
ar
X

iv
:1

91
2.

08
60

1v
1

 [
ee

ss
.S

Y
]

 1
7

D
ec

 2
01

9
1

Kalman Filter Tuning with Bayesian Optimization
Zhaozhong Chen, Nisar Ahmed, Simon Julier, and Christoffer Heckman

Abstract—Many state estimation algorithms must be tuned:

given the state space process and observation models, the process
and observation noise parameters must be chosen. Conventional
tuning approaches rely on heuristic hand-tuning or gradient-
based optimization techniques to minimize a performance cost
function. However, the relationship between tuned noise values
and estimator performance is highly nonlinear and stochastic.
Therefore, the tuning solutions can easily get trapped in local
minima, which can lead to poor choices of noise parameters
and suboptimal estimator performance. This paper describes
how Bayesian Optimization (BO) can overcome these issues.
BO poses optimization as a Bayesian search problem for a
stochastic “black box” cost function, where the goal is to search
the solution space to maximize the probability of improving the
current best solution. As such, BO offers a principled approach
to optimization-based estimator tuning in the presence of local
minima and performance stochasticity. While extended Kalman
filters (EKFs) are the main focus of this work, BO can be
similarly used to tune other related state space filters. The
method presented here uses performance metrics derived from
normalized innovation squared (NIS) filter residuals obtained
via sensor data, which renders knowledge of ground-truth states
unnecessary. The robustness, accuracy, and reliability of BO-
based tuning is illustrated on practical nonlinear state estimation
problems, losed-loop aero-robotic control.

Index Terms—Kalman filtering, filter tuning, Bayesian opti-
mization, nonparametric regression, machine learning.

I. INTRODUCTION

MANY state estimation algorithms, including Kalman

filters and particle filters, are recursive and model-based

[1], [2]. They decompose the estimation problem into a cycle

with two main steps: state prediction followed by measurement

update. The state prediction step uses a process model to

predict how the state evolves over time. The measurement

update step uses an observation model to relate a measured

quantity to the state estimate. Since both the process and

observation models are imperfect, errors in these models are

treated as random noise terms that are injected into the system.

Most designs assume the noises are white, zero mean and

uncorrelated. As a result, filter tuning consists of choosing the

values of the process and observation noise covariances.

Many tuning procedures adopt a divide-and-conquer strat-

egy. The first stage is to choose the observation covariance.

This is normally carried using laboratory or bench testing.

The sensor is placed in a condition in which the noise-

free sensor values can be predicted. The observation noises

are determined by statistically characterizing the difference

between the predicted and actual values. In the second stage,

the process noises are chosen. Since the process noises contain

information about the state disturbances and dynamic model

uncertainties , which often cannot be reproduced in laboratory

settings, the covariance is often chosen by collecting data

from an operational domain and quantifying the quality of

the estimates. Typically a performance cost is assigned, and

the process noise covariance adjusted to minimize the value

of that cost.

However, there are several problems with this two-stage ap-

proach. First, with laboratory testing, it is not always possible

to model how sensors will react in operational environments.

Changes in temperature, for example, can cause the biases

in IMUs to change. As a result, the observation noises might

not be properly characterized. Second, the interaction between

noise levels and filter performance is not straightforward.

Theoretical analysis has shown that even if the process and

observation models are linear, the presence of modeling errors

lead to noises which are state-dependent and correlated over

time [3], [4]. As a result, many non-unique tuning solutions

can appear. Finally, they tend to rely on statistics which require

knowledge of the ground truth of the system to compute.

Although this is possible to obtain in simulations or laboratory

settings with precise reference measurement systems, such

approaches are of limited use for many practical real-world

applications where ground truth data is not available.

This paper makes three contributions, which significantly

extends the preliminary work presented in [5]. The first is a

general framework for Kalman filter noise parameter tuning

based on Bayesian Optimization (BO). BO provides an attrac-

tive way to overcome the limitations of other gradient-based

optimal filters auto-tuning strategies, which can easily get

trapped in poor local minima. The BO framework developed

here uses nonparametric surrogate models based on Student-t

process regression, which offers better robustness and perfor-

mance compared to Gaussian process surrogate models that

are more typically used for Bayesian optimization and which

were considered in [5].

The second contribution is the development and valida-

tion of novel stochastic cost functions for optimization-based

auto-tuning. Most auto-tuning algorithms including our pre-

vious work [5] use the Normalized Estimation Error Squared

(NEES) which requires the ground truth values of the state.

We may not be able to obtain the ground truth easily in the real

world. To make the tuning process be more easily to imple-

ment in the real world, in this paper, our approach extends the

previous work and uses Normalized Innovation Squared (NIS),

which is computed from the difference between the predicted

and actual sensor measurements and does not require ground

truth. This makes our approach practical for many real-world

applications, where only the sensor observations are available

for filter validation.

Finally, the performance of the BO auto-tuning framework

is demonstrated and evaluated in simulation for a challenging

application: longitudinal state estimation for the Mars Science

Laboratory (MSL) Skycrane platform. The results for this

application shows that BO not only provides reliable and

http://arxiv.org/abs/1912.08601v1

2

computationally efficient estimates of unknown filter param-

eters, but can also provide useful probabilistic information

about each parameter through the whole domain space, which

existing state-of-the-art auto-tuning methods cannot do. While

this work focuses mainly on auto-tuning of extended Kalman

filters (EKFs), the BO framework can be readily extended to

other related state space filtering algorithms.

The rest of this paper is structured as follows. Sections II

and III formally introduces an overview and problem statement

for filter auto-tuning. Section IV describes our Bayesian op-

timization framework using nonparametric Student-t process

regression and how it is applied to Kalman filter parameter

auto-tuning. Section V describes the set up, and analysis for

the numerical simulation studies using the Bayesian optimiza-

tion framework to auto-tune EKFs for the Mars Skycrane

longitudinal state estimation problem. Conclusions are given

in Section VI.

II. PRELIMINARIES

A. System Overview

The state of the system at time step k is xk ∈ R
nx , where

nx is the dimension of the state vector. The process model

that propagates the state from k − 1 to k is

xk = f(xk−1,uk,vk) (1)

where uk ∈ R
nu is the control input vector and vk ∈ R

nv is

the process noise.

The observation model is

zk = h(xk,wk) (2)

where zk ∈ R
nz is the observation vector and wk ∈ R

nz is

the measurement noise.

It is typically assumed that the process and observation

models are sufficiently accurate that the process and observa-

tion noises are zero-mean, independent, Gaussian distributed

random variables.

Given the structure of the system, the goal is to develop an

estimation algorithm which takes in a sequence of observations

and control inputs, and computes an estimate of the state.

The errors in initial conditions, together with the process and

observation noises, means that the state is not known perfectly.

Therefore, some means of quantifying the uncertainty must be

used. A common approach is to use the mean and covariance

of the state estimate.

