerative diseases by promoting chronic inflammation, causing 
loss of regenerative properties and enhancing age-related decline in 
the blood-brain barrier and micro-vasculature [116].

Alzheimer's disease

Alzheimer's disease (AD) is the most common neurogenerative dis-
ease with an incidence of 11.08 per 1000, doubling every 5 years 
after 65 years of age. AD affects more than 35 million people world-
wide. The main pathological features that define AD are an accu-
mulation of Aβ peptide amyloid plaques and neurofibrillary tangles 
(NFTs) of hyperphosphorylated tau proteins in the hippocampus and 
cerebral cortex [117]. Additional features include loss of neurons 
and synapses in the dentate gyrus of the hippocampus and cerebral 
cortex resulting in progressive cognitive decline and memory loss 
[118]. Senescent cells have been identified in both AD human sam-
ples and mouse models opening the possibility that these cells con-
tribute to the pathogenesis. Supporting this statement, expression 
of p16INK4a and p53 are elevated in post-mortem human AD samples 
compared with age-matched control brains [119–120].

Progressive loss of neurons and neural stem cells in the dentate 
gyrus of an ageing hippocampus may contribute to the aetiology of 
AD. Neural stem cell senescence could explain the loss of neural pro-
genitor proliferation that is observed in both, mouse models of AD 
and premature ageing, as well as in human brains from old individuals 
[121–124]. Recent experiments in vitro have demonstrated the pres-
ence of senescent neural stem cells in AD. The formation of Aβ oligo-
mers has been shown to induce senescence in hippocampal neural 
stem cells of the APP/PS1 AD mouse model [125]. In this study, Aβ 
fibrils can accelerate neural stem cell senescence via activation of 
the MAPK pathway, ultimately leading to loss of neurogenesis.

Senescence hallmarks Markers Limitations Biological consequences

Resistance to apoptosis Increased expression of BCL-2 family members Anti-apoptotic protein 
upregulation

TRAIL-Decoy Receptor DcR2 over expression Markers not present in 
mice

Hiding from Immune 
systemNKG2D ligands over expression

TABLE 1 (Continued)
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Higher levels of pro-inflammatory SASP factors has been reported 
in aged human and mouse brains compared with younger controls 
[126]. Inflammation is a key feature which contributes to the initiation, 
severity and progression of most neurodegenerative diseases includ-
ing AD [127]. Expression of SASP factors, e.g. IL6, IL1B, TGFβ, TNFα 
and MMP-1, −3 and −10 and activation of the p38MAPK pathway are 
upregulated in human AD samples and murine models [72, 128–132].

Microglia, the resident macrophages of the central nervous 
system (CNS) whose functions are tightly regulated by their mi-
croenvironment, can secrete SASP factors [133]. Ageing or neuro-
degenerative accumulation of misfolded protein induces microglia 
proliferation and promotes an activated state. This state is known as 
microglia priming and initiates the reactive defence program charac-
terised by phagocytosis and increased release of cytokines, tumour 
necrosis factor (TNF) and nitric oxide [134]. Primed microglia are 
also prone to be stimulated by secondary sources of inflammation, 
triggering an exaggerated and chronic inflammatory response in the 
CNS [135]. Both aged and AD brain samples show microglia priming 
and an increase of their pro-inflammatory response [134].

Ex vivo and in vitro studies have revealed that aged microglia se-
crete higher levels of SASP factors such as IL6 and TNFα compared 
with young microglia. Aged microglia lose their ability to phagocy-
tose Aβ fibrils and undergo replicative senescence due to telomere 
shortening [110, 136–137]. Evidence linking age-related senescence 
and AD pathogenesis has been provided by a study in which aged rat 
microglia were isolated and treated with Aβ oligomers in vitro. Upon 
treatment, these activated microglia become senescent, shown by 
SA-βgal staining and production of IL1B, TNFα and MMP2 [137]. 
This suggests that age-related senescence in AD microglia may play 
a role in disease progression.

Primed microglia and neuroinflammation are considered to play 
key roles in the initiation and progression of AD. An increase in num-
bers of primed microglia correlates with AD disease progression in 
humans [138], however, the mechanisms by which these cells could 
detrimentally affect AD pathogenesis are not yet fully elucidated. 
Primed microglia release IL1B and IL18 [139], and in a study on 
human AD, it has been shown that IL1B induces the secretion of 
TNFα, promoting the formation of amyloid plaques [140].

