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Abstract

Motivation: Clustering patient omic data is integral to developing precision medicine because it allows the identifi-
cation of disease subtypes. A current major challenge is the integration multi-omic data to identify a shared structure
and reduce noise. Cluster analysis is also increasingly applied on single-omic data, for example, in single cell RNA-
seq analysis for clustering the transcriptomes of individual cells. This technology has clinical implications. Our mo-
tivation was therefore to develop a flexible and effective spectral clustering tool for both single and multi-omic data.

Results: We present Spectrum, a new spectral clustering method for complex omic data. Spectrum uses a self-
tuning density-aware kernel we developed that enhances the similarity between points that share common nearest
neighbours. It uses a tensor product graph data integration and diffusion procedure to reduce noise and reveal
underlying structures. Spectrum contains a new method for finding the optimal number of clusters (K) involving
eigenvector distribution analysis. Spectrum can automatically find K for both Gaussian and non-Gaussian struc-
tures. We demonstrate across 21 real expression datasets that Spectrum gives improved runtimes and better clus-
tering results relative to other methods.

Availability and implementation: Spectrum is available as an R software package from CRAN https://cran.r-project.
org/web/packages/Spectrum/index.html.

Contact: christopher.john@qmul.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Precision medicine is the concept that patients may be stratified into
different subtypes to personalize therapy. A growing number of
studies stratify patients using their genome-wide expression data
(e.g. mRNA, miRNA, protein, methylation), such as those by The
Cancer Genome Atlas (TCGA) (Agrawal et al., 2014; Akbani et al.,
2015; Ceccarelli et al., 2016; Ciriello et al., 2015; Fishbein et al.,
2017; Network, 2013, 2014) and other consortia (Lefaudeux et al.,
2017). Clustering algorithms are used to find patient subtypes and
may be run on data from single or multiple platforms. Single-omic
cluster analysis is performed by algorithms such as: Monte Carlo
consensus clustering (M3C) (John et al., 2018), CLEST (Dudoit and
Fridlyand, 2002), PINSPlus (Nguyen et al., 2018) and similarity net-
work fusion (SNF) (Wang et al., 2014). However, clustering multi-
omic data into an integrated solution is a major current challenge.
State-of-the-art methods include: iClusterPlus (Shen et al., 2009),
SNF, CIMLR (Ramazzotti et al., 2018) and PINSplus. The primary

aims of multi-omic clustering are: (i) identifying a shared structure
between platforms, and (ii) reducing noise from individual plat-
forms. There is demand in this area for new, fast, effective methods
and accessible software.

Single-cell RNA-seq is a technique that can be used to detect spe-
cific cell types by clustering of individual cell transcriptomes
(Kiselev et al., 2017). Analysing transcriptomes of individual cells
may further our understanding of biology and has clinical applica-
tions. Single-cell RNA-seq data pose unique issues for clustering, as
there are often more points to cluster and the data are usually found
in dense globular clusters. Tools applied in this domain include: sin-
gle-cell consensus clustering (SC3) (Kiselev et al., 2017), Seurat
(Butler et al., 2018), MUDAN and single-cell interpretation via mul-
tikernel learning (SIMLR) (Wang et al., 2017). Maintaining fast run-
times is important given the high number of points. SIMLR uses a
sophisticated procedure to learn the optimal similarity matrix.
However, it is very time consuming and it is not clear if SIMLR pro-
vides clustering performance advantages relative to other methods.
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Spectral clustering refers to a class of algorithms that have be-
come a hot topic in machine learning due to their ability to handle
complex data (Ng et al., 2002; Shu and Latecki, 2016; Xiang and
Gong, 2008; Zelnik-Manor and Perona, 2005; Zhang et al.,
2011). They are characterized by clustering eigenvectors derived
from a matrix representing the data’s graph (Ng et al., 2002).
Several of these methods are applied in genomic data analysis
(Wang et al., 2014, 2017). However, there have been a range of
other developments in spectral clustering that provide ample
opportunities for method development and implementation. A
density-aware kernel (Zhang et al., 2011) enhances local connec-
tions in higher density regions of the graph, however, this kernel
does not self-tune to the data. Another method uses tensor product
graph (TPG) integration and diffusion to integrate data sources
and reduce noise (Shu and Latecki, 2016). One method retrieves
eigenvectors of the data’s graph selected according to their multi-
modality for Gaussian mixture modelling (GMM) with the
Bayesian Information Criterion (BIC) to decide on the optimal K
(Xiang and Gong, 2008). The fast approximate spectral clustering
(FASP) method (Yan et al., 2009) enables rapid clustering of thou-
sands of points on a desktop computer. Our aim was to assemble
and advance this work.

Spectrum includes both methodological advancements and
implements pre-existing techniques. Spectrum is distinct in a num-
ber of ways from previous spectral clustering-based tools (Wang
et al., 2014, 2017). Our contributions include: (i) a new self-
tuning kernel that adapts to local density in the graph; (ii) a TPG
data integration and diffusion procedure to combine different data
sources and reduce noise; (iii) implementation of the FASP method
for massive datasets; (iv) a new technique based on eigenvector
distributional analysis to estimate the optimal K. Spectrum is pro-
vided as an accessible R software package (https://cran.r-project.
org/web/packages/Spectrum/index.html) and has a detailed
vignette.