B. Mean and Covariance Representation

Our goal is to estimate the state of a random variable xi

at a discrete time i and quantify the uncertainty Pi|i in that

estimate. Let x̂i|j be the estimate of xi using all observations

up to time step j, and the covariance of this estimate be Pi|j :

x̂i|j = E [xi|z1:j] (3)

Pi|j = E
[(
xi − x̂i|j

)(
xi − x̂i|j

)⊤
|z1:j

]
. (4)

However, computing an estimate which obeys this property

in practice is difficult to achieve. Modelling errors, for ex-

ample, can always lead to biased estimates. Therefore, most

pratical systems use a weaker condition called covariance

consistency [6]. In this case, a valid estimate has the properties:

x̂i|j ≈ E [xi|z1:j] (5)

Pi|j ≥ E
[(
xi − x̂i|j

)(
xi − x̂i|j

)⊤
|z1:j

]
. (6)

where ≈ is application-specific and A ≥ B means that A−B

is positive semidefinite. In other words, the estimate should

be approximately unbiased, and the estimator should not over

estimate its level of confidence. At the same time, we would

like the difference between the predicted covariance and actual

mean squared error to be as small as possible.

C. Kalman Filters

The Kalman filter is one of the best known and most widely

used algorithms for state estimation. It is derived from the fact

that the correction applied to the estimate is a linear rule of

the form

x̂k|k = x̂k|k−1 +Kkez,k,

where Kk is a gain matrix, and

ez,k = zk − ẑk|k−1,

which is the difference between the actual and predicted sensor

measurement, is the innovation vector. It acts as an error

signal in the filter, and provides a correction term for the

state estimate. The Kalman filter chooses the value of Kk

to minimize the mean squared error in x̂k|k.

The algorithm proceeds as follows [7]. The state is predicted

according to the equation

x̂k|k−1 = f(x̂k−1|k−1,uk) (7)

Pk|k−1 = FkPk−1|k−1F
⊤
k +Qk. (8)

The update is calculated from

x̂k|k = x̂k|k−1 +Kkez,k, (9)

Pk|k = (I−KkHk)Pk|k−1, (10)

Sk|k−1 = HkPk|k−1H
⊤
k +Rk, (11)

Kk = Pk|k−1H
⊤
k S

−1

k|k−1
, (12)

where Fk and Hk are the Jacobian matrices of the process

and observation models.

Fk =
∂f

∂x

∣∣∣∣
x̂k−1|k−1,uk

(13)

Hk =
∂h

∂x

∣∣∣∣
x̂k|k−1

(14)

Note that once Eq. (1) and (2) have been chosen, the only

degree of freedom left is to chose Qk and Rk. This process

is known as tuning.

3

III. TUNING

As explained in the introduction, tuning involves choosing

Qk and Rk to minimize some performance cost. Two widely

used measures are the normalized estimation error squared

(NEES) and the normalized innovation error squared (NIS).

These are computed from

ǫx,k = eT
x,kP

−1

k|kex,k (15)

ǫz,k = eT
z,kS

−1

k|k−1
ez,k (16)

where ex,k = x̂k|k − xk and ez,k = zk − h(x̂k|k−1) is the

innovation vector. If the dynamical consistency conditions are

met, then

E [ǫx,k]≈nx (17)

E [ǫz,k]≈nz. (18)

It is often assumed that the prediction and observation errors

are Gaussian. In this case, ǫx,k and ǫz,k will be χ2-distributed

random variables with nx and nz degrees of freedom respec-

tively [7]. Therefore, χ2 hypothesis tests can be performed on

calculated values for ǫx,k (when ground truth data is available)

and ǫz,k to see if the consistency conditions hold at each time

k.

A. Approaches to Tuning

In this paper we focus on the process noise tuning because it

is the hardest to tune in the Kalman filter. In practice, NEES χ2

tests are conducted using multiple offline Monte Carlo “truth

model” simulations to obtain ground truth xk values. The

truth model simulator represents a high-fidelity model of the

“actual” system dynamics and sensor observations, which may

contain nonlinearities and other non-ideal characteristics that

must be compensated for via Kalman filter tuning. NIS χ2 can

be conducted offline using multiple Monte Carlo simulations

(e.g. in parallel with NEES tests), but can also be conducted

online using real-time sensor data.

Online/offline NIS tests are conducted as follows 1: sup-

pose N independent instances of the true state are randomly

initialized according to x̂0|0 and P0|0 (the initial state of

the filter), and then propagated through the true stochastic

dynamics (1) and measurement model (2) for T time steps,

yielding sample ground truth sequences xi
1,x

i
2, . . . ,x

i
T and

measurement sequences zi1, z
i
2, . . . , z

i
T for i = 1, . . . , N . If the

resulting measurement sequences are then fed into a Kalman

filter with tuning parameters (Qk,Rk), the resulting NEES

and NIS statistics for each simulation run i at each time k can

be averaged across problem instances to give the test statistics:

ǭx,k =
1

N

N∑

i=1

ǫi
x,k (19)

ǭz,k =
1

N

N∑

i=1

ǫi
z,k. (20)

1This is the same as the offline truth model tests conducted in [5]; here we
still use ground truth in order to check if the filter is consistent but in practice
it is not required.

Then, given some desired Type I error rate α, the NEES

and NIS χ2 tests provide lower and upper tail bounds

[lx(α,N), ux(α,N)] and [lz(α,N), uz(α,N)], such that the

Kalman filter tuning is declared to be consistent if, with

probability 100(1− α) at each time k,

ǭx,k ∈ [lx(α,N), ux(α,N)],

ǭz,k ∈ [lz(α,N), uz(α,N)].

Otherwise, the filter is declared to be inconsistent. Specif-

ically, if ǭx,k < lx(α,N) or ǭz,k < lz(α,N), then the

filter tuning is “pessimistic” (underconfident), since the filter-

estimated state error/innovation covariances are too large rela-

tive to the true values. On the other hand, if ǭx,k > ux(α,N)
or ǭz,k > uz(α,N), then the filter tuning is “optimistic”

(overconfident), since the filter-estimated state error/innovation

covariance are too small relative to the true values.

The χ2 consistency tests provide a very principled basis

for validating Kalman filter performance in domain-agnostic

way, and also provide a well-established means for guiding the

tuning of noise parameters Qk and Rk in practical applica-

tions. Tuning via the χ2 tests is most often done manually, and

thus requires repeated “guessing and checking” over multiple

Monte Carlo simulation runs. However, this quickly becomes

cumbersome and non-trivial for systems with several tunable

noise terms. Heuristics for manual filter tuning have been

developed in the linear-quadratic optimal control literature [8],

e.g. to coarsely tune diagonals of Qk first, before fine-tuning

the elements of Qk further. Such heuristics are useful for

bounding the shape and magnitude of Qk in linear-Gaussian

problems, but are of little help for tuning ‘fudge factor’ process

noise parameters that are used to cope with model errors

from state truncation, approximations of non-linearities, poorly

modeled dynamics, etc. Given this, alternative optimization

techniques are needed which are robust to stochastic variations

in the cost function and which can explore nonlinear spaces

while also satisfying the filter consistency requirements.

B. Previous Tuning Work

Much of the previous Kalman filter auto-tuning work is

based on consistency checking ([9] and [10]).

Reference [9] uses a genetic algorithm to tune Kalman filter.

This algorithm simulates the Darwin concept of “survival of

the fittest” to choose a good parameter set. It treats each

parameter set in the parameter space as an “individual.”