Another heterogenous cell population implicated in AD are as-
trocytes [141]. These cells have diverse homeostatic roles in the CNS 
including neurotransmitter uptake/recycling, synaptic activity, main-
tenance of the blood brain barrier and inflammation [142]. Single cell 
sequencing from wild type and AD mouse models has identified 
disease-specific astrocytes that are apparent before the onset of 
neurological phenotypes and are increased with disease progression 
[138]. These astrocytes express an inflammatory and neurotoxic 
gene profile that is analogous to that observed in aged wild-type as-
trocytes (i.e. upregulation of genes involved in development and dif-
ferentiation, metabolic pathways of lipid and cholesterol, response 
to toxic compounds and inflammatory signalling, including NfκB sig-
nalling and ROS). Furthermore, these upregulated genes have been 
identified in aged human brain samples from AD post-mortem sam-
ples, confirming previous studies in which overexpression of IL6 in 

murine astrocytes results in the appearance of AD-like neurological 
symptoms [143] and in the formation of amyloid plaques that are 
similar to those observed in human AD patients [144–145]. These 
studies provide evidence that neuroinflammation, caused by the se-
cretion of chemokines and cytokines commonly found in the SASP, 
contributes to the initiation and progression of AD.

Senolytic therapy in AD

A recent report has identified senescent oligodendrocyte precursors 
(OPCs) (a subset of glial cells in the brain) in human AD and in the 
APP/PS1 AD murine model [26]. These senescent cells are associ-
ated with Aβ plaques in both species and the study suggests that 
Aβ fibrils trigger OPC senescence. The senescent cells in vivo are 
positive for SA-β gal staining, co-express OPC markers together 
with p16INK4a and p21Cip1, and show increase levels of CDKN2A (en-
coding p16INK4a) mRNA. Acute oral administration of Dasatinib and 
Quercetin (a senolytic drug combination) selectively kills senescent 
OPCs in the Aβ plaques, consequently reducing IL6 levels. The se-
lective killing of these senescent cells not only reduces neuroinflam-
mation but decreases Aβ loads and ameliorates the AD cognitive 
defects [26]. A phase II clinical trial has been initiated in patients 
with AD using this senolytic combination [146].

In a study using micro-dissected post-mortem human AD, a se-
nescent transcriptomic profile has been identified in neurons con-
taining neurofibrillary tangles (NFTs) of aggregated tau protein [147]. 
NFT-accumulating neurons in different AD murine models display a 
senescent phenotype, evidenced by expression of CDKN2A mRNA. 
Treatment with Dasatinib and Quercetin can kill these senescent 
cells resulting in reduction of both NFT density and neuronal loss.

Collectively, these findings indicate a strong association be-
tween the presence of cellular senescence in the brain and neuro-
degeneration, which is supported by mechanistic studies in murine 
models. Potential therapeutic avenues that selectively kill senescent 
cells could revolutionise AD treatments.

Parkinson's disease

Parkinson's disease is the second most common neurodegenerative 
disease after AD, affecting about 7–10 million people worldwide over 
the age of 65. It is characterised by the progressive loss of dopaminer-
gic neurons in the substantia nigra pars compacta of the midbrain, lead-
ing to progressive motor degeneration. A key pathological feature is 
the presence of Lewy bodies, composed of aggregates of α-synuclein, 
a protein involved in DNA damage repair [148]. PD symptoms manifest 
once 80% of the dopaminergic neurons are lost [149]. Currently there 
are no chemical treatments that can prevent disease progression.

Evidence of senescence in PD has been shown in various studies. 
Higher expression levels of p16INK4a, p21Cip1 and inflammatory mark-
ers (such as IL6) have been identified in PD patients compared with 
healthy controls. Increased expression of these factors is associated 
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with faster cognitive decline in the patients [27]. A recent study has 
revealed that a DNA binding protein, STAB1, which is associated with 
PD, prevents cellular senescence in dopaminergic neurons in vivo 
[150]. Loss of STAB1 in human stem cell-derived dopaminergic neu-
rons causes activation of a senescence programme in vitro. Inhibition 
of STAB1 in human PD brain slice cultures or loss of STAB1 in mice 
also activates a senescence programme. STAB1 directly represses 
CDKN1A (encoding p21Cip1) in DA neurons and activates a senescence 
and SASP programme. Expression levels of p21Cip1 in DA neurons in 
the substantia nigra are elevated compared with age-matched controls. 
Increased p21Cip1 protein levels, potentially suggesting senescence, 
have also been observed in neural stem cells in the Parkin-deficient 
(Prkn−/−) PD mouse model. Parkin is an E3 ubiquitin ligase needed for 
targeted protein degradation, which is essential for neurogenesis. 
Protein ubiquitination plays a key role in neural stem cell renewal and 
differentiation and impaired neurogenesis is found in PD [151].

