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Abstract

Theoretical investigations of the collisions of low energy positrons with helium
atoms have been made in the energy region where only the elastic scattering and

the positronium formation channels are open.

We have used the two channel Kohn variational method and new accurate nu-
merical procedures have been developed to perform the many six dimensional in-
tegrations. The effect of the inexactness of the target wavefunction on the final
results has been investigated and consequently we have used very elaborate helium

wavefunctions in our calculations.

The s-wave positronium formation cross section has been calculated using trial
functions containing 502 short-range terms and is found to be very small. The s-wave
elastic scattering cross section is found to be the main contributor to the total elastic
cross section and a detailed investigation of the behaviour of the cross section at the
positronium formation threshold reveals a 'rounded step’ feature which is predicted
by Wigner's threshold theory. The positronium formation cross sections for p- and
d-wave scattering have been calculated, and we find the d-wave component to be
dominant for energies greater than leV above threshold. The total positronium
formation cross section is evaluated using the s-, p- and d-wave results of this work
and the first Born approximation for the higher partial waves. A difference is found
between theory and experiment which is attributed to the uncertainty in the absolute
values of the experimental data and the convergence of the theoretical results. The p-
and d-wave elastic scattering cross sections have been calculated and are found to be
~30% of the total elastic scattering cross section for energies above the positronium

formation threshold.

We have also investigated the annihilition of positrons with the electrons in the
helium atom at energies corresponding to room temperature. The angular corre-
lation function has been calculated and is found to agree very well with the latest

experimental measurements.
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Chapter 1

Introduction

The prediction in 1928 by P. A. M. Dirac of the existence of anti-particles can be
considered as one of the main theoretical achievements of 20th century physics and
also as a great success of both the quantum theory of matter and the theory of
special relativity which had been developed in the previous 20 years. The intrinsic
nature of anti-particles could not have been inferred using the classical theory of
matter, and it was only after modifying the quantum theory of Schrédinger so as
to include particles with kinetic energies comparable to their rest mass, that Dirac

was able to make his prediction.

Dirac started by considering the Schrodinger equation,

L0
ihs U = HY, (1.1)

where H is the total Hamiltonian. This equation is of first order in ¢, and as in
special relativity the spatial and time coordinates must be on the same footing, i.e.
we define points in space-time by (21, z2, 3, T4 = ict), Dirac proposed that a wave
equation which would hold for relativistic velocities should be of first order both in
t and space, and therefore linear in both the energy and the momentum operator.

For a free particle, for instance an electron, Dirac’s equation is

. 0 e 0 2
zﬁa‘ll = —zhké:l akga\l‘ + Bmc’Y, (1.2)

where m is the mass of the electron and a and /3 are constants which must be (4 x 4)
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matrices for there to be any solution to the equation. Therefore, the wavefunction,
U, needs to have four components and Dirac proposed to associate the first two
with the two spin 1/2 states ( spin up and spin down) of the electron, and the other
two components with the two spin states of a new spin 1/2 particle, with opposite

electric charge to the electron but with identical mass, the positron.

Dirac’s theory predicted that the allowed values of the total relativistic energy

FE for a free electron would be

E = i\/c2p2 + (moc?)2. (1.3)

The positive values of E are those for the relativistic free electron, represented by
the first two components of the wavefunction, and Dirac understood that the neg-
ative values of E did have physical significance and corresponded to electrons with
negative energies. This led him to propose a theory in which the vacuum is con-
sidered as a sea of electrons with fully occupied negative energy levels which are
separated from the positive energy levels by at least AE = 2moc®. The creation
from the vacuum of an electron-positron pair could then be explained by considering
an electron in a negative energy level as having been excited by a photon, with en-
ergy greater than 2mgc?. to a positive energy level ( the electron cannot be excited
to another negative state as these states are considered to be fully occupied). The
result of such a transition would be to create an electron with positive energy and
to leave one of the negative energy levels unoccupied. This hole in the sea of nega-
tive energy electrons would have all the mechanical and electrical properties of the
positron. Both the existence of the positron and the possibility of pair production
were confirmed experimentally by Anderson in 1932 in his studies of cosmic rays,
and by Blackett and Occhialini in 1933. Although Dirac’s theory predicted correctly
the existence of anti-particles, it did not fully explain the whole phenomenon, and
it is only with the introduction of quantum field theory that a complete theory for

particle - anti-particle interactions was developed.

Since the nineteen thirties positrons have been a very important topic of mod-
ern physics and have been studied extensively. At first, the fundamental properties

of positrons were investigated to verify the new theories of anti-matter, but more

8



recently, positrons have been used as probes in atomic and solid states physics. The
study of the interaction of positrons with atoms and molecules was undertaken not
only because of the interest in the new phenomena associated with this type of
collision, but also because it provided a testing ground for collision theories which
had been developed for electron-atom and electron-molecule scattering. As empha-
sized by Massey in his review article (Massey 1976), applying the approximation
methods developed for the study of electron-atom scattering to the investigation
of positron-atom collisions, involves mainly a reversing of the sign of the projectile
electric charge and also the removal of the exchange between the incoming projec-
tile and the target electrons. This can provide a severe test of the quality of the
approximation used and it is found that in general positron scattering calculations
are more sensitive to the level of approximation than is the case for electron-atom
scattering. In addition. this change of the electric charge of the incoming projectile
means that the physical interaction between the target and the projectile will be
very different for electron and positron scattering and, therefore, the comparison of
the cross sections for both types of collision can give useful information on these

projectile-atom interactions.

There are three main components to the interaction between an electron or
positron projectile and the atomic target, which are important in the low energy
collisions in which we are mainly interested in this work. First, we have the com-
ponent which arises from the interaction between the projectile and the undistorted
target ( i.e. the static interaction ) and second, we have the polarization inter-
action between the projectile and the distorted charge distribution of the target
atom. The third component is the exchange interaction which is present if the pro-
jectile is identical with the electrons in the target. The static interaction affects
electron-atom and positron-atom scattering at all energies, but it is repulsive for
positron scattering and attractive for electron scattering. On the other hand, the
polarization interaction is attractive for both types of collision, but it is effective
only at very low energies, for which the interaction time between the projectile and
the target is such that the electron cloud has time to be polarized. The exchange

interaction only affects electron scattering, the positron being distinguishable from



Type of Projectile
Interaction et e
Static Repulsive  Attractive
Polarization Attractive Attractive
Exchange No Yes
Positronium formation Yes No
Annihilation Yes No

Table 1.1: The differences between the interactions in electron-atom and positron-

atom scattering.

the target electrons, and it will be mainly effective when the electron projectile and
the target electrons have similar kinetic energies. (See Kaupilla and Stein 1990 for

a comparative review on positron and electron scattering.)

In table 1.1 we sumarize the interactions for electron and positron scattering,
and one can see that a major difference between the two types of collision is the
cancellation of the static and the polarization interactions in positron-atom scatter-
ing which usually leads to smaller cross sections at low energy as compared to those
for electron-atom scattering. At sufficiently high energies, above a few hundred
eV, both the polarization and exchange interactions become negligible, so that only
the static interaction is effective and the total cross section for electron-atom and
positron-atom scattering merge in this energy region (see figure 1.1). This merging
of the total cross section occurs at a much lower energy than the merging of the
individual partial cross sections (Kauppila and Stein 1982 and Stein et al. 1990)

and this can be explained (Humberston 1994) by considering the optical theorem,
4
O = LI fa(0) (14)

where f;(0) is the forward elastic scattering amplitude.

If we take a Born expansion of f.;(0),

fal0) = 3 £E™(0) (15)

n=1
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Figure 1.1: Total cross section for electron- and positron-helium scattering showing

the merging of the cross section at high energies, taken from Kauppila et al/ (1981).

we find that the first term is real and therefore the first non-zero term in atot is from
the second Born amplititude. If exchange is neglected, we find that this term, being
quadratic in the projectile - atom potential, is the same for electrons and positrons
and this will also be the case for all even n terms in the Born expansion. Hence, only
the odd orders of the Born expansion, with » >3, will contribute to make the total
cross section for electrons and positrons different, and these terms are presumably
very small at energies much lower then those where the first Born approximation

for the individual cross section is valid.

There are two new types of processes which occur in positron-atom scattering
but cannot take place in electron-atom collisions. The first one, positron-electron
annihilation, is due to the intrinsic nature of the positron, i.e. it is the anti-particle
of the electron. The cross section for this process is very small as compared to those

for the other processes which are allowed in the energy range we are considering, ex-

11



cept in the limit of zero incoming positrons energy where it is infinite. Nevertheless,
it is still of great interest, as the angular distribution of the two 7y-rays emitted in
the annihilation can give important information about the momentum distribution
of the annihilating electron-positron pair. The second process specific to positron
scattering is the formation of a bound state of the positron and one of the target
electrons, called positronium, Ps. This atom is hydrogenic, with a reduced mass
of half that of hydrogen, and it has allowed energies (excluding the fine structure
effects) which have half the values of the corresponding ones for hydrogen, with a
ground state energy of -6.8 eV. The positronium atom can be either in a triplet
(S=1) spin state or in a singlet (S=0) spin state, called orthopositronium and para-
positronium respectively, and both types of positronium are unstable and decay by
the annihilation of the positron with the electron. The lifetime for parapositronium,
which decays predominantly into two v-rays, is 7,,=1.25 x107!° seconds, while that
for orthopositronium, which decays predominantly into three y-rays, is 7,,=1.41
x10~7 seconds. One should note that the interaction time, i.e. the time it takes for
the positronium atom to leave the interaction region, is of the order of 10714 — 1016
seconds, much shorter than its lifetime, and therefore the positronium atom can

escape from the interaction region and be detected.

The threshold energy for positronium formation is defined as Erp, = Ef — Ep,,
where FE is the ionization energy of the target atom and Ep;= 6.8V is the binding
energy of the positronium. The next threshold, Eg;, is usually the first excitation
state of the target atom, which is not always the same as that for electron-atom
scattering, because excitations involving a spin-flip cannot be initiated by positron
impact. The energy region between the Er, and Eg; is referred to as the Ore gap
(Ore 1949) within which only two scattering processes may occur; elastic scattering

and positronium formation, or schematically

et + He —» "+ He ( elastic scattering)

— Ps+ He*  ( positronium formation)

It is important to differentiate between positronium formation and ionization pro-

cesses, although in both cases a singly ionized target atom is produced. The main dif-

12



ference is that in positronium formation, the fragments consist of a neutral positro-
nium atom and a positive ion, while in ionization the final state consists of the free
e~ and et and the ion, and therefore the interactions between the fragments will be

very different in each case.

In this work, we will consider only positrons scattering on helium atoms and
restrict ourselves to positron energies less then Eg,. The scattering of positrons
on helium is an important topic in positron physics for both theoretical and exper-
imental reasons. Theoretically, the positron-helium system is of interest because,
although it is a four body problem and therefore involves a much more complicated
calculation than is the case for positron-hydrogen scattering, it is still possible, for
low positron energies. to do ab initio calculations which are not feasible for scatter-
ing processes on atoms with Z > 2. These ab initio calculations can then be used
to verify the validity of more approximate methods employed in positron-helium

scattering at higher energies or in positron scattering from heavier atoms.

One of the ironies of positron-atom scattering is that the collision which is the
simplest to treat theoretically, i.e. positron-hydrogen, is very difficult to investigate
experimentally. On the other hand, helium gas is much easier to manipulate and
recent developments in positron beam techniques have made it possible to make very
accurate experimental studies of positron-helium scattering, and detailed compar-
isons between theory and experiment for this type of collision can now be made. In
figure 1.2 the cross section for positronium formation in helium is plotted for positron
energies between E7; and 300 eV. The details of each experiment are discussed in
the review of Charlton and Laricchia (1990), but we see that all experiments reveal
a similar energy dependence of the cross section, with a rapid rise from threshold
and a maximum at 50 eV of 0.5 - 0.6 ra3. In figure 1.3, the experimental results
obtained in the Ore gap by Fornari et al. (1983) and the more recent data of Sueoka
et al. (1994) and Moxon et al. (1994) are presented, and one sees that there is
reasonable agreement between all experiments. Furthermore, a good enough en-

ergy resolution has been achieved to make detailed comparisons with theoretical

investigations interesting.
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Figure 1.2: Positronium formation cross section for positron-helium scattering, taken

from Charlton and Laricchia (1990).