The specific parameter value corresponding to that individual

is coded into a string as a binary value and treated as a

“chromosome,” which is the genetic information. The fittest

individual is selected according to the numerical value of

NEES and error covariance norm, which is the cost function.

The genetic algorithm is implemented after some modifica-

tions. First, random parameter sets in the parameter space are

selected as the initial “population.” They will spawn the next

generation by pairing two individuals and exchanging parts

of their chromosomes randomly. The population is believed

to have converged once the population has a low cost. In

this approach, a large number of Monte Carlo runs is not

4

used because of computation limits, which leads to a problem

that some wrong individuals may also be able to pass the

consistency test. They add one more option to the cost function

besides the consistency test to solve that problem: when the

consistency value is smaller than a threshold the cost function

switches to a value based on the norm of the error covariance

P.

In their simulation experiment, they use a simple oscillator

as an example, aiming at tuning the speed and position noise.

The optimal value is not achieved because the structure of

their cost function: the minimization routine will tend to have

smaller state error covariance norm and instead of smaller

consistency value.

Another previous work [10] uses downhill simplex numer-

ical optimization algorithm to minimize the NEES based cost

function. A simplex is a collection of N + 1 points in an N -

dimensional space and all their interconnecting line segments.

The simplex algorithm attempts to locate a minimum of the

function by a series of movements in the N -dimensional

space. Those movements include reflection, expansion and

contraction. Details of those movements can be seen in the

paper [10].

However, the simplex algorithm can easily be stuck in a

local minima so there may be cases that this method will

fail. Although the algorithm’s cost function is based on NEES,

there are no plots showing the consistency check after getting

a tuning result.

Our previous work [5] focus on Kalman filter tuning us-

ing NEES χ2 tests too. Due to the hardware improvements

these years, it is not that time consuming to implement a

large number of Monte Carlo tests consisting of, say, several

hundred runs. We simulated a car moving along a straight

line and optimized a two dimensional process noise and a one

dimensional measurement noise. We successfully showed that

use Bayesian optimization to tune Kalman filter process noise

covariance as well as measurement noise covariance and can

yield good results. However, in our previous work, we did

not perform formal post hoc consistency validation checks

to confirm the readers that the error at each timestamp is

small enough. Our previous work also only limited analysis

and application to a linear dynamical system, and did not

consider extensions to linearization-based approximations for

non-linear filtering. At the same time, the above mentioned

references and our prior work [5] use NEES based consistency

check method, which makes it impossible to use when the

ground truth is not available. In this paper, we also propose

to use a NIS based consistency check method. NIS based

tuning method makes it possible for us to tune the Kalman

filter with just sensor measurements. We apply our methods

on more complicated and practical nonlinear cases and also

validate statistical consistency of the optimized result. Finally,

in this paper we use an improved Bayesian optimization pro-

cedure which is based on nonparametric Student’s-t regression

models, which leads to significantly more robust surrogate

models and tuning solutions than the Gaussian processes (GPs)

regression models used in our prior work.

C. Summary

Problems with existing approaches are that (a) they fall

into local minima; (b) they often have to use NEES; (c) they

run into issues with noise and stochastic variation from small

finite number of MC runs. We use Bayesian optimization to

avoid falling into local minima and we use NIS to avoid using

groundtruth.

IV. BAYESIAN OPTIMIZATION FOR AUTO TUNING

Many approaches for solving nonlinear optimization prob-

lems use gradient descent. However, the risk with these

approaches is that they can fall into local minima. This issue

is exacerbated for filter tuning problems defined by noisy non-

linear dynamical systems. Stochastic variations and nonlinear

model characteristics can introduce many local minima into

objective functions for tuning that can trap gradient descent

methods. One principled way to handle such cases is to use

Bayesian optimization [11], which poses optimization as a

probabilistic search problem.

Bayesian optimization is first described for dealing with

generic “black box” stochastic objective functions. Its novel

application is then described for simulation-based Kalman

filter auto-tuning.

A. Bayesian Optimization Theory

Consider the minimization of an objective function y :
Q → R, where Q ∈ R

d is the search or solution space, and

q∗ ∈ Q is the minimizer, such that y(Q∗) ≤ y(Q), ∀q ∈ Q.

Furthermore, we assume that each elements of i of q lies in

the interval Q(i) ∈ [q(i)l,q(i)u].
The intuition behind BO arises from the following. First

suppose that the entire solution space were densely sampled.

Carrying out this process, the map y : Q → R is entirely

known and the minimizer can be read off directly. However,

this dense sampling scheme is not possible in practice. Rather,

the search algorithm samples a subset of the parameter space.

Since the sampling is incomplete, the shape of the cost surface

is not known but, rather, must be estimated from sparse and

incomplete data. Therefore, the goal of Bayesian optimization

is to find the minimizer of the noisy objective function y
while at the same time learning about the mapping from q to

y via Bayesian inference. Bayesian optimization uses “black

box” point evaluations of y to efficiently find q∗. This is

accomplished by maintaining beliefs about how y behaves over

all q in the form of a surrogate model S, which statistically

approximates y and is easier to evaluate (e.g. since evaluations

of y might require expensive high-fidelity simulation). During

optimization, S is used to determine where the next design

point sample evaluation of y should occur, in order to update

beliefs over y and thus simultaneously improve S, while

finding the (expected) minimum of y as quickly as possible.

The key idea is that, as more observations E are sampled

at different q locations, the q samples themselves eventually

converge to the expected minimizer q∗ of y. Since S contains

statistical information about the level of uncertainty in y (i.e.

related to the posterior belief p(y|E)), Bayesian optimization

5

effectively leverages probabilistic “explore-exploit” behavior

to learn a probabilistic model of y while also minimizing it.

We next describe the two main components of the Bayesian

optimization process: (1) the surrogate model S, which en-

codes statistical beliefs about y; and (2) the acquisition func-

tion a(q), which is used to intelligently guide the search for

q∗ via S.

1) Surrogate Model: The surrogate model is the model used

to approximate the objective function. In the BO literature,

nonparametric regression models based on stochastic processes

are widely used [12] because they naturally model probability

distributions over uncertain functions and can be evaluated at

arbitrary query points given some finite set of sample obser-

vation points. Although Gaussian process (GP) are frequently

used, in this work we use Student-t processes (TP) instead,

following the recommendation of Shah, et al. [13].

A Student-t process is a stochastic process such that every

finite collection of samples from the process has a multi-

variate Student-t joint distribution. The mean function Φ(q),
the kernel function k(q) and the parameter v are the main

characteristics of TP. It can be written as

y(q) ∼ T P(v,Φ(q), k(q,q′)). (21)

The real-valued parameter v > 2 controls how “heavy-tailed”

the process is. The heavier the tail (i.e. the smaller the v), the

more likely it is that the TP will produce a value that is far

from the mean value. The TP tends to a GP as v → ∞. The

TP is attractive because it provides some extra benefits over

GP, without incurring more computational cost. For example,

the predictive covariance for the TP explicitly depends on

observed y data values; this is a useful property which the

Gaussian process lacks. Furthermore, distributions over the

cost function y may in general be heavy-tailed, so it is better

to use TP to “safely” model their behaviors [14]. Similarly,

every finite collection of TP samples q1:n = (q1,q2, · · · ,qn)
has a multivariate Student-t distribution, which can be written

as

y(q1:n) =
Γ(v+n

2
)

Γ(v/2)((v − 2)π)n/2|K|1/2

× (1 +
1

v − 2
(q1:n − Φ(q1:n)

TK−1(q1:n − Φ(q1:n))
− v+n

2

(22)

where Γ(n) is the gamma function for n ∈ R, and v > 2.