2 Materials and methods

It is first instructive to describe the Zelnik-Manor self-tuning kernel
(Zelnik-Manor and Perona, 2005) and the Zhang density-aware ker-
nel (Zhang et al., 2011) in order to understand our proposed kernel.
The kernel is used to calculate the similarity matrix in spectral clus-
tering that represents the data’s graph. Making a good similarity
matrix in this initial step is key to getting good clustering
performance.

2.1 Zelnik-Manor self-tuning kernel
The Zelnik-Manor kernel was designed to adapt to different data’s
scale and so not require time-consuming parameter tuning. Let E de-
note an expression matrix E 2 RN�M, where N is the number of
points and M is the number of features, let A denote its similarity
matrix A 2 RN�N. Given a set of N points, S ¼ s1; s2; s3 . . . ; sNf g,
the Zelnik-Manor kernel is defined as:

Aij ¼ exp
�d2ðsisjÞ

rirj

� �

Where d sisjð Þ denotes the Euclidean distance between points si and
sj, ri is a local scaling parameter and is calculated for every point si.
ri corresponds to d sisPð Þ where sP is the Pth nearest neighbour of si.
ri controls how rapidly Aij falls off as d sisjð Þ increases. Selecting this
parameter to equal one of the nearest-neighbour distances of si

allows the kernel to automatically tune to data with different scales.
P is a free parameter and does not typically require parameter tuning
to perform well.

2.2 Zhang density-aware kernel
Zhang et al. (2011) proposed a kernel that takes into account the
common neighbours of points si and sj when calculating Aij. The
kernel increases Aij when si and sj share more neighbours, and there-
fore adapts to the data’s local density. Taking into account local

density in this manner improves clustering performance by amplify-
ing intra-cluster similarity (Zhang et al., 2011).

Aij ¼ exp
�d2ðsisjÞ

2r2ðCNN sisjð Þ þ 1Þ

 !

Where CNN sisjð Þ is the number of points in the join region of the
e-neighbourhoods around points si and sj, where the e-neighbour-
hood of a point represents the sphere around that point with radius
e. r denotes a global scaling parameter.

In the Zhang kernel, both e and r must be tuned for each new
dataset, unlike the Zelnik-Manor kernel that takes advantage of the
nearest-neighbour distances to select r quickly and gives good
results. Parameter tuning for the Zhang kernel is slow and it is hard
to define a good objective function. We propose a new kernel that
adapts to local density in a similar way, but does not require param-
eter tuning for every new dataset. It does this by comparing the com-
mon nearest neighbours of points si and sj.

2.3 Adaptive density-aware kernel
We propose the following kernel:

Aij ¼ exp
�d2ðsisjÞ

rirjðCNN sisjð Þ þ 1Þ

 !
(1)

Where CNNðsisjÞ denotes the number of points in the intersection
between the two sets of nearest neighbours of points si and sj. S is
the free parameter that defines the number of nearest neighbours to
include in each set. Because S is not a distance value like e in the
Zhang kernel it will automatically adapt to data with different
scales.

Our kernel incorporates the advantages from both of the above
kernels, whilst not requiring tuning to obtain good clustering per-
formance. In this study, the kernel parameters were set to P¼3 and
S¼7. These are free parameters, so there are not definitive values.
Higher values will prefer global structures, while lower values local
structures. However, these parameter settings were used for all
experiments in this manuscript, including those on simulated data
and are later shown to generalize well.

The first step of the Spectrum algorithm is to calculate the simi-
larity matrix or matrices using the adaptive density-aware kernel.
Note, this kernel is for continuous (non-binary) data. Additionally,
if Spectrum is applied to multi-view data, the points must be match-
ing between different views. If we are dealing with multiple datasets,
then we have a set of T matrices L ¼ E1;E2;E3 . . . ;ETf g, where
Ei 2 RN�Mi , Mi is the number of features per sample from the ith
data type and N the number of points. Using Equation (1), in the
case of multiple input datasets, this yields a new set of T similarity
matrices, Y ¼ A1;A2;A3 . . . ;ATf g, while if we have just one plat-
form (T ¼ 1) we have a single similarity matrix A.

Combining multi-view data and TPG diffusion. For combining
the similarity matrices (graphs) in the set Y, Spectrum uses a recent
technique from the machine learning literature (Shu and Latecki,
2016) that involves calculating a cross view TPG from each pair of
individual graphs. Cross-view TPGs capture higher order informa-
tion of the data. The cross-view TPGs are integrated using linear
combinations to form a single graph. Graph diffusion is then per-
formed to reveal the underlying data structure. Shu et al. give a com-
putationally efficient algorithm for this. The operation is
mathematically analogous to the TPG approach but can be calcu-
lated using a non TPG which makes it much faster. Spectrum uses a
minor modification of this method for a single data type. Note, the
linear combination is weighted equally and assumes each view con-
tributes towards a common structure, so very noisy data or data rep-
resenting a very different structure should be excluded beforehand.
The steps taken are as follows:

