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Clinical research that uses artificial intelligence (AI) and big data may 

aid the prediction and/or detection of subclinical cardiovascular 

diseases by providing additional knowledge about disease onset, 

progression or outcome. Clinical decision-making, disease diagnostics, 

risk prediction or individualised therapy may be informed by insights 

obtained from AI algorithms. As health records have become 

electronic, data from large populations are becoming increasingly 

accessible.1 The use of AI algorithms in electrophysiology may be of 

particular interest as large data sets of ECGs are often readily 

available. Moreover, data are continuously generated by implantable 

devices, such as pacemakers, ICDs or loop recorders, or smartphone 

and smartwatch apps.2–6

Interpretation of ECGs relies on expert opinion and requires training 

and clinical expertise which is subjected to considerable inter- and 

intra-clinician variability.7–12 Algorithms for the computerised 

interpretation of ECGs have been developed to facilitate clinical 

decision-making. However, these algorithms lack accuracy and may 

provide inaccurate diagnoses which may result in misdiagnosis when 

not reviewed carefully.13–18

Substantial progress in the development of AI in electrophysiology has 

been made, mainly concerning ECG-based deep neural networks 

(DNNs). DNNs have been tested to identify arrhythmias, to classify 

supraventricular tachycardias, to predict left ventricular ejection 

fraction, to identify disease development in serial ECG measurements, 

to predict left ventricular hypertrophy and to perform comprehensive 

triage of ECGs.6,19–23 DNNs are likely to aid non-specialists with improved 

ECG diagnostics and may provide the opportunity to expose yet 

undiscovered ECG characteristics that indicate disease. 

With this progress, the challenges and threats of using AI techniques in 

clinical practice become apparent. In this narrative review, recent 

progress of AI in the field of electrophysiology is discussed together 

with its opportunities and threats. 

A Brief Introduction to Artificial Intelligence
AI refers to mimicking human intelligence in computers to perform 

tasks that are not explicitly programmed. Machine learning (ML) is a 

branch of AI concerned with algorithms to train a model to perform a 

task. Two types of ML algorithms are supervised learning and 
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unsupervised learning. Supervised learning refers to ML algorithms 

where input data are labelled with the outcome and the algorithm is 

trained to approximate the relation between input data and outcome. In 

unsupervised learning, input data are not labelled and the algorithm 

may discover data clusters in the input data. 

In ML, an algorithm is trained to classify a data set based on several 

statistical and probability analyses. In the training phase, model 

parameters are iteratively tuned by penalising or rewarding the 

algorithm based on a true or false prediction. Deep learning is a sub-

category of ML that uses DNNs as architecture to represent and learn 

from data. The main difference between deep learning and other ML 

algorithms is that DNNs can learn from raw data, such as ECG 

waveforms, in an end-to-end manner with extraction and classification 

united in the algorithm (Figure 1a). For example, in ECG-based DNNs, 

a matrix containing the time-stamped raw voltage values of each lead 

are used as input data. In other ML algorithms, features like heart rate 

or QRS duration are manually extracted from the ECG and used as 

input data for the classification algorithm.

To influence the speed and quality of the training phase, the setting of 

hyperparameters, such as the settings of the model architecture and 

training, is important. Furthermore, overfitting or underfitting the 

model to the available data set must be prevented. Overfitting can 

occur when a complex model is trained using a small data set. The 

model will precisely describe the training data set but fail to predict 

outcomes using other data (Figure 1b). On the other hand, when 

constraining the model too much, underfitting occurs (Figure 1b), also 

resulting in poor algorithm performance. To assess overfitting, a data 

set is usually divided into a training data set, a validation data set and 

a test data set, or resampling methods are used, such as cross-

validation or bootstrapping.24

To train and test ML algorithms, particularly DNNs, it is preferable to 

use a large data set, known as big data. Performance of highly 

dimensional algorithms – e.g. algorithms with many model parameters 

such as DNNs – depends on the size of the data set. For deep learning, 

more data is often required as DNNs have many non-linear parameters 

and non-linearity increases the flexibility of an algorithm. The size of a 

training data set has to reasonably approximate the relation between 

input data and outcome and the amount of testing data has to 

reasonably approximate the performance measures of the DNN. 