The first calculation of positronium formation in positron-helium scattering was
performed by Massey and Moussa (1960), using the first Born approximation which
gave results much too large compared to experimental data at low energies. Since
then, various more elaborate approximation methods have been employed to study
this problem. The main interest of these works was to investigate the scattering
process over a wide energy range where elastic scattering, positronium formation,
excitation of the positronium atom and excitation or ionization of the helium target
can all occur. The close coupling calculations of Hewitt et al. (1992) and McAlinden
and Walters (1992) agree well with experiment at high energies, but these authors
did not investigate positron collisions at energies within the Ore gap. The only
calculations which included energies within the Ore gap are those of Mandal et
al. (1979), who used the distorted wave approximation, and the polarized orbital

calculations of Kahn and Ghosh (1983). These methods are not expected to give very
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Figure 1.3: Positronium cross section for positron-helium scattering. x Moxom et
al., o Sueoka et al. and A Fornari et al.. E; is the excess energy of the positron, i.e.

E; = E+ - Erp.

reliable results at very low energies and, therefore, these authors did not undertake
a very detailed investigation of the positronium formation cross section in the Ore
gap. On the other hand, as one can see from figure 1.2, these calculations are in
reasonable agreement with experiment at the higher energies, describing relatively
well the energy dependence of the positronium formation cross section above 40
eV. In chapter 6 and 7 these theoretical results and the experimental data will be
compared with the cross sections obtained in this work using an ab initio variational

calculation and we will also consider the recent first Born approximation results of

McAlinden (1996).

The elastic scattering cross section below the positronium formation threshold
has been studied in great detail both theoretically ( Drachman 1968, McEachran
et al. 1977, Humberston 1973 and Campeanu and Humberston 1977) and experi-

15



mentally ( Canter et al. 1973, Burciaga et al. 1977 and Stein et al. 1978). Above
the threshold. this cross section has been calculated mainly for the higher energies
using the various approximations methods described for positronium, for instance
by McAlinden and Walters (1992) and also by McEachran et al. (1996) who have
extended their polarized-orbital calculations to above threshold energies, but have

not included the positronium formation channel.

As can be seen from the above description of the experimental and theoretical
work on positron-helium scattering, there is a real need for reliable theoretical results
to be obtained within the Ore gap. These results will become even more important
when the increase in beam resolution is such that very detailed measurements of
the threshold behaviour of the positronium formation and elastic cross sections be-
come possible. In this work we will undertake ab initio calculations of the elastic
scattering and positronium formation cross sections for positron-helium scattering
at energies below the first excitation threshold, using the Kohn variational formal-
ism. This method has been successfully used in similar studies of positron-hydrogen
and positron-lithium scattering ( Humberston 1982, Brown and Humberston 1985,
Watts and Humberston 1992) and also for the evaluation of the elastic phase shifts
below the positronium threshold in positron-helium scattering ( Humberston 1973,

Campeanu and Humberston 1977).

An outline of the variational principle on which the Kohn method is based will
be given in chapter 2 in which we will also derive the Kohn method for the two
channel scattering process, based on a partial wave analysis in terms of the K-
matrix formalism. The variational principle can also be applied to bound state
problems, and the well-known Raleigh-Ritz method for the evaluation of binding
energies is derived in chapter 2. A major difference between positron-hydrogen and
positron-helium scattering is the fact that in the latter case, the target wavefunction
is not known exactly, i.e. it is not an exact eigenfunction of the target Hamiltonian.
The difficulties which arise in variational calculations because of this inexactness
of the target wavefunction are well known and we have investigated this problem

very thoroughly. In chapter 3, we present several very elaborate new helium target
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functions and also an empirical method which we believe can be used to verify that
the scattering results we have obtained are not affected by the inexactness of the

target function.

In theory. the partial wave analysis of a scattering process requires us to evaluate
the partial cross sections for an infinite number of partial waves. But it has been
shown in previous calculations of similar types of scattering that at the low energies
which we are considering, the main contribution to the total cross section can be
expected to come from the first three partial waves, s, p and d, and that the higher
partial waves contributions can be estimated with a reasonable accuracy by using
various simple approximation methods. In chapter 4, we will derive the precise
formalism for the two channel s-wave positron-helium scattering and, in chapter 5,
the new numerical and computational methods which have been developed for this
work will be described. The s-wave elastic and positronium formation cross sections
will be presented, analyzed and compared to previous calculations in chapter 6, and
the inclusion of a virtual positronium term in the elastic scattering wavefunction
below the positronium formation threshold will be discussed with specific emphasis
on the threshold behaviour of the elastic scattering cross section. The p- and d-
wave formalism and results will be presented in chapter 7, together with a detailed

comparison of the theoretical and experimental cross section sections.

As mentioned above, although the annihilation cross section for a free electron-
positron pair is negligible as compared to that for the other allowed processes, this
phenomenon is in itself of great interest. In chapter 8, we have reinvestigated low
energy positron annihilation in helium and calculated the temperature dependence
of Z.g, which is directly related to the positron-electron annihilation rate. Also,
we have calculated the annihilation v-ray spectrum from which information on the
momentum distribution of the electron-positron pair can be found, and excellent

agreement with the latest experimental data has been achieved.
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Chapter 2

Two channel scattering theory and

the variational method

2.1 Introduction

The aim of this work is to investigate elastic scattering and positronium formation in
low energy positron-helium collisions, and we will restrict our analysis to incoming
positron energies within the Ore gap, which for helium is defined as the energy region
between the positronium formation threshold (17.78 eV) and the 2!S excitation
threshold of helium (20.58 eV). As mentioned in chapter 1, there is a difference
in this case between electron and positron scattering : because spin interactions
are ignored and no exchange can take place between the positron and the target
electron, the 235 excitation of helium, with a lower threshold energy (19.79 eV), is
not possible for positron scattering. Strictly, there is also the possibility of direct
electron-positron annihilation, but the cross section for this process is very small,
and negligible compared to that for elastic scattering and positronium formation.
However, we must recognise that the system we will describe should also allow
for two other processes to occur. These are positronium scattering elastically on
a helium plus ion target and helium formation by positronium impact due to its

electron becoming bound to the positive ion. We could associate these processes

18



with a kind of time reversal of the two original processes, and it is imperative that

our solution to the scattering problem describes them as well.

N

Figure 2.1: The positron-helium atom coordinate system.

The configuration of the total system is shown in figure 2.1. We define the vari-
able p as the vector between the nucleus and the center of mass of the positronium
atom. So if electron 2, with position vector 72, is detached from the helium atom

and forms positronium, we have

p= %(rl + r2). (2.1)

As mentioned before, in positron-helium scattering there is no exchange between the
incoming projectile and the target electrons, and therefore the interactions are very
different from those found in electron scattering. Nevertheless, the exchange between
the target electrons must be included, which complicates the calculation compared
to that for positron-hydrogen scattering. This is obvious in the case of positronium

formation, as the incoming positron can pick up either of the two electrons. Thus
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we also need to consider the variable

o= 5(rs 7o) (22)

which is done by introducing an exchange operator, Ps3, in the scattering wave-
function. However, for the general formulation of the scattering problem and of the
variational method it will be clearer, especially in the notation, to consider only one
case, i.e. that with electron 2 being involved in the positronium formation. The
exchange operator will then be introduced explicitly when we consider the actual

wavefunction used in the calculation.

We now need to establish the general form of the scattering wavefunctions, which
will satisfy all the boundary conditions and which describe the two channel processes

we are interested in.

2.2 The two channel scattering formalism

In order to relate the scattering wavefunctions and the theoretical values calculated
in this work to the experimental measurements, it is important to determine from
the experimental set-up the general form we require the wavefunction to take, i.e.
a form which, implicitly at least, contains information about the measurements
experimentalists make. The experimental set up can be described schematically as

in figure 2.2.

The radial dimension of the beam is always much larger than the dimension
of the target atom. Therefore, the uncertainty in the momentum of the incident
projectile is negligible and a plane wave representation for the incoming positron far
away from the target is very suitable. Also, the mass of the positron is much less
than that of the helium atom (and the same is true for the mass of the positronium
versus that of Het), so we can take the nucleus as being of infinite mass at the origin

of coordinates of the system.
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Figure 2.2: Schematic diagram of a scattering experiment.

The time-independent Schrodinger equation is. in atomic units,

HTA[ri.V2.rz) = ETA(ri,r2,r3), (2.3)

where Hj is the total Hamiltonian of the system and is given by

= + + A (2.4)

and Ej is the total energy of the system.

In the case of positron-helium elastic scattering we can write for large ri

A(ri. r2, *3) Alle(T*2, 23)05¢(i'H), (2.5)

where 'ipsd”Ni) is the scattering wavefunction and "He{”2,73) is the helium target

ground state eigenfunction such that

(t2, T3), (2.6)
with
172 172 2 2 1
Nle ——rrg, —o 'y nre 1--;[-2,; 2.7
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and

1
ET = EHe + §k2 (2.8)

where k is the positron wavenumber.

Therefore for large values of 71 equation 2.3 becomes

1_. 1
- 5‘731@}{6(1.21 r3)¢sc(rl) = ikzq)He(TZ,'rS)wsc(rl) (29)
as the potential term. ;2? - ;}—2 - ﬁs—, — 0 as r; = oo. The complexity of the

positron-helium system prevents us from using a simple description of the scattering
wavefunction when the projectile is close to the target, but it is possible to describe
it in the asymptotic region, r; — oo, both before and after the scattering has
taken place. As mentioned above, before the collision, the particles in the beam
can be represented by an incoming plane wave. This can also be seen by solving
the free particle equation in 2.9. After the collision, the particles will be deviated
from the beam direction by angle 8 (see fig. 2.2), and will be represented by a
spherical outgoing wave. Hence the scattering wavefunction for elastic scattering

can be written as
eikrl

Yuolra) ~_ R4 10 (2.10)

1 =00 7'1
where 6, is the angle between the incident beam direction and the vector r; and
fei(8y) is called the scattering amplitude for elastic scattering which will modulate

the outgoing spherical wave.

In the case of positronium formation the form we use for the total Hamiltonian
is
1 1 2 2 2 1 1 1
Hr=--V2- §V33 -V == —+ —. (2.11)

4 ™ ry Ty T3 Ti2 T3 T3
In this rearrangement process, for large values of p, the total wavefunction will be
a product of a scattering wavefunction, and the ground state eigenfunctions of the

helium ion, ®.+(r3), and the positronium atom, ®p,(r12), such that

4

(—%vzs ~ 2) @ (75) = Eper @ (1) (2.12)
3

and

1
(—'an - r 2) QPs(r12) = EP.’@Ps(rlz) (213)
1
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where Ey.+ and Ep, are the ground state energies of the helium ion and the positro-

nium atom respectively. By conservation of energy we have
1., 1, 1,
Er=FEy. + 5](,‘ = ZK + Eger + Ep, = Zh: —2.25 (2.14)
where & is the wavenumber of the positronium atom. So we have for large p,

lI’(rl’ T2, 1'3) p:oo ¢H€+ (7'3 )QPS(TI2)¢sc(p)- (215)

In this case there is no incoming plane wave and the general form of the scattering

wavefunction is
einp

¢sc(p) ~ fPs(op)

p—0 p ’

(2.16)

Here 6, is the angle between the incident beam direction and the vector p, and
fps(0,) is the scattering amplitude for positronium formation. So if we choose the
z axis along the direction of the vector k we can write the wave function for both

processes as

I e“ﬂj
Vo1 ~  FTypf(0)
1 —00 7‘1
einp
p:oo flz(ap) p . (2.17)

We have introduced here a numerical subscript of the scattering amplitudes to indi-
cate between which channels the process is occurring. The positron-helium channel
is labelled 1 and the positronium-helium plus channel is labelled 2. So for positro-

nium formation we start in channel 1 and end up in channel 2, and we use f12(6,)

(thus f1; = fa and fi2 = fp,).

