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Abstract

Fitting stochastic transmission models to electronic patient data can offer detailed insights

into the transmission of healthcare-associated infections and improve infection control.

Pathogen whole-genome sequencing may improve the precision of model inferences, but

computational constraints have limited modelling applications predominantly to small data-

sets and specific outbreaks, whereas large-scale sequencing studies have mostly relied on

simple rules for identifying/excluding plausible transmission. We present a novel approach

for integrating detailed epidemiological data on patient contact networks in hospitals with

large-scale pathogen sequencing data. We apply our approach to study Clostridioides diffi-

cile transmission using a dataset of 1223 infections in Oxfordshire, UK, 2007–2011. 262

(21% [95% credibility interval 20–22%]) infections were estimated to have been acquired

from another known case. There was heterogeneity by sequence type (ST) in the proportion

of cases acquired from another case with the highest rates in ST1 (ribotype-027), ST42

(ribotype-106) and ST3 (ribotype-001). These same STs also had higher rates of transmis-

sion mediated via environmental contamination/spores persisting after patient discharge/

recovery; for ST1 these persisted longer than for most other STs except ST3 and ST42. We

also identified variation in transmission between hospitals, medical specialties and over

time; by 2011 nearly all transmission from known cases had ceased in our hospitals. Our

findings support previous work suggesting only a minority of C. difficile infections are

acquired from known cases but highlight a greater role for environmental contamination

than previously thought. Our approach is applicable to other healthcare-associated infec-

tions. Our findings have important implications for effective control of C. difficile.
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Author summary

Preventing infections spreading in hospitals is a major priority for healthcare systems

globally. Mathematical models can be used with electronic hospital records to reconstruct

how infections spread, which in turn can help guide infection control interventions.

Sequencing the genetic code (DNA) of the bacteria that cause infections can help to follow

when transmission is occurring, as bacterial DNA from two patients infected from the

same source will likely be very similar. Our paper describes a new statistical method for

combining hospital records and sequencing data to track infections. We use our approach

to study over 1200 infections of Clostridioides difficile (C. diff.), which is a common cause

of diarrhoea in hospitals. We show that only a minority of infections are acquired from

other unwell patients, but the amount of spread varies by the subtype of C. diff involved.

We also show that different C. diff subtypes survive in the hospital environment for longer

than others and may need enhanced control strategies. We also can detect differences in

spread at different hospitals and show that by the end of the study we had largely elimi-

nated transmission of C. diff from unwell patients in our hospitals.

Introduction

Healthcare-associated infections have a substantial impact on the health and well-being of hos-

pitalised patients. Many are preventable through effective infection prevention and control.

However how to best target these interventions crucially depends on understanding how infec-

tion is transmitted.

Using data collected as part of routine healthcare, e.g. microbiology results and patient

admission data, stochastic transmission models can be used to estimate important transmis-

sion properties, in a way that is robust to the noisy and incomplete data available, and also pro-

vides an indication of the uncertainty surrounding estimates made [1]. For example, the

parameters governing transmission can be explored and the relative importance of different

routes of transmission, the properties of different pathogen strains, and patient and hospital-

level risk factors for transmission estimated. Although the relative extent of transmission on

particular hospital wards or from specific patient groups can be monitored via incidence data

alone, use of these models allows these differences to be estimated with much greater accuracy,

particularly in endemic diseases where there are often multiple potentially plausible sources

for each infection. As such, these models can also be used to provide metrics of infection con-

trol performance within and between healthcare institutions.

The availability of pathogen whole-genome sequencing data has enabled greater precision

around estimates of who infected whom, e.g. [2–4], and therefore also of the underlying trans-

mission parameters. These data can be used in a relatively simple way to exclude large numbers

of potential transmission sources if these infections differ substantially from a given case.

However, approaches that set a threshold for excluding transmission may falsely exclude some

transmission events and also may still leave multiple plausible sources of infection all related

within the threshold chosen. In contrast, probabilistic approaches can avoid hard cut-offs and

can also represent which of several potential sources is most likely based on genomic and epi-

demiological data.

Several approaches have been adopted for integrating pathogen genomic and epidemiologi-

cal data to study transmission. Some attempt to jointly reconstruct the transmission events

(the transmission tree) and the phylogenetic relationships between the resulting sequences e.g.

[5,6]. This has the advantage of letting the phylogenetic data inform the transmission tree and,
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vice versa, the epidemiological data inform the genomic analysis. However, these approaches

are computationally intensive, and so have been typically applied to smaller datasets with rela-

tively sparse epidemiological data and not, for example, representing the complex contact net-

work between patients admitted to different hospital wards over time. The alternative

approach is to first fix the phylogenetic relationship between sequences and then to fit an epi-

demiological model contingent on this or a distance-based summary of the fixed phylogeny.

This approach has been implemented by several authors, e.g. to study community-based trans-

mission of tuberculosis [7] and healthcare-associated transmission of methicillin-resistant

Staphylococcus aureus [4]. However, much of the literature is focused on outbreak investiga-

tion rather than on understanding the transmission of an endemic disease.

Here we describe a novel approach for integrating pathogen genomic data into a transmis-

sion model. We build on an approach we have used in previous descriptive studies[2,8,9] for

interpreting genetic distances between sequenced isolates based on coalescent theory using

rates of mutation and within host diversity. We also develop a sophisticated transmission

model for healthcare-associated Clostridioides difficile (formerly Clostridium difficile) and use

this to study endemic transmission within Oxfordshire, UK over 3.5 years, analysing data from

a previous descriptive study [2].

C. difficile is a major cause of healthcare-associated diarrhoea and can cause severe and life-

threatening infections. C. difficile is shed in the faeces of infected patients, including as hardy

spores which can persist in the environment for days to months. Within hospitals C. difficile
can be spread between patients via the hands of healthcare workers, shared equipment and the

wider hospital environment. Patients acquire C. difficile by ingestion. The onset of symptoms

frequently occurs following antibiotic exposure, which disrupts the normal faecal microbiome,

and allows C. difficile to flourish and cause toxin-mediated inflammation of the gut.

Over the last ten years substantial reductions in C. difficile incidence have been seen in the

UK, with varying explanations for this postulated, including reduced use of fluroquinolone

antibiotics [10], but also potentially better infection control [11]. Whilst others have applied

probabilistic transmission modelling approaches to study C. difficile [12–14], this has not been

done previously using genomic data and representations of the disease process vary. For exam-

ple, using a subset of the same data from Oxfordshire that we study here, one study used only

more limited typing data rather than whole-genome sequencing to estimate the relative contri-

bution of routes of transmission and differences in transmission rates between strains [15].

By fitting our transmission model to a large-scale dataset of over 1200 C. difficile infections

and accompanying sequence data, we demonstrate significant heterogeneity between the

transmission of different strains of C. difficile and show that both enhanced transmission rates

from infected cases and enhanced environmental persistence may underlie the success of

healthcare-associated strains. We are also able to highlight differences in transmission rates

between hospitals, medical specialties and over time.

Methods

Ethics statement

De-identified patient data were obtained from the Infections in Oxfordshire Research Data-

base (IORD) which has generic Research Ethics Committee, Health Research Authority and

Confidentiality Advisory Group approvals (19/SC/0403, 19/CAG/0144) as a de-identified elec-

tronic research database.

We describe an approach for combining data from electronic patient records on hospital

ward movements and whole-genome sequencing data from sampled cases to investigate trans-

mission of healthcare-associated infection. We reconstruct the timing and source of infection
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events, which we denote the transmission tree, and determine key parameters which underlie

the transmission process. Hospital admission and discharge times and the specific ward stays

within each admission are assumed to be available for all patients (cases and non-cases). For

patients diagnosed with an infection, we assume the time the diagnostic sample was obtained

is known and a whole-genome sequence of the resulting isolate is available. We apply our

methods to investigate the transmission of C. difficile, but applications to other healthcare-

associated infections would also be possible.