Determining the exact size of a training and testing data set is 

difficult.25,26 It depends on the complexity of algorithm (e.g. the 

number of variables), the type of the algorithm, the number of 

outcome classes and the difficulty of distinguishing between 

outcome classes as inter-class differences might be subtle. Therefore, 

size of the data set should be carefully reviewed for each algorithm. 

A rule of thumb for the adequate size of a validation data set is  

50–100 patients per outcome class to determine overfitting. Recent 

studies published in the field of ECG-based DNNs used between 

50,000 and 1.2 million patients.6,19,21,27 

Prerequisites for AI in Electrophysiology 
Preferably, data used to create AI algorithms is objective, as subjectivity 

may introduce bias in the algorithm. To ensure clinical applicability of 

created algorithms, ease of access to input data, difference in data 

quality in different clinical settings as well as the intended use of the 

algorithm should be considered. In this section, we mainly focus on the 

data quality of ECGs, as these data are easily acquired and large data 

sets are readily available. 

Technical Specifications of ECGs
ECGs are obtained via electrodes on the body surface using an ECG 

device. The device samples the continuous body surface potentials 

and the recorded signals are filtered to obtain a clinically interpretable 

ECG.28 As the diagnostic information of the ECG is contained below 

100 Hz, a sampling rate of at least 200 Hz is required according to the 

Nyquist theorem.29–33 Furthermore, an adequate resolution of at least 

10 µV is recommended to also obtain small amplitude fluctuations of 

the ECG signal. In the recorded signal, muscle activity, baseline 

wander, motion artefacts and powerline artefacts are also present, 

distorting the measured ECG. To remove noise and obtain an easily 

interpretable ECG, a combination of a high-pass filter of 0.67 Hz and a 

low-pass filter of 150–250 Hz is recommended, often combined with a 

notch filter of 50 Hz or 60 Hz. The inadequate setting of these filters 

might result in a loss of information such as QRS fragmentation or 

notching, slurring or distortion of the ST segment. Furthermore, a loss 

of QRS amplitude of the recorded signal might be the result of the 

inappropriate combination of a high frequency cut-off and sampling 

frequency.28,34 ECGs used as input for DNNs are often already filtered, 

thus potentially relevant information might already be lost. As DNNs 

process and interpret the input data differently, filtering might be 

unnecessary and potentially relevant information may be preserved. 

Furthermore, as filtering strategies differ between manufacturers and 

even different versions of ECG devices, the performance of DNNs 

might be affected when ECGs from different ECG devices are used as 

input data. 

Apart from applied software settings, such as sampling frequency or 

filter settings, the hardware of ECG devices also differs between 

manufacturers. Differences in analogue to digital converters, type of 

electrodes used, or amplifiers also affect recorded ECGs. The effect of 

input data recorded using different ECG devices on the performance of 

Figure 1: Traditional Machine Learning and Deep 
Learning with a Schematic Representation 
of Fitting a Model to a Data Set

Traditional machine learning

Features:

Deep learning

A

B Under�tting Optimal �t Over�tting 

Input data Outcome

Classi�cation

QRS amplitude•

Class 1•

Class 2•

Class 3•

...•

•

•

•

T wave inversion

Manual feature extraction

Feature extraction and classi�cation

Classi�cation

RR interval

...

147



AI in Electrophysiology: Opportunities and Threats

ARRHYTHMIA & ELECTROPHYSIOLOGY REVIEW

Clinical Arrhythmias

AI algorithms is yet unknown. However, as acquisition methods may 

differ significantly between manufacturers, the performance of 

algorithms are likely to depend on the type or even version of the 

device.35 Testing the performance of algorithms using ECGs recorded 

by different devices would illustrate the effect of these technical 

specifications on performance and generalisability. 

ECG Electrodes
The recorded ECG is affected by electrode position with respect to the 