A common feature of PD is the presence of activated microglia 
and astrocytes, which could contribute to chronic neuroinflamma-
tion. Elevated levels of inflammatory factors have been detected 
in the cerebrospinal fluid (e.g. IL1B) [152] as well as in DA neurons 
(e.g. IL1B and IL6) [153] in PD patients. Post-mortem examination 
of PD samples has revealed the expression of senescence and SASP 
markers such as p16INK4a, IL6, IL1A, IL8 and MMP3. Dysfunctional 
lysosomes and increased SA-βgal staining has also been identified in 
human PD samples [154–155].

Senescent astrocytes have been observed in both human PD 
samples and a PD murine model [115]. Sporadic PD in humans has 
been associated with exposure to the herbicide paraquat (PQ), and 
PQ administration to mice is sufficient to induce PD-like phenotypes. 
Human astrocytes cultured in vitro with PQ show positive SA-βgal 
staining and reduced proliferation. Conditioned medium from these 
senescent astrocytes reduces human DA neurone viability and de-
creases neural stem cell proliferation [115]. The genetic ablation of 
p16INK4a-expressing senescent cells in the context of a PQ-induced 
PD mouse model is sufficient to abrogate PD-associated motor defi-
cits and neuropathology. Together, there is evidence supporting the 
presence of disease-relevant senescent cells with an activated SASP 
in human and murine PD, providing a rationale for the therapeutic 
targeting of these cells.

Multiple sclerosis

Multiple sclerosis (MS) is an autoimmune disease causing severe 
physical incapacitation and neurological damage, affecting around 
2.5 million people worldwide [156]. The debilitating causes of MS 
are due to CNS demyelination and neurodegeneration with limited 
remyelination. Infiltrating macrophages and lymphocytes cause 
multifocal inflammation and oligodendrocyte cell death, which lead 
to demyelination, neuronal and axonal loss, and generation of CNS 
plaques that contain inflammatory cells and demyelinated axons. 
The aetiology of MS remains unknown, but certain genetic and en-
vironmental factors might influence the likelihood of developing MS 

[108]. Several immunosuppressive and immunomodulatory treat-
ments are available,however, disease progression is still common.

The presence of senescent cells with activated SASP has been 
observed in mouse models and human MS samples. Using a glio-
toxin-induced demyelination MS murine model, it has been re-
ported that aged mice show slower rates of remyelination than 
younger mice, suggesting that age-related senescence could play 
a role in the onset and progression of this disease [157]. In another 
mouse model, in which demyelination is induced by feeding the 
mice cuprizone, increased numbers of SA-βgal-positive glial cells 
have been identified in demyelinating fibres of the corpus callosum 
[158]. In comparison with age-matched control tissue, demyelin-
ated human MS lesions show increased numbers of SOX2+ cells 
(a marker of neural progenitors) co-expressing p16INK4a, suggest-
ing the presence of senescent progenitor cells in progressive MS 
[159]. This finding has been corroborated in in vitro differentiation 
experiments of iPSC lines derived from either MS patients or age-
matched controls. For instance, expression of senescent markers 
(e.g. SA-βgal staining, p16INK4a and p53) is elevated in iPSC-de-
rived neuronal progenitor cells (NPCs) from MS patients relative to 
healthy controls. Interestingly, the inhibition of the mTOR pathway 
with rapamycin reverses the senescent phenotype and results in 
reduced SA-βgal staining and p16INK4a expression levels in iPSC-de-
rived NPC from MS patients. Further evidence that SASP activities 
may be involved in MS comes from in vitro studies assessing the 
capacity of senescent NPCs to promote differentiation of oligo-
dendrocyte progenitor cells (OPCs) into myelinating oligodendro-
cytes (MOs). Conditioned medium from healthy control-derived 
NPCs can induce differentiation of OPCs into MOs in vitro, whilst 
MS-patient-derived NPCs conditioned medium fails to induce dif-
ferentiation. However, rapamycin treatment of NPCs from MS pa-
tient-derived NPCs yields conditioned medium with comparable 
OPC to MO differentiation potential to that of healthy control-de-
rived NPCs. These findings suggest that paracrine signals from MS-
patient-derived NPCs inhibit OPC to MO differentiation, which can 
be reversed by inhibition of mTOR, a critical pathway maintaining 
SASP activation. Proteomic analysis of conditioned medium from 
MS-patient-derived NPCs has shown the presence of secreted pro-
teins previously associated with cellular senescence, such as heat 
shock proteins 90 and 60, DJ-1, and HMGB1 and a similar molecu-
lar profile to aged NPCs derived from healthy controls.