1. Combine similarity matrices from the set Y. If we are dealing

with a single similarity matrix, T ¼ 1, then this step is skipped,

but steps 2-5 are the same:
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A ¼
XT

i¼1

Ai (2)

2. Sparsify A by keeping only the Zth nearest neighbours of each

sample si and setting the rest to 0. This makes a k-nearest-neigh-

bour (kNN) graph. Let Ri be the set of Z nearest neighbours for

si, then:

Aij ¼
Aij j 2 Ri

0 otherwise

�
(3)

3. Row normalise A, so that each row sums to 1:

Aij ¼ Aij=
X

j
Aij (4)

4. Perform graph diffusion iterations. Let Q1 ¼ A, and I be the

identity matrix for A. Then for the tth iteration from

2; . . . ; iters:

Qt ¼ AQt�1AT þ I (5)

5. We then take the final similarity matrix as A� ¼ QT . This ends

the procedure. A� can now be used as the matrix for the rest of

spectral clustering described in subsequent steps.

The parameters Z ¼ 10 and iters ¼ 5 are set in alignment with
previous work that demonstrated their effective performance (Shu
and Latecki, 2016). Shu et al. demonstrated that their algorithm is
not very sensitive to these parameters.

Spectral clustering of similarity matrix. Starting with A�,
Spectrum uses the Ng spectral clustering method (Ng et al., 2002),
but with the eigengap heuristic to estimate the number of clusters
and GMM to cluster the final eigenvector matrix. More specifically:

1. Using D, the diagonal matrix whose i; ið Þ element is the sum of

A�’s ith row, construct the normalized graph Laplacian L:

L ¼ D�1=2A�D�1=2 (6)

2. Perform the eigendecomposition of L and thus extract its eigen-

vectors x1; x2; . . . xN and eigenvalues k1; k2 . . . kNþ1.

3. Evaluate the eigengap for eigenvalues, starting with the second

eigenvalue, n ¼ 2, and choose the optimal k, denoted by k�, for

which the eigengap is maximised:

k� ¼ argmax
n
ðkn � knþ1Þ (7)

4. Get the x1; x2; . . . xk� , k� largest eigenvectors of L, then form

the matrix, X ¼ x1; x2; . . . xk�½ � 2 R
N�k� by stacking the

eigenvectors in columns.

5. Form the matrix Y from X by renormalizing each of X’s rows to

have unit length:

Yij ¼
Xij

ð
P

jX
2
ijÞ

1=2
(8)

6. Now each row of Y is treated as a sample, si, then all points are

clustered into k� clusters using GMM. Spectrum uses the imple-

mentation of GMM from the ClusterR CRAN package.

A flexible heuristic for finding K when spectral clustering. A nat-
ural way to solve the problem of estimating K when spectral cluster-
ing is analysis of the eigendecomposition of the graph Laplacian.
The classical eigengap method is effective for Gaussian clusters,
however, its rule must be modified to detect non-Gaussian struc-
tures, thus limiting its applicability (see Section 3). We describe a
new heuristic for finding K that can be used for Gaussian or non-
Gaussian structures and as a complementary method to analyse
genome-wide expression datasets. The method examines the

multimodality of the eigenvectors of the graph Laplacian and looks
for a point beyond which there is no more substantial decrease in
multimodality.

Intuitively, the degree of multimodality defines how informative
a given eigenvector is, and when we pass the optimal K moving
along the sorted eigenvectors, V ¼ x1; x2; . . . xNf g, we expect a
large drop in useful information. Multimodality is quantified using
the well-known dip test statistic (Hartigan and Hartigan, 1985).
The method can work better (see Section 3) if the nearest-neighbour
parameter of the kernel is tuned from P ¼ 1; . . . ; 10. This is done
by selecting the kernel that gives the maximum multimodality gap.
Analysing the multimodality drop was inspired by the Xiang and
Gong study (Xiang and Gong, 2008), in which the authors select the
most informative eigenvectors using an expectation maximization
(EM) technique, then use GMM and the BIC to choose K. An issue
with this EM method is the instability of the results due to the ran-
dom initialization of the algorithm and its local search. We now de-
tail an alternative procedure for finding K and tuning the kernel
based on decreases in eigenvector multimodality.

Let the set of dip test statistics be Z ¼ z1; z2; z3 . . . ; zNf g, calcu-
lated from the eigenvectors, V ¼ x1; x2; . . . xNf g. Note that
larger values of zi correspond to greater eigenvector multimodality.
To calculate the multimodality difference between consecutive val-
ues, we use di ¼ zi � zi�1. Since we require two values to get di, the
calculation must begin at i ¼ 2, which corresponds to the first pair
of eigenvectors. Let the set of di values calculated from Z be D ¼
d1; d2; d3 . . . ; dmaxK�1f g; where maxK is the maximum value of K to

be considered, the steps for this are as follows:

1. Find the optimal kernel, A�. Each kernel is calculated using

Equation (1) and the nearest-neighbour parameter P is tuned via a

search from P ¼ 1; . . . ; 10. To do this, calculate the Pth graph

Laplacian [Equation (6)] from the Pth kernel. Obtain the eigenvec-

tors of these, VP. Calculate ZP from these eigenvectors, then DP.