Transmission model

Transmission is represented by an SIR (susceptible, infectious, recovered) epidemiological

model, using discrete time in whole days (Fig 1). The use of discrete time reflects the precision

of available data on ward admission and discharge times and patient sampling times. For the

purposes of the model, once infected, patients were assumed to recover and then be protected

from a repeat infection with the same sequence type, as only 41/1223 (3%) of patients in a pre-

vious study using the same dataset had evidence of the same infection persisting or recurring

beyond 90 days, and many of these can be allowed for by modelling recovery with a sufficiently

long-tailed distribution [2]. Patients with several genetically distinct infections are included in

the dataset once for each infection with a different multi-locus sequence type (MLST). This

duplication of patients had minimal impact on the numbers of patients overall, as the number

of non-cases was considerably greater than the number of cases, there were 1223 cases overall

and 291,669 non-cases, which is broadly similar to estimates of around 2 cases to 1000 non-

cases in previous studies in other settings [16].

Fig 1. Transmission model states. Both boxes shaded blue represent an infectious patient.

https://doi.org/10.1371/journal.pcbi.1008417.g001
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Patients can start the study period susceptible or infected (with probability α). We assume

transmission occurs as a density dependent process, i.e. proportional to the number of infec-

tious individuals present. (As ward occupancy in our setting is near 100%, this is very similar

to the alternative frequency dependent formulation where the force of transmission depends

on the proportion of all patients present who are infectious.) Susceptible patients can be

infected by several sources while in hospital: infectious patients on the same ward (at a rate βw

per infectious patient per day); infectious patients in the same hospital, but on a different ward

(βh); ward-based environmental contamination left by previous patients on the same ward

(detailed below); and a background rate representing infection from unsampled sources, for

example unsampled asymptomatic patients (βbh). Patients can also become infected in the

community, at a community-specific background rate (βbc).

As bed-level admission data and detailed hospital layout data are not available, mixing of

patients at the level of a ward is assumed to be homogenous such that any infectious patient

present on the ward on a given day is equally likely to be the source of a new infection. In sup-

port of this, most patients in the dataset studied did not have individual patient rooms, and

commodes and bathroom facilities were typically shared at a ward level. Mixing is also

assumed to be homogenous at a hospital level as well when considering infections transmitted

from patients on other wards, e.g. via visits to common areas such as radiology or via contact

with the same healthcare workers.

Patients are only considered infectious while in hospital, from the time interval after they

become infected, until the time interval before they recover. While infectious, patients can

infect other patients on any day during their hospital stay, including the day of admission and

day of discharge.

We allow for persisting contamination of the hospital environment by C. difficile spores

after a patient has left a ward or recovered. Patients are assumed to leave environmental con-

tamination on any ward they are admitted to while infectious. The environmental contamina-

tion starts in the time interval after a ward discharge, or the time interval in which a patient

recovers. The force of infection from environmental contamination is additive over all contrib-

uting patients. Per patient, the initial force of infection from environmental contamination is

the same irrespective of the duration of ward stay while infectious and is determined by the

product of ϕc (constrained to be between 0 and 1, representing the relative infectiousness of

environmental contamination compared to an infectious patient on the same ward) and βw.

The level of environmental contamination from each source also decays over time following a

geometric distribution (analogous to an exponential distribution in continuous time), gov-

erned by a parameter, ω, the proportion of the force of infection lost after each time step.

The time interval between a patient becoming infected and being sampled is assumed to fol-

low a negative binomial distribution (analogous to a gamma distribution in continuous time),

with parameters λmean and λsize. Patients are assumed to be infectious during this period, rep-

resenting a combination of possible transmission from i) pre-symptomatic colonised patients

who will go on to display symptoms and ii) from symptomatic patients prior to diagnosis.

Weakly informative priors were chosen such that most intervals were expected to be<100

days. Explicitly modelling this interval is adopted to allow the duration of time between acqui-

sition and diagnosis in patients infected by other patients (where the source is sampled and

therefore the time of acquisition is relatively constrained by ward overlaps) to inform on the

likely time of acquisition in patients infected by background sources in the hospital and com-

munity (where the source is not sampled nor the time of transmission otherwise constrained).

If this interval is estimated to be long this will favour acquisition from community-based back-

ground sources, conversely if it is short, hospital-based background sources are more likely.
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Similarly, the time interval between a patient being sampled and recovering, i.e. ceasing to

be infectious, is also assumed to follow a negative binomial distribution, with parameters γmean

and γsize. The timing of sampling is assumed to determine the start of recovery as only patients

diagnosed with an infection are considered and these patients receive treatment following

sampling. Weakly informative priors were chosen to set the median recovery time to around

12 weeks (in keeping with previous empirical observations [17]), but allowing for shorter

times, and times up to a year.

For computational tractability, patients who are not sampled and patients with only nega-

tive tests for infection are assumed not to be cases, i.e. the diagnostic test is assumed to be per-

fectly sensitive. Allowing for this simplifying assumption, as diagnostic testing for C. difficile is

in fact imperfectly sensitive, transmission events arising from any unsampled or falsely nega-

tive patients, as well as those asymptomatically colonised without ever developing infection,

are attributed to the hospital background source. The formulation of the model also means

that there will be patients who are asymptomatically colonised with C. difficile, but who do not

go on to become infected, who are labelled susceptible, as the model only considers acquisition

that leads to a subsequent infection.

Transmission model parameters are summarised in Table 1.

Inference overview

We use a similar representation to Worby et al [4] for the likelihood of the observed data for a

given set of transmission parameters. We extend this approach to include recovery from

Table 1. Transmission model parameters and priors. For parameters constrained to be positive, normal priors were truncated at zero. In addition to the listed parame-

ters, augmented data included the unobserved transmission tree, consisting of infection times and sources denoted T and the set of unobserved recovery times denoted R.

Model

component

Parameter Description Prior Justification

Transmission

model

α Probability already infected at the start of the study

period, i.e. time, t = 0 (constrained to between 0 and

1 by logistic transformation)

Normal(mean = -8, sd = 1),

on untransformed scale

Assuming that the probability of starting infected

is low, i.e. ~1 in 3000, reflecting annual incidence

of ~1 in 1000 in the at risk population, and

duration of ~100 days[18]

βbh Daily rate of transmission from unsampled sources

while in hospital (asymptomatic carriers,

environment, etc.)

Gamma(shape = 2,

scale = 0.002)

Arbitrary, but subsequent posterior estimates

substantially different (e.g. S15 Fig)

βbc Rate of transmission per day spent in the community

from any source

Gamma(shape = 2,

scale = 0.002)

βw Daily rate of transmission per infected individual on

the same ward

Gamma(shape = 2,

scale = 0.002)

βh Daily rate of transmission per infected individual on

other wards

Gamma(shape = 2,

scale = 0.002)

ϕc The relative infectiousness of ward contamination

compared to an infectious individual on the same

ward (constrained to between 0 and 1 by logistic

transformation)

Normal(mean = 0,

sd = 1.7), on

untransformed scale

Minimally informative between 0 and 1 on

transformed scale

ω Geometric parameter determining the rate of decline

of ward contamination (constrained to between 0

and 1 by logistic transformation)

Normal(mean = 0,

sd = 1.7), on

untransformed scale

Minimally informative between 0 and 1 on

transformed scale

λmean and

λsize

Negative binomial parameters determining the time

between infection and sampling

Gamma(shape = 3,

scale = 10) and Gamma

(shape = 0.7, scale = 2)

See Methods text

γmean and

γsize

Negative binomial parameters determining the time

between sampling and recovery

Normal(mean = 90,

sd = 15) and Normal

(mean = 3, sd = 0.5)

Overall θ Summary notation for all parameters.

https://doi.org/10.1371/journal.pcbi.1008417.t001
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infection and multiple routes of transmission in hospital as above. Additionally, we present an

alternative formulation for the genetic component of the likelihood.

We denote the observed set of sample collection dates E and the observed sequencing data

S. The augmented unobserved transmission tree, consisting of infection times and sources is

denoted T and the set of unobserved recovery times R. The likelihood of these observed and

augmented data given our parameters, θ, can be factorized as follows:

PrðS;E;T;RjyÞ ¼ PrðSjE;T;R; yÞPrðE;T;RjyÞ

As the sequencing data, S, does not depend on the recovery times, R, this simplifies to:

PrðS; E;T;RjyÞ ¼ PrðSjE;T; yÞPrðE;T;RjyÞ

Taking each element of the likelihood in turn, Pr(E, T, R|θ) represents the transmission

model, which is described in more detail below. Pr(S|E, T, θ) is the likelihood of the genetic

data for a given transmission tree and sampling dates.