K is the covariance matrix consisting of kernel function k
evaluations,

K =




k(q1,q1) k(q1,q2) · · · k(q1,qn)
k(q2,q1) k(q2,q2) · · · k(q2,qn)

...
...

...
...

k(qn,q1) k(qn,q2) · · · k(qn,qn)


 . (23)

Equation (22) is written as the following for simplicity,

y(q1:n) ∼MV Tn(v,Φ(q1:n),K). (24)

For Bayesian optimization, newly sampled q and y values are

added to the vector q1:n and y(q1:n) to construct a surrogate

model of the underlying objective function according to Eq.

(24). In most implementations of Bayesian optimization, as

the new sample values are added, the hyperparameters for the

kernel function k are also re-estimated from the available data

and updated accordingly. The updated surrogate model is then

used to compute the acquisition function, which is used to

select the next sample q for evaluation of y.

2) Acquisition Function: The expected improvement func-

tion is one of many well-known acquisition functions; other

possible and popular choices for the acquisition function

include the Lower Confidence Bound (LCB). We use expected

improvement function in of our implementations and we’ll

discuss how this acquisition function is generated next. Sup-

pose that n points q1:n and y(q1:n) have been sampled and

have been incorporated into the surrogate model. The current

minimizer is q∗
1:n = minm≤n y(qm). This will be one of these

points, since observations of y are not available for other points

in Q. The algorithm needs to choose the next point qn+1

to be sampled. We seek a new location which will yield a

new, lower, minimum. In other words, y(qn+1) < y(q∗
1:n).

One way to evaluate the new sample point is to evaluate its

improvement with respect to q∗
1:n

g(qn+1,q
∗
1:n) = max(0, yn(q

∗
1:n)− y(qn+1)). (25)

This only assigns a non-zero value if qn+1 < q∗
1:n. Therefore,

the idea is to chose qn+1 which maximizes the improvement.

Since we only have access to the surrogate function, the

improvement is stochastic. Therefore, we choose the next

sample point based on the expected improvement

En[g(qn+1,q
∗
1:n) | q1:n,y(q1:n)] (26)

En[·] is the expectation based on current posterior distribu-

tion, given by the current MV T surrogate model. We need

maximize Eq. 26 to find the next point to sample.

qn+1 = argmax
qn+1

En[g(qn+1,q
∗
1:n) | q1:n,y(q1:n)] (27)

The closed form solution of the EI acquisition function using

the TP surrogate is [14], [15],

EIn(q) = (yn(q
∗
1:n)− u)Ψ(z) +

v

v − 1
(1 +

z2

v
)σψ(z) (28)

where u and σ are the mean and variance of the conditional

Student’s-t distribution of qn+1, which is presented below in

(31). Ψ(·) and ψ(·) are the CDF and PDF of the standard

Student-t distribution MV T1(v, 0, 1). The conditional MV T
distribution is similar to the conditional multivariate Gaussian

distribution: if we have q1:n+1 and y(q)1:n+1 described by a

multivariate MV T pdf, then
[
y(q1:n)
y(qn+1)

]
∼MV Tn+1(v + 1,

[
Φ(q1:n)
Φ(qn+1)

]
,

[
K(q1:n,q1:n) K(q1:n,qn+1)
K(qn+1,q1:n) K(qn+1,qn+1)

]
)

(29)

where K(q1:n,q1:n) is the same as eq. (23), K(q1:n,qn+1) =
[k(q1,qn+1), · · · , k(qn,qn+1)]

T , and K(qn+1,qn+1) =
k(qn+1,qn+1). (29) can be written more simply as

[
y1
y2

]
∼MV Tn+1(v + 1,

[
Φ1

Φ2

]
,

[
K11 K12

K21 K22

]
) (30)

6

The conditional Student-t distribution of y(qn+1) is then given

by [16]

y(qn+1|q1:n, y(q1:n)) ∼MV T1(v + n, u, σ)

u = Φ2 +K21K
−1

11 (y1 − Φ1)

σ =
v + d

v + n
K22 −K21K

−1

11 K12

d = (y1 − Φ1)
TK−1

11 (y1 − Φ1)

(31)

The prior mean function for the surrogate model in Bayesian

optimization can be set as a constant without changing the final

result [17], so let Φ1 = 0,Φ2 = 0. Substituting Eq. (31) into

Eq. (28), the only unknown variable will be qn+1. To find the

qn+1 that maximizes Eq. (28) for the largest improvement,

another inner optimization problem must be solved within

Bayesian optimization. Luckily, Eq. (28) is known, there are

several ways to maximize the EI function, such as DIRECT

[18], which is a derivative free and deterministic nonlinear

global optimization algorithm that is widely used for Bayesian

optimization via nonparametric surrogate model regression.

Once the next point to sample is selected by the inner loop

optimization, the Bayesian optimization loop can continue

until the termination criterion (maximum iteration or minimum

observation change between two iterations) is met.

The resulting algorithm for Bayesian optimization is re-

ferred to here as TPBO (Student-t processes Bayesian opti-

mization). EI is used in this work because it has been shown to

yield better or equal performance to other acquisition functions

for a wide variety of applications [19], [20], [21].

B. Stochastic Costs for Consistency-based Filter Auto-tuning

Now consider how y(q) can be defined via NEES and NIS

consistency test statistics for Kalman filter tuning. As such,

let Q be some space of configurable Kalman filter parameters

(e.g. the set of all parameters defining some positive definite

symmetric process noise covariance Qk) and let q ∈ Q be a

design point.

Consider first the case of tuning based on assessment of

NEES statistics obtained via Monte Carlo ground truth sim-

ulation models. If N Monte Carlo simulations are performed

for T time steps at any given design point q, starting from

the initial conditions x̂0|0 and P0|0, then the average NEES

statistic ǭx,k can be computed using Eq. (19) for each time

k = 1, ..., T . To summarize how “well-behaved” ǭx,k is across

all time steps, we can leverage the fact that the expected value

of ǭx,k for a consistent Kalman filter should be nx. Therefore,

we use the following cost function to evaluate how much ǭx,k
deviates from this ideal expected value

y(q) = JNEES(q) =

∣∣∣∣∣log
(∑T

k=1
ǭx,k/T

nx

)∣∣∣∣∣ (32)

The reason why we use the log of the cost is that the NEES

value itself is bounded from below (by 0) but is not bounded

above. Taking the log ensures that the cost will space from

negative to positive infinity.

By a similar reasoning,

y(q) = JNIS(q) =

∣∣∣∣∣log
(∑T

k=1
ǭz,k/T

nz

)∣∣∣∣∣ (33)

where ǭz,k is the NIS outcome which could either be obtained

from a ground truth simulation, or from a set of real data logs.