A similar analysis shows that for the time reversed processes, i.e. for positronium

elastic scattering on the helium ion with the possibility of helium formation, we have

. eirep
‘I’sc,Z p:oo etn.p + f22(0P) P
eikrl
r1—00 7'1

The scattering amplitudes f,; are related to the measured differential cross sec-
tions by
dami(oi) _ km 2 .
e = (0] m,i=1,2 (2.19)

23



where kl = k, kz =k and (91:-61, 02=0p.

We now need to relate the descriptive forms of the scattering wavefunctions
given by equations 2.17 and 2.18 to those which will be used in the variational
method. In a numerical calculation of the scattering process, it is easier to use real
wavefunctions which contain the matrix elements of the reactance matrix K, as
these are real quantities. The asymptotic form of the radial solution to Schrédinger
equations for the system which takes into account the coupling between the channels

is (see Bransden 1983), for the ! th partial wave,

gi(rip) |~ Yiolby, 60)VE [i(kry) — Kjymu(krs)] Xi(a)
o Y0y, 6,) V2R K1, Xa(z2)ni(kp) (2.20)

gh(ri.p) . Yio0: 8,)VZK [ji(kp) — Kipnu(xp)] Xa(z2)
o —Yio(61, 61)VEEG, Xo (21)ru(kr1) (2.21)

where the factor 2 in /2« is due to the positronium mass being double that of the
positron, and Xi(z1) = ®pe(r2,73), X2(z2) = Pye+ (r3)®ps(r12). The constants
K!.

m: are the elements of the reactance matrix, K, and j(kr) and n;(kr) are the

Bessel and Neumann functions respectively. To relate the K matrix elements to the
cross sections for each process we can write

fmz = Z

‘lO

21+1

Tl miF1(cos 0;) (2.22)

where Pj(cos 6;) are the Legendre polynomials and T! ; are the partial wave scattering
amplitudes which form the T" matrix, and which, for single channel elastic scattering,

are related to the phase shift by
T' = e™sinyp,. (2.23)

The relation between the T' and the K matrix elements, which can be found by

comparing the asymptotic forms of the wavefunctions as in equations 2.17, 2.18,

2.20 and 2.21 , is given by

T = ——. 2.24
I-iK' (2.24)
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Now replacing T! ; in eq. 2.22 with this relation and using eq. 2.19 we find that
the partial wave cross sections for each process can be calculated from the values of
the K matrix elements using

4@+ K
=T \I-iK)

2

(2.25)

2.3 Variational methods

We have shown that in order to calculate the cross sections for the various processes
occurring in low energy positron-helium scattering we need to evaluate the K ma-
trix elements in the formal scattering wavefunctions which describe these processes.
The complexity of the system, a four body problem, makes it impossible for exact
scattering wavefunctions to be determined and we will need to use an approximation
method. In this work, the Kohn variational method is used to solve the scattering
problem and to find numerical values for the K matrix elements which are approx-
imations to the exact values. The variational principle on which the Kohn method
is based is similar to the Rayleigh-Ritz method used for the determination of the
energy levels of bound states and we have made extensive use of it in the calculation
of the wavefunction and properties of the helium target. The complexity of the two
channel scattering problem makes the derivation of the Kohn method much more
complicated than that of the bound state problem . Therefore, we have derived the

latter first so that the essence of the method is made clear before we concentrate on

the Kohn method.

The variational principle

§1=0 (2.26)

states that the functional I, which is a function of a function characteristic of the
system under consideration, is stationary with respect to variations in the latter
function away from its exact form. If the functions which make up the functional I
are not known exactly, we use instead trial functions which depend on a finite set

of parameters, (aj,as,...,a,), called the variational parameters. The stationary
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properties of I then lead to a set of equations :

ne

al
— =0 1=1,2,...,n 2.27
80,- ’ ( )
which can be solved to determine the optimum values of the parameters af, a3, ..., a®
The variational value of the functional I° = I(a},a)d,...,a) is then correct to

first order in the error in the trial function, the error in I° being of second order.

2.3.1 The Rayleigh-Ritz variational method

The aim of this method is to calculate the energy levels and variational wavefunctions
of atoms for which we do not know the exact eigenfunctions and can only consider
trial functions which describe the physical system under consideration as well as

possible.

The expectation value of the ground state energy for the chosen trial function is

Et=<<1>t|H|<I>’>
0 <ot ot>

(2.28)

where H is the Hamiltonian of the atomic system. If we now consider variations in

the expectation value of E due to small variations in the trial function, we have

¢ <®'|H|® >
6By = 6 < ot | ot >
S[<@ | H|®>]<®t P> -§[<d | >] <P |H| P >

< &t | §t >?

§<®|H-Et|d >
= T (2.29)

We can also evaluate the variation of Eg by considering §Ef = Ef — Eo, and

using 2.28 with ®* = ® 4 §® we have

<®+6¢0|H|®+60>

<P+60|D+6D >
Eo<®|®>42E, <60 | 0>+ <60 | H|60>
<O|P>42<6D[D>+<60[6D>

Eq

(2.30)
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where we have used H® = E;® and the Hermiciticity of H. Therefore,

SE! = E!-E,
<8P |H|6®>—-Ey<6D |60 >

<P|P>+2<6P|D>+<6P|6D >’ (2.31)
so that to first order in §® we have §Ef = 0 and from 2.29 we have
§<® |H—-E}|® >=0. (2.32)
Therefore, the functional
I=<®|H-E;|d > (2.33)

is stationary and can be used to find a variational value for the ground state energy

EY, the error in which will be of second order in the error in the trial function.

One of the characteristics of the Rayleigh-Ritz method is that it provides a
rigorous upper bound on the ground state energy Eqy of the system. To show this, we
first expand the normalizable trial function in terms of a complete set of orthonormal
eigenfunctions, ®;, of H, i.e.

N
oL => ;P (2.34)
1=0
Therefore, using H®; = E;®; and equation 2.28 we have

ZN C’;CjEj < P | (D]' >

Ef = =30 , 2.
" himoCic < @i | ®; > (235)
which as ®¢ forms an orthonormal set, reduces to
ZN—O | c; | E;
t =
n-Bglel 2
and N
o lci P[E;—E
Ef — Fy= =22 chv] B, J (2.37)

|2
7=0 ¢l
Now Ej; is an eigenvalue of H, hence it is always more positive than, or equal to,

the ground state energy Ey, and we find that Ef > E,.

To calculate the ground state energy of a given system, we choose a form for the
trial function which is representative of the physical situation and contains a number

of variational parameters. This trial function is then inserted into the functional,
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and the set of equations which follows from (2.27) is then solved. A more detailed
description of actual Rayleigh-Ritz calculations used in this work will be given in

chapter 3 where we discuss the helium atom target wavefunction in detail.

2.3.2 The two channel Kohn variational method

In contrast to the case for bound state calculations, the determination of scattering
data requires us to use trial functions which are not normalizable, but whose radial

asymptotic behaviour we know is given by 2.20 and 2.21.

In the Kohn variational method (Kohn 1948) we will consider a functional some-

what similar to that used in the Rayleigh -Ritz method, given by
II =I=<V¥! |L|¥ > (2.38)
where L = 2(H — E) and V! is a trial function.

Thus,
Uy = T — §tbpm, (2.39)

where ¥, is the exact eigenfunction of H, the total Hamiltonian of the system, and
E is the total energy which is assumed to be known exactly. The variation in the

functional, 61, = It — Iy, can be written as

i

§ln = < U+ 6% |L|Tp+6pn>—<Tp|L|¥, >

= <6Ym | LU, >4+ < Uy | L| §¢p >+ < bhm | L | 6pn > .(2.40)
As LY, =0 and LY,, = 0, we can write
<Y | L ¥y >=—=< Y | L] ¥, >=0 (2.41)
and
8Lmn =< VU | L | 8% > — < 8%n | L| ¥y >+ <Y | L| ¢y >. (2.42)
Now considering the first two terms on the right hand side , we can rewrite them as
8I,.=2< 9V, |H-E |6, >-2<6¢, |H-E| ¥, > (2.43)
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In the case of positron-helium scattering the total Hamiltonian H can be written as

1 1 1 2 2 2 1 1 1
=--V?2 V2 vy 42 _Z_Z_ - _ _— — 2.44
H 2 o2 T2 2T + Tm Te T3 Ti2 T3 + T23 ( )

or
1 1
H=—(Vio oVi -Vl 4+ 22— — (2.45)

T12

depending on which function we need to operate on.

Using equations 2.20 and 2.21 we know that the asymptotic forms of the two

components of the wavefunction,

¥,
¥,

Y =

can be written as

U, ~  Yio(bh, 61)VEXa(21) [i(kr1) — Kyyni(kry)]

p:OO - 1'0(0‘,,¢p)\/2_nX2(m2)I\'21n1(fcp) (246)
Vo~ Yio(0,,6,)V2rXa(x2) [i(w0) = Knaru(sp)]
n:oo — 110(91,QS])\/EXl(wl)[\'lin(krl)- (247)

We can see that in the equations above the labelling of the K matrix elements is
different to that in 2.20 and 2.21. This is because, had the same labelling been kept,
we would have arrived at a variational solution for the transpose of the K matrix.
This occurs because the subscript on the K matrix elements as defined by 2.25
corresponds to the transition from one channel into another. But the labelling of
the functional 2.38 does not have the same meaning, it refers to the two components
of the total wavefunction, each of which contains information about both channels.
The choice we have made in (2.46) and (2.47) is the same as in the literature, and
the cross section can still be calculated with (2.25) because the exact K matrix is
symmetric, i.e. K3 = K, , and we will show that this will also be true for the

variational K matrix.

The variation in the asymptotic form of the wavefunction is only in the K matrix

elements and therefore we have
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oYn ~ YI.O(Bh ¢1)\/_/;X1(-’131) [Kfl - K11] nl(kT‘l)

T1—CO

. Yol 8,)V2RXa(2 2) [KLy — K| ni(xp) (2.48)
S~ Yio(0,8,)VERXs(2) [Kip — Kao| rurp)
o~ —Yio(0y, o) VEXa (=) (KT, — Kua| m(kry). (2.49)
Now we can write the total Hamiltonian H given by 2.44 and 2.45 as
2 1 1
i, = —.lVi +—-———-—+Hx (2.50)
2 T1 ri2 T3
or
1 2 2 1 1
Hp=—_vi+——‘___+——+HPs+HHe+ (2.51)
4 rn Te T3 T3
where Hy., Hp, and Hy.+ are given by eqgs. 2.7, 2.12 and 2.13 respectively.
Using Green’s theorem
/;/1 -/\/2 [quu - -quu] drydry = /51 /;/2 [uViv — vV u]doydrs, (2.52)
we can write
617[7271 = ——/S v [\varlédjn —6¢nvr1 \I,m] -do'ldTA
’ 2 1 1
+ /{2l1’m(HHe—E+_— _—_)6¢n
™1 T12 13
, 2 1 1
— %un(Hpe—E+—— —— —)wm} dr (2.53)
™ T12 r13
or
5 = = [ [ U 22800 — 002U drsis
S, Jvg 2 2
2 2 1
+ [l 4 iy — B+ == 2 - — 4 D)y,
r1 rz T13 T23
2 2 1 1
— 20¢n(Hps + Hget —E+ — — —— —+ —)\I/m} dr, (2.54)
1 T2 T3 T23

where S; is the surface at r; — 0o and S, is the surface at p — 0o and we have

dO’]_ = TfSiD91d91d¢1‘i‘1
do; = p*sin6,d8,do,p.
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As the target and fragment functions are normalized. the volume elements, d74 and
dtg. which depend on the target or fragment variables, are such that with dry = dny
and drg = drp, we have

/ X (i) = 1. (2.57)

On the surface r; — . we know that the wavefunction has the product form given
by 2.5 and on the surface p — oc it takes the form given by 2.15 and because of the
exponential fall-off in the target and fragments functions the last two terms in the

integrand of 2.53 and 2.54 cancel trivially.