anatomical position of the heart and displacement of electrodes may 

result in misdiagnosis in a clinical setting.36,37 For example, placement 

of limb electrodes on the trunk significantly affects the signal waveforms 

and lead reversal may mimic pathological conditions.38–41 Furthermore, 

deviations in precordial electrode positions affect QRS and T wave 

morphology (Figure 2). Besides the effect of cardiac electrophysiological 

characteristics like anisotropy, His-Purkinje anatomy, myocardial 

disease and cardiac anatomy on measured ECGs, cardiac position and 

cardiac movement also affect the ECG.42–45 

Conventional clinical ECGs mostly consist of the measurement of 

eight independent signals; two limb leads and six precordial leads 

(Figure 3b). The remaining four limb leads are derived from the 

measured limb leads. However, body surface mapping studies identified 

the number of signals containing unique information up to 12 for 

ventricular depolarisation and up to 10 for ventricular repolarisation.46 

Theoretically, to measure all information about cardiac activity from the 

body surface, the number of electrodes should be at least the number 

of all unique measurements. However, conventional 12-lead ECG is 

widely accepted for most clinical applications. An adjustment of a lead 

position is only considered when a posterior or right ventricle MI or 

Brugada syndrome is suspected.27,47–50

The interpretation of ECGs by computers and humans is 

fundamentally different and factors like electrode positioning or lead 

misplacement might influence algorithms. However, the effect of 

electrode misplacement or reversal, disease-specific electrode 

positions or knowledge of lead positioning on the performance on 

DNNs remains to be identified. A recent study was able to identify 

misplaced chest electrodes, implying that the effect of electrode 

misplacement might be able to be identified and acknowledged by 

algorithms.51 Studies have suggested that DNNs can achieve similar 

performance when fewer leads are used.50 

ECG Input Data Format
ECGs can be obtained from the electronic database in three formats – 

visualised signals (as used in standard clinical practice), raw ECG 

signals or median beats. Raw signals are preferable for input for DNNs 

as visualised signals require digitisation, which results in a loss of signal 

resolution. Furthermore, raw ECG signals often consist of a continuous 

10-second measurement of all recorded leads, whereas visualised 

signals may consist of 2.5 seconds per lead with only three 

simultaneously recorded signals per 2.5 seconds (Figure 3). A median 

beat per lead can also be used, computed from measured raw ECG 

signals or digitised visualised signals. Using the median beat might 

reduce noise, as noise is expected to cancel out by averaging all beats. 

Therefore, subtle changes in cardiac activation, invisible due to noise 

might become distinguishable for the algorithm. The use of the median 

beat may allow for precise analysis of waveform shapes or serial 

changes between individuals but rhythm information will be lost. 

Opportunities for Artificial Intelligence 
in Electrophysiology
Enhanced Automated ECG Diagnosis
An important opportunity of AI in electrophysiology is the enhanced 

automated diagnosis of clinical 12-lead ECGs.8,11,12,20,52–54 Adequate 

computerised algorithms are especially important when expert 

knowledge is not readily available, such as in pre-hospital care, non-

specialist departments, or facilities that have minimal resources. If 

high-risk patients can be identified correctly, time-to-treatment can be 

reduced. However, currently available computerised ECG diagnosis 

algorithms lack accuracy.11 Progress has been made in using DNNs to 

automate diagnosis or triage ECGs to improve time-to-treatment and 

reduce workload.19,55 Using very large data sets, DNNs can achieve high 

diagnostic performance and outperform cardiology residents and non-

cardiologists.6,19 Moreover, progress has been made in using ECG data 

for predictive modelling for AF in sinus rhythm ECGs or for the screening 

of hypertrophic cardiomyopathy.56–58 

Combining Other Diagnostic Modalities 
with ECG-based DNN 
Some studies have suggested the possibility of using ECG-based DNNs 

with other diagnostic modalities to screen for disorders that are currently 

not associated with the ECG. In these applications, DNNs are thought to 

be able to detect subtle ECG changes. For example, when combined with 

large laboratory data sets, patients with hyperkalaemia could be 

identified, or when combined with echocardiographic results, reduced 

ejection fraction or aortic stenosis could be identified. The created DNNs 

Figure 2: The Effect of Shifting Precordial 
Electrodes Upward or Downward 

50 mm/s 10 mm/mV
The effect of shifting precordial electrodes 4 m upward (blue) or downward (red) from standard 
12-lead electrode positioning (black). Displayed signals were simultaneously recorded using a 
64-electrode measurement set-up. 
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identified these three disorders from the ECG with high accuracy.21,50,59 As 

a next step, supplementing ECG-based DNNs with body surface mapping 

data with a high spatial resolution (e.g. more than 12 measurement 

electrodes), inverse electrocardiography data or invasive 

electrophysiological mapping data, may result in the identification of 

subtle changes in the 12-lead ECG as a result of pathology. 