One can also use negative log likelihood cost function, which

will yield similar optimization result after our test.

Algorithm 1 summarizes the TPBO procedure for Kalman

filter tuning. An attractive feature of TPBO is that it natu-

rally provides uncertainty quantification on the shape of the

objective function at both sampled and unsampled locations.

This allows TPBO to cope with multiple local minima in the

parameter space Q.

Algorithm 1 TPBO for Kalman filter tuning

1: Initialize TP with seed data {qs, ys}
Nseed

s=1
and hyper-

parameters Θ
2: while termination criteria not met do

3: qj = argmaxQ a(q)
4: Evaluate y(qj), e.g. using JNEES(q) or

JNIS(q).
5: Add y(qj) to f(Q), qj to Q, and update Θ
6: end while

7: return q∗ = argminqj∈Q f (qj)

Based on samples over the system input and corresponding

outputs from the objective function, Bayesian optimization

fits a surrogate model of the “true” objective function.

The optimization method then repeats this process to find

a minimum of the current surrogate model, update this

surrogate model, and find the minimum of the new surrogate

model until pre-set termination conditions are met. The key

steps for the EKF-Bayesian optimization tuning procedure

are shown in Figure 1.

After the iteration starts, we can see in the flow chart that

we maximize the acquisition function. The new point that can

maximize the acquisition function will be chosen as the next

set of process noise to run the EKF system. After running the

EKF system with the new set of process noise we can get a

new cost, which will be used to update the surrogate model.

V. APPLICATION TO EXTENDED KALMAN FILTERS

We evaluated our Bayesian optimization auto-tuning algo-

rithm on a nonlinear state estimation application that uses the

Extended Kalman filter (EKF). This application is a closed-

loop control system for the aero-robotic Mars Science Lab

(MSL) Skycrane landing system. In this case, TPBO is used

to automatically tune the assumed process noise covariance

matrix, which is one of the main “tuning knobs” for the EKF.

The “Skycrane maneuver” was used as a deployment

method for the Mars Science Laboratory (MSL) Curiosity

rover upon its arrival and descent near the surface of Mars,

as an alternative to the air bag method used in previous

missions. Thrusters were used to stabilize the MSL Descent

Stage System (a robotic aircraft) to zero horizontal velocity

and to slowly guide the system to 20m above the ground

7

Fig. 1: System Flowchart: Bayesian optimization will fit a surrogate model based on some sampled input parameters and

associated costs according to the “black box” objective function, and then starts iterating until a minimum cost is found.

to deploy the rover. A simplified model of this latter stages

longitudinal dynamics will be used to simulate vehicle state

estimation just prior to the rover deployment phase. Figure 2

depicts a simplified 2D longitudinal dynamics model of the

MSL Descent Stage aircraft. More detailed descriptions of

the MSL platform are given in [22], [23].

A. System description

The system is modeled as a rectangular box with two

thrusters, one each on the bottom corners of the aircraft

mounted at angle β to the vehicle z axis. The simplified

vehicle states consist of the inertial translation ξ (m), altitude

above surface z (m), pitch angle θ (radian), and rates ξ̇ (m/s),

ẋ (m/s), and θ̇ (rad/s). The control inputs are defined in terms

of the thrusts Ti (Newtons) produced by the ith thruster. The

state and control input are therefore

x(t) = (ξ, ξ̇, z, ż, θ, θ̇)T

u(t) = (T1, T2)
T .

(34)

The equations of motion are derived here by considering

only gravity, thrust, and drag forces (the vehicle is assumed

not to generate significant lift in this phase). Drag will be

modeled as Fdrag = 1/2CDρAv
2, where CD is the drag

coefficient, ρ is the atmosphere density, v is the magnitude of

the velocity, and A is the approximate cross-sectional area of

the vehicle in the direction of motion. Let mb be the mass of

the Skycrane aircraft and payload, mf be the mass of the fuel,

ωb and hb the width and height dimensions of the Skycrane

body as shown in Fig. 2, ωf and hf the dimensions of the

propellant housing, and hcm and ωcm the dimensions for

the vehicle center of mass. The motion equation are written as

ξ̈ =
T1(sin(θ + β)) + T2(sin(θ − β))− FD,ξ

mb +mf
+ ω̃1

z̈ =
T1(cos(θ + β)) + T2(cos(θ − β)) − FD,ξ

mb +mf
− g + ω̃2

θ̈ =
1

Iη
((T1 − T2)(cosβ

ωb

2
− sinβhcm)) + ω̃3

1

Iη
=

1

12
(mb(ω

2
b + h2b) +mf (ω

2
f + h2f))

FD,ξ =
1

2
CDρ(As cos(θ − α) +Ab sin(θ − α))ξ̇

√
ξ̇2 + ż2

FD,z =
1

2
CDρ(As cos(θ − α) +Ab sin(θ − α))ż

√
ξ̇2 + ż2

α = tan−1 ż

ξ̇
(35)

To simplify the model further, changes in mf will be ignored.

Values for these constants are provided in the appendix.

Sensors for state estimation consist of a simplified ideal

single-axis IMU, i.e. an accelerometer and rate gyro pair which

provide noisy measurements of inertial ξ accelerations and

pitch rotations about the inertial ζ axis.

The sensor data also include on-board barometer readings

to gauge altitude. Image-based tracking measurements from

an overhead passing satellite are also converted into noisy

ξ platform position reports. The measurement vector can be

written as

y =




ξ
z

θ̇

ξ̈


+ ṽ(t) (36)

where ṽ(t) ∈ R
4 is the sensor error vector. The process

8

disturbance and measurement noise vectors are

w̃(t) = (ω̃1, ω̃2, ω̃3)
T , (37)

ṽ(t) = (ṽ1, ṽ2, ṽ3, ṽ4)
T , (38)

all of which are modeled as additive white Gaussian noise. To

obtain the appropriate matrices for the EKF, the discrete time

state transition matrix is approximated by taking the Jacobian

of the Euler-intergrated continuous time motion model ẋ(t) =
f(x(t),u(t)) (with sample period δt = 0.1s). The Jacobian of

measurement model is obtained from Eq. (36). One important

thing we need to notice is that our system now is in continuous

time, to implement it we need convert it into discrete time,

which needs some extra work. The details for obtaining

the corresponding Jacobian matrices and discretization are

provided in the Appendix. Note that the vehicle must maintain

a desired nominal trim state of xref = (0, 0, 20, 0, 0, 0)T

(steady hover 20 m above the surface). Linearization about

the trim state reveals that the continuous time perturbation

dynamics are unstable but controllable and observable. Hence,

to maintain the platform at the desired state using estimated

full-state state feedback, a Linear Quadratic Regulator (LQR)

controller is also used to define the control inputs u(t) at each

discrete time step according to the control law,

uk = unom −Klin(xk − xref) (39)

where the Klin is a pre-calculated LQR gain, which can

be obtained offline using the separation principle assuming

ideal full-state feedback for the linearized dynamics about

trim (values given in Appendix). The same closed-loop control

law is used throughout the Bayesian optimization auto-tuning

procedure and the thrust values are made available to the EKF.