Using the following notation.

Ji = Yio(6, ) VEX, (21)51(kry) (2.58)
Ny = =Yio(bh, 1) VEXi(21)ni(kry) (2.59)
2 = Yio(8,, 6,)V2:Xa(22)i(Kp) (2.60)
Ny = —Yio(0,, 6,) V26 Xo(x2)ru(kp), (2.61)
(2.62)
we write
U~ I+ KinNy + Kom N (2.63)
Bom  ~ (K1, = Kim| N1+ [KS,, — Kom| No. (2.64)

As we are considering surface elements which are perpendicular to r; or p, the
dot product of the the angular operators in V, and V, with those of the surface

elements will be zero. and (2.53 and 2.54) become

§I' = — /, | /‘ AU+ KunNy + Ko Vo
xVr, [(Kt, = Kin) N+ (K%, = Kan) No]
— (K1, = Kin) Ny + (KL, = Kan) N
XV, [Jm + KimN1 + Ky No]} R? sin ©,d0;d®;dr;,  (2.65)

where ¢ = 1 refers to r;, oo and i =2top— o0, . ie. (Ry =r,Ry =p,0, =

61,02 = 6,, etc). We note that from the definition of the Neumann and Bessel
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functions we have

Ve N:(kiR:)) = —kiJi(k:iR;) (2.66)
VRiJi(kiR,') = IC,'N;(]C,‘R,’), (2.67)

with k& = k and k; = . All the terms which will be of the form N;N;, J;N; and
J:J; with ¢ # j will involve products of the target function and of the fragments

functions Xj(@1)X2(x2), which have the explicit form
Xl(:l}l)_YQ(iUz) = q)He(TZ, TS)QPs(TIZ)q)He‘*(r!S) (268)

and whose exponential fall-off will be of the form exp(—+(r;+r3)) exp(—H42) exp(—2rs)
where ~ is a constant. As on the surface r; — oo, for fixed values of r;, we have
r12 — 00, and on the surface p — oo , for fixed values of r;2, we have r; — oo, all
terms with exponential fall-off will go to zero on both surfaces at infinity that we are
considering. Further, after operating with Vg, and multiplying out, all the terms

involving quadratics in K or with K K* will cancel out, so that
51 = /a | /V {Tm (KL = Kia) ki
+ I (KL, — Kon) ki + Ny (K, — Kip) ki,
+ Np (K}, — Kon) kiNm } R? sin ©;d0;d®;dr. (2.69)
Again for all values of m and n, we have terms of the form J;J; and Ny N, which

will vanish on both surfaces r; — oo and p — co. If we now consider a specific case,

il.e. m=1,n =1, we have

§I, = /., | /V {0 (K - Ku) ko,
+ Np (K1) — Kup) kNy} o sin 6,d6;deyd7as. (2.70)

The asymptotic form of J; and that of N, are

; v 1 sin(krl—%")q) 9.71
1, = Yio 1’¢1)\/_F——r1 He(T25T3) (2.71)
N v 1 cos(krl—%)q) 9.79
1, N =~ 10( 1’¢l)ﬁ—rl—_ He(T2573). (2.72)
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Therefore,
6N, = //{(I\ll—lﬁu) Yio(01, 61)0%.(r2573)
2

sin® (kr i cos® (kry — =
X[ ( 1 2) + ( 21 2)]}Tfsin01d91d¢1dTA (2.73)

7'1 Ty

which, using the normalization properties of the spherical harmonics and the helium

wavefunction given by (2.37), gives

8, = Ki, — Ku1. (2.74)
In a similar manner, we find
51{2 = I(b - I\’lg (275)
6l = K3 — Ko (2.76)
8I,, = Kiy — Ko, (2.77)
or in matrix notation
61, =K', — K., (2.78)

and the full Kato identity can be written as
8L n = K = Knt < 8%m | L] 64pn >= I — Inn. (2.79)

The exact functional being zero, i.e. I, = 0 , if we neglect the term of second

order in 6¢ and replace the exact K matrix by the variational one K", we have
K'=K'-TI. (2.80)
or more explicitely

K ]‘12] _

&’ %’
K3 K3

K, 1{{2] [(\pl,wl) (1, LT;)

(2.81)
K: Kt (U3, LTy) (Tg, LT,)

The symmetry of the variational K matrix can be shown by considering
Ki,— Ky, =K{,— K}, —[<U |L|¥y>—-< Ty |L|¥; >]. (2.82)

We can note the similarity of the last bracket on the R.H.S. with that of 2.43

(replacing ¥, by ¥; and §¥, by ¥,). So, using Green’s theorem and the asymptotic
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forms of ¥; and ¥, in a similar manner as above, we find that

(<O [L]U>—< U |L|T>]=
/ /‘ { DKL + Ny K&k Ny} r? sin 6, d8s dendrs

_ / ﬁ ALK rT + NoKy kN } o sin6,d6,dg,drp, (2.83)
o2 B
which, after integrating as in (2.70). 1s equal to
Kt - K. (2.84)

Therefore, we find that
Ky, = K, (2.85)

which shows that (2.25) can indeed be used with the choice of labelling we have

taken for the scattering wavefunction.

In the derivation for the Kato identity we only needed to consider the asymptotic
form of the wavefunction. To describe the processes within the interaction region,
we will need to include terms which deal specifically with that region of space. This
can be done in various ways, for instance by a close coupling expansion in terms of
the open and closed channel states or by an expansion in terms of square integrable
analytical functions depending on all the variables of the system. In this work, the

latter way has been chosen, and the form taken is that of a Hylleraas-type expansion
N

d = Z C,'C),‘, (286)
i=1

where ¢; = exp (—(ary + 3ry + 3r3)) (r¥ry rir2irPirfl) and the ¢; are extra varia-

tional parameters. The value of N is such that all terms with
kk+li+mi+n+pi+¢<w (2.87)

are included in the summation (these quantities being non-negative integers). The
exponential fall-off in r;,r; and r3 ensures that these functions have a short-range
behaviour, and do not affect the asymptotic form of the wavefunction. The choice
of the constants a and 3 will be discussed in detail later, but one of the principal

criteria will be that they must ensure a sufficiently short-range character for the ¢;s.

34



The wavefunction must be finite as r; — 0, or p — 0, and we see that this will
not be the case if we include the N} and N, functions as defined in (2.59 and 2.61),
as they are singular at r; = 0 and p = 0 respectively. For these functions to be
finite at their respective origins, we remove the singularities by multiplying them by
shielding functions f1 (r) or £ (p). The precise form of these functions will depend
on which partial wave is being considered, and will be described more explicitly in

the discussion of each partial wave calculation.

We now write the two components of the trial wavefunction, as

N

ll/l = Sl + I\’]t_l Cl + 1{5102 + E Ci¢i (288)
1=1
N

U, = S3+ RKj,C+ K[,C1+ D djé;, (2.89)
J=1

using the following notation

S1 = Yio(61,61)Pme(ra, m3)VEji(kry) (2.90)
Ci = —Yio(01,01)®ue(rz, 73)VEny(kry) (2.91)
S2 = Yio(6p,8,)®he+ (13)@ps(r12) V2651(p) (2.92)
C; = —Yio(0,,0,)®het (13)D,s(r12)V2601(Kp). (2.93)

Expressing the variational K matrix in terms of these equations, using (2.80) and

expanding out I, we find that

K'=-DFDT, (2.94)
where
Kt K ¢ ¢ ... ¢, 10
D = 11 21 1“2 (2.95)
K, Kt d dp ... dy 0 1
and

CLC CL® CLS
®LC ®L® LS |. (2.96)
CLS SL® SLS

F
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The 2 x 2 matrices CLC, CLS and SLS contain the matrix elements which
involve only the asymptotic, or long range, part of the wave function. For example

we have

(Cy, LCy) (Cy,LCY)
(Cq, LCy) (Cy, LCY)

CLC = . (2.97)

The brackets in the matrix element representation mean an integration over the
whole space of the system. To express the variational K matrix in this concise
matrix form we have used the relation (Cj, LS;) = (S;, LC;) + 6;;, which can be
shown by using Green’s theorem in a similar manner as before (see appendix A).
This also explains how the reference to the trial K matrix as in 2.80 was eliminated

from equation 2.94.

The 2 x .V matrices ®LS,PLC,SL® and CL® contain the long-range — short-

range cross terms, and have the form

CL® — (Ci,Lg1) (Ci,Léa) ... (Ci,Lon) . (2.98)
(Co, Léy) (C3Lég) ... (CsyLén)

The N x N matrix ®L® contains all the short-range — short-range terms
PLEP = (¢, Lg;). 4,5,=1,2,...,N (2.99)

From 2.94 we find that the dependency of the variational K matrix elements vari-

ational parameters is as follows :

Ky = f(Ki, Kg,e)

Ki, = f(Kiy, Kiy, Koy, Ko, iy di)

K3 = f(Kiy, Kizy Kays Kogy iy di)

K} = f(Ki,, Ki,y,d;). (2.100)

The variational principle requires

oI .
_— = =1,2,... .
e 0, i ,2,...,n (2.101)

where the a;s are the variational parameters. Therefore, we need to differentiate each

variational K matrix element with respect to the variational parameters indicated
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in 2.100. This will lead , as can be seen from 2.100, to a set of 6 N + 12 equations,

of which only 2V + 4 are independent, and these can be expressed in a matrix form

as

(Cl, LC1) (Cl,L02) e (Cl,Léj) . [X’ltl I&rfz
(Cz,LCl) (Cz,LCQ) (Cz,Léj) . ]{;1 I\’éz

(¢i, LCh) (¢i, LC3) ... (i, Lj) ... ¢ d;

or more concisely as

AX = -B.

Using this notation we can write 2.94 as

A B X
K =- [ XT 1 ] ,
BT SLS 1
which, using 2.103, gives
K = -BTX -SLS
= —UOLS,

1

(C1,LSy) (Ch,LS,)
(C3, LS1) (Cqy LS,)

(¢i, LSy)

(¢ia LS2)

(5.102)'

(2.103)

(2.104)

(2.105)
(2.106)

where —W'°LS is a 2 x 2 matrix with elements —(¥$°LS;) and W' is the trial

wavefunction with the optimum values of the variational parameters given by 2.103.

2.4 The inverse Kohn method

The choice of the asymptotic form of the wavefunction as in eqs 2.20 and 2.21 is

to some extent arbitrary, and we could have considered any form for which the

boundary conditions are obeyed. Therefore various forms of the Kohn method can

be derived, each based on a specific choice of wavefunction and each in principal

giving the same final variational result. This can readily be seen from the one
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channel case in which the general form of the asymptotic part of the wavefunction
is
W(ry) = Yig(61.00)VE [Dji(kr1) — Fru(kry)] @ge(ra, T3). (2.107)
The coefficients D and F which are energy dependent are related to the elastic phase
shift n by
F_ tan (2.108)
D m. .

The generalized Kohn functional is then (see Armour and Humberston 1991)
tan(n, — 7) = tan(n; — 7) — (¥, LY;) (2.109)

where 7 is a phase parameter. When 7 = 0, we have the normal Kohn functional and
in the trial function D; = 1 and F; = tann. Any other choice of values for D; and
F; can be made as long as the relation 2.108 is satisfied, so that the case D; = cot 5
and F;, = 1, is also a correct choice. This will lead to the functional 2.109 with
T = 7 /2, and is called the inverse Kohn method. When used with very flexible trial
wavefunctions both the Kohn and the inverse Kohn method will give very similar
result for 5y, with the main difference being due to the numerical precision of the
calculation. Because the evaluation of the variational phase shift with either the
Kohn or the inverse Kohn method involves the use of a different ordering of the
long-range — long-range and short-range - long-range matrix elements in the one
channel equivalent to 2.103. the agreement within the numerical precision of the
results for both methods is a good test of the accuracy of the evaluation of these

types of matrix elements.