Artificial Intelligence for Invasive 
Electrophysiological Studies
The application of AI before and during complex invasive 

electrophysiological procedures, such as electroanatomical mapping, 

is another major opportunity. By combining information from several 

diagnostic tools such as MRI, fluoroscopy or previous electroanatomical 

mapping procedures, invasive catheter ablation procedure time might 

be reduced through the accelerated identification of arrhythmogenic 

substrates. Also, new techniques such as ripple mapping may be of 

benefit during electroanatomical mapping studies.60 Recent studies 

suggest that integration of fluoroscopy and electroanatomical mapping 

with MRI is feasible using conventional statistical techniques or ML, 

whereas others suggest the use of novel anatomical mapping systems 

to circumvent fluoroscopy.61–64 Furthermore, several ML algorithms 

have been able to identify myocardial tissue properties using 

electrograms in vitro.65

Ambulatory Device-based Screening 
for Cardiovascular Diseases 
One of the major current challenges in electrophysiology is the 

applicability of ambulatory rhythm devices in clinical practice. Several 

tools, such as implantable devices or smartwatch and smartphone-

based devices, are becoming more widely used and continuously 

generate large amounts of data which would be impossible to 

evaluate manually.66 Arrhythmia detection algorithms based on DNNs 

trained on large cohorts of ambulatory patients with a single-lead 

plethysmography or ECG device have shown similar diagnostic 

performance as cardiologists or implantable loop recorders.2,3,6 

Another interesting application of DNN algorithms are data from 

intracardiac electrograms before and during the activation of the 

defibrillator. Analysis of the signals before the adverse event might 

provide insight into the mechanism of the ventricular arrhythmia, 

providing the clinician with valuable insights. Continuous monitoring 

also provides the possibility of identifying asymptomatic cardiac 

arrhythmias or detecting post-surgery complications. Early detection 

might overcome serious adverse events and significantly improve 

timely personalised healthcare.6,19

A promising benefit of smartphone applications for the early detection of 

cardiovascular disease is in early detection of AF. As AF is a risk factor for 

stroke, early detection may be important to prompt adequate 

anticoagulant treatment.67–69 An irregular rhythm can be accurately 

detected using smartphone or smartwatch-acquired ECGs. Even 

predicting whether a patient will develop AF in the future using 

smartphone-acquired ECGs recorded during sinus rhythm has been 

recently reported.69,70 Also, camera-based photoplethysmography 

recordings can be used to differentiate between irregular and regular 

cardiac rhythm.71,72 However, under-detection of asymptomatic AF is 

expected as the use of applications requires active use and people are 

likely to only use applications when they have a health complaint. 

Therefore, a non-contact method with facial photoplethysmography 

recordings during regular smartphone use may be an interesting option 

to explore.70,73,74

Apart from the detection of asymptomatic AF, the prediction or early 

detection of ventricular arrhythmias using smartphone-based 

techniques are potentially clinically relevant. For example, smartphone-

based monitoring of people with a known pathogenetic mutation might 

aid the early detection of disease onset. In some pathogenetic 

mutations, this may be especially relevant as sudden cardiac death can 

be the first manifestation of the disease. In these patients, close 

monitoring to prevent these adverse events by starting early treatment 

when subclinical signs are detected may provide clinical benefit.

Threats of Artificial Intelligence 
in Electrophysiology
Data-driven Versus Hypothesis-driven Research
Data from electronic health records are almost always retrospectively 

collected, leading to data-driven research, instead of hypothesis-driven 

research. Research questions are often formulated based on readily 

available data, which increases the possibility of incidental findings and 

spurious correlations. While correlation might be sufficient for some 

predictive algorithms, causal relationships remain of the utmost important 

to define pathophysiological relationships and ultimately for the clinical 

implementation of AI algorithms. Therefore, big data research is argued to 

be in most cases solely used to generate hypotheses and controlled 

clinical trials remain necessary to validate these hypotheses. When AI is 

used to identify novel pathophysiological phenotypes, e.g. with specific 

ECG features, sequential prospective studies and clinical trials are crucial.75

Input Data
Adequate labelling of input data is important for supervised 

learning.18,76,77 Inadequate labelling of ECGs or the presence of 

Figure 3: Standardised Clinical Visualised Signals
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pacemaker artefacts, comorbidities affecting the ECG or medication 

affecting the rhythm or conduction, might influence the performance 

of DNNs.13–18 Instead of true disease characteristics, ECG changes due 

to clinical interventions are used by the DNN to classify ECGs. For 

example, a DNN using chest X-rays provided insight into long-term 

mortality, but the presence of a thoracic drain and inadequately 

labelled input data resulted in an algorithm that was unsuitable for 

clinical decision-making.77–80 Therefore, the critical review of 

computerised labels and the identification of important features used 

by the DNN are essential.