Transmission model likelihood

To determine Pr(E, T, R|θ), we first consider a single patient, i, who is not infected at the start

of the study (with probability (1−α)), who becomes infected at tinfect
i . The likelihood of their

infection time, tinfect
i , source of infection, sampling time, tsamp

i , and recovery time, trec
i , given the

parameters θ, is the product of: the probability of avoiding infection until ðtinfect
i � 1Þ; the prob-

ability of being infected at tinfect
i ; the probability of the specific source of their infection given

infection at tinfect
i ; the probability of being sampled at tsamp

i given tinfect
i ; and the probability of

recovering at trec
i given tsamp

i .

The probability of avoiding infection until ðtinfect
i � 1Þ is given by:

Prðavoid infection until tinfect
i � 1jyÞ ¼ expð�

Xt
infect
i � 1

t¼0

Bt
iÞ

where Bt
i is the total force of infection experienced by a particular patient, i, at time t.

Patients experience a constant background rate of infection from unsampled sources.

When a patient is located in the hospital this is given by βbh and when their location is the

community by βbc. For a patient, i, admitted to hospital the force of infection at time t is deter-

mined by the ward within the hospital they are admitted to, denoted a. Ia
wðtÞ is the number of

infectious patients on ward a at time t, Ia
hðtÞ is the number of infectious patients on other

wards in the same hospital (multiple hospitals are present in the dataset), and Ca
wðtÞ is the level

of environmental contamination on ward a, giving:

Bt
i ¼

bbc; location ¼ community

bbh þ bwIa
wðtÞ þ bhIa

hðtÞ þ bw�cCa
wðtÞ; location ¼ ward a

(

ϕc denotes the relative infectiousness of ward contamination compared to an infectious

individual on the same ward (constrained to between 0 and 1). The level of ward contamina-

tion at time t, Ca
wðtÞ, is determined by the τ(t) patients who have been previously discharged

from the same ward, a, while still infectious or have recovered on the ward. The contribution

of each such patient, p, to the total environmental contamination at time t declines
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geometrically with increasing time between ta
c ðpÞ, the time of discharge or recovery of patient

p and t:

Ca
wðtÞ ¼

XtðtÞ

p¼1

ð1 � oÞ
ðt� tac ðpÞÞ

ω is a geometric parameter determining the rate of decline of ward contamination.

The probability of patient i being infected by any source at tinfect
i , conditional on being unin-

fected at tinfect
i � 1 is:

Prðinfected at tinfectjyÞ ¼ 1 � expð� Btinfect

i Þ

When we come to evaluate the genetic support for a transmission event a specific source of

transmission needs to be proposed. Therefore, we include individual sources of infection in

the transmission model. We define the probability, zi, of patient i being infected by a specific

source patient or background source, given patient i became infected at tinfect
i , based on the

route of transmission as in Table 2.

For a patient who is never infected, the probability of avoiding infection is calculated as

above, but now summing over all time considered (t = 0 to t = tmax).

The probability of a patient i being sampled at tsamp
i is defined relative to their infection

time, tinfect
i , such that the probability of being sampled ðtsamp

i � tinfect
i Þ days after infection is

given by the probability mass function, f, for the negative binomial distribution with parame-

ters λmean and λshape, denoted κ. Therefore, for all n infected patients,

Yn

i¼1

f ðtsamp
i � tinfect

i Þ ¼
Yn

i¼1

ki

Similarly, the probability of recovering at trec
i is defined relative to the sampling time, tsamp

i .

The probability of recovering ðtrec
i � tsamp

i Þ days after sampling is given by the probability mass

function, g, for the negative binomial distribution with parameters γmean and γshape, denoted ψ.

Therefore,

Yn

i¼1

gðtrec
i � tsamp

i Þ ¼
Yn

i¼1

ci

Overall the likelihood Pr(E, T, R|θ), including those not infected, is the product of these

terms above, for the set M of m patients who remain uninfected at tmax and the set N of n

Table 2. Probability of infection by a given source patient or background source.

Location Source type Probability of a specific source Source

Community Community background 1 Background

Hospital Hospital background bbh=B
tinfect

i
Background

Ward bw=B
tinfect

i
Specific patient

Hospital bh=B
tinfect

i
Specific patient

Ward contamination
bw�cð1 � oÞ

ðtinfect
i � tac ðpÞÞ=Btinfect

i
Contamination arising from a specific patient, p

https://doi.org/10.1371/journal.pcbi.1008417.t002
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infected patients, q of whom start infected:

PrðE;T;R j yÞ ¼ aqð1 � aÞ
ðmþnÞ� q

�
Y

i2N

 

1tinfect

i <0

þ

 

1tinfect

i �0
exp

 

�
Xmaxð0;tinfect

i � 1Þ

t¼0

Bt
i

!

zi

�

1 � exp
�

� B
tinfect

i
i

��!!

�
Y

j2M

exp

 

�
Xtmax

t¼0

Bt
j

!

�
Y

i2N

kici

Where 1tinfect
i <0

is an indicator variable taking the value 1 where the specified condition is

true, and zero otherwise.

Genetic model and likelihood

Assessing the likelihood of a collection of genomes conditional on the underlying transmission

tree is very challenging [4–7], the more so given the presence of recombination [19,20]. To

make progress, we adopted an approximate approach that sought to exploit the valuable infor-

mation about transmission while achieving computational efficiency and avoiding artefacts

caused by recent recombination.

Conceptually, we evaluated the joint likelihood of the observed genomes given the trans-

mission events and other parameters. In practice, we defined the approximate likelihood so

that it depended only on an n×n pairwise genetic distance matrix d, distances which we

inferred by estimating a recombination-corrected maximum likelihood phylogeny using

PhyML[21] and ClonalFrameML [19].

The structure of our approximate likelihood was a composite or quasi-likelihood of the

form

PrðSjR; E;T; yÞ �
Yn

i¼1

PrðSijfSk : k 6¼ iÞ;R; E;T; yÞ

Here we consider the likelihood of each sequence, Si, given all other sequences, denoted Sk.

We approximated each term in the likelihood depending on whether the source of infection

was another case versus background.

Infection from another case

When the source of infection of case i was patient j, we approximated the conditional likeli-

hood by considering only the integer genetic distance between the two genomes, dij. This dis-

tance is determined by the extent of with-host diversity in the transmission source, the rate of

mutation (μ per unit time), and time t between their samples. Based on coalescent theory, and

assuming mutations are rare with respect to the length of the genome (known as the infinitely

many sites assumption), the pairwise likelihood depends only on the genetic distance between

the two genomes. This can be described as the sum of two Poisson processes, firstly the varia-

tion that arose in the time, t, between the samples being taken, and secondly the variation that

has arisen in the time, u, between the time of the most recent common ancestor of the two

samples and the time the first sequence was obtained, t0 (Fig 2).
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We make the simplifying assumption that we can ignore the genetic bottleneck that

founded the infection in the source patient j and assume the source had bacterial effective pop-

ulation size Ne. If u were known then, by the infinitely many sites assumption, we would

model dij using a Poisson distribution with mean equal to the mutation rate μ multiplied by

the total time for mutations to occur (t+2u):

dij � Poisðmðt þ 2uÞÞ

Since u is not known we integrate over its possible values. We approximate by assuming a

standard coalescent process with effective population size Ne, which implies that:

u � Exp
1

Ne

� �

The probability of a given SNP distance conditional on u is, from the Poisson distribution:

Prðdijju; t; mÞ ¼
e� mðtþ2uÞðmðt þ 2uÞÞdij

dij!

The probability density of u is, from the exponential distribution:

p ujNeð Þ ¼
1

Ne
e�

1
Ne

u

Fig 2. Coalescent-based model. Each box represents an infected patient (blue: patient j, yellow: patient i). Time runs from the bottom of the plot to the top. Samples are

shown as circles. t0 denotes the time of the first sample, t1 the time of the second sample. t is the time between the samples, and u the time between the first sample and

the common ancestor of the samples.

https://doi.org/10.1371/journal.pcbi.1008417.g002
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Integrating over all possible values of u gives:

PrðdijjNe; t; mÞ ¼
Z 1

0

Prðdijju; t; mÞpðujNeÞdu

¼
e� mt

Nedij!