The nominal thrusts unom correspond to when the aircraft

stabilizes to the desired state without process noise, and is

given by

T1,nom = T2,nom = 0.5g
mb +mf

cosβ
. (40)

An example of running the EKF for the Skycrane sys-

tem can be seen in Figure 3, which shows the EKF’s

estimated state values over time with the help of LQR

controller. Each element’s variance of the process noise is

(0.01, 0.01, 0.001) for w̃(t) and variance of measurement

noise is (1.0, 0.5, 0.025, 0.0225) for ṽ(t). They all have zero

mean.

B. Discrete EKF From Continuous Time Model

The EKF prediction stage’s formula from the continuous

time will be different from the general discrete time EKF.

The prediction stage is

x̂k|k−1 = f(x̂k−1|k−1,uk), (41)

Pk|k−1 = F̃kPk−1|k−1F̃
⊤
k +ΩkQkΩ

T
k , (42)

We cannot directly obtain f(x̂k−1|k−1,uk) using the con-

tinuous time formula. There are some other ways. The first

method is that we can use the first order linearized form of

f(x̂k−1|k−1,uk) to estimate it, which means

f(x̂k−1|k−1,uk) ≈ x̂k−1|k−1 + δtf(x̂k−1|k−1,uk) (43)

Fig. 2: The Skycrane aircraft has two thrusters angled at 45

degrees, which nominally try to keep the platform 20 meters

above the ground with zero translational and rotational

motion.

0 5 10 15 20 25 30 35 40
−4

−2

0

ξ(
m
)

0 5 10 15 20 25 30 35 40−2

−1

0

1

̇ ξ(
m
/s
)

0 5 10 15 20 25 30 35 40

19̇0

19̇5

20̇0

20̇5

21̇0

z(
m
)

0 5 10 15 20 25 30 35 40
−0̇6

−0̇4

−0̇2

0̇0

0̇2

̇ z(
m
/s
)

0 5 10 15 20 25 30 35 40
time(s)

−0̇50

−0̇25

0̇00

0̇25

θ(
ra
d)

0 5 10 15 20 25 30 35 40
time(s)

0̇0

0̇2

0̇4

θ̇(
ra
d/
s)

Fig. 3: Sample Skycrane simulation showing the LQR

controller maintains the desired reference state using

EKF-estimated full-state feedback.

The second method is that we can numerically solve the

ordinary differential equations (ODE) f(x̂k−1|k−1,uk),
which can yeild a more precise result. In our implementation

we use the ODE integration library [24] to estimate the Eq.

(41). In equation (42) F̃k ≈ I + δtFk, Fk can be computed

from Eq. (13). Ωk ≈ δtΓk. Γk is a mapping matrix from

the 3 dimension noise to the 6 dimension noise, which can

be seen in the Appendix. The process noise noise covariance is

Qk =




Qξ̈ 0 0

0 Qz̈ 0
0 0 Qθ̈



 (44)

The update stage will remain the same as Eq. 9 to 12. The

measurement noise and its covariance are still fixed and written

in the Appendix.

C. Optimization results

As a first simple experiment, TPBO is used to perform a

1D parameter search for Qk defined as a constrained diagonal

matrix, where the process noise covariances are such that

Qξ̈ = Qz̈ = 10 ∗Qθ̈.

For the 1D parameter optimization, TPBO was applied over

the range Qξ̈ ∈ [1× 10−2, 1], using 10 initial surrogate model

9

seed samples, 50 total iterations and 200 Monte Carlo run.

The surrogate model and samples points for different sample

iterations are shown in Figure 5. Table I also shows the

numerical values for the final best minimizer found.

For the 2D parameter optimization, the parameter Qz̈ = 0.1
is held fixed, while Qξ̈ and Qθ̈ are optimized. The lower

bound and upper bound are set as [1 × 10−2, 1 × 10−3] to

[1,1] respectively. We have 20 initial samples, 80 iterations and

200 Monte Carlo run. Again, the mean value of the surrogate

model and the sample points at different iterations the TPBO

found are shown in Figure 6. From 1D optimization result

we can clearly see the result converge to points around 0.1

with high confidence and from the 2D optimization result

we can see the result converge to points around [0.1, 0.01].

However, from the 2D result Table I we can see after 80

iterations, the cost does not change significantly as the Qξ̈

change when the Qθ̈ is around 0.1. This phenomenon may lead

to a non-optimal result from TPBO. In Bayesian optimization,

this happens when certain dimensions do not have a great

impact on the cost, which encourages the addition of weights

on other dimensions.

For the 3D optimization result, the boundaries for Qξ̈, Qz̈ ,

Qθ̈ are [1× 10−2, 1× 10−2, 1× 10−3] to [1, 1, 1] respectively.

We have 30 initial samples, 100 iterations and 200 Monte

Carlo run for each sample. The value of Qz̈ is far away from

the optimal and it suffers from the same reason as the 2D

optimization, which yield a relative larger error when we check

the RMSE of z in Figure 7.

0 20 40
-1

0

1

0 20 40
-0.5

0

0.5

0 20 40
-1

0

1

0 20 40
-0.5

0

0.5

0 20 40

-0.1
-0.05

0
0.05

0 20 40
-0.05

0

0.05

Fig. 4: An example time series error between Skycrane

estimates using the BO-tuned optimal parameter values and

ground truth states (orange lines: 2σ bounds; blue line:

error). Intuitively, the error should lie between the 2σ bounds

about 95% of the time if the filter is consistent.

To validate the results of TPBO, the RMS error of three

states ξ, z, θ between the EKF’s state estimation and the

groundtruth (state from the simulator) are evaluated. We apply

the 1D, 2D, 3D optimized parameters with a random set of

process noise for 50 simulation runs of the Skycrane EKF

and then obtain results in Figure 7. These results show that

the 2D optimization results yield the best state estimates, since

it has the minimum median error and smallest lower and upper

error bounds. The 1D optimization result is similar to 2D

optimization result. It is worth noting that all the errors are

Type
Result

Cost Optimal

1D opt 0.0206 (0.098,0.098,0.0098)

2D opt 0.0251 (0.0446,0.1,0.0119)

3D opt 0.0193 (0.0349838, 0.999984,0.0152815)

TABLE I: Optimal means the optimal process noise for the

EKF covariance. They stands for Qξ̈, Qz̈ , Qθ̈ respectively.

in fact small; for example, even though the RMSE of θ is

visually larger than the others, its median value is 3 × 10−3

rads. This is because measurement noise is set to fit the model

precisely, so that its behavior will be robust most of the time.

Under this condition, TPBO’s optimization ability is assessed

over a relatively small range of NIS cost values. Figure 4

shows a typical trace for the state estimation error using the

3D optimized parameter estimates, indicating that consistent

estimates are in fact obtained.