In the two channel case. the coupling between the channels, which is implied
in the use of the K matrix elements, makes the relations between the Kohn and
inverse Kohn methods more complex to derive. The inverse Kohn wavefunction is,

using the same notation as in 2.88 and 2.89,

N
¥, = Ky S1+KpSa+Ci+ Y cids (2.110)

=1

-t -t N
U, = K5+ K8+ Ca+ Y did;, (2.111)

J=1

where

K=K (2.112)
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is the inverse Kohn K matrix. The formulation of the variational method can be
carried out as before. leading to a set of simultaneous equations similar to that
in equation 2.102 but where all the Ss and Cs have been interchanged and K,,,

replaced by K ... From this new matrix relation we find that

v

K =-9v“LC, (2.113)

where —W'°LC is a 2 x 2 matrix with elements —(¥!°LC;) and ¥*° is the trial
wavefunction with the optimum values of the variational parameters. We have used
both the Kohn and the inverse Kohn methods as a check on the accuracy and the
general consistency of our calculation and to identify the cases where non physical

resonance features occur as discussed in the next section.

2.5 Schwartz singularities

Although the Kohn variational method only yields a rigorous upper bound on the
scattering length of positron-helium scattering (Spruch and Rosenberg 1962) and not
for the phase shift, there is an empirical lower bound on the phase shift, i.e. it usually
becomes more positive as the trial function is improved. The early calculations of the
scattering data using the Kohn variational method indicated that the behaviour of
the variational results could. under certain conditions, become very unpredictable
because of the presence of non-physical resonance features which clearly do not

respect the empirical bound.

Schwartz (1961) provided the first numerical analysis of this phenomenon in
his calculation of the s-wave phase shifts for both electron and positron-hydrogen
scattering. He noted that he obtained results which were very dependent on the
value of a non-linear parameter in the trial function. By repeating his calculation
for a given set of short range terms and a given energy, but varying the non linear
parameter, £, he showed that the tangent of the phase shift, tan 7, became singular
for some values of x (see figure 2.3. Note that x used in the work of Schwartz

is different from the positronium wavenumber, &, we have used in this work). He
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Figure 2.3: Variations of tan 7"jk with respect to a non-linear parameter, in
the trial function for s-wave e~ — H scattering where £ = 0.8. The different lines

correspond to different sets of short-range terms. Taken from Schwartz (1961a).

repeated the calculation for trial functions containing more short range terms and
found that more of these singularities appeared at different values of x but that they
became more narrow. This means that, as the the trial function is improved, the
region of the values of X over which tan 77 is well behaved becomes larger and the
results become more reliable. These singularities also appear when the energy of

the incoming particle is varied for a given value of k.

The analysis of the Schwartz singularities and the various modifications to the
variational method to eliminate them have been the subject of many studies (see
Nesbet 1980, Callaway 1978 and Truhlar ef al. 1974 for reviews). The variational
method used in these studies is different from the one used in this work as they

first solved the set of linear equations resulting from the variational principle for
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the short-range parameters, i.e. 9I/dc; = 0, and use the resulting values of ¢;,
which for the one channel case are then a function of tann, to solve dI/0tann = 0.
Using this method, Schwartz proposed that the singularities in tann originated
in the inversion of the matrix ® L®. This matrix will have N eigenvalues of the
operator L = 2(H — E) and these eigenvalues will vary continuously as the value
of the non-linear parameter or the energy is changed. Therefore the operator L
has a continuous set of eigenvalues which will pass through zero and in theory the
matrix will be singular when one of these eigenvalues is exactly zero as its inverse
will be ill-defined. In a numerical calculation it is sufficient for the eigenvalue to
be numerically close to zero for the matrix to become ill-conditioned and therefore
the variational values of the K matrix elements may lie anywhere between —oo
to +0o. When more short-range terms are added to the trial wavefunction the
density of eigenvalues close to zero increases, because the matrix #LP becomes
larger, and therefore the probability of ill-conditioning increases. Nesbet (1980)
showed that the singularities in tan# did not come from the singularities of the
matrix ®L® on its own, but from a combination of this matrix with the various
short-range - long-range and long-range — long-range matrix elements. A series of
variations of the Kohn method have been developed to overcome the problems with
these singularities (the Harris method, the Optimized Minimum Norm method, the
Optimized Anomaly Free method, etc... all discussed in the reviews cited above)

but they are all based on the two stage solution of the set of linear equations, 2.103.

In the method used in this work, we see that the matrix A also has eigenvalues
which must pass through zero, as the Hamiltonian of the system, H, has a continuous
spectrum in which the total energy is embedded. Therefore the matrix A may
have eigenvalues close to zero and its inverse is then ill-conditioned. Again, as the
number of short-range terms increases, the probability for a singularity to occur
increases too but we now have a very narrow resonance-type feature, and reliable
results can be found from the data which are not affected. The various methods to
eliminate these singularities to which we have referred above have not been applied
to the version of the Kohn method we have used in this work. Instead, we have

used a comparison method, where the agreement of the results obtained with the
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Kohn and the inverse Kohn method is taken as the criterion of the reliability of the
calculation. As the problem arises in the inversion of the matrix A, the change in
the form of this matrix when using either the Kohn or the inverse Kohn method is
such that it is very improbable for it to be ill-conditioned in both cases at the same
values of the non linear parameters and at the same energy. We have found this
criterion to be very reliable and in general have not encountered many Schwartz
singularities in our calculations. If the contrary had been the case and if the Kohn -
inverse Kohn criterion had not been found to be reliable, the method developed by
Armour (Armour and Humberston 1991), in which the generalized form of the Kohn
functional 2.109 can be used. The method consists in considering a set of values for
the phase parameters 7 , between 0 and =, rejecting those for whom detA is very

close to zero and taking the average of the ones left.
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Chapter 3

The use of inexact target

wavefunctions

3.1 Introduction

Both the general theory of atomic scattering and the Kohn variational method we
have described in the previous chapter assume that the wavefunction of the target
atom is known exactly, i.e. that it is an eigenfunction of the target Hamiltonian

which is itself part of the total Hamiltonian of the system.

This condition can only be satisfied if the target is a hydrogen atom or is of
a hydrogenic form (Ps, Het, etc), but for any other atom we must introduce an
approximate wavefunction based eithe; on a simplified model representation of the
complex atom, for instance a hydrogenic model for the lithium atom, or on a varia-
tional calculation when possible. The use of these approximations will introduce into
the scattering formalism a certain number of inconsistencies which may affect the
final result dramatically. Variational calculations of scattering data have sometimes
been found to be very sensitive to the quality of the approximate target wavefunc-
tion and various authors have investigated this for very low energy elastic scattering

(Peterkop and Rabik 1971, Houston 1973, Page 1975). In the case of positron-atom
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scattering, where the projectile is distinguishable from the target electrons, Drach-
man (1972) showed that these difficulties could be avoided by using the method of
models. In this method, the exact target Hamiltonian is implicitly replaced by a
model Hamiltonian of which the approximate target wavefunction is assumed to be
an eigenfunction. This leads to more consistency in the scattering formalism and
has shown to give excellent results in positron-helium elastic scattering below the
positronium formation threshold (Humberston 1973, Campeanu and Humberston
1975 & 1977). In the case of a rearrangement process, such as positronium forma-
tion, the method of models cannot be used consistently and the exact Hamiltonian

must be used throughout the calculation.

We have therefore investigated the effect of the quality of the helium wavefunc-
tion on our results by comparing the phase shifts obtained with and without the
method of models for elastic scattering below the positronium threshold where both
methods can be used. For this we have created a set of helium target wavefunctions
which can be used in the Kohn variational method and which give good results for

the helium ground state energy and polarizability.

In this chapter we will show how the various helium wavefunctions have been
calculated, expand on the method of models and its limitation in positronium forma-
tion calculations, and make an empirical analysis of the effect of the use of inexact
target wavefunctions on the calculation of the elastic scattering phase shifts which
will be used as a reference for the main calculation of this work, i.e. positronium

formation.

3.2 The helium target wavefunctions

Hydrogen is the only stable atom for which the wavefunction is known exactly and
the analytical form for the various states of hydrogen can be found in any text book
on atomic physics. Although helium is the next atom in terms of complexity, there

are no exact solutions to the Schrodinger equation which describes the nucleus-two
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electron system. This lack of a formal solution has meant that many approximation
methods have been developed to evaluate inexact wavefunctions for atoms, other

than hydrogen, which could be used to calculate their physical properties.

One of the most important of these properties is the ground state energy, and
the first quantum mechanical calculation of this quantity for the helium atom was
done by Unsold (1927) using first order perturbation theory. He used a simple
wavefunction based on the product of two one-electron wavefunctions and found
E, = —-5.50(Ryd.), which is only 5% more positive than the experimental value.
A more elaborate wavefunction was developed by Hylleraas (1930) and, using a
Rayleigh-Ritz variational method, he found a value of £, = —5.80648 (Ryd.), which
is only 0.01% more positive than the most accurate value of E, = —5.807448752
(Ryd.) found by Bishop and Lam (1988). Because of its complexity, their wave-

Figure 3.1: The helium atom coordinate system.

function cannot be used in a scattering calculation, but their result shows that the
use of a Hylleraas type of wavefunction (even with a lower number of terms in the

expansion) and the Rayleigh-Ritz method does give good helium target functions
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which can be used effectively in the scattering problem, and we have taken the same

approach for this work.

The helium atom system we are considering is a three body system where we
assume the nucleus to be infinitely heavy and placed at the origin of our coordi-
nate system (see figure 3.1). For the 15 ground state, the spatial wavefunction is
spherically symmetric and does not depend on any of the Euler angles. Therefore,
the helium target function will only depend on r;,r; and r23 =| 72 — 73 |. A more

convenient choice of variables is

§ = r2+r13
t = Te — T3
u = T3, (3.1)

and the Hylleraas form of trial target function is

B(ry,r3) =€ i b tMiy s, (3.2)

j=1

The summation includes all terms with K; + M; + N; < wy. and because the
ground state of helium is a para-state, i.e. space symmetric, we must take M; as
even only, in order to ensure the symmetry in r; and r3. In previous Kohn variational
calculations of positron-helium elastic scattering below the positronium formation
threshold (Humberston 1973, Campeanu and Humberston 1975 & 1977, Campeanu
1977), the powers of 73, i.e. .V;, were restricted to be even only. This restriction was
due to the difficulty in the numerical integration of that variable in the scattering
calculation, which will be explained in detail in chapter 5. In this work we have not
made this restriction, and have evaluated helium wavefunctions containing both even
and odd powers of ry3. As expected, the quality of the target wavefunction when
containing odd powers of rp3 was greatly improved, as this configuration represents
much better the electron correlation within the atom. This improvement is mainly
due to the linear rq3 terms which are needed to represent the cusp in the wavefunction

at T3 = 0.

The Rayleigh-Ritz variational method, as described in chapter 2, was used to

determine the optimum value of the linear parameters b; in equation 3.2.
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The Hamiltonian for the helium system is

1 1 2 2 1
SRS v N v e A SRt
HH 2 r2 2 T T2 rs T23 (3 3)

and using the Rayleigh-Ritz functional 2.33 we have

EY = f‘bfve(rz’Ta)HHe‘I)?;e(Tz,"'s)drzdra (3 4)
° [ @Y4.(r2,73) @Y (72, 73)dr2drs ’ )

where E? is the variational approximation to the exact ground state energy, which
was shown in chapter 2 to be always more positive than the exact ground state en-
ergy E,. The method therefore consists of choosing the number of terms in the sum
of 3.2, calculating the optimum values of the linear parameters, b;, and then using
these to evaluate E§ for the corresponding trial function. This procedure is then
repeated for a set of values for the non-linear parameter v, and the trial function
which gives the most negative value for the ground state energy is then taken as the

optimum trial function for the given value of wp. (see figure 3.2). Because these
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Figure 3.2: The variation of Ey with v for helium model H22.

target wavefunctions will be used in a scattering calculation, we wish not only that
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the variational ground state energy agrees well with the ‘exact’ value, but even more
we require that the dipole polarizability calculated with the target function is also
in good agreement with the best experimental value. The dipole polarizability, aq,
determines how much the atom is distorted by the incoming projectile and it will
therefore play an important role both in the elastic scattering and the positronium
formation channels, even in helium where the electrons are tightly bound to the nu-
cleus and o is relatively small. The dipole polarizability is evaluated by considering
the perturbation of the energy of the helium atom placed in a small uniform electric

field, (Thomas and Humberston 1972), which we can choose to be along the z-axis.