Get minðDPÞ for each P, yielding a set Dmin ¼ d1; d2; . . . d10f g.
A� is the kernel that corresponds to min Dminf g.

2. Get the kNN graph of A�, row normalize, then perform diffu-

sion iterations [Equations(3)–(5)]. Optional.

3. Calculate the graph Laplacian, L [Equation (6)].

4. Perform eigendecomposition of L yielding the eigenvectors,

V ¼ x1; x2; . . . xNf g.
5. Calculate the dip test statistics Z for the eigenvectors in V, then

calculate the differences of these, D.

6. Pass D into the algorithm described below for finding the last

substantial drop in multimodality. Let k� be the optimal K found

by this method.

7. Continue with steps 4–6 corresponding to the Ng spectral clus-

tering method, with GMM to cluster the final eigenvector ma-

trix, with K set to k�.

One could select K using the maximum multimodality gap.
However, we found that this simpler method is susceptible to local mini-
ma (see Section 3). This naturally led to making an algorithm to find the
last substantial drop. For finding k� from set Z, we now describe this
straightforward algorithm that reads along the elements of Z, to find a
point where there is no more substantial decrease in multimodality.

Finding last substantial multimodality gap. This algorithm will
search D, storing in memory the biggest difference in multimodality.
Let that be dmin. A more negative di corresponds a bigger drop in the
elements of Z. The method then examines if there are any more
points ahead of this drop (up until < cmax points) that are � dmin

f ,
where f is the minimum magnitude that the drop must be to replace
dmin. If a new dmin is found, this new difference is stored in memory.
This process continues until no more substantial drops are found
with the threshold cmax to stop the search. More specifically:

1. Skip the first element of D, d1, as this corresponds to the drop

from the first to second eigenvector, which is non-informative.
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Store in memory d2, the greatest drop by default. Call this dmin.

Initialise a counter c ¼ 1 for keeping count of how many indices

ahead we are of the stored dmin.

2. Iterate from d3 . . . dmaxK�1 and with each iteration check if
dmin

f > di. If so, let di be the new dmin, otherwise continue. If

c > cmax, break the loop and accept the current stored dmin as

the solution.

3. The optimal number of classes is k� ¼ i� 1, where i is the index

of D corresponding to the di taken as dmin in step 2.

The parameters used in this study for the multimodality drop
procedure were cmax ¼ 7 and f ¼ 2, values we empirically selected
based on our experience.

2.4 Generating simulated datasets for analysis
Gaussian cluster simulations were all performed using the CRAN
clusterlab package (John et al., 2018), following the standard oper-
ating procedure. In the case of non-Gaussian structures, found
throughout the Supplementary Figures, either the CRAN mlbench
or clusterSim packages were used to simulate the data, using the de-
fault settings.

2.5 Downloading and processing of real data for

analysis
TCGA datasets. The seven multi-omic TCGA datasets (Agrawal
et al., 2014; Akbani et al., 2015; Ceccarelli et al., 2016; Ciriello
et al., 2015; Fishbein et al., 2017; Network, 2013, 2014) were
downloaded from the Broad Institute (http://gdac.broadinstitute.
org/). Pre-normalized data were used for each platform (mRNA,
miRNA and protein) and was log2 transformed to reduce the influ-
ence of extreme values. For every dataset each one was filtered in
the same manner, using the coefficient of variation to select the top
50% most variable features. Code for data pre-processing is found
in the following GitHub repository (https://github.com/crj32/spec
trum_manuscript). The processed multi-omic data are in the
Synapse repository syn18911550. RNA-seq datasets were taken
from the same studies as the multi-omic data and filtering of features
was done in the same manner. However, more patients were
included in the RNA-seq analyses because we did not have to unify
the patients between platforms. The RNA-seq data is included in the
Synapse repository syn18911550. Code for performing log-rank
tests in also in the GitHub as well as commands for running
methods.

Single-cell RNA-seq datasets. The seven single-cell RNA-seq
datasets (Baron et al., 2016; Camp et al., 2017; Darmanis et al.,
2015; Li et al., 2017; Muraro et al., 2016; Patel et al., 2014; Pollen
et al., 2014) were obtained from the Hemberg lab website (https://
hemberg-lab.github.io/scRNA.seq.datasets/). For each dataset, we
used log2 normalized counts and selected the top 100 most variable
genes for analysis. Code for data pre-processing is found in the
manuscript’s GitHub (https://github.com/crj32/spectrum_manu
script). Additionally, we include the single cell RNA-seq data in the
Synapse repository syn18911550. Code for calculating normalized
mutual information (NMI) is in the GitHub as are commands for
running methods.