Z 1

0

ðmðt þ 2uÞÞdij e� u 2mþ 1
Neð Þdu

¼
e

t
2NeG 1þ dij; mt þ t

2Ne

� �
ð2mÞ

dij

Nedij! 2mþ 1

Ne

� �dijþ1

where G 1þ dij; mt þ t
2Ne

� �
is an incomplete gamma function.

Therefore we assume

PrðSijfSk : k 6¼ ig;R;E;T; yÞ / PrðdijjNe; t; mÞ:

where Ne and μ are contained within θ and t depends on the sampling times (E), and i and j
are drawn from the transmission tree (T).

Infection from background

The other possible scenario is where a case is inferred to have been acquired from a hospital or

community background source, i.e. the immediate source has not been sampled. We approxi-

mated the conditional likelihood by considering only the integer genetic distance dij between

the genome of case i and another case j, assumed to be sampled at random from the popula-

tion. For a random member of the population, not related by recent transmission, the coales-

cence time is likely to be much longer, to the extent that time differences between samples are

assumed to be negligible compared to the age of the population as a whole. The distribution of

coalescence times was parameterized by Npop, the effective size of the background population.

If the time, v, to most recent common ancestor of a pair of samples i and j were known

then, by the infinitely many sites assumption, we would model their genetic distance, dij, with

a Poisson distribution with mean equal to the total time for mutations to occur, 2v, multiplied

by the mutation rate μ:

dij � Poisð2vmÞ

Since v is not known we integrate over its possible value. We approximate by assuming a

standard coalescent process with effective population size Npop, which implies that:

v � Exp
1

Npop

 !

Integrating over v gives:

PrðdijjNpop; mÞ ¼

Z 1

0

Prðdijjv; mÞpðvjNpopÞdv

¼
2Npopm

2Npopmþ 1

 !dij
1

2Npopmþ 1
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which is a geometric distribution with parameter p ¼ 2Npopm

ð2Npopmþ1Þ
, probability PrðdijjpÞ ¼ pdijð1 � pÞ

and mean 2Npopμ, which is the expected diversity of randomly sampled sequences from the

population.

Since case j was chosen at random, we next averaged over the possible identity of case j. For-

mally, we adopted a quasi-likelihood of the form:

PrðSijfSk : k 6¼ ig;R; E;T; yÞ / ð
Y

j6¼i

PrðdijjpÞÞ
1

n� 1

Similar to above, Npop and μ on which p depends are contained within θ and the pool of n
cases from i and j are drawn is specified by the transmission tree (T). We took a geometric

mean rather than an arithmetic mean because this gave superior performance in preliminary

simulations. While our genetic likelihoods were highly approximate, we subjected the method

to rigorous testing to establish satisfactory performance in detailed simulations as detailed in

the first section of the Results.

Table 3 provides a summary of the genetic model parameters.

Markov chain Monte Carlo algorithm and data augmentation

Samples are drawn from π(θ|E, S) using MCMC, also integrating over all possible values of the

augmented variables T and R, as by Bayes theorem:

pðyjS; EÞ /
Z

T;R
pðS;E;T;RjyÞpðyÞ

Initial infection times and recovery times are set by randomly sampling values relative to

the sampling time from two negative binomial distributions, determined by the starting values

of λmean and λshape and γmean and γshape. Initially the source of all infections is set to be back-

ground, with a community or hospital route depending on the patient’s location at the sam-

pled infection time. Where the sampled infection time is before t = 0, the patient is initially set

to have started infected.

The MCMC algorithm proceeds in three stages per iteration, 1) parameter updates, 2) one-

at-a-time infection time, source and recovery time updates, 3) block updates to infection times

and sources (summarised in S1 Fig).

The parameters are updated one at a time, using a univariate normally distributed proposal

centred on the current value. If the proposed parameter value is negative, except for logistic

transformed parameters, the proposal is rejected. The variance of the proposal distribution is

adapted during the initial part of the chain to target a proportion of accepted proposals

between 0.20 and 0.40 and the adaptive phase discarded as part of the burn-in period.

Table 3. Genetic model parameters and priors. For parameters constrained to be positive, normal priors were truncated at zero.

Model

component

Parameter Description Prior Justification

Genetic model μ Mutation rate per genome per day Normal(mean = 0.8/365.25,

sd = 0.295/365.25)

Point estimate and confidence interval from [2]

Ne Effective bacterial population size

within an infected patient

Normal(mean = 74.0,

sd = 18.5)

Point estimate and confidence interval from [2]

Npop Effective bacterial population size

with the population reservoir

Gamma(shape = 2,

scale = 10000)

Represents mean pairwise diversity between randomly chosen

representatives of a sequence type of ~100 SNPs.

Overall θ Summary notation for all transmission and genetic model parameters:

{α, βbh, βbc, βw, βh, ϕc, ω, λmean, λsize, γmean, γsize, μ, Ne, Npop}

https://doi.org/10.1371/journal.pcbi.1008417.t003
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For each iteration, following proposals/updates for each of the parameters, 10% of cases are

selected at random. For each selected case, updated infection times are proposed one at a time

from a normal distribution centred on the current value. The standard deviation of the distri-

bution can take either a small value (5 days) or large value (25 days) with 50% probability to

allow for moves of different sizes. If a proposed infection time is not compatible with the exist-

ing transmission tree the move is rejected, i.e. because the new infection time is after an

onward transmission, or after a ward discharge that has left contamination leading to onward

transmission. Based on the proposed infection time, a source of the infection is drawn. The rel-

ative probability of each source is determined by the product of their relative infectiousness

(see Table 2) and their pairwise genetic likelihood. The proposed new infection time and

source together are then compared to the current state. As the change in infection time is sym-

metrically proposed, with equal probabilities of large and small moves, this does not itself con-

tribute to the Hastings ratio, which is calculated as the probability of choosing the current

source, given the current infection time divided by the probability of choosing the proposed

source, given the proposed infection time.

Updates to recovery times are made in a similar way, one-at-a-time for cases in the 10%

chosen, proposing an updated time from a normal distribution centred on the current time

(standard deviation 25 days), rejecting moves not compatible with the transmission tree, i.e.

moving the recovery time before an onward transmission, moving the recovery time before a

ward discharge that leaves contamination that leads to onward transmission, or moving the

recovery time later such that an existing transmission via contamination can no longer occur.

Finally, at each iteration, one block update of infection times and sources is proposed. This

is to allow reversal of the direction of transmission, which is only possible when the sources of

two or more infections are updated simultaneously. A case, z, is selected at random, all cases

that have z as their direct or indirect source are identified following the edges of the transmis-

sion tree, until a maximum limit is reached of 10 cases. For case z and the subsequent cases

together, the set of cases Z, all transmission events leading to these cases are removed from the

list of constraints on updated infection times. New infection times are proposed for each of the

cases in Z. Then working forwards in time, new sources are sampled as above for each case,

each conferring a component to the overall Hastings ratio. The acceptance ratio is then calcu-

lated for the new infection times and sources as a whole.

Parameter priors, π(θ), are given in Tables 1 and 3. Default values assume the rate of muta-

tion and extent of within host genetic diversity are previously well described, hence the rela-

tively tight priors which match previous findings [2].

For each analysis at least 3 separate chains of at least 50000 iterations were run and evalu-

ated to confirm convergence. Chains were visually inspected to set an appropriate burn-in of

�20%. Convergence was confirmed using Gelman-Rubin-Brooks plots, generated using the R

coda library, and requiring scale reduction factors of�1.1 to be achieved for each parameter.

Table 4. Simulation scenarios. Simulated scenarios for a hospital with 4 wards, serving a population of 6000 patients at risk of admission with a daily probability of

admission of 0.002 and a mean length of stay of 5 days. Simulation run for 365 days. Sampling distribution parameters, μ = 10, size = 5; Recovery distribution parameters,

μ = 90, size = 3. Assuming 1 mutation per genome per year, Npop = 20000 and Ne = 22.5. All patients assumed to start susceptible.