Currently there is no cure for MS, treatments so far rely on im-
munomodulation. However, the identification of senescent cells and 
SASP factors in MS patients and murine models supports the pos-
sibility that senescence may play a role in the pathogenesis of MS, 
hence providing a rationale for the specific targeting of these cells 
using senolytics.

SENESCENCE IN BR AIN TUMOURS

Senescent cells play an important role in tumourigenesis and can 
act as a double-edged sword. On one hand, senescence limits 
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proliferation of cells bearing DNA damage in a cell autonomous 
manner, thus preventing tumour progression, which can occur 
only by senescence bypass or escape. Paradoxically, senescent 
cells through the SASP can generate a pro-tumourigenic microen-
vironment that fuels tumour initiation and progression, including 
senescence escape or bypass. Additionally, standard anti-cancer 
treatments (e.g. chemo-, radio- and targeted therapies) can ef-
fectively trigger therapy-induced senescence (TIS) to create new 
vulnerabilities in tumour cells that could be exploited using seno-
lytics and/or SASP modulators. Here, we will discuss the role of 
senescent cells in brain tumours.

Craniopharyngiomas

Craniopharyngiomas (CPs) are benign epithelial tumours (WHO 
grade 1) of the sellar region (an anatomical region between the hypo-
thalamus and the cranial base where the pituitary gland is located). 
There are two types: (i) adamantinomatous (ACP), which carry muta-
tions in CTNNB1 (encoding β-catenin) resulting in the activation of 
the WNT/β-catenin pathway; (ii) papillary (PCP), associated with mu-
tations in BRAF-V600E leading to the activation of the MAPK/ERK 
pathway. Although these tumours are associated with high survival 
(over 90% 5 years survival), they cause significant morbidity and 
poor quality of life for the patients, in particular ACPs due to their 
tendency to invade the hypothalamus and optic chiasm [160–161].

Senescence has not been characterised in PCP; however, a bulk 
of research has demonstrated the existence of senescent cells in 
human ACP. Despite the presence of CTNNB1-activating mutations 
in all the tumour cells, [162] accumulation of nucleocytoplasmic 
β-catenin and activation of the WNT pathway occurs in sporadic 
cells, most of which form groups of cells referred to as clusters. 
These cell clusters are not present in PCP or any other pituitary tu-
mours. Immunohistochemistry has demonstrated that these cluster 
cells show the hallmarks of senescence: they are Ki-67-ve, express 
cell-cycle inhibitors (e.g. p21Cip1), show DNA damage (e.g. γ-H2aX 
staining), activate the DNA damage response (e.g. phospho-DNA-
PKc staining), exhibit enlargement of the lysosomal compartment 
(e.g. GLB1 expression) and turn on the NFκB pathway (phospho-IκB 
staining) [48, 163]. Laser capture microdissection followed by tran-
scriptomic analysis has confirmed that human cluster cells are se-
nescent and activate a SASP resulting in the expression of numerous 
inflammatory mediators and growth factors [48, 162, 164]. The lo-
cation of the clusters within the finger-like protrusion invading the 
brain strongly suggests that the paracrine activities of the cluster 
cells may play a role in tumour epithelium remodelling, proliferation 
and invasion [165] Figure 3.

These findings in human ACP have been confirmed in ACP mouse 
models. Genetically modified mouse models of ACP have been gen-
erated by expression of a functionally equivalent mutant form of 
β-catenin in SOX2+ve stem cells of the pituitary gland during embry-
onic development and adulthood [166–167]. Like human ACP, the 
mouse tumours contain cell clusters expressing senescence markers. 