3 Results

3.1 Spectrum provides fast effective clustering of single

and multi-omic data
First, we tested Spectrum’s ability to identify the ground truth K on
individual simulated Gaussian datasets (Fig. 1a and b and
Supplementary Fig. S1). In each case, Spectrum correctly identified
the optimal K. The method can also detect more complex non-
Gaussian structures (Supplementary Fig. S2). To demonstrate the
performance of Spectrum on real data from a single platform,
we ran the algorithm on seven TCGA RNA-seq datasets (Agrawal
et al., 2014; Akbani et al., 2015; Ceccarelli et al., 2016;

Ciriello et al., 2015; Fishbein et al., 2017; Network, 2013, 2014).
We used log-rank tests to evaluate the significance of survival time
differences between identified clusters. Comparison of Spectrum P
values with those from CLEST, M3C, PINSplus, and SNF found
that Spectrum performed better overall in finding clusters signifi-
cantly related to patient survival (Supplementary Table S1). For
comparing different methods, we took both a rank and P-value-
based approach to assess performance, individual P values and rank-
ings for each method on each RNA-seq dataset are included in
Supplementary Table S1. The brain cancer RNA-seq dataset
(Ceccarelli et al., 2016) was used as an example to display the
Spectrum single-omic clustering results using a t-distributed stochas-
tic neighbour embedding (t-SNE) plot and the related survival curve
was also shown (Fig. 2a and b). The clusters in the brain cancer
dataset found with Spectrum were compared with those from SNF
on t-SNE plots (Supplementary Fig. S3a and b). As well as obtaining
a lower P-value, Spectrum yielded more compact clusters than SNF
(measured by silhouette width). To give an initial indication of the
relative computational resources required for a single platform ana-
lysis, algorithm runtime was investigated on a kidney cancer RNA-
seq dataset (Network, 2013) with 240 points and 5000 features.
This analysis was performed on a single core of an Intel Core i7-
6560U CPU @ 2.20 GHz laptop computer with 16 GB of DDR3
RAM. Spectrum was the fastest method (1.13 s), closely followed by
SNF (2.67 s). PINSplus was still fast (8.53 s), while M3C (123.91 s)
and CLEST (283.34 s) were both slower.

To test the behaviour of Spectrum’s TPG integration method, we
conducted a multi-omic data simulation where three Gaussian clus-
ters were generated for each view, and each view had 300 points

Fig. 1. Spectrum clusters five simulated Gaussian clusters and finds the correct K. (a)

PCA showing the five simulated Gaussian clusters. (b) The eigenvalues of the eigen-

vectors from the data’s graph Laplacian, the greatest eigengap is between the fifth

and sixth eigenvectors, therefore correctly indicating K¼5

1162 C.R.John et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/4/1159/5566508 by guest on 12 January 2021

http://gdac.broadinstitute.org/
http://gdac.broadinstitute.org/
https://github.com/crj32/spectrum_manuscript
https://github.com/crj32/spectrum_manuscript
https://hemberg-lab.github.io/scRNA.seq.datasets/
https://hemberg-lab.github.io/scRNA.seq.datasets/
https://github.com/crj32/spectrum_manuscript
https://github.com/crj32/spectrum_manuscript
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data


with 500 features with random noise added (Supplementary Fig.
S4a). Individual platform clustering using Spectrum did not detect
the optimal K (Supplementary Fig. S4b and c). However, using the
TPG integration and diffusion method, Spectrum identified the opti-
mal K for the combined dataset (Supplementary Fig. S4d).
As expected, SNF also identified the optimal K on this simple test
dataset (Supplementary Fig. S5). We proceeded to test Spectrum’s
ability to detect clusters with significant differences in survival time
on seven multi-omic TCGA datasets relative to other methods
(Table 1). The analysis included mRNA, miRNA and protein data.
Similar to our observations on a single platform, Spectrum per-
formed very well, particularly on the larger datasets with greater po-
tential for clinical significance, namely, the breast (P¼1.47E-07)
and brain cancer (P¼3.76E-16) datasets.

We visually compared the multi-omic clusters found with
Spectrum with those from SNF using uniform manifold approxima-
tion and projection (UMAP) plots for the first three multi-omic data-
sets (Supplementary Fig. S6a–c). Spectrum runs UMAP or t-SNE on
the integrated similarity matrix as a new data visualization method
for multi-omic data. The silhouette width was used as an additional
scoring metric to the P values to investigate the quality of the clus-
tering. On the brain and breast multi-omic datasets, Spectrum
yielded higher silhouette widths than SNF, while for the bladder
dataset the opposite was true. On the breast dataset SNF could be
visually seen on the UMAP plot as missing a third cluster that
Spectrum detected (Supplementary Fig. S6c). To investigate the con-
sistency of the results from Spectrum and SNF, both methods were
run on two parts of the randomly split brain cancer multi-omic data-
set (Supplementary Fig. S7a and b). This dataset was chosen because
it was the largest (N¼425), therefore likely to be stable in structure
after splitting. Both Spectrum and SNF identified the same optimal
K on each split, supporting their ability to perform consistently.
These findings support the use of Spectrum as a complementary
multi-omic spectral clustering tool to SNF and other methods.

Next, to gain an initial insight into relative multi-omic runtimes,
we tested the algorithms on the kidney TCGA dataset (Network,
2013). Spectrum performed the fastest (2.5 s), followed by SNF
(4.06 s), PINSplus (27.22 s), CIMLR (59.56 s) and iClusterPlus
(305.35 s). A more extensive analysis of runtime was performed for
the single and multi-omic algorithms using simulated data. This
worked by increasing the number of points from 100 to 1000 in
steps of 100, with each dataset containing 5000 features
(Supplementary Fig. S8a and b). These analyses demonstrated the
preferable runtimes of Spectrum relative to other methods.
Spectrum’s good performance in finding clinically related clusters
comes with a bonus of faster runtimes.