Data extracted from ambulatory devices consist of real-time 

continuous monitoring data outside the hospital. As the signal 

acquisition is performed outside a standardised environment, signals 

are prone to errors. ECGs are more often exposed to noise due to 

motion artefacts, muscle activity artefacts, loosened or moved 

electrodes and alternating powerline artefacts. To accurately assess 

ambulatory data without the interference of artefacts, signals should 

be denoised or a quality control mechanism should be implemented. 

For both methods, noise should be accurately identified and adaptive 

filtering or noise qualification implemented.81–83 However, as filtering 

might remove information, rapid real-time quality reporting of the 

presence of noise in the acquired signal is thought to be beneficial. 

With concise instructions, users can make adjustments to reduce 

artefacts and the quality of the recording will improve. Different 

analysis requires different levels of data quality and through 

classification recorded data quality, the threshold for user notification 

can be adjusted per analysis.84,85 

Generalisability and Clinical Implementation
With the increasing number of studies on ML algorithms, generalisability 

and implementation is one of the most important challenges to 

overcome. Diagnostic or prognostic prediction model research, from 

simple logistic regression to highly sophisticated DNNs, is characterised 

by three phases: 

•	 Development and internal validation.

•	 External validation and updating for other patients.

•	 Assessment of the implementation of the model in clinical practice 

and its impact on patient outcomes.86,87 

During internal validation, the predictive performance of the model is 

assessed using the development data set through train-test splitting, 

cross-validation or bootstrapping. Internal validation is however 

insufficient to test generalisability of the model in ‘similar but different’ 

individuals. Therefore, external validation of established models is 

important before clinical implementation. A model can be externally 

validated through temporal (same institution, later period), geographical 

(a different institution with a similar patient group) or domain (different 

patient group) validation. Finally, implementation studies, such as 

cluster randomised trials, before and after studies or decision-analytic 

modelling studies, are required to assess the effect of implementing 

the model in clinical care.86,87

Most studies in automated ECG prediction and diagnosis performed 

some type of external validation. However, no study using external 

validation in a different patient group or implementation study has 

been published so far. A study has shown similar accuracy to predict 

low ejection fraction from the ECG using a DNN through temporal 

validation as in the development study.88 A promising finding was a 

similar performance of the algorithm for different ethnic subgroups, 

even if the algorithm was trained on one subgroup.89 As a final step to 

validate this algorithm, a cluster randomised trial is currently being 

performed. This might provide valuable insight into the clinical 

usefulness of ECG-based DNNs.90

Implementation studies for algorithms using ambulatory 

plethysmography and ECG data are ongoing. For example, the Apple 

Heart Study assessed the implementation of smartphone-based AF 

detection.5 More than 400,000 patients who used a mobile application 

were included, but only 450 patients were analysed. Implementation 

was proven feasible as the number of false alarms was low, but the 

study lacks insight into the effect of smartphone-based AF detection on 

patient outcome. Currently, the Heart Health Study Using Digital 

Technology to Investigate if Early AF Diagnosis Reduces the Risk of 

Thromboembolic Events Like Stroke IN the Real-world Environment 

(HEARTLINE; NCT04276441) is randomising patients to use the 

smartwatch monitoring device. The need for treatment with 

anticoagulation of patients with device-detected subclinical AF is also 

being investigated.4 

A final step for the successful clinical implementation of AI is to 

inform its users about adequate use of the algorithm. Standardised 

leaflets have been proposed to instruct clinicians when, and more 

importantly when not, to use an algorithm.91 This is particularly 

important if an algorithm is trained on a cohort using a specific 

subgroup of patients. Then, applying the model to a different 

population may potentially result in misdiagnosis. Therefore, 

describing the predictive performance in different subgroups, such as 

different age, sex, ethnicity and disease stage, is of utmost importance 

as AI algorithms are able to identify these by themselves.89,92–94 

However, as most ML algorithms are still considered to be ‘black 

boxes’, algorithm bias might remain difficult to detect. 