Interestingly, genetic tracing in the ACP mouse models has revealed 
that the clusters derive from SOX2+ve stem cells expressing onco-
genic β-catenin. In contrast, the tumours are derived from a different 
cell lineage and do not express oncogenic β-catenin [167]. This initial 
study led to propose a paracrine model of tumourigenesis, whereby 
oncogenic SOX2+ stem cells give rise to senescent clusters that in-
duce tumour formation in a cell non-autonomous manner [167–168]. 
More recently, a mechanism for this paracrine model has been pos-
tulated Figure 3. Gene profiling has revealed that mouse and human 
clusters are molecularly analogous and share a signature of senes-
cence with activated SASP [48, 163]. In agreement, cluster cells are 
sensitive to several senolytic agents [48, 95]. Providing functional 
relevance, the attenuation of the senescence/SASP response in mice 
has been shown to result in a significant reduction in the tumour-in-
ducing potential of the cluster cells [48].

Together, this research has clearly demonstrated the presence 
of senescent cells in mouse and human ACP. A model is starting to 
emerge in which senescent cluster cells through the SASP play a crit-
ical role in tumour initiation in mouse ACP and tumour invasion in 
human ACP.

Low-grade gliomas

Low-grade gliomas (LGGs) are a diverse group of benign brain tu-
mours (WHO grade I and II). Symptoms are variable and largely at-
tributable to mass effect from invasion into surrounding parenchyma 
(such as seizures, headache, cognitive or behavioural changes). LGGs 
are characterised by slow growth without invasive properties and 
generally low Ki-67 proliferative index. Clinical management in-
cludes surgical resection if possible, radiation, chemotherapy and 
specific targeted therapies [169–171].

Senescence has been more thoroughly investigated in paediatric 
than adult LGG. Pilocytic astrocytoma (PA; WHO grade I) is the most 
prevalent paediatric LGG and the most frequent paediatric brain tu-
mour in children. Constitutive activation of MAPK pathway, by ge-
netic mutations, is detectable in nearly all cases [172], which leads to 
oncogene-induced senescence, as shown by β-galactosidase activ-
ity and induction of p16INK4a expression in up to 90% of primary PA 
samples [173]. SASP factors (e.g. IL1B and IL6) are found to be up-
regulated in primary human tumours as well as in a PA mouse model 
[174]. SASP expression in PA tumours is associated with favourable 
prognosis whereas anti-inflammatory treatment with dexameth-
asone inhibits the SASP and induces regrowth of senescent cells. 
These results highlight the importance of paracrine propagation and 
maintenance of senescence in paediatric LGG. Of relevance, senes-
cent PA cells can be ablated using senolytics (i.e. ABT-263 and ABT-
737), paving the way to a new type of treatment for these patients.

Homozygous deletion of CDKN2A (encoding p16INK4a) can be 
observed with low frequency in paediatric LGG [175], but is more 
common in higher-grade tumours, such as pleomorphic xanthoas-
trocytoma and anaplastic astrocytoma with piloid features, sug-
gesting that it probably acts as a second oncogenic hit, promoting 
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senescence escape and facilitating transformation into high-grade 
glioma [176–177]. Secondary alterations involving homozygous or 
hemizygous losses of CDKN2A and TP53 are more characteristic in 
adult LGG. Increased survival has been associated with absence of 
mutations in CDKN2A and TP53, suggesting that senescence escape 
may promote tumour progression [178–179].

Together, this research area has highlighted the presence of a 
large number of senescent cells in LGG. These cells through the 
SASP seem to play a critical role in tumour control, preventing the 
progression of the tumour to a more aggressive cancer. However, 
senescent cells in LGG are susceptible to a second oncogenic hit, 
promoting senescence escape and tumour progression.