VI. CONCLUSION

As a black box optimization method, TPBO simplifies what

we need to know about a system in order to get the minimum

cost. We used an example, Skycrane State estimation to

show that this algorithm can be applied to complex nonlinear

systems. This novel approach can also help the practitioners

get the optimal process noise covariance much faster than

tuning the EKF manually. In this paper we have shown

results using an NIS-based cost function only. Although a

NEES-based cost function can also work just as well, as

shown in ref. [5], this requires the availability of ground truth

state information, so NIS-based cost functions may often be

more practical and are applicable with real sensor data. In

this paper, we also have focused only on optimizing filter

process noise parameters. However, the same auto-tuning

process can be applied if the measurement noise also needs

to be adjusted for a particular application [5]. In fact, if we

don’t have confidence in either process noise or measurement

noise covariances, it is possible to use TPBO to optimize

these parameters simultaneously. The flexibility of the TPBO

allows us to do more.

In the future, as this algorithm is robust to use, we aim

to apply it to more realistic hardware-based system tuning

problems. Another interesting direction for future research

involves optimization of higher dimensional parameter

spaces, where some dimensions may potentially have little/no

noticeable effect on the NIS tuning cost. Possible strategies

for handling this might include using TPBO to optimize those

parameters which have a significant impact on the tuning cost,

leaving the remaining parameters to be hand-tuned. Since the

TPBO algorithm is able to support arbitrary “black box” cost

function evaluations, modifications or alternatives to the NIS

cost function could also be explored. Finally, the flexibility

of our TPBO approach means that it can be applied to other

optimal estimator tuning problems. Most notably, for example,

we have already applied this approach to VI SLAM (Visual

Inertial Simultaneous Localization and Mapping) extrinsic

10

0 0.2 0.4 0.6 0.8 1
x

0.02

0.04

0.06

0.08

0.1

0.12

0.14
JN

IS

Surrogate fn
Upper uncert
Lower uncert
It Sample pts
Ini Sample pts

(a) iteration1

0 0.2 0.4 0.6 0.8 1
x

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

JN
IS

Surrogate fn
Upper uncert
Lower uncert
It Sample pts
Ini Sample pts

(b) iteration10

0 0.2 0.4 0.6 0.8 1
x

0.02

0.04

0.06

0.08

0.1

0.12

JN
IS

Surrogate fn
Upper uncert
Lower uncert
It Sample pts
Ini Sample pts

(c) iteration50

Fig. 5: 1D plots of surrogate functions and uncertainty bounds for the Skycrane problem, as well as sample points chosen by

Bayesian optimization. The black dashed line represents the lower and upper uncertainty bounds for a 95% confidence

interval. The green dots are the initial sample points. The red dots are the sample points after the iteration starts. The blue

line is the mean of the surrogate model

(a) iteration1 (b) iteration50 (c) iteration80

Fig. 6: 2D surface plots of surrogate functions for the Skycrane problem, as well as sample points. The green circles are the

initial sample points and the red cross is the sample points after the iterations starts. Upper and lower bound surfaces are not

plotted here or the surfaces may cover each other.

1d_opt 2d_opt 3d_opt random

0.015

0.02

0.025

0.03

0.035

R
M

S
E

 X
i

(a) RMSE of ξ

1d_opt 2d_opt 3d_opt random

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

R
M

S
E

 Z

(b) RMSE of z

1d_opt 2d_opt 3d_opt random

1.5

2

2.5

3

3.5

R
M

S
E

 T
he

ta
10 -3

(c) RMSE of θ

Fig. 7: Nd_opt means we use the optimization result from the ND search and run Skycrane system. The left one shows

the RMSE of translation and the right one shows the RMSE of rotation.

parameter calibration [25], where the “extrinsic parameter”

means the relative pose between the camera and other sensors.

APPENDIX A

ADDITIONAL INFORMATION OF SKY-CRANE MODEL

A. Jacobian and Parameters

The process model for the Skycrane has the form ẋ(t) =
f(x(t),u(t)) + w̃, where




ξ̇

ξ̈
ż
z̈

θ̇

θ̈



= f







ξ

ξ̇
z
ż
θ

θ̇



,

[
T1
T2

]




+




0
ω̃1

0
ω̃2

0
ω̃3

0




(45)

Substituting for Eq. (35) and taking derivatives, the Jacobian

of the process model is

F(t) =




0 1 0 0 0 0
0 F11 0 F13 F14 0
0 0 0 1 0 0
0 F31 0 F33 F34 0
0 0 0 0 0 1
0 0 0 0 0 0




(46)

11

where

F11 = nc((Asc +Abs)(2ξ̇
2 + ż2)/Vt + ξ̇ż(Abc −Ass)/Vt)

F13 = nc((Asc +Abs)(ξ̇ + ż)/Vt + ξ̇2(Ass −Abc)/Vt)

F14 = l(T1 cos (β + θ) + T2 cos (β − θ) + cdξ̇Vt(Ass −Abc))

F31 = nc((Asc +Abs)(ξ̇ + ż)/Vt) + ż2(Abc −Ass)/Vt)

F33 = nc((Asc +Abs)(2ξ̇
2 + ż2)/Vt + ξ̇ż(Ass −Abc)/Vt)

F34 = l(T2 sin (β − θ)− T1 sin (β + θ) + cdξ̇Vt(Ass −Abc))
(47)

Taking derivates of (36),

H(t) =




1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 H31 0 H33 H34 0


 (48)

where

H31 = nc((Asc +Abs)(2ξ̇
2 + ż2)/Vt + ξ̇ż(Abc −Ass)/Vt)

H33 = nc((Asc +Abs)(ξ̇ + ż)/Vt + ξ̇2(Ass −Abc)/Vt)

H34 = l(T1 cos (β + θ) + T2 cos (β − θ) + cdξ̇Vt(Ass −Abc))
(49)

The symbols in (47) and (49) are defined as follows

cd = 0.5ρCD

l =
1

mf +mb

nc = −0.5ρlCD

ωcm =
ωb

2
α = tan−1(ż/ξ̇)

Vt =

√
ξ̇2 + ż2

As = (hbdb) + (hfdf)

Ab = (ωbdb) + (ωfdf)

Asc = As cos(θ − α)

Ass = As sin(θ − α)

Abc = Ab cos(θ − α)

Abs = Ab sin(θ − α)

(50)

All the basic constants value are written here

ρ = 0.02kgm−3

g = 3.711m s−2

β =
π

4
rad

CD = 0.2

mf = 390kg

ωf = 1m

hf = 0.5m

df = 1m

mb = 1510kg

ωb = 3.2m

hb = 2.5m

db = 2.9m

hcm = 0.9421m

(51)

Mapping between 3 dimensional process noise and 6 dimen-

sional measurement noise Γk is

Γk =




0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1




(52)

The fixed measurement noise is

ṽ(t) = (1.0, 0.5, 0.025, 0.0225)T (53)

The measurement noise covariance is set as

Rk =




1.0 0 0 0
0 0.5 0 0
0 0 0.025 0
0 0 0 0.0025


 (54)

B. Feedback Law of LQR controller

We need linearize the motion model in order to use LQR

controller, e.g. calculating the Jacobian of motion model. We

have calculated the Jacobian of motion model with respect to

state x. We also need the Jacobian with respect to control u

and noise w respectively. The Jacobian with respect to control

input is

U(t) =




0 0
sin(θ + β)l sin(θ − β)l

0 0
cos(θ + β)l cos(θ − β)l

0 0
1

Iη
(0.5 cos(β)ωb − sin(β)hcm) −U50




(55)