The Hamiltonian for the helium atom in this uniform field is then

1 1 2 2 1
Hp, = —§V';"2 — §V33 — — — — 4+ — —¢(racosfz + r3 cos 03), (3.5)

T2 T3 T3
where ¢ is the field strength, and cos 8, and cos §; are the angles between the z-axis
and the vectors 7, and r; respectively. The change in energy (AE) of the helium
ground state can be shown from perturbation theory to be quadratic in ¢, and to be

always negative.

The dipole polarizability is defined by

—2AFE
€2

. (3.6)

ag =

The evaluation of AF is carried out using a Rayleigh-Ritz calculation of the per-
turbed ground state energy, but because the presence of the electric field has de-
stroyed the spherical symmetry of the system, a new form of trial wavefunction
needs to be considered. This trial function now includes a p-state character angular

dependence and can be written as

‘I’(Tz, 1'3) = QHe(TZ’rS)

X [1 +>° (1'2 cos 0, +(—1)?*r; cos 93)(7‘2 + r3) P (ry — r3) 915k [(3.7)
k=1

where ® (72, 73) is defined as in equations 3.2 and the summation is such that P+
Qx+ Sk < wk. To determine the dipole polarizability of a given helium wavefunction,
we first need to choose values of € for which the perturbation approach holds, i.e. we

want € to be very small and such that variations in it do not affect the final results
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for ay. We then calculate the perturbed ground state energy for different values of
wg by increasing the number of terms in the perturbation wavefunction 3.7. The
values of oy are found using equation 3.6 and the most converged result is chosen.
One must note that there is no bound on a4 in this calculation, and therefore the
optimum value of 4 for a4 is taken as that which gives a value of a4 closest to the

best theoretical result oy = 1.38319 a (Bishop and Lam 1988) (see figure 3.3).

The choice of non-linear parameter v in the helium target wavefunction. ®p.,
affects the value of a4, and the optimized value of v for the ground state energy
does not always correspond to that for the dipole polarizability. The value of 4
was chosen so that it gave the best compromise between Ej and a4, favouring the
polarizability if required. We have also found that, as the number of terms in the
helium wavefunction is increased, the optimum value of Ej is less sensitive to the
value of v (see figure 3.1) and it was therefore easier to get a good compromise

between the values of Ey and of a4 for the more elaborate wavefunctions.
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Figure 3.3: The variation of ay (a3) with 7 for helium model H22.

Table 3.1 gives the values of Ef, ag and « for the various helium wavefunctions we
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Figure 3.4: The variation of Ey with v for different helium wavefunctions.

have investigated. The models H5 and H14 are those used by Campeanu and Hum-
berston in their investigations of elastic scattering below the positronium threshold,
and both contain only even powers of r,3. The models H7, H22 and H50 have been
generated for this work, and one can see how the inclusion of the odd powers of ry3
has improved the values of E giving 99.9% of the correlation energy, which is the
difference between the exact energy and the value found using the Hartree method

of self consistent fields ( Hartree 1928) with a product form helium wavefunction.

H5 H14 H7 H22 H50 exact*

wHe(n) 2(5) 4(14) 2(7) 4(22) 6(50)

v 1.90 2.24 1.80 1.80 2.00
Energy/Ryd. |-5.78890 | -5.80060 | -5.80684 | -5.80740 | -5.80745 | -5.80745
Polarisability /a3 | 1.39527 | 1.38823 | 1.37768 | 1.38376 | 1.38322 | 1.38319

Table 3.1: Properties of the helium wave functions. The ‘exact’ results are those of

Bishop and Lam (1988)
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3.3 The use of inexact target functions and the

method of models

The effects of the inconsistencies introduced in the general formulation of the scat-
tering problem by the use of an inexact target wavefunction have been known since
the first variational calculations of scattering processes were made. With the advent
of more computational power in the late 1960s, it became possible to undertake
variational calculations with greater numbers of short range correlation terms than
was previously envisaged, and several authors ( Peterkop and Rabik 1971, Houston
1973 and Page 1975) found that the sensitivity of the results to the choice of target
function became a major factor in the quality of the calculation. These authors in-
vestigated this problem, for both electron- and positron-atom scattering, mainly by
considering the calculation of the scattering length for which there is a rigorous up-
per bound when using the Kohn variational method with exact target wavefunctions
( Spruch and Rosenberg 1960). They used either an inexact helium wavefunction or

an approximation to the hydrogen wavefunction of the form

3
¢ = \/ge"\” (3.8)

from which the exact hydrogen wavefunction is obtained with A = 1. Typical results
can be seen in figure 3.5 taken from the work of Page (1975), which shows how the
scattering length for positron-hydrogen scattering varies with the variation of a non-
linear parameter 7 in the scattering wavefunction. One sees that for A =1 (i.e. the
exact @), the scattering length versus n curve shows a local minimum which is a
consequence of the upper bound on the scattering length. One sees that for small
changes in A there is still a local minimum, but for values of A only one percent less
or greater then 1, there is no local minimum present and the bound on the scattering
length is violated. The results of figure 3.5 correspond to 4 terms in the Hylleraas
expansion in the scattering wavefunction, and it was found that when the number
of terms was increased, the value of A for which no local minimum could be found
became closer to one (see Page 1975). The same phenomenon was observed for

positron-helium scattering, for which there is no exact target function which can be
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Figure 3.5: The variation of scattering length with respect to the non-linear param-

eter T for positron-hydrogen scattering taken from Page (1975).

modified in a systematic manner and instead various approximations for the helium
wavefunction were used, for instance Hylleraas types in the work of Page (1975) and

the Hartree-Fock approximation in that of Houston (1973).

To remedy this problem Drachman (1972) proposed the use of the so-called
method of models. In this method the target Hamiltonian, HHC- is replaced by a
approximate Hamiltonian, Am, of which the approximate target wavefunction, (i

is an eigenfunction, and we have

Hm - ~ ra+ Kn (3.9)
and
(3.10)
where and Em are the model potential and the model ground state energy re-
spectively.
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The total Hamiltonian of the scattering problem becomes

1 2 1 1 1
HTZ__V£1+HM+__———=——V,2.1+Hm+v;'nta (311)

2 ™ T12 13 2
and the total energy is given by

1

Both V,,, and E,, can be evaluated explicitly, but only easily for fairly simple target
functions, as can be seen from the following example. Consider, for instance, the

helium model H1 (see Humberston 1973),
bre = e7olr2tra) (o = 1.5992) (3.13)
From equation 3.10 we have

1 1
(‘ 5V~ 5Vn t Vm) emor ) = Bpemeratr) (3.14)

and using VZe " = (a? — 2a/r;)e™*" we have

(242 a4 13 emeten) = e 319

T2 T3
As we require V;, to vanish for large values of r; and r3 we have

2

m — —Q
a o
Vi, = = n (3.16)

As expected, because there is no electron correlation termin ¢g., the model potential
does not have a ry3 term either. One can see that the evaluation of V,,, and E,, for
more elaborate target functions will be complicated. Fortunately, however, if a
suitable choice of total wavefunction for the scattering problem is used one does not

need to evaluate V,, and E,,.

In the case of elastic scattering below the positronium formation threshold, we

can take the total wavefunction to be of the form

\IIT = ¢He\psca (3.17)
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where U, is the scattering wavefunction. This product form of wavefunction is no
restriction on the total wavefunction if the target wavefunction is nodeless, as is the

case for helium. We now operate with (Hr — E7) on VU7,

3 v'z kz
(HT - ET) \PT = [Z - .)r, + "':'nt + Vm - 7 - Em] ¢He\psc

=1 =

N 2
= OHe [Z— .)' +Wnt_7l \Ilsc
=1 =

3
- Z vr;lpscvr¢¢He + lIl.«:c [Hm - m] ¢He
1=2
Y

2 k2 3
et Vo= | W= DVt (219)

~ o3

We note that there is no reference in this expression to either the model potential

=2

or the energy eigenvalue of the model Hamiltonian and that, as ¢y, is now an exact
eigenfunction of the model Hamiltonian, we have eliminated the formal inconsisten-
cies introduced in the scattering formalism when inexact target functions are used.
This method can be used in positron scattering calculations as there is no exchange
between the projectile and the target electrons, whereas it cannot be used consis-
tently for electron scattering as the model Hamiltonian is not symmetric under the

interchange of all electrons.

The method of models has been employed successfully in many variational cal-
culations of low energy positron atom scattering, for both the evaluation of the
scattering length and the elastic phase shifts below the Ore gap ( for instance
Campeanu and Humberston (1977) for positron-helium scattering ). The difficulty
in a variational calculation of the positronium formation cross section in positron-
atom collisions is that the product form for the total wavefunction cannot satisfy
the boundary conditions for the rearrangement channel. As the main aim of this
work is the evaluation of the various cross sections of positron-helium scattering
within the Ore gap, we have had to abandon the method of models and accept
that the inexactness of our target wavefunctions will affect our results. We have
therefore investigated first the reliability of the elastic scattering phase shifts found
without the method of models by comparing them with the results obtained with the

method. The conclusion of this analysis was then used as an empirical criterion to
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k 0.1 0.3 0.5 0.7 0.9

m { 0.031 | 0.029 | -0.023 | -.093 | -0.163
n2 | 0.0300 | 0.0278 | —0.0239 | -.0927 | -0.162
n3 | 0.0300 | 0.0278 | -0.0239 | -.0927 | -0.162

Table 3.2: 7; : s-wave phase shifts for H5. w= 4 (Humberston 1973); 7, : s-wave
phase shifts for H5 this work. w= 4 with only even powers of ry3; 3 : s-wave phase

shifts for H5 this work. w= 4 with even and odd powers of ry3

assess the reliability of the scattering data for which the method of models cannot be
used. As the investigations of Peterkop and Rabik (1971), Houston (1973) and Page
(1975) have shown, both the quality of the target wavefunction and the number of
short-range terms in the scattering function have an effect on the reliability of the
results obtained with inexact target functions and we have therefore investigated

these effects in our calculations.

The results obtained with the method of models are known to be reliable and
not affected by the inexactness of the target function, and we have evaluated the
s-wave elastic phase shifts for positron-helium scattering using the various helium
models we have generated. The models H5 and H14, which do not contain odd
powers of ry3, were those used in the previous calculation of Humberston (1973) and
Campeanu and Humberston (1977). We have repeated their calculations with the
method of models to check the new numerical procedures we have introduced in this

work and which are discussed in chapt-er 5.

In table 3.2 we compare the results for model H5 with w = 4 in the scattering
wavefunction. We believe that there is a reasonable agreement and that the slight
differences can be explained by the greater accuracy in the results of this work.
The values of Humberston were obtained with a trial function containing no rs;
terms at all in the scattering function, while the results of this work have been
calculated with powers of ry3 included. One can notice that the inclusion of odd

powers of ry3 does not affect the results, which is consistent with the findings of
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Humberston (1973) who showed that the total removal of the ro3 variable did not
change the results significantly. In the work of Humberston (1973) and Campeanu
and Humberston (1977) the results showed a monotonic convergence of the phase
shift with increasing values of w, and the same pattern was observed in the results
obtained with the method of models in this work. This convergence is a feature of
the Kohn method when used in conjunction with a Hylleraas expansion to represent
the closed channels (instead of a pseudo-state type of representation, for instance)
and, if a high enough value of w is reached, an extrapolation procedure can be used

to estimate the w = oo results (Armour and Humberston 1991).

These s-wave phase shifts have been recalculated without the method of models
for both H5 and H14 using a scattering function containing Hylleraas type short-
range terms in which the power of the variable r,3 is either even only or both even
and odd. For H5, we noticed that there was a rapid breakdown in the convergence of
the phase shifts with respect to w. The same phenomenon occurred for H14, and in
both cases the breakdown was more pronounced when the scattering wavefunction
contained even and odd powers of ry3. The type of breakdown is shown dramatically
in figure 3.6 where we have plotted the values of the phase shifts, for w = 2 to w =

5, versus positron energy for the helium model H14.