Glioblastoma multiforme

Glioblastoma multiforme (GBM; WHO grade IV) is one of the most 
common and aggressive primary brain tumours accounting for 60% of 
brain tumours in adults. They are highly infiltrative and have an aver-
age survival of less than 25% after two years due to the high recur-
rence rate [180]. GBM tumours contain heterogenous populations of 
cells characterised by various different genetic aberrations with a ten-
dency to occur in any location in the brain. GBM tumours commonly 
show inhibition of the p53 and RB signalling pathways, or activation 
of RAS, PI3K and receptor tyrosine kinase pathways. Current stand-
ard of care therapy consists of surgical resection, adjuvant chemo/

F I G U R E  3  Schematic showing a working model for the role of the β-catenin-accumulating cell clusters in mouse and human ACP. (A) 
Expression of oncogenic β-catenin in SOX2+ pituitary stem cells (both embryonic and postnatal) results in the formation of β-catenin-
accumulating cell clusters, which contain senescent cells (oncogene-induced senescence). Senescent cluster cells activate a senescence-
associated secretory phenotype (SASP), which leads to the synthesis and secretion of a plethora of active peptides, some of which are 
included in the box. The persistent activity of the SASP factors on surrounding cells eventually causes cell transformation of a cell not of the 
SOX2 cell lineage (purple cell) and subsequent tumour development in a paracrine manner. (B). The human tumour depicted in the schematic 
derives from a three-dimensional reconstruction of a micro-CT-imaged human ACP sample, in which the glial reactive tissue has not been 
rendered. Purple indicates the stellate reticulum and cells of the palisading epithelium, and green represents the β-catenin-accumulating 
cell clusters. Note the presence of finger-like protrusions of tumour cells, which project away from a tumour epithelium mass, containing 
a string of clusters inside. These human clusters are molecularly analogous to the mouse clusters and share a signature of senescence and 
SASP. The model proposes that the SASP activities underlie tumour growth and invasive behaviour by promoting epithelial remodelling and 
proliferation. Reproduced with permission from S. Karger AG, Basel (Martinez-Barbera J. P. and Andoniadou C. L., Biological Behaviour of 
Craniopharyngiomas. Neuroendocrinology 2020. https://doi.org/10.1159/00050 6904)  

https://doi.org/10.1159/000506904
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radiotherapy and administration of Temozolomide (TMZ) [181]. Even 
with this radical treatment regime, progression and recurrence rates 
are high and no other chemical treatments have shown great promise.

Evidence of therapy-induced senescence in GBM has been 
shown following TMZ treatment and radiotherapy [182–183]. 
Culture of GBM cell lines in the presence of TMZ induces senes-
cence through a DNA damage response pathway and expression of 
p21Cip1. Subsequently, the NF-κB pathway is activated, accompanied 
by the production of the SASP components IL6 and IL8 [183–184]. 
Confirming the in vitro data, orthotopic transplantation of GBM cell 
lines into immunodeficient mice followed by oral administration of 
TMZ, leads to a senescence response evidenced by p21Cip1 expres-
sion and NF-κB pathway activation in the tumour.

It is thought that radiotherapy in GBM leads to increased recur-
rence rates due to the induction of a tumour-promoting microenviron-
ment [182, 185–187]. The DNA damage caused by irradiation results 
in the induction of senescence and SASP in both tumour cells and/or 
non-tumour cells in the microenvironment, which as previously dis-
cussed can be pro-tumourigenic and lead to recurrence [7, 15, 52]. It 
has been shown that irradiation of GBM primary cells results in cellu-
lar senescence and SASP in vitro, as shown by morphological cellular 
changes, positive SA-βgal staining, cell-cycle arrest and p21Cip1 expres-
sion [51]. Upon irradiation, SASP factors such as IL6, IL1A and IL1B are 
induced and the NfκB pathway is activated. Furthermore, co-injection 
of irradiated, senescent primary GBM cells with non-irradiated GBM 
cells results in larger more aggressive tumours compared with the in-
jection of only non-irradiated cells in xenograft mouse models [188].

A recent study has demonstrated that GBM cell lines can be 
driven into senescence, by either TMZ treatment or irradiation, to 
subsequently be selectively ablated with Navitoclax (ABT-263) as a 
senolytic [189]. Since the induction of senescence and SASP, caused 
by TMZ treatment or radiotherapy, can cause GBM recurrence, i.e. by 
creating a pro-tumourigenic microenvironment favouring senescent 
escape or bypass, the ablation of GBM senescent cells could be ex-
pected to reduce tumour relapse and improve survival of the patients.