Scenario βbh βw βh βbc ω ϕc

Ward only 0.002 0.005

Ward + hospital 0.002 0.005 0.001

Ward + hospital + short duration spores 0.002 0.005 0.001 0.3 0.9

Ward + hospital + long duration spores 0.002 0.004 0.001 0.1 0.5

Ward + hospital + spores + community 0.001 0.003 0.001 0.00003 0.2 0.8

https://doi.org/10.1371/journal.pcbi.1008417.t004
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After discarding the burn-in period, all chains were combined, including sufficient iterations

to achieve an effective sample size of�200 for all parameters.

C++ code implementing our model is available at https://github.com/davideyre/

transmission_inference.

Simulations

We used simulation to assess the performance of our model by comparing model inferences

based on simulated ward movements, sample dates and genomic data, with the known under-

lying simulated transmission events and parameters. Fifty simulations, 10 from each of 5 sce-

narios were generated using a simulated community of individuals admitted to a hospital at

random, using the transmission model described above. The 5 scenarios varied in complexity

(Table 4), the simplest included transmission in hospital from infected patients on the same

ward and from other sources in the hospital at a constant rate, denoted hospital background

above. The most complex also allowed for spore-based transmission arising from persistent

ward contamination after discharge or recovery of a case, transmission across different hospi-

tal wards, and a community-based background rate of transmission. Performance under dif-

ferent durations of spore persistence was tested (“short” and “long” duration spores). Genetic

data were simulated using the multi-species coalescent as described previously [22] with a nar-

row simulated bottleneck at transmission. Simulation parameters were chosen to represent a

population at relatively high risk of admission to hospital and contracting C. difficile, i.e. typi-

cal of a cohort of patients that might be at risk of admission to an acute medical ward. The

intervals between acquisition and sampling and sampling and recovery were chosen to be sim-

ilar to the priors provided above, i.e. consistent with previous literature. Transmission parame-

ters were chosen such that the number of infections acquired by each route of transmission

simulated typically exceeded 10–20 cases.

We compared the performance of our model to two alternatives. The first was to fit the

same transmission model but without genomic data to investigate the added value of

sequencing data. The second was a heuristic algorithm for assigning the source of infection

similar to one we have used in previous descriptive studies [2,17]: initially all prior cases

within �2 SNPs of a case were considered potential sources and ranked as follows,

accounting for epidemiological links: potential sources with shared time on the same ward

as the case, following the source’s diagnosis and prior to the case’s, were ranked highest.

Cases admitted to the same hospital ward, within �28 days following the discharge of an

infected source, were ranked next, and finally cases sharing time in the same hospital, but

not in the same ward were ranked last. Within each class of transmission route, the most

plausible source was chosen as the source diagnosed closest in time to the diagnosis of the

case. Similar to C. difficile surveillance recommendations [23], cases >2 SNPs from any

previous case, or without an epidemiological link to another case �2 SNPs, were classified

as acquired from hospital background if diagnosed within 12 weeks of a hospital stay, and

community acquired if >12 weeks since the last hospital exposure (or if no previous hospi-

tal exposure).

We conducted additional simulations to test if our model was robust to variation in the trans-

mission parameters by setting the daily probability of hospital admission to 0.02 to increase the

number of patients in hospital, but reducing βbh, βw, βh to 2e-4, 2e-4 and 3e-5 respectively and set-

ting βbc to zero and ω and ϕc to 0.2 and 0.8. We also undertook simulations to assess the impact

of reducing the sample size, and therefore power, setting βbh, βw, βh to 0.002, 0.005 and 0.001

respectively and setting βbc to zero and ω and ϕc to 0.2 and 0.8, we generated 10 simulations each

for population sizes of 6000, 5000, 4000, 3000, 2000, and 1000 individuals.
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C. difficile transmission in Oxfordshire

We applied our model to a previously published whole-genome sequencing study of consecu-

tive C. difficile infections in Oxfordshire, UK, from 2007–2011 [2]. Sequences were available

from 1223 CDI cases, together with dates of sampling. Data on ward admissions and dis-

charges for all patients, cases and non-cases, were available for the study period. Separate anal-

yses were performed for infections from each of the 10 most prevalent subtypes of C. difficile,

based on MLSTs determined previously [2]. This approach allowed differences in transmission

properties of different sequence types (STs) to be investigated and also allowed for separate

estimates of Npop per ST, reflecting the differing levels of genetic diversity present within each

ST. To generate aggregate findings across all STs, 10,000 samples were obtained from each

ST’s final combined MCMC chain. For each iteration counts of the transmission events of

each type were combined across STs, and the posterior mean and highest posterior density

(HPD) interval calculated. We used previous estimates of C. difficile mutation rates and the

extent of within-host diversity [2] to set relatively tight priors for μ and Ne, rather than expect

our model to estimate these parameters from the data.

Results

Simulations demonstrate our model is accurate and well calibrated

We used simulated data to assess the accuracy of inferences made using our transmission

model. Fifty simulations were generated, 10 from each of 5 transmission route scenarios. In

the simplest scenario, in which transmission could arise from other cases present on the same

ward or at a constant background rate for patients admitted to the hospital (reflecting unmea-

sured sources of in-hospital transmission), the median (range) percentage of true source types

(ward vs. background) correctly estimated as the most likely was 92.4% (83.3–96.6%), and the

percentage of correct individual sources was 86.5% (65.0–94.9%).

In an alternative scenario allowing for transmission via one of five routes (hospital back-

ground, community background, ward, spore and hospital-wide transmission) the percentages

were 83.9% (80.0–92.3%) and 84.4% (76.6–91.3%) respectively. The higher value for the cor-

rect individual source reflects that the correct source patient could be identified but with the

wrong transmission route, e.g. ward vs. spore-based transmission.

Results from these and other scenarios are shown in Fig 2. Uncertainty in the estimates was

well calibrated, with the 95% highest posterior probability sets (95% credibility intervals, CI)

capturing the true source type >95% of the time in 49/50 (98%) simulations and true individ-

ual sources>95% of the time in 48/50 (96%) of simulations (Fig 3A and 3B).

Similar proportions of simulated source types and individual sources were correctly identified

using a heuristic transmission rule that assigned the single most likely source of each case based

on genetic similarity and temporospatial proximately of cases, in the simplest scenario 95%

(88.5–98.4%) and 86.3% (78.8–98.4%), and in the scenario with five routes 83.4% (77.1–88.5%)

and 84.5% (77.3–91.3%) respectively (Fig 3C and 3D). In contrast, the performance of the trans-

mission model without genetic data was substantially worse (Fig 3C and 3D). However, estimates

from the heuristic transmission rule showed consistent biases that were not present in estimates

from the transmission model using genetic and epidemiological data (Fig 4). The heuristic rule

contains a hierarchy of transmission events, with ward-based transmission favoured over trans-

mission via spores left behind after discharge/recovery or hospital-wide transmission. This

resulted in consistent over-estimates of the extent of transmission via direct contact on the same

ward, but under-estimates of the extent of transmission via spores or across hospital wards.
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Fig 3. Source type and individual source attribution in simulated data. The left-hand columns (panels A and C) display the accuracy of inferences about the source

type, i.e. distinguishing between hospital background, community background, ward, spore and hospital-wide transmission. The right-hand columns (panels B and D)

display the accuracy of inferences about the specific patient source of each infection (for background source types this is an unknown source). Panels A and B display

inferences from the full transmission model. Panels C and D display the accuracy of predictions running an inference model without using genetic data (circles) or

based on a heuristic rule (squares). CI, credibility interval.

https://doi.org/10.1371/journal.pcbi.1008417.g003
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Further details of the precision of source type attribution within each scenario are provided

in S2–S6 Figs. Details of the accuracy of inferred infection times and parameter estimates are

provided in S7 and S8 Figs. We also undertook a sensitivity analysis of the performance of our

model with lower rates of transmission, which demonstrated model estimates remained accu-

rate and uncertainty estimates well-calibrated (S9 Fig). We also simulated the effect of reduced

sample size on the power of our model to estimate transmission parameters (S10 Fig, S1

Table), which suggested that around 40–70 cases were sufficient to estimate the main transmis-

sion parameters.