The Jacobian with respect to the noise is

W(t) =




0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1




(56)

Substitute xref , unom into equation 56 and 55 we can get

the linearized value of jacobian at the desired point Fxref

and Uunom
. Then the linearized state space model around the

desired state can be written as

ẋ = Fxref
x+Uunom

u

y = x
(57)

Then we can get the optimal gain matrix Klin by

Klin = R−1
conU

T
unom

Scon (58)

where Scon is the solution of of the associated Riccati equation

FT
xref

Scon + SconFxref
− SconUunom

R−1
conU

T
unom

+Qcon = 0
(59)

the Rcon is a 2 by 2 diagonal matrix with its diagonal element

(0.01, 0.01) and the Qcon is a 6 by 6 diagonal matrix with its

12

diagonal elements (200 15 200 15 10000 15). Finally we get

our Klin

Klin =




100.0 −100.0
406.575 −406.575
100.0 100.0

519.086 519.086
3053.285 −3053.285
3140.470 −3140.470




T

(60)

REFERENCES

[1] E. A. Wan and R. Van Der Merwe, “The unscented kalman filter for
nonlinear estimation,” in Proceedings of the IEEE 2000 Adaptive Sys-

tems for Signal Processing, Communications, and Control Symposium
(Cat. No. 00EX373). Ieee, 2000, pp. 153–158.

[2] X. R. Li, Z. Zhao, and V. P. Jilkov, “Practical measures and test for
credibility of an estimator,” in Proc. Workshop on Estimation, Tracking,
and FusionA Tribute to Yaakov Bar-Shalom, 2001, pp. 481–495.

[3] H. Dette, A. Pepelyshev, and A. Zhigljavsky, “Optimal designs in
regression with correlated errors,” Annals of statistics, vol. 44, no. 1,
p. 113, 2016.

[4] L. Wanninger, “Real-time differential gps error modelling in regional
reference station networks,” in Advances in Positioning and Reference

Frames. Springer, 1998, pp. 86–92.
[5] Z. Chen, C. Heckman, S. Julier, and N. Ahmed, “Weak in the nees?:

Auto-tuning kalman filters with bayesian optimization,” in 2018 21st

International Conference on Information Fusion (FUSION). IEEE,
2018, pp. 1072–1079.

[6] J. K. Uhlmann, “Covariance consistency methods for fault-tolerant
distributed data fusion,” Information Fusion, vol. 4, no. 3, pp. 201–215,
2003.

[7] Y. Bar-Shalom, X. Li, and T.Kirubarajan, Estimation with Applications

to Navigation and Tracking. New York: Wiley, 2001.
[8] R. F. Stengel, Optimal control and estimation. Courier Corporation,

1986.
[9] Y. Oshman and I. Shaviv, “Optimal tuning of a kalman filter using

genetic algorithms,” in AIAA Guidance, Navigation, and Control Con-

ference and Exhibit, 2000, p. 4558.
[10] T. D. Powell, “Automated tuning of an extended kalman filter using

the downhill simplex algorithm,” Journal of Guidance, Control, and

Dynamics, vol. 25, no. 5, pp. 901–908, 2002.
[11] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “Boa: The bayesian

optimization algorithm,” in Proceedings of the 1st Annual Conference on

Genetic and Evolutionary Computation-Volume 1. Morgan Kaufmann
Publishers Inc., 1999, pp. 525–532.

[12] C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer
School on Machine Learning. Springer, 2003, pp. 63–71.

[13] A. Shah, A. Wilson, and Z. Ghahramani, “Student-t processes as alter-
natives to gaussian processes,” in Artificial Intelligence and Statistics,
2014, pp. 877–885.

[14] A. Shah, A. G. Wilson, and Z. Ghahramani, “Bayesian optimization
using student-t processes,” in NIPS Workshop on Bayesian Optimisation,
2013.

[15] B. D. Tracey and D. Wolpert, “Upgrading from gaussian processes
to studentst processes,” in 2018 AIAA Non-Deterministic Approaches

Conference, 2018, p. 1659.
[16] P. Ding, “On the conditional distribution of the multivariate t distribu-

tion,” The American Statistician, vol. 70, no. 3, pp. 293–295, 2016.
[17] E. Brochu, V. M. Cora, and N. De Freitas, “A tutorial on bayesian

optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning,” arXiv preprint

arXiv:1012.2599, 2010.
[18] D. E. Finkel, “Direct optimization algorithm user guide,” Center for

Research in Scientific Computation, North Carolina State University,
vol. 2, pp. 1–14, 2003.

[19] J. R. Gardner, M. J. Kusner, Z. E. Xu, K. Q. Weinberger, and J. P.
Cunningham, “Bayesian optimization with inequality constraints.” in
ICML, 2014, pp. 937–945.

[20] M. A. Gelbart, J. Snoek, and R. P. Adams, “Bayesian optimization with
unknown constraints,” arXiv preprint arXiv:1403.5607, 2014.

[21] Z. Wang, M. Zoghi, F. Hutter, D. Matheson, and N. De Freitas,
“Bayesian optimization in high dimensions via random embeddings,” in
Twenty-Third International Joint Conference on Artificial Intelligence,
2013.

[22] A. Steltzner, D. Kipp, A. Chen, D. Burkhart, C. Guernsey, G. Mendeck,
R. Mitcheltree, R. Powell, T. Rivellini, M. San Martin et al., “Mars
science laboratory entry, descent, and landing system,” in 2006 IEEE

Aerospace Conference. IEEE, 2006, pp. 15–pp.
[23] R. Mitcheltree, A. Steltzner, A. Chen, M. SanMartin, and T. Rivellini,

“Mars science laboratory entry, descent and landing system verification
and validation program,” in 2006 IEEE Aerospace Conference. IEEE,
2006, pp. 6–pp.

[24] K. Ahnert and M. Mulansky, “Odeint–solving ordinary differential
equations in c++,” in AIP Conference Proceedings, vol. 1389, no. 1.
AIP, 2011, pp. 1586–1589.

[25] Z. Chen, “Visual-inertial slam extrinsic parameter calibration based on
bayesian optimization,” 2018.

http://arxiv.org/abs/1012.2599
http://arxiv.org/abs/1403.5607

	I Introduction
	II Preliminaries
	II-A System Overview
	II-B Mean and Covariance Representation
	II-C Kalman Filters

	III Tuning
	III-A Approaches to Tuning
	III-B Previous Tuning Work
	III-C Summary

	IV Bayesian Optimization for auto tuning
	IV-A Bayesian Optimization Theory
	IV-A1 Surrogate Model
	IV-A2 Acquisition Function

	IV-B Stochastic Costs for Consistency-based Filter Auto-tuning

	V Application to Extended Kalman Filters
	V-A System description
	V-B Discrete EKF From Continuous Time Model
	V-C Optimization results

	VI Conclusion
	Appendix A: Additional Information of Sky-Crane Model
	A-A Jacobian and Parameters
	A-B Feedback Law of LQR controller

	References