Interpretability
Many sophisticated ML methods are considered black boxes as they 

have many model parameters and abstractions. This is in contrast with 

the more conventional statistical methods used in medical research, 

such as logistic regression and decision trees, where the influence of a 

predictor on the outcome is clear. The trade of complexity of models 

and interpretability for improved accuracy is important to acknowledge; 

with increased complexity of the network, interpretation becomes 

more complicated. But interpretability remains important to investigate 

false positives and negatives, to detect biased or overfitted models, to 

improve trust in new models or to use the algorithms as a feature 

detector.95 Within electrophysiology, few studies have investigated how 

the AI algorithms came to a certain result. For DNNs, three recent 

studies visualised individual examples using Guided Grad-CAM, a 

technique to show what the networks focus on. They showed that the 

DNN used the same segment of the ECG that a physician would use 

(Figure 4).19,27,96–98 

Visualisation techniques may provide the ECG locations which the 

algorithms find important, but do not identify the specific feature. 

Therefore, the opportunity to identify additional ECG features remains 

dependent on expert opinion and analysis of the data by a clinician is 

still required. Visualisation techniques and their results are promising 

and help to increase trust in DNNs for ECG analysis, but additional work 

is needed to further improve the interpretability of AI algorithms in 

clinical practice.99,100
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Uncertainty Estimation
In contrast to physicians or conventional statistical methods, 

DNNs struggle to inform their users when they do not know and to 

give uncertainty measures about their predictions. Current 

models always output a diagnosis or prediction, even if they have 

not seen the input before. In a real-world setting, clinicians 

acknowledge uncertainty and consult colleagues or literature but a 

DNN always makes a prediction. Therefore, methods that incorporate 

uncertainty are essential before implementation of such algorithms 

is possible.101 

Ideally, the algorithm provides results only when it reaches a high 

threshold of certainty, while the uncertain cases will still be reviewed 

by a clinician.101 For DNNs, several new techniques are available to 

obtain uncertainty measures, such as Bayesian deep learning, Monte 

Carlo dropout and ensemble learning, but these have never been 

applied in electrophysiological research.102 They have been applied to 

detect diabetic retinopathy in fundus images using DNNs, where one 

study showed that overall accuracy could be improved when 

uncertain cases were referred to a physician.103 Another study 

suggested that uncertainty measures were able to detect when a 

different type of scanner was used that the algorithm had not seen 

before.35 Combining uncertainty with active or online learning allows 

the network to learn from previously uncertain cases, which are now 

reviewed by an expert.104

Ethical Aspects
Several other ethical and legal challenges within the field of AI in 

healthcare are yet to be identified, such as patient privacy, poor quality 

algorithms, algorithm transparency and liability concerns. Data are 

subjected to privacy protections, confidentiality and data ownership, 

therefore requiring specific individual consent for use and reuse of 

data. However, by increasing the size of the data set, anonymisation 

techniques used nowadays might be inadequate and eventually result 

in the identification of patients.105,106 As large data sets are required for 

DNNs, collaboration between institutions becomes inevitable. To 

facilitate data exchange, platforms have been established to allow for 

safe and consistent data-sharing between institutions.107 However, 

these databases may still contain sensitive personal data.54,108 

Therefore, federated learning architectures are proposed that provide 

data-sharing while simultaneously obviating the need to share 

sensitive personal data. An example of this is the anDREea Consortium 

(andrea-consortium.org). 

Another concerning privacy aspect is the continuous data acquisition 

through smartphone-based applications. In these commercial 

applications, data ownership and security are vulnerable. Security 

between smartphones and applications is heterogeneous and data 

may be stored on commercial and poorly secured servers. Clear 

regulations and policies should be in place before these applications 

can enter the clinical arena.

Data sets contain information about medical history and treatment but 

may also encompass demographics, religious status or socioeconomic 

status. Apart from medical information, sensitive personal data might 

be taken into account by developed algorithms, possibly resulting in 

discrimination in areas such as ethnicity, gender or religion.54,108–110 

As described, DNNs are black boxes wherein input data is classified. 

An estimate of the competency of an algorithm can be made through 

the interpretation of DNNs and the incorporation of uncertainty 

measures. Traditionally, clinical practice mainly depends on the 

competency of a clinician. Decisions about diagnoses and treatments 

are based on widely accepted clinical standards and the level of 

competency is protected by continuous intensive medical training. In 

the case of adverse events, clinicians are held responsible if they 

deviated from standard clinical care. However, the medical liability of 

the DNN remains questionable. Incorrect computerised medical 

diagnoses or treatments result in adverse outcomes, thereby  

raising the question: who is accountable for a misdiagnosis based on 

an AI algorithm. 