Also plotted there are the best converged phase shifts calculated using the
method of models and one can see that the results obtained without the method
of models, with even and odd powers of ro3 in the scattering wavefunction, do not
converge to them. As mentioned earlier, the only established rigourous bound in
positron-atom variational calculations using the Kohn variational method is that
for the scattering length (Spruch and Rosenberg 1960), but it had been noticed in
studies of positron-hydrogen scattering, and also in positron-helium scattering us-
ing the method of models, that an empirical bound could be observed on the phase
shifts if one took care to identify and avoid the Schwartz singularities which may
occur. From figure 3.6 it is clear that when the method of models is not used,
this empirical bound principle is violated. It is true that the results obtained with-

out the method of models do not need to correspond to those calculated with the
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Figure 3.6: The breakdown of the convergence of the phase shift when not using the
method of models for helium function H14. The scattering wavefunction contains
both even and odd powers of ry3. The results for ¥ = 0.1 are not plotted because

the breakdown is so severe that they would distort the graph.

method for the same value of «. but one does require the phase shifts in both cases
to converge in a monotonic manner towards a best or exact value. As the results
with the method of models are known to converge, one can assume that the phase
shifts obtained with a high value of w are very close to the exact results for the
particular model being used. and they can be taken as reference values. The phase
shifts obtained without the method of models are seen not to converge towards these
reference values; they even seem to diverge, overshooting them by an amount which
clearly indicates that there is a fundamental breakdown in the calculation. This
phenomenon is not related to the presence of Schwartz singularities, as there is a
smooth variation of n with %, i.e. there is no resonance type feature as found when
a Schwartz singularity is encountered and, more importantly, the breakdown occurs
when both the Kohn and the inverse Kohn methods are used. The fact that the

breakdown is more pronounced for the lower energy region is probably due to the
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importance of the polarization of the target in collisions with very slow incoming
projectiles and also because the non-linear variational parameters in the trial func-
tion are better optimized for the lower energy region. This is an important feature,
as it shows that the breakdown occurs because of a fundamental aspect of the trial
wavefunction and not just because of the number of short range terms it contains.
It has not been possible to determine exactly what this aspect is, but it is clear
that the breakdown occurs with scattering wavefunctions which, when used with
exact target functions (or when used with the method of models), give good results,
and that it is more dramatic the better the scattering trial function becomes. One
can therefore associate the breakdown in convergence of the final results with the
quality of the scattering trial wavefunction, where quality is taken to describe how
good the results obtained with the wavefunction would be in an ideal case with
no breakdown. The quality of the wavefunctions we use in the Kohn calculation
is determined by the optimization of the non linear parameters and by w, which
gives the number of short range correlation terms. The exclusion of odd powers
of ro3 in the scattering function makes the breakdown occur at higher values of w,
which indicates that these terms affect the quality of the scattering wavefunction in
a much more important manner when the method of models is not used than when

it is used.

The same analysis as the one presented above for model H14 was undertaken for
model H5 and we have found that the results show a similar pattern as those for
H14, but in a more dramatic way, i.e. that the breakdown occurs for very low values
of w when even and odd powers of 723 are included in the scattering trial function

and also when only even powers are included ( see figure 3.7).

This shows how the quality of the target function also affects the final results
and highlights the limitation of both models H5 and H14 when used without the
method of models. It is clear that no reliable data can be found with these helium
wavefunctions using elaborate scattering trial functions without the method of mod-
els, and that it is not possible to use the convergence pattern, which is seen before

the breakdown occurs, to extrapolate the results to infinite w. As the variable ry3
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Figure 3.7: The breakdown of the convergence of the phase shift when not using
the method of models with helium function H5. Only the results with 7,3 in the

scattering wavefunction restricted to even powers are plotted.

will not be restricted in this work to have only even powers, we have created three
new helium wavefunctions, H7, H22 and H50, containing even and odd powers of
ro3 (see table 3.2). Both the ground state energy and the polarizability of these
two models are in much better agreement with the experimental data, which shows
the importance of the linear electron-electron correlation terms in the helium tar-
get wavefunction. We have recalculated the phase shifts for these models with and
without the method of models using the same two types of scattering wavefunctions
as in the phase shifts calculations for model H5 and H14. The phase shifts evaluated
with the method of models all increase monotonically with increasing w and appear
to converge. Therefore, we have chosen the results for model H22 with w = 5 (256

terms in U;) as our reference value.

This is because, although there is little difference with the same results for H14

and H7, the quality of the H22 helium wavefunction is such that we believe the phase
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Figure 3.8: Differences between the most accurate s-wave phase shift at k = 0.1a;’
for the helium function H22 ( n = 0.03246 ) and the results for helium functions
H7, H14, H22, obtained both with and without the method of models for w = 2(1)5
: 0, with the method of models and including both even and odd powers of ry3 in
the trial function :x . without the method of models, and with only even powers of
r93 in the trial function : +, without the method of models and with both even and
odd powers of ry3 in the trial function. (Note : for H14 the results for w > 3 are off

scale)

shifts for H22 will be very close to the hypothetical exact ones. The results for H14,
H7 and H22 for two positron energies are shown in figures 3.8 and 3.9 in which, for
clarity, we have chosen to plot, for each value of k, the difference between a given
result and the reference value of H22 with w = 5 (the dotted line). We have chosen
to optimize the non-linear parameters in the trial function for the given value of k, so
that the quality of the scattering function depends mainly on the value of w. We can
again notice in figure 3.8, for k = 0.1 (ag'), that the inclusion of odd powers of rz;
in the trial scattering function for the H14 calculation has provoked the breakdown

at w = 2 while without the odd powers it occurred at w = 4. This highlights the
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importance of the correlation between the target and the scattering wavefunctions,
which is the main cause of the breakdown in convergence. The results for H7 also
show a clear breakdown of the convergence pattern but it occurs at a higher value
of w than in the H14 case. The fact that the results for a given w with and without
odd powers of rp3 in the scattering wavefunction are not as dramatically different
as was the case for model H14, indicates that the inclusion of the odd powers of
ro3 in the target function makes it much more compatible with the more flexible
scattering wavefunctions. The phase shifts calculated with the H22 target function
show a clear convergence pattern for all types of scattering trial functions. The
results obtained without the method of models up to w = 4 converge towards the
best phase shift obtained with the same target function using the method of models.
The w = 5 results are slightly more positive than the best result and they may be

estimated to be just at the breakdown of the convergence pattern.

In figure 3.9 the s-wave phase shifts for a higher positron momentum (k£ =
0.7(ay!')) show a somewhat similar behaviour to that we have just discussed. The
breakdown in convergence when using the H14 target function is again observed but
it occurs at larger values of w than was the case when k& = 0.1 (a3!). The results
with only even powers of rq3 in the scattering wavefunction, up to w = 4, could
even be considered to converge monotonically to a slightly higher value than the
most accurate one obtained with the H22 target function and with the method of
models. For the helium models H7 and H22. without the method of models, one
sees that there is a convergence pattern with increasing values of w for both types
of scattering wavefunctions. One can note that the results for H7 with the method
of models, calculated only up to w = 4, are always a little more positive than those
for H22. This is because the non-linear parameters in the scattering wavefunction
are the same for all models, and they are seen to be slightly better optimized for H7
than for H22. Within the method of models there is no lower bound principle on the
phase shift with respect to the target function used, as can be seen from the more
positive phase shifts for model H1 than for model H5 found in the earlier work of
Humberston (1973), and one must assume that the results obtained with the most

accurate model will be the most reliable. Furthermore, the very small difference
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Figure 3.9: Similar to fig. 3.8 but at k& = 0.7ay’, where the most accurate phase
shift for helium function H22 is n = —0.08920. ( Note: for helium functions H14
and H7 with the method of models, the results are for w = 2(1)4 only)

between the values for w = 4 and w = 5 indicates that the latter is very close to
the fully converged result. The phase shifts obtained with both types of scattering
wavefunctions without the method of models for the H22 target function converge
monotonically . and the w = 5 result with both even and odd powers of ry3 in the trial
function can be considered the most accurate phase shift calculated without using
the method of models. The improvement in the quality of the convergence pattern,
and in the case of H22 the total removal of the breakdown, is due to the fact that
at higher positron energies the distortion of the target atom is much less important
than at lower energies. This has been shown in earlier work on the scattering length,
where the inclusion of polarization terms in the wavefunction was needed to improve
the convergence of the results (Humberston 1973). As the incoming positron energy
increases, the interaction time between the projectile and the target is reduced, and
the helium atom does not have the time to be distorted as would have been the case

if the positron were moving very slowly in its vicinity. Therefore, the positron can
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be considered as distorting the target less for higher values of & than for lower ones,
and this means that the correlation between the target function and the scattering
wavefunction quality will be less important at the higher energies. This feature is
important because it indicates that as no breakdown has occurred for H22 at £ = 0.7
we can rely on the results obtained with the same model at higher energies. We
have therefore taken model H22 as our standard model to investigate both the elastic
scattering and the positronium formation cross sections at energies within the Ore
gap. The results for H5 and H14 again highlight the relatively poor quality of these
target functions as they do not agree at all with those for the more elaborate H22

helium function.

We have also investigated the effect of the use of inexact target functions in p-
wave positron-helium elastic scattering and figure 3.10 shows the comparison of the
p-wave phase shifts at & = 0.8 for all the models we have considered. We see that
models H7.H22 and H30 all agree well and that model H5 does not give very good
results. The relatively good quality of the H14 results can be explained by the fact

that the scattering function used here contains only even powers of rj3.

The dependence on the target functions of the two channel results, which con-
stitute the main interest of this work, has been investigated, but as the method
of models cannot be used above the positronium formation threshold there is no
accurate reference value as in the case of the phase shifts calculations. Also, there is
no rigorous bound principle on the K matrix elements of a two channel variational
calculation and therefore there are no bounds on the cross sections. Only the di-
agonal K matrix elements, i1, and Kj;, obey an empirical lower bound principle
and one may expect the variational elastic cross section, 011, to converge monotoni-
cally towards the exact value. Previous work on positron-hydrogen using the Kohn
variational method (Brown and Humberston 1984) has shown that the positronium
formation cross section is seen to converge in an oscillatory manner which makes
extrapolation to w = oo very difficult. We have therefore chosen to examine the
quality of our results not by considering their convergence with increasing values of

w towards a given value, but by comparing the most converged results for different
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Figure 3.10: Differences between the most accurate p-wave phase shift at k£ = 0.8a5"
for the helium function H22 ( n = 0.03246 ) and the results for helium functions
H5, H7, H14, H22, and H50 obtained without the method of models for w = 2(1)4
in both symmetries (see chapter 7). The power of ry3 is even only in the scattering

wave function.
models with each other.

In fig 3.11 we have plotted, in a similar manner as in the phase shift analysis,
the s-wave elastic cross section, at a given energy above the positronium formation
threshold, for 5 different models with the scattering trial function containing both
even and odd powers of ry3, taking the H22 (w = 5) results as reference. One can see
from the H7, H22 and H50 results that there is still a convergence pattern and that
all w = 5 cross sections agree very well. We have included the H50 model as a check
on our H22 results, because if these were in error this would show up immediately
as a disagreement with the results for the more elaborate helium target function
H50. As the helium target function needs to be evaluated and operated on within

the six dimensional integration, the H50 calculations take much longer than those
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Figure 3.11: Differences between the most accurate s-wave elastic cross sections (in
ral) at k = 1.154a5"! for the helium function H22 ( oy; = 0.16070 ) and the results
for helium functions H5, H7, H14, H22,and H50 obtained without the method of
models for w = 2(1)5

for model H22, and they could only be performed as a check on the H22 results
for a few positron energies. The w = 5 cross sections for H5 and H14 are seen to
disagree with those for the more accurate target functions and although there is not
a breakdown as such in the convergence pattern, it is clear that the higher w results

do overshoot the exact cross sections.