Oxfordshire C. difficile infection–inference demonstrates strain-specific

differences in transmission

Isolates from 1223 of 1250 consecutive hospital and community onset CDI cases between 01

September 2007 and 31 March 2011 in Oxfordshire, UK, underwent whole-genome sequenc-

ing as previously described [2]. Linked epidemiological data on all patient admissions and

ward movements, for cases and non-cases, at the county’s four hospitals were available. All iso-

lates in the study also underwent MLST, the incidence of each ST in the study and temporal

trends in STs are shown in S11 Fig. The most notable change was in ST1, which was the most

common ST overall, but declined markedly during the study, such that only 2 ST1 CDIs were

seen in the final year of the study, i.e. after 31 March 2010. S12 Fig shows a maximum
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likelihood phylogeny of the 1223 C. difficile genomes studied. C. difficile follows a conserved

clade structure, with 5 major clades, and within these clades the large majority of genomes

from different STs form conserved sub-clades. Therefore, to account for differences in the

transmission of different C. difficile lineages and allow comparisons between lineages in a way

compatible with previously published literature, 11 separate models were fitted for the 10 most

common STs, and the remaining STs as a single group. Although the group of “Other” STs is

genetically diverse, the fact that these STs are relatively less frequent reflects that they share in

common more limited healthcare-associated transmission. We therefore analysed these line-

ages as a single group as we lacked sufficient numbers of cases to analyse each separately. The

extent of genetic diversity within each ST is summarised in S13 Fig.

Routes of acquisition

Summarising the findings using posterior means, of the 1223 cases, 262 (21% [95% CI 20–

22%]) were estimated to have been acquired from another known case: 121 (10% [9–11%]) via

contact during overlapping ward stays, 96 (8% [6–9%]) by spores left behind after discharge or

recovery, and 46 (4% [3–5%]) via contact during overlapping stays in different wards. The

remaining 950 (78% [77–79%]) cases were estimated to be acquired from other unmeasured

sources of transmission. Based on the assumption that the time between acquisition and sam-

pling was similar in hospital to the community, then 819 (67% [66–68%]) were attributed to

hospital-background and 131 (11% [10–11%]) to the community. However, given there are

several possible reasons that the time interval between acquisition and sampling may vary by

patient location, this breakdown by hospital versus community should be interpreted with

caution and the headline figure of 78% [77–79%] of cases attributed to unmeasured sources

regarded as the main result.

There was heterogeneity by ST in the proportion of cases acquired from a known case,

which was highest in ST1 (most common ribotype equivalent: 027), 63% (131.2/214 cases, 95%

CI 58–67%), ST42 (ribotype-106), 43% (19.6/45 cases, 40–44%), and ST3 (ribotype-001), 36%

(22.7/63 cases, 30–41%), but<10% in most other STs (Fig 5A and 5B). All three ribotypes

(027, 106, and 001) have been associated with healthcare-associated outbreaks [24], with ribo-

type-027 in particular regarded as an epidemic strain [25].

The proportion of cases acquired in the community were similar by ST (Fig 5C), but highest

for ST10/44 (ribotype-015) and ST11 (ribotype-078). Sequence types associated with higher

rates of transmission from known cases (ST1, ST3 and ST42) as well as having the greatest pro-

portion of cases acquired by direct-ward contact, had higher proportions of cases arising from

spores, i.e. residual ward contamination left after discharge or recovery of a case, 31% (23–

37%), 11% (5–16%), 19% (11–27%) respectively (Fig 5D–5F).

Parameter estimates, by ST

Parameter estimates by ST are shown in the Supplementary Materials (S14 Fig shows a exam-

ple set of MCMC traces, S15–S24 Figs provide summary plots for all parameters and distribu-

tions for the transmission parameters). The point estimates for the transmission rate (per

10,000 person bed-days) from other cases present on the same ward, βw, were highest for ST1

(2.5 [95%CI 1.6–3.5]), ST3 (2.6 [1.1–4.1]), and ST42 (3.1 [1.4–5.1]). The rate was significantly

higher in ST1 than ST6 (1.2 [0.3–2.2], p = 0.03), ST8 (1.1 [0.4–1.8], p = 0.01), ST44 (0.7 [0.05–

1.5], p = 0.005), and the other ST group (1.1 [0.6–1.7], p = 0.004), however the relatively wide

credibility intervals shown in S15 Fig reflect the limited power of the study to differentiate

between STs.
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S20–S22 Figs show the parameters governing the persistence and relative infectiousness of

spores. Spores from ST1 persisted significantly longer than those from all other STs other than

ST3, ST42 and the other group (all p<0.048) (also see S25 Fig). The mean (95%CI) spore per-

sistence time for ST1 was 39.0 (22.7–66.8) days, compared to 40.2 (5.6–113.9) days for ST3,

22.5 (10.5–45.3) days for ST42, 17.5 (1.2–42.6) days for the other ST group and between 2.5

and 12.5 days for the remaining STs. There was no clear information in the dataset on the rela-

tive infectiousness of spores compared to direct ward contact with a case, all estimates were

similar to the broad prior (S10 Fig). S23 Fig shows estimated within-host diversity and muta-

tion rates followed the priors set based on a previous study [2] and estimates of within ST

diversity reflected the observed distributions of pairwise SNP differences (S13 Fig).

S24 Fig shows the distribution of the parameters governing the time delay between infec-

tion and sampling, and sampling and recovery. Across the different STs, the mean time

between infection and sampling was estimated at around 10–20 days, but associated with a
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distribution with a long tail, such that in some individuals there could be a much longer inter-

val (see S25 Fig for examples). Given that most patients leave the hospital before they recover,

the distribution of recovery times followed the prior distribution (S24 and S25 Figs).

Transmission rates by specialty

Inferred rates of inpatient acquisition of C. difficile varied by specialty. Of 1092 infections esti-

mated to have occurred in the hospital, 504 were acquired while patients were cared for by the

acute medicine and geratology service and 212 on general surgery units. The overall rate of

inpatient acquisition was 6.7 per 10,000 bed-days, with the highest rates seen on the renal and

transplant, 18.1 (95%CI 17.2–18.8), gastroenterology 17.1 (14.9–19.1) and acute medicine /

geratology wards 11.0 (10.8–11.2) (Fig 6). Rates of acquisition from a known case per 10,000

bed-days were also greatest in the same three specialties, 6.6 (5.6–7.4), 4.3 (2.9–5.8) and 3.0

(2.8–3.26) respectively.
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Between hospital comparisons

Four hospitals serve the county of Oxfordshire, hospital A (cancer centre, specialist medicine

and renal services), hospital B (general district hospital), hospital C (providing acute medicine

and surgery, specialist surgery, maternity and children’s services), and hospital D (elective

orthopaedics and rheumatology). Overall rates of inpatient C. difficile acquisition were 6.1

(95%CI 6.0–6.2), 8.5 (8.2–8.8), 8.7 (8.5–8.9), and 2.6 (2.3–2.8) per 10000 bed-days respectively.

However, these differences were largely explained by case mix given the different services

based in each hospital (see Fig 5). Incidence rates in acute medicine and geratology were mar-

ginally higher at the hospital B, and rates in general surgery higher at hospital C (Fig 7).

Temporal patterns in C. difficile acquisition

Overall rates of inpatient C. difficile fell over the course of the study from 12.6 (95%CI 11.3–

13.5) per 10000 bed-days in the third quarter of 2007 to 3.6 (3.3–3.8) in the first quarter of

2011. Perhaps even more strikingly by the end of the study period inpatient acquisition from a

known case had been almost completely controlled, rates falling from 4.3 (3.3–5.2) to 0.3 (0.1–

0.5) respectively (Fig 8).
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PLOS COMPUTATIONAL BIOLOGY Transmission models for C. difficile identify strain-specific differences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008417 January 14, 2021 21 / 30

https://doi.org/10.1371/journal.pcbi.1008417.g007
https://doi.org/10.1371/journal.pcbi.1008417


Discussion

Here we combine detailed epidemiological data on patient contact networks in hospital with

whole-genome sequencing to quantitively track transmission of healthcare-associated infec-

tion. We do this in a probabilistic framework that allows principled estimates of the relative

contribution of different routes of infection, differences between strains and trends over time.

Using the example of C. difficile transmission, we show several important differences between

key lineages.