We next demonstrated the advantage of Spectrum’s adaptive
density-aware kernel by comparison with the classic Zelnik-Manor
kernel, a non-density-aware kernel that adapts to local data scale
only. First, Spectrum using either of the two kernels was run on a

Fig. 2. Spectrum clusters RNA-seq data to find cancer subtypes with different sur-

vival times. (a) t-SNE plot illustrating the four clusters Spectrum identified in a brain

cancer RNA-seq dataset (Ceccarelli et al., 2016). (b) Survival curve analysis results

using the discovered clusters showing a P-value from a Cox proportional hazards re-

gression model using a log-rank test to test the significance of the survival time dif-

ferences between clusters

Table 1. Spectrum multi-omic clustering performance relative to other algorithms

Dataset N Spectrum PINSplus iClusterPlus SNF CIMLR

Bladder 338 0.0042 (3) 0.31 (5) 0.0022 (2) 0.00022 (1) 0.0047 (4)

Brain 425 3.76E-16 (1) 0.0053 (4) 1.72E-07 (3) 4.17E-11 (2) 0.013 (5)

Breast 634 1.47E-07 (1) 2.85E-05 (4) 1.78E-05 (3) 0.94 (5) 2.04E-07 (2)

Kidney 240 0.91 (5) 0.038 (2) 0.24 (4) 0.045 (3) 0.0026 (1)

PCPG 80 0.043 (1) 0.18 (4) 0.093 (3) 0.09 (2) 0.54 (5)

Skin 338 0.0014 (1) 0.96 (5) 0.4 (3) 0.51 (4) 0.0029 (2)

Thyroid 219 0.049 (1) 0.09 (2) 0.67 (5) 0.18 (4) 0.17 (3)

P integrated 1.07E-22 1.04E-05 1.91E-10 2.22E-11 5.18E-11

Rank score 13 26 23 21 22

Note: P values are from a Cox proportional hazards regression model using a log-rank test to test the significance of the survival time differences between

clusters. In brackets next to the P values are the ranks for each dataset. The first final row is the integrated P-value using Fisher’s method, the second is the

sum of the ranks (lower is better). PCPG stands for Pheochromocytoma and Paraganglioma. For all datasets, the three data types used were mRNA, miRNA and

protein.
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non-Gaussian synthetic dataset consisting of two worm-like struc-
tures. The clustering demonstrated that the density-aware kernel
improved the classification (Supplementary Fig. S9a and b). Next,
differences on TCGA multi-omic data were examined. Analysis of
the brain cancer multi-omic dataset (Ceccarelli et al., 2016) found
the density-aware kernel detected two additional clusters in com-
parison with the Zelnik-Manor kernel (Fig. 3a). UMAP plots dem-
onstrated the density-aware kernel results in visually more compact
clusters than the Zelnik-Manor kernel. This was expected, as the
density-aware kernel enhances connections in the graph where the
points share common nearest neighbours. The survival P values pro-
duced by the different methods were shown on survival curves
(Fig. 3b). Spectrum obtained a greater level of significance using the
density-aware kernel (P¼3.76E-16) than using the Zelnik-Manor

kernel (P¼1.68E-11). We expanded this comparison to include all
seven TCGA multi-omic datasets to find that the density-aware ker-
nel has a noticeable advantage over the Zelnik-Manor non density-
aware kernel (Table 2). These findings demonstrate the potential for
improvement gains by using a kernel that considers common nearest
neighbours.

3.2 Spectrum performs well at identifying cell types in

single-cell RNA-seq data
We examined Spectrum’s performance on simulated datasets that re-
semble single-cell RNA-seq, as they were made to consist of many
Gaussian blobs that can overlap. Spectrum identified the correct K
for both the K¼10 simulated dataset and the K¼20 dataset

Fig. 3. The adaptive density-aware kernel demonstrates an advantage in multi-omic analysis. On the right-hand side of the panel are the results for the Zelnik-Manor kernel,

while the density-aware kernel results are shown on the left-hand side. (a) Spectrum clustering assignments from the brain cancer dataset (Ceccarelli et al., 2016), UMAP was

run on the integrated similarity matrices for mRNA, miRNA and protein data to generate the plots. (b) Survival curves with P values from a Cox proportional hazards regres-

sion model using a log-rank test to assess significance between clusters

Table 2. Comparison of spectrum density-aware kernel versus the Zelnik-Manor self-tuning kernel in a multi-omic cluster analysis