Figure 4: Important Regions for the Deep Neural Network 
to Predict Whether an ECG is Normal, Abnormal or Acute
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ECG leads II and V1 with a superimposed guided Grad-CAM visualisation showing regions 
important for the deep neural network to predict whether an ECG is normal, abnormal or 
acute. A and B: Normal ECGs with focus on the P wave, QRS-complex, and T wave, while 
correctly ignoring a premature ventricular complex. C: Abnormal ECG with a long QT interval 
and a focus on the beginning and end of the QT-segment. D and E: Acute ECGs with an 
inferior ST-segment elevation MI (D) and a focus on the ST-segment and with a junctional 
escape rhythm (E) and a focus on the pre-QRS-segment, where the P wave is missing. Source: 
van de Leur et al. 2020.19 Reproduced from the American Heart Association, Inc., by Wiley 
Blackwell under a Creative Commons (CC BY-NC-ND  4.0) licence.
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Clinical Arrhythmias

To guide the evaluation of ML algorithms, in particular DNNs, and 

accompanying literature in electrophysiology, a systematic overview of 

all relevant threats discussed in this review is presented in Table 1.

Conclusion 
Many exciting opportunities arise when AI is applied to medical data, 

especially in cardiology and electrophysiology. New ECG features, 

accurate automatic ECG diagnostics and new clinical insights can be 

rapidly obtained using AI technology. In the near future, AI is likely to 

become one of the most valuable assets in clinical practice.  

However, as with every technique, AI has its limitations. To ensure the 

correct use of AI in a clinical setting, every clinician working with AI 

should be able to recognise the threats, limitations and challenges of 

the technique. Furthermore, clinicians and data scientists should 

closely collaborate to ensure the creation of clinically applicable and 

useful AI algorithms. 

Table 1: Systematic Overview of Relevant Threats of AI Algorithms in Electrophysiology

Domain Key Points Questions

Algorithm input Subjects Is an appropriate data source used with clear inclusion and exclusion criteria?

Data Is the ECG data of sufficient quality?
Is the quality of ambulatory data continuously assessed?

Algorithm performance Robustness How does the model perform?
Were there a reasonable number of subjects?
Were ECGs equally sampled per subject? 

Overfitting and optimism Was overfitting assessed using internal validation with train-test splitting, cross-validation or 
bootstrapping?
Was the validation data set of sufficient size (>100 participants with the outcome)?

External validation Are there studies that provide temporal, geographical or domain validation?

Subgroups Is subgroup analysis provided to minimise the risk of poor performance in subgroups?
Is there a bias based on ethnicity, gender or other demographic factors?

Algorithm implementation Subjects Is the population that will use the algorithm similar to the external validation population?
Is the disease prevalence similar?

Data Is the algorithm evaluated on the used diagnostic device of a specific manufacturer?
Was data standardised according to general agreements?

Implementation studies Have implementation studies, such as RCTs or before and after studies, been performed?
Does implementation of the model positively influence patient outcomes?

Interpretation and 
uncertainty

Are there possibilities to check the predictions of the model in clinical practice (using visualisations)?
Does the model provide uncertainty measures?
How does the model deal with ECG noise or electrode misplacements?
Is there a clear flowchart that allows uncertain cases to be referred to a physician?

Ethical and legal Are the ethical and legal aspects sufficiently addressed?

RCT = randomised controlled trial.

Clinical Perspective
•	 Artificial intelligence (AI) may support diagnostics and prognostics in electrophysiology by automating common clinical tasks or aiding 

complex tasks through the identification of subtle or new ECG features.

•	 Within electrophysiology, automated ECG diagnostics using deep neural networks is superior to currently implemented computerised 

algorithms.

•	 Before the implementation of AI algorithms in clinical practice, trust in the algorithms must be established. This trust can be achieved 

through improved interpretability, measurement of uncertainty and by performing external validation and feasibility studies to determine 

added value beyond current clinical care.

•	 Combining data obtained from several diagnostic modalities using AI might elucidate pathophysiological mechanisms of new, rare or 

idiopathic cardiac diseases, aid the early detection or targeted treatment of cardiovascular diseases or allow for screening of disorders 

currently not associated with the ECG.
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