Several methodological improvements are made over previous similar models combining

epidemiological and sequencing data. We present a novel approach to using genetic data based

on coalescent theory that accounts for recombination (as the input phylogenetic tree can be

adjusted for recombination). We also extend the epidemiological model to include recovery,

readmissions, and additional routes of transmission including via persisting ward contamina-

tion and across different hospital wards.

Through simulation we demonstrate our model performs appropriately. We also show that

in this setting point estimates from a simple heuristic rule together with genomic data can out-

perform a sophisticated epidemiological model run without genomic data, albeit without

quantification of uncertainty. Genomic data is particularly helpful here in the setting of an

endemic disease with significant genomic diversity present. In an outbreak setting with limited
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genetic diversity it is likely that detailed epidemiological data could determine much more of

the inference. However, while providing reasonable estimates overall, the errors made by the

heuristic rule show substantial biases. This finding suggests earlier studies using similar rules

are likely to have under-estimated the extent of transmission via ward-based contamination

and hospital-wide transmission. This provides a notable shift in our understanding of trans-

mission: we previously reported [2] that transmission via these routes accounted for 1% and

3% of cases respectively, but now estimate these to be higher 8% (95% CI 6–9%) and 4% (3–

5%), with the lower bounds of the 95% credibility intervals exceeding the previous estimates.

In C. difficile it is increasingly understood that different lineages show different transmis-

sion properties and inhabit differing environmental niches, with some lineages associated with

healthcare, and others with wide geographic dispersal and likely community-based acquisition

[24]. Several ribotypes have been disproportionately associated with healthcare-associated dis-

ease in epidemiological surveys and reports of outbreaks [18,26], e.g. ribotypes 027, 001, 106,

176, 018/356, as well as showing evidence of geographic clustering consistent with predomi-

nantly local spread [24]. The success of these lineages in healthcare has been hypothesised to

have been driven by their widespread fluroquinolone resistance and high levels of use of these

antibiotics [10]. In addition to this, here we provide further insights into the healthcare-adap-

tation of these lineages. We show several are associated with higher rates of ward-based trans-

mission per infected case, including ST1 (ribotype-027), ST3 (ribotype-001) and ST42

(ribotype-106). Furthermore, we show spores from ST1 persisted longer than those from all

other STs other than ST3, ST42 and the other group (S20 and S25 Figs). This in turn was

reflected in ST1, ST3 and ST42 having the greatest proportion of cases acquired from spores,

31%, 11% and 19% respectively (Fig 4E). It is likely that the success of these lineages is multi-

factorial and enhanced environmental persistence may be part of this. However, it is important

to acknowledge that as well as increased acquisition, increased susceptibility to infection with

specific lineages, and therefore subsequent detection, could also underlie some of the ST-spe-

cific differences seen. These insights are possible because of the Bayesian approach taken,

which provides the parameter estimates that previous heuristic approaches do not. We esti-

mate that spores from ST1 may have persisted, despite hospital cleaning, for up to 100 days.

This is plausible given previous descriptions of C. difficile spores persisting on undisturbed

environmental surfaces for up to 5 months [27] and in isolation side rooms for�4 weeks [28].

We were able to estimate transmission parameters for all ST groups, as evidenced by the dif-

ferences between the posterior and prior estimates (S15–S19 Figs). However, for most STs

other than ST1, ST3 and ST42, spore-based transmission was too infrequent in the dataset to

allow spore parameters to be estimated (S20, S21 and S22 Figs). At present we model environ-

mental contamination as decaying geometrically, analogous to exponential decay in continu-

ous time, so the temporal course of spores can be captured by a single parameter. In other

settings where more data are available on environmental contamination the model could be

extended to fit alternative temporal patterns for contamination removal, and possibly relevant

covariates, such as cleaning audit data, etc.

Although we have referred to persistent ward contamination being mediated via spores left

in the environment, it is also possible that transmission mediated by unsampled patients and

staff also contribute to estimates of ward contamination. Where these individuals acquire C.

difficile from a sampled infected patient, further onward transmission will result in cases with

C. difficile genetically similar to the original sampled case. As such, these secondary cases are

likely to be attributed to the index patient (and spore-based transmission if the patient has left

the ward / recovered), rather than hospital background (which would typically result in a

genetically distinct infection).
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Our observations also support previous findings that several major C. difficile types are pre-

dominately acquired from sources other than infected patients, e.g. ST8 (ribotype-002), ST2

(ribotype-020/014), ST10 (ribotype-015), which have been previously noted to not show evi-

dence of geographic structure and have been hypothesised to be transmitted from geographi-

cally dispersed sources such as food [24].

Our findings have implications for infection control. For example, risk-based stratification

of infection control precautions could be used to target infections caused by healthcare-associ-

ated lineages, such as ribotype-027 and ribotype-001 which are more likely to spread person-

to-person and contaminate the environment, e.g. with isolation, contact precautions and

enhanced environmental cleaning to target more persistent spores. In contrast, strict precau-

tions may be unnecessary for other lineages with low transmission potential. Such an approach

has already been implemented in one institution without adverse outcomes [29]. The wide

role for background transmission suggests a need for renewed focus on universal standard pre-

cautions to prevent acquisition from undiagnosed sources.

By using detailed epidemiological data, we are also able to show that we can estimate how

the rate of transmission from other cases varies by specialty or hospital. We saw the highest

rates of transmission within our renal and transplant, gastroenterology and acute medical

wards. Although these areas also had the highest overall incidence, had it been known at the

time that these areas also had the highest proportion of cases acquired from other cases, as

opposed to other sources, this could have directed infection control efforts in a more targeted

manner. It should be noted that we do not fit different parameters for each ward (as the num-

ber of ward types multiplied by the number of STs would result in very large number of

parameters to estimate given the data), and so these differences are likely to be under-esti-

mated. We also show that during the period of the study the proportion of cases acquired from

another case fell, such that by the start of 2011 near complete control of transmission from

other known cases was achieved. Again, had this insight been available at the time, this likely

would have contributed substantially to discussion around how to further reduce incidence.

Although we do not allow transmission parameters to vary by time, by fitting different models

for each ST, and through these changing in incidence over time, we are able to see these effects.

As we have highlighted previously the fall in incidence was largely driven by the near disap-

pearance of ST1 from our hospitals [10] (S11 Fig). An extension of our approach would be to

model the extent to which transmission parameters change over time, e.g. for ST1, although

we have recently described an approach for doing this [30], we judged there not to be sufficient

power to do this in the current study for all STs.

The main benefit of including genetic data in our C. difficile analysis was to allow assign-

ment between background and the non-background sources, with epidemiological data then

contributing to informing the most likely of any non-background sources. We set relatively

tight priors for the C. difficile mutation rate and within-host diversity based on previous stud-

ies [2]. Our posterior estimates for these parameters were consistent with the chosen priors

(S23 Fig). The population-level diversity parameter varies by the extent of within-ST diversity

(S13 and S23 Figs). In specifying our model, it was not our intention necessarily to estimate all

the genetic parameters, but rather that these could be used to inform transmission estimates,

in particular partitioning cases into those sufficiently related to previous cases for direct trans-

mission to be plausible and those that are likely acquired via a background route (i.e. geneti-

cally distinct). As such, where the extent of population and within-host diversity are markedly

different (e.g. ST2, ST5) the precise estimates for Ne and Npop are less important, but where

there is less diversity, i.e. greater uncertainty about background vs. non-background transmis-

sion, then estimates for these parameters matter more (e.g. ST1). If our model is used for other
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organisms it may work best in settings where at least within-host diversity and mutation rates

are already described, which is the case for many of the major bacterial pathogens.

There are several limitations to our approach. Firstly, caution should be taken when inter-

preting the relative attribution of cases to hospital background versus community background

sources. This distinction is driven by the estimated distribution of times between disease

acquisition and sampling. This is assumed to follow a negative binomial distribution and to be

the same in the community and hospital. This is an over-simplification, as greater antibiotic

exposure in hospital or the run-up to admission make transition from a colonised to symp-

tomatic state more likely [31]. It is therefore possible that the time delay between acquisition

and symptom onset and therefore sampling may be substantially longer in the community

than hospital. Were this to be the case this would increase the number of cases attributed to

community acquisition, however there are insufficient data in our current dataset to determine

this. In particular, we do not have data on antibiotic prescriptions in hospital or the commu-

nity, but these could be incorporated if they were available [30].