Medulloblastoma

Medulloblastoma (MB; WHO grade IV)) is an embryonal tumour of 
the cerebellum originating from different neuronal progenitor cell 
populations. MB most commonly affects children and young adults 
with an average age of diagnosis of 6–8 years. MB is the most com-
mon high-grade paediatric brain tumour. Gene expression analysis 
has subdivided this tumour into four major subgroups: WNT, SHH, 
Group 3 and Group 4 (Groups 3 and 4 have recently been subdivided 
into eight different types) [190–191]. These groups differ not only 
in their gene expression but also their methylation patterns, histol-
ogy, clinical characteristics, metastatic potential, incidence and rate 
of recurrence. Despite the extensive clinical treatment stratification, 
outcomes of therapy can still be poor due to recurrence [192].

An initial study using a mouse model of SHH (sonic hedgehog) 
MB has identified p16INK4a and p21Cip1 expressing senescent cells in 

the pre-neoplastic MB lesions [46]. These senescent cells are not de-
tectable in advanced tumours, which are characterised by the pres-
ence of spontaneous p53 mutations, suggesting that senescence 
escape underlies tumour progression. This research has also shown 
that human SHH MB samples exhibit CDKN2A (encoding p16INK4a) 
promoter methylation, supporting a senescence evasion mechanism. 
Additional evidence of senescence has been proposed from in vitro 
studies using the cell lines DAOY and ONS-76 [193]. Knockdown of 
citron kinase protein (CITK), which is required for normal prolifer-
ation and survival of neural progenitors, induces senescence and 
apoptosis via p53. In an MB mouse model, CITK deletion results in 
decreased tumour growth and increased overall survival, which is 
associated with increased expression of senescence markers such 
as p21Cip1, p27Kip1 and p16INK4a in the tumours. There is a need to 
understand better the role of senescence in MB, not only as a tu-
mour-suppressive mechanism, but also the contribution of senes-
cent cell-mediated paracrine signalling to tumourigenesis.

Diffuse Midline Glioma

Diffuse Midline Glioma (DMG) represents an incurable Grade IV 
group of paediatric tumours and accounts for 10% of all brain tu-
mours in children. Found in the brainstem and midline structures in-
cluding the thalamus, DMG are characterised by carrying mutations 
in histone-encoding genes, i.e. histone H3 gene H3F3A (encoding 
H3.3) or in the related HIST1H3B (encoding H3.1) gene, often associ-
ated with loss of TP53 [194]. Expression of senescence markers, such 
as p16INK4a, is very low in this tumour type, and this is probably due 
to the oncogenic driver mutations’ ability to represses the CDKN2A 
locus [195]. In contrast to the tumour cells, p16INK4a+ve cells are 
often found in the tumour microenvironment (up to 80% of tumours 
[196], suggesting that these potentially senescent cells could have a 
role in tumourigenesis and/or treatment resistance.

Conventional clinical management by radiotherapy or new tar-
geted therapies could be used to trigger TIS in DMG tumours, as 
suggested by in vitro studies on patient-derived DMG cell lines. The 
combination of radiation and the mTOR inhibitor AZD2014 has been 
shown to result in a strong synergistic antitumour activity preclin-
ically [197], suggesting that the use of senolytics or SASP modu-
lators could be of therapeutic relevance. Likewise, a recent study 
has proposed a new model where senescence is induced in DMG 
tumour cells by inhibition of BMI1. In vivo, the clearance of these 
treatment-induced senescent cells with ABT-263 attenuates tumour 
growth and prolongs animal survival [198].

CONCLUDING REMARKS AND 
PERSPEC TIVES

There is sufficient evidence to support the idea that senescent cells 
play a critical role in the pathogenesis of neurodegenerative con-
ditions and brain tumours. The ablation experiments using genetic 
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and chemical approaches have fuelled the interest in anti-senes-
cence therapies as potential treatments against these pathologies. 
However, several questions still remain that should be addressed to 
support further the development of senotherapies.

The function of senescent cells is highly context-dependent. This 
has been better demonstrated in the cancer field, whereby senescent 
cells can be either anti- or pro- tumourigenic. This raises the possibility 
that senescent cells may also elicit beneficial or detrimental functions 
not just in cancer but also in other disease contexts. For instance, al-
though a body of research has demonstrated the beneficial effects of 
ablating senescent cells with senolytics (e.g. by clearing organ-resident 
senescent macrophages), a recent study using a new mouse model has 
revealed that the genetic ablation of vascular endothelial senescent 
cells in liver sinusoids, which express high levels of p16INK4a, results 
in premature death due to hepatic dysfunction [199]. This study high-
lights that the balance between the beneficial and detrimental func-
tions of senescence must be thoroughly understood.