Dataset Data types N Spectrum density aware Spectrum Zelnik-Manor

Bladder mRNA, miRNA, protein 338 0.0042 0.0033

Brain mRNA, miRNA, protein 425 3.76E-16 1.68E-11

Breast mRNA, miRNA, protein 634 1.47E-07 3.56E-07

Kidney mRNA, miRNA, protein 240 0.91 0.86

PCPG mRNA, miRNA, protein 80 0.043 0.35

Skin mRNA, miRNA, protein 338 0.0014 0.0058

Thyroid mRNA, miRNA, protein 219 0.049 0.054

P integrated 1.07E-22 7.71E-17

Note: Values correspond to P values from a Cox proportional hazards regression model using a log-rank test to test the significance of the survival time differ-

ences between clusters. The final row is the integrated P-value using Fisher’s method. PCPG stands for Pheochromocytoma and Paraganglioma.
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(Supplementary Fig. S10a–d). Next, we tested Spectrum’s perform-
ance relative to other methods on seven real single-cell RNA-seq
datasets (Baron et al., 2016; Camp et al., 2017; Darmanis et al.,
2015; Li et al., 2017; Muraro et al., 2016; Patel et al., 2014; Pollen
et al., 2014) by comparing the assigned clusters with the provided
cell type labels using NMI (Supplementary Table S2). Spectrum had
the highest summed NMI (NMI¼5.89), closely followed by Seurat
(NMI¼5.74), MUDAN (NMI¼5.71), SC3 (NMI¼5.49) and
SIMLR (NMI¼5.01). Spectrum’s summed NMI was favourably
weighted by its performance on the Pollen dataset (NMI ¼ 0.95).
Using a rank-based score to eliminate this advantage, Spectrum still
came joint first with SC3 (Supplementary Table S2). A similarity
matrix for the Pollen data results was shown and t-SNE plots show-
ing the Spectrum clustering assignments were produced
(Supplementary Figs S11 and S12). Overall, Spectrum, Seurat, SC3
and MUDAN performed similarly in these comparisons, however,
SIMLR did not perform as well (Supplementary Table S2).

Notably, in the comparative analysis shown in Supplementary
Table S2, since the Baron and Muraro datasets had higher numbers
of points, to reduce runtime Spectrum was run using the FASP
method (with 900 centroids). Even with the FASP data compression
for these two datasets, Spectrum yielded the highest NMI relative to
the other methods. Comparing Spectrum runtime on the Baron data-
set (N¼8569) yielded 1.95 h without FASP versus 14.23 s with
FASP. Analyses were performed on a single core of an Intel Core i7-
6560U CPU @ 2.20 GHz laptop computer with 16 GB of DDR3
RAM. On the Muraro dataset (N¼2126), without FASP took
1.97 min and with took 11.83 s. Since the complexity of spectral
clustering is cubic, O N3ð Þ and the complexity of k means is linear,
O KNTð Þ, where T is the number of k means iterations, using k
means as a precursor to compress the data (FASP) is computational-
ly advantageous on larger datasets.

To gain an initial insight into relative runtimes of all methods
(without using Spectrum’s FASP implementation), methods were
run on the Camp dataset (777 points). This analysis found MUDAN
performed the fastest (0.23 s), followed by Seurat (2.45 s), Spectrum
(12.64 s), SC3 (183.66 s) and SIMLR (264.31 s). A more detailed
runtime analysis was performed for all algorithms on simulated
datasets with 500 to 4000 points in steps of 500 with 1000 features
(Supplementary Fig. S13). Spectrum was in the middle in terms of
speed, usually performing faster than the SC3 algorithm. However,
SC3 adjusted its own parameters to work faster at higher numbers
of points making it of comparable speed to Spectrum. Spectrum was
slower than MUDAN and Seurat, but much faster than SIMLR.
Overall, these data demonstrate Spectrum is well suited to clustering
small to large single cell RNA-seq datasets, with FASP required for
the later.

3.3 A fast new heuristic for finding K when performing

spectral clustering
Since the eigengap method does not automatically recognize both
Gaussian and non-Gaussian structures (Supplementary Figs S1 and S2),
we developed a complementary method which can. The method
involves examining the multimodality of the eigenvectors of the data’s
graph Laplacian, so we call it ‘the multimodality gap’. To demonstrate
this method, five Gaussian blobs were generated (Supplementary Fig.
S14a) and the multimodality of the data’s graph’s eigenvectors were
also displayed (Supplementary Fig. S14b). The dip-test statistic
(Hartigan and Hartigan, 1985) (Z) which measures multimodality
demonstrated a large gap between eigenvectors five and six. Therefore,
using this method it was correctly concluded that K¼5. Each individ-
ual eigenvector was plotted out (Supplementary Fig. S14c) to demon-
strate the changing distribution of the eigenvectors. As observed in the
analysis of the set of Z values, there was a transition from a multi-
modal distribution at eigenvector five to a unimodal distribution at
eigenvector six, supporting K¼5. To further demonstrate the method,
several simulations were run and the method successfully clustered
both complex non-Gaussian (Supplementary Fig. S15a–d) and
Gaussian clusters (Supplementary Fig. S16a–d). However, since the
simple method of looking for the greatest gap in the set of Z values can

get stuck in local minima (Supplementary Fig. S16d), the method was
further enhanced by adding an algorithm to search for the last substan-
tial gap.