We assume that the diagnostic testing done is complete and perfectly sensitive. Under this

simplifying assumption any case that is in fact acquired from an unsampled case could be

attributed to the hospital background, or alternatively to spore-based transmission as discussed

above. An extension to our model would be to allow for imperfectly sensitive testing and aug-

mentation of genetic distance data for cases with false negative results. However, this would

still not capture unsampled cases, which would be much more challenging given the presence

of ~200–500 non-cases for every diagnosed case. We also assume that cases are equally infec-

tious from acquisition to recovery, i.e. we do not differentiate asymptomatic and symptomatic

states or the time that patients were placed into isolation, as we have no data on patient symp-

toms or patient locations within hospital wards (side room vs open bay). One refinement

might be to allow infectiousness to vary before and after sampling, as sampling is likely to be

associated with implementation of isolation and contact precautions (this was hospital policy

at the time). However, the limitation regarding details on patient symptoms would remain.

We also make a simplifying assumption that there is no genetic bottleneck at transmission,

which may be reasonable if large numbers of organisms are acquired in faeco-oral transmis-

sion, but this assumption is untested.

In conclusion, our method provides a novel approach for integrating pathogen genomic

data into stochastic individual patient transmission models. We demonstrate it can be applied

at scale to study transmission of an endemic disease. It has potential to be applied across a

range of pathogens. Using the methods developed for modelling the transmission of C. difficile
we gain new insights and show that healthcare-associated lineages, such as ST1/ribotype-027,

both transmit more readily and persist for longer in the environment, which has important

implications for their effective control.

Supporting information

S1 Fig. MCMC algorithm outline.

(PDF)

S2 Fig. Transmission route inference, performance on simulated data, scenario: hospital

background & ward transmission only. Data for 10 simulations are shown, with the number

of infections attributed to a specific source type plotted in its own column and colour. Crosses

indicate the simulated value, circles the estimated value (posterior mean) and the error bars

the 95% highest posterior density interval.

(PDF)
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S3 Fig. Transmission route inference, performance on simulated data, scenario: hospital

background, ward and hospital-wide transmission. Data for 10 simulations are shown, with

the number of infections attributed to a specific source type plotted in its own column and col-

our. Crosses indicate the simulated value, circles the estimated value (posterior mean) and the

error bars the 95% highest posterior density interval.

(PDF)

S4 Fig. Transmission route inference, performance on simulated data, scenario: hospital

background, ward, hospital-wide and short-duration spore transmission. Data for 10 simu-

lations are shown, with the number of infections attributed to a specific source type plotted in

its own column and colour. Crosses indicate the simulated value, circles the estimated value

(posterior mean) and the error bars the 95% highest posterior density interval.

(PDF)

S5 Fig. Transmission route inference, performance on simulated data, scenario: hospital

background, ward, hospital-wide and long-duration spore transmission. Data for 10 simu-

lations are shown, with the number of infections attributed to a specific source type plotted in

its own column and colour. Crosses indicate the simulated value, circles the estimated value

(posterior mean) and the error bars the 95% highest posterior density interval.

(PDF)

S6 Fig. Transmission route inference, performance on simulated data, scenario: hospital

background, ward, hospital-wide, spore and community transmission. Data for 10 simula-

tions are shown, with the number of infections attributed to a specific source type plotted in its

own column and colour. Crosses indicate the simulated value, circles the estimated value (pos-

terior mean) and the error bars the 95% highest posterior density interval.

(PDF)

S7 Fig. Infection time inference, performance on simulated data. Data for 50 simulations

are shown. Circles indicate an exact match between the simulated and estimated date of infec-

tion, triangles the proportion of cases where the 95% highest posterior density interval cap-

tures the true simulated value.

(PDF)

S8 Fig. Parameter estimates for simulated data. Each row of panels shows a different param-

eter and each column and colour a different simulation scenario. The dashed lines indicate the

simulated value, circles the estimated value (posterior mean) and the error bars the 95% high-

est posterior density interval (HPD).

(PDF)

S9 Fig. Parameter estimate for simulated data: sensitivity analysis for lower transmission

rates. The dashed lines indicate the simulated value, circles the estimated value (posterior

mean) and the error bars the 95% highest posterior density interval (HPD).

(PDF)

S10 Fig. The impact of simulation population size on model precision, calibration and

power. The same underlying transmission scenario–allowing for transmission by hospital

background, ward-based transmission, hospital-wide transmission and spores–is simulated at

different population sizes shown in each column. As the population size decreases (from left to

right) uncertainty in parameter estimates increases, but the model remains well calibrated, i.e.

the 95% highest posterior density (HPD) captures the simulated value, shown as a dashed line.

(PDF)
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S11 Fig. Oxfordshire C. difficile MLST sequence types, overall incidence and incidence per

quarter 2007–2011.

(PDF)

S12 Fig. Maximum likelihood phylogeny of 1223 Oxfordshire C. difficile genomes, 2007–

2011. The ten most common sequence types are shown as different coloured tips. Drawn

using RaxML version 8.2.10 with a GTR substitution model and a gamma model of rate het-

erogeneity.

(PDF)

S13 Fig. Distribution of pairwise single nucleotide polymorphism (SNP) differences within

Oxfordshire C. difficile sequence types (STs). For visualisation purposes differences between

3 ST3 genomes substantially differing by >5000 SNPs from all other sequenced ST3 genomes

are omitted.

(PDF)

S14 Fig. Example MCMC traces, from 3 chains run for ST2. Traces are shown for the six

transmission parameters and the overall posterior value. Final parameter estimates were

obtained by merging the output of each of the chains. The burn in period is not shown, as

starting values were sufficiently different to the posterior estimates to make visualisation of

mixing uninformative. The effective sample size (ESS) is shown for each parameter.

(PDF)

S15 Fig. Oxfordshire C. difficile transmission rate parameters by sequence type (ST). Prior

not plotted, but for all 4 parameters, mean 3.4e-03 (95% HPD 0.5e-03–11.1e-03). Note that

background parameters depend on the relative prevalence of each ST, hence higher values for

“Other” STs, which is the most prevalent group overall (see S11 Fig).

(PDF)

S16 Fig. Oxfordshire C. difficile transmission rate parameters by sequence type (ST): hos-

pital background. Note that background parameters depend on the relative prevalence of

each ST, hence higher values for “Other” STs, which is the most prevalent group overall (see

S11 Fig).

(PDF)

S17 Fig. Oxfordshire C. difficile transmission rate parameters by sequence type (ST): ward-

based transmission.

(PDF)

S18 Fig. Oxfordshire C. difficile transmission rate parameters by sequence type (ST):

between ward, hospital-wide, transmission.

(PDF)

S19 Fig. Oxfordshire C. difficile transmission rate parameters by sequence type (ST): com-

munity background. Note that background parameters depend on the relative prevalence of

each ST, hence higher values for “Other” STs, which is the most prevalent group overall (see S8

Fig). The prior distribution is not shown as nearly all the prior probability density is at higher

values.

(PDF)

S20 Fig. Oxfordshire C. difficile spore parameters, by sequence type.

(PDF)
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S21 Fig. Oxfordshire C. difficile transmission rate parameters by sequence type (ST): spore

multiplier.

(PDF)

S22 Fig. Oxfordshire C. difficile transmission rate parameters by sequence type (ST): spore

decay probability.

(PDF)

S23 Fig. Oxfordshire C. difficile genetic parameter estimates, by sequence type. The prior

distribution for within-host diversity, Ne, and mutation rate were set based on doi:10.1056/

nejmoa1216064. The population-level diversity, Npop, parameter reflects the diversity present

within the ST, with smaller values representing less diversity.

(PDF)

S24 Fig. Oxfordshire C. difficile sampling delay and recovery parameter estimates.

(PDF)

S25 Fig. Oxfordshire C. difficile prior and posterior (for ST1 and ST2) distributions for

sampling and recovery intervals and spore duration.

(PDF)

S1 Table. Mean number of infections simulated by each route in simulations of the impact

population size on model precision, calibration and power. Parameter estimates for these

simulations are shown in S10 Fig.

(PDF)
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