The ablation experiments in neurodegeneration mouse models sug-
gest that senescent cells are not just bystanders, but they contribute to 
disease progression and cognitive loss. It will be interesting to assess 
whether such a role is preserved in humans. Another cerebral disease 
highly associated with old age is ischaemia/stroke and aneurysms [200]. 
During the acute phase of ischaemia in humans, pathogenic processes 
such as neuroinflammation (cytokines and chemokines) and oxidative 
stress have been shown to be upregulated. Furthermore, aged murine 
models have demonstrated a higher inflammatory response during 
the acute phase of ischaemia, which results in increased cerebral in-
jury compared to young animals [200]. It will be important to define 
whether senotherapies are only able to prevent disease progression, or 
in addition, senolytics can improve cognitive decline and restore brain 
function in patients with advanced disease. These questions can be ad-
dressed in human trials, as those already running to test the efficacy of 
senotherapies against other human conditions.

Senescence is postulated to be a cell autonomous barrier against 
cancer that maintains potential cancer-initiating cells in a benign, 
non-proliferative state. Only through senescence bypass or senes-
cence escape, caused by genetic or epigenetic alterations, can those 
benign lesion progress to give rise to malignant tumours. This model 
of cancer is supported mostly by in vitro studies and the fact that 
senescent cells are usually abundant in benign tumours while rare 
in malignant cancers [39–41, 43]. Further studies using mouse mod-
els capable of genetic tracing the fate of senescent cells may clarify 
whether this model is universal and provide mechanistic insights. 
This is particularly important in view of data suggesting that senes-
cent cells through paracrine signalling can, not only promote tumour 
progression to malignancy and metastasis, but also initiate tumour 
formation in a cell non-autonomous manner [37].

One of the main problems with current anti-cancer therapies is 
tumour recurrence. It is thought that senescent cells within the tu-
mour bed are therapy-resistant and will eventually re-enter the cell 
cycle and give rise to a relapsed tumour. It has been shown that pass-
ing through a senescent state, even if transiently, can bestow fea-
tures of stemness upon tumour cells making them more aggressive 

and malignant [12]. Therefore, there is a strong rationale to use se-
notherapies as adjuvant treatments to eliminate senescent cells prior 
to tumour recurrence. This is a promising approach, whereby current 
effective senescence-inducing treatments, such as cytostatic che-
motherapy, radiotherapy or specific targeted therapies, could be 
combined with senolytics in order to ablate the senescent cells prior 
to senescence escape and progression to recurrence. Preclinical 
research using suitable models of brain tumours will facilitate the 
development of clinical trials to test these combination therapies.

Despite the clear advantages of selectively eliminating senes-
cent cells in mouse models in a variety of different human condi-
tions, challenges remain to be addressed before senotherapies can 
be safely applied in clinical practice. Possibly, the most important 
one is to fully understand the mechanism involved in ‘good’ vs ‘bad’ 
senescence (i.e. beneficial vs detrimental effects). Such understand-
ing requires a better characterisation of the different senescent 
cell populations within different organs in both normal physiology 
and disease contexts (e.g. specific diseases, ageing or cancer). This 
knowledge will provide a rationale for the use of senotherapies 
against certain human conditions and inform on the potential side 
effects, senolytic dosing regime, length of treatment and other im-
portant factors when designing clinical trials. Single cell profiling 
approaches and mouse models specifically designed to study se-
nescence in vivo are ideal strategies to further our knowledge on 
the heterogeneity of senescent cells and reveal their functions. An 
additional problem is that there are very few drugs with proven se-
nolytic activity and, in most cases, the mechanisms underlying such 
function remain poorly elucidated. There is an urgent need to dis-
cover novel senolytics and characterise their mechanisms of action 
through well-designed senolytic screens.

We wonder whether Hayflick thought that his initial observations 
would ever become the catalyst that fuelled a vast research field, 
which potentially could improve clinical outcomes for the most relevant 
human diseases or even prolong a healthy life span. Despite current 
limitations and unknowns, it is difficult to not be affected by an encour-
aging optimism towards the translational potential of anti-senescence 
therapies against brain pathologies and cancer. Future research will 
reveal key mechanistic insights into how senescent cells contribute to 
human disease paving the path to novel anti-senescence treatments.
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