We found the multimodality gap requires kernel tuning to per-
form well on certain datasets. This was evident in non-Gaussian
data simulations, as with kernel tuning there is a perfect clustering
result for the spirals test data (Supplementary Fig. S17a), while with-
out kernel tuning the method fails to cluster correctly
(Supplementary Fig. S17b). Kernel tuning is performed by simply
changing the P parameter of the self-tuning kernel and for each ker-
nel finding the maximum multimodality gap between any pair of
eigenvectors. The kernel that yields the greatest gap is the optimal
kernel, where the most negative D value corresponds to that kernel
with the maximum gap (Supplementary Fig. S17c). We examined
the performance of the multimodality gap across the seven TCGA
multi-omic datasets to demonstrate its applicability as an alternative
method to the eigengap. This analysis found the multimodality gap
can provide different P values compared with the eigengap
(Supplementary Table S3). Preferable methods will vary according
to the data. For example, the multimodality gap (P¼0.0019) has a
lower P-value than the eigengap (P¼0.91) on the kidney cancer
data (Network, 2013). Including a second method to automatically
decide K gives the user power to find the best approach for their
data and presents a solution to an open problem in spectral
clustering.

4 Discussion

Spectrum provides density-aware spectral clustering for complex
omic data. Spectrum adapts to each new dataset by using each
point’s k-nearest neighbours and their distances, instead of parame-
ters that require tuning with each new dataset (Ng et al., 2002;
Zhang et al., 2011), when performing kernel calculations. This ena-
bles the method to work quickly and yield good results. Spectrum
was the fastest method in the single-omic and multi-omic TCGA
data analysis. Our data also demonstrate good performance with
Spectrum as lower P values and higher NMI values are often
obtained on real data. This is partially due to the density-aware ker-
nel that considers more local statistical properties of the data other
than scale (Zelnik-Manor and Perona, 2005). Increasing the similar-
ity between samples that share more common nearest neighbours
enhances intra-cluster similarity. This produces more compact clus-
ters and reinforces the underlying structure.

SNF was the first multi-view spectral clustering method to be
developed for multi-omic data (Wang et al., 2014). Spectrum is in
the same family of algorithms; however, it does not include methods
developed in the SNF study or advance upon them. Spectrum has
several differences: (i) A different kernel that adapts to local density
by strengthening local connections between points that share com-
mon nearest neighbours. (ii) A different data integration method
that uses a TPG integration and diffusion technique. (iii) An alterna-
tive method for finding K that analyses eigenvector distributions.
(iv) Use of GMM instead of k-means to cluster the graph’s eigenvec-
tors. GMM can detect clusters with different variance and is
preferred for spectral clustering (Zelnik-Manor and Perona, 2005).
(v) Spectrum performs kNN graph diffusion on a single-view where-
as SNF does not. This is because SNF only performs cross-diffusion
between two or more different kNN graphs (from different data
views). kNN graph diffusion is valuable, as has been demonstrated
to reduce noise (Shu and Latecki, 2016). Spectrum is a novel and
complementary tool.

Spectral clustering represents one of the most popular and prom-
ising techniques to integrate multi-omic data, partly because of the
many well-established multi-view data integration methods devel-
oped in computer science (Kumar et al., 2011; Rappoport and
Shamir, 2018; Shu and Latecki, 2016; Wang et al., 2014). However,
there are other interesting types of integrative methods not tested in
our study, including MANCIE

(Zang et al., 2016). MANCIE uses a correlation-based method
that allows one data view to modify data in a second view by taking
the first principal component or a weighted mean of the data.

Fast adaptive spectral clustering for a range of data 1165

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/4/1159/5566508 by guest on 12 January 2021

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz704#supplementary-data


Another method, NBS (Hofree et al., 2013) projects binary somatic
mutation data from cancer tumours onto public gene–gene inter-
action networks. Network propagation is applied to spread the in-
fluence of each mutation profile over its neighbourhood network.
The result is a matrix of continuous values for each gene that reflect
the network proximity of the gene to mutated genes in that patient.
This matrix can then be used for clustering. There have also been
efforts elsewhere to combine somatic mutation data with pathway
information to subtype cancer patients (Wang et al., 2018).

Spectrum could be used to integrate somatic mutation data from
tumours if the data were first made continuous, for example, as in
the NBS method. To accept binary data directly, the kernel would
have to be modified. We leave this for future work. The next step
for Spectrum is to allow for missing data when performing integrat-
ing multi-omic data. This was recently proposed in the NEMO spec-
tral clustering algorithm that uses mean imputation at the similarity
matrix level (Rappoport and Shamir, 2018).

The multimodality gap heuristic for finding K increases the flexi-
bility of Spectrum. This is because it can recognize both complex
shapes and Gaussian clusters. There are few good solutions to this
problem, none of which are implemented in a publicly available R li-
brary. The Zelnik-Manor self-tuning algorithm (Zelnik-Manor and
Perona, 2005) involves a gradient descent technique that is complex
to code and time consuming to execute. In contrast, the multimodal-
ity gap is relatively straightforward to implement, effective, and can
be used to tune the kernel. Non-Gaussian clusters may occur in flow
cytometry data (Zare et al., 2010) and in image analysis (Xiang and
Gong, 2008). Overall, Spectrum is a fast, sophisticated and efficient
clustering method and is well suited to clustering a range of data.
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