The s-wave positronium formation cross sections are plotted in figure 3.12, and
they show a similar behaviour. As expected, there is not as such a clear convergence
pattern, even for models H7, H22 and H50, although here the cross sections increases
monotonically with increasing w. Again the w = 5 for all these models agree very

well, and one can consider the cross sections for H22 to be very reliable.
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Figure 3.12: Differences between the most accurate s-wave positronium formation
cross sections at k = 1.154ag" for the helium function H22 ( ¢y, = 0.0037025 ) and
the results for helium functions H5, H7, H14, H22.and H50 obtained without the

»

method of models for «w = 2(1)5.

3.4 Conclusion

The analysis presented in this chapter clearly shows that the use of inexact target
functions in a Kohn variational calculation, for both one and two channel cases, can
lead to very erroneous results if the quality of the target function is relatively poor
as compared with that of the scattering wavefunction. It was not possible within
the scope of this work to investigate why this occurs. A detailed derivation of the
scattering formulation and the Kohn variational method including the inexactness of
the target wavefunction would have to be undertaken to know where the formulation
breaks down and if a formal remedy can be found. A more empirical approach has
been taken and it was found that reliable results could be obtained without the
method of models if the helium model H22 was used and if the cross sections found

agreed well with those for the more elaborate target function H50.
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Chapter 4

Positron-helium s-wave scattering

4.1 Introduction

The partial wave analysis of the scattering process as described in chapter 2 requires
us, in theory, to calculate the various cross sections we are investigating for an infinite
number of partial waves. However, previous two channel variational calculations of
positron-hydrogen scattering by Humberston (1982), and Brown and Humberston
(1985) and of positron-lithium scattering by Watts and Humberston (1992), and
the calculation of the phase shifts for positron-helium scattering (Campeanu and
Humberston 1977), have shown that the main contributions to the total cross section
at low positron energies (< 20eV) come from the first three partial waves (s,p,d). For
higher partial waves ([ > 3). the elastic scattering below the positronium formation
threshold is dominated by the polarization potential V, = —3%, where « is the
polarizability of the helium atom, and the phase shifts can then be calculated using

the formula
rak?

"= Ri— DRI+ )2 +3)
given by O’Malley et al (1962). ( Note that this formula also gives a good approxi-

(4.1)

mation for =2 phase shifts.)

In the two channel case, the higher partial waves cross sections can be evaluated
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quite accurately using the first Born approximation, as the increasing influence of

the centrifugal term, , keeps the positron away from the region where the short-

I(+1)
)
range correlation terms are effective. The use of these more approximate methods
for the evaluation of the cross sections for partial waves higher than [ = 2 is justified

by their small contribution to the total cross sections.

Because we are not using the method of models in this work, as was done in the
calculations cited above, various new numerical, computational and formal problems
have occurred and these will be described in detail for s-wave only, on which the

next two chapters will concentrate.

4.2 The s-wave trial function

The general form of the two channel trial function derived in chapter 2 is given by

2.88 and 2.89, and for s-wave calculation this becomes

Uy = Yoo(01,61)® ge(r2,ms)VE {jo(kr1) — Kiyno(kr1) [1 — exp(—Ary)]}
—%Yo,o(em 0p) [L + Pa3] @ ps(r12)® pro+(r3)

x V2 K2 {no(kp) [1 —exp(—pp)(1 + ﬁ)0)]}

2
N
+[1 + Py)exp(—(ary + Bry + Brs)) Y cirfirgriyryiriirdy (4.2)
=1
1
Uy = —=Yo0(0p, ) [l + Pas] @ ps(r12)® g+ (73)
V2
xV2&{jo(kp) — K35n0(kp) [1 —exp(—pp)(1 + gp)] }
—Yo,0(61, 451)‘1)}[@(7'2, 7‘3)\/7‘3-1{52"0(]"'1) [1 — exp(—Ary)]
N
+[1+ Pas]exp (—(ary + Bra + Bra) 3 dir ri vy rairiirls, (4.3)
J=1
where
1
Yo,0(0,¢) = —. (4.4)

Vir

We introduce the exchange operator P,3, which permutes the variable r; into r3,

but does not affect r,. The factor 713 ensures conservation of flux between channels
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w|l]213] 4|5 |6
N | 5]18 |50 [ 120 | 256 | 502

Table 4.1: Relation between w and the number of the short-range terms.

1 and 2. In the case of the short range terms we have chosen to absorb both the 715
factor and the spherical harmonic Y50(6, ¢) = 1/(v4r) into the linear parameters

¢; and d;.

As explained in chapter 2, these short-range terms in the trial wavefunction
represent the effect of the interaction between the projectile and the atom when the
positron is close to the helium atom. Therefore, they will describe the distortion and
the short-range polarization of the target in the elastic channel, and the polarization
of the positronium atom and the helium formation in the positronium channel. The
choice of the form for these correlation functions, i.e. Hylleraas functions, was
dictated by the need to have flexible analytical functions which could be expanded
in a systematic manner. This makes it then possible to investigate the convergence of
the results with respect to the improvement of the trial wavefunctions by increasing
the number of terms in the short range functions expansion. All terms with k; +1; +
m; + n; + pi + ¢: < w ( these quantities being non-negative integers) are included in
the summations of eqs 4.2 and 4.3. In order not to generate the same short range
correlation term twice by the action of the exchange operator P,3, we must impose
the constraints that n; > [;, but if [; = n; then p; > m;. We have removed the
constraint on ¢ imposed in the calculation by Humberston (1973), Campeanu and
Humberston (1975 & 1977) and Campeanu (1977), and in this work ¢; can be either
even or odd. The numerical consequence of this will be discussed in the next chapter.

The relation between w and the number of terms in the short-range expansion is

given in table 4.1.

The long-range terms in the trial function correspond to the asymptotic forms

discussed in chapter 2, and for s-wave scattering, the Bessel and Neumann functions

69



are

jo(kr) _ Sinlffr) (45)
no(kr) = —cosk(f’"). (4.6)

Also, at the origin we require the behaviour of the total wavefunction to be

U~ 7 (4.7)
r1—0
!
v~ (4.8)

As was indicated earlier, the Neumann function has a singularity at the origin,
and a shielding factor, f,s, needs to be introduced to remove it. The form of this
function is arbitrary as long as it removes the singularity in no(kr) and makes the
total wavefunction finite as required by 4.7 and 4.8. We have chosen the shielding
factor so that no(kr)fsn(kr) behaves as jo(kr) when r — 0, i.e. the first few terms

in the expansions around z = 0 are similar. This has given
fsu(kry) = (1 — exp(—Ary)) (4.9)
for the Neumann function , ng(kr,), associated with channel one.

For n,(kp), when p — 0, the center of mass of the positronium atom lies at the

origin. This imposes a second constraint:
Vi (no(kp) fen(5p)) ~, 0" (4.10)
(see Brown 1986). We have taken
fon(rp) = [1 — exp(—pp)(1 + %ﬁ)] ; (4.11)

which ensures the correct behaviour at p — 0, as can be seen by taking a Taylor
expansion about p = 0. The choice of the non-linear parameters, A and g, will be
discussed later, but the two main criteria are that the values of A and g make the

shielding functions effective and optimize the final results.
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We can now. using a notation similar to that in eqs. 2.91 to 2.93, write the

long-range terms as

St = Yoolbi.01)®xe(r2. 7s)Vhji(kry) (4.12)
Sy = Yoo(6,.0,)®he+ (73)@ps(r12)V2kji(Kp) (4.13)
Cr = —Yoo(01.01)®He(rz.73)VEn(kry) [L — exp(—Ary)] (4.14)
Cy = —Yo0(0,.0,)Ppe+ (73)®,(T12)V 260 (Kp) (4.15)
x |1 —exp(—pp)(1 + g'P)] :
The short range terms are written as
o; = exp (—(ar; + 3r2 + 0r3)) r’f’ré’rﬂjr;’ riirss. (4.16)

We can therefore write the two component wavefunction including exchange as

t -t -t (1 + P23) al
i t=1
(14 Pra) (1 + Py3)

N
S+ K}, ~—=—C2+ K[,C1 + ) (1 + Pp3)d;¢;. (4.18)
\/.2 22 \/E 12 ; R

In the next section we investigate the explicit form of the various matrix elements

of (Ut, LTY).

v =

4.3 The s-wave matrix elements

The matrix elements of (!, L¥!) which appear in the matrices A and B ( see
equation 2.103) and their equivalent for the inverse Kohn formulation, can be divided
into three sets. The first one contains all the matrix elements which involve only the
long-range terms of the trial function. These are (Sk, LS;), (Sk, LC)), (Ck, LS)) and
(Ck, LC)) for I,k = 1,2. The second set contains the elements which are the cross
terms in (¥*, LU?) between the long-range terms and the short-range correlation
terms. These are (¢;, LSk), (¢:, LCk), (Sk, L¢;) and (C, L¢;) for : = 1,2,..., N and
k = 1,2. The matrix elements which involve only the short-range correlations terms,

i.e. (¢i, L¢;), form the third set. The formal and numerical evaluation of the matrix

71



elements is different for each set and will have to be done in a specific manner for

each.

The number of elements of the long-range - long-range set which need to be

evaluated can be reduced in a significant manner when considering the following

relationships ( see Appendix A ):

(51,LS;) = (53,LS)

(Cla 2) = (_27LCI)

(Sl,LCZ) = (Cz,LS])

(C1, LCy) = (Co,LCh) (4.19)
and

(51, LC1) = (C, L&) +1

(52, LC2) = (C3L5)+1 (4.20)

where S; = 1“;23)52 and C, = 1”;23 C, .

The terms which involve only channel 1 functions are evaluated in a similar
manner as that used in the purely elastic calculation of Campeanu (1977), except
that we do not use the method of models and this introduces some fundamental

differences.

For instance, for (Sy, LS;) we have,

1 sin krq

SLS; = \/—-: He(r2,73)VE "
( _VZ_V2 +i_i_i_l_i+_2__25m_k2)
rn T2 T3 Ti2 Ti3 T3

sin kry
kT‘l )

X\/—i_;(bye(’l'z, 1‘3)\/E

If instead of using the method of models, we replace Eg. by the expectation value

(4.21)

of ®y.(rz2,73), we have

sin kry

k?“l

1 sin kry (_

Slle = —@He('l'z,’ra)k A (422)

™
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2

and as sin(kry)/(kry) is an eigenfunction of —V? , with eigenvalue k?, equation 4.21

reduces to
1, sin? kry (4 2 2 )
= — k—s— | — — —]. .
S1L51 in ‘I’He(’l‘z, 1'3) kzr% " 12 I3 (4 23)
Similarly, we find
1 sin kry
Clle = 4_W¢He(r2’r3)k k7‘1

cos kry ) (4 2 2
X (1—en) (—— ———). (4.24)

1 T12 13

For the element (S, LC) we use the relation (S, LC;) = (Cy, LS1) + 1. A similar

2

analysis can be applied to LC}, as cos(kry)/(kr1) is also an eigenfunction of —V?2 |

with eigenvalue k?, but we need to take into account the action of —V? on the

shielding function. This leads to

k
Cchl = L@ze(rg,f‘;;)kcos n 1—-6—/\71
47 kry

~-Ary
X [e (Qk)\ sin kr; + A% cos krl)

k’f’l

4 2 2\ cos kry —ary
+(—————) - (1-e )] (4.25)

We now consider LS, by first evaluating LS,:

_ 1_, 2 2 4 4 4
LS, = [-5Vi-VE-2¥?, 4 Z-Z-=
2 2 2 K2
——— —+ — = 2Fg.+ —2Ep, — E——:I
Tiz Tz T23 2

1 sin kp
——&y, ®p, V2
X T He+ (r3)®ps(r12) V2K e

Using the fact that ®g.+(r3) and ®ps(r12) are both eigenfunctions of Hy.+ and Hp,

(4.26)

as given by eqgs. 2.12 and 2.13 respectively, we have

2
LS, = l_lv2+i_i_i+1_n_:|

1 sin Kp
—&y, ®p, V2 .
X \/E H +(T‘3) P (7‘12) K pos

and since sin kp/kp is an eigenfunction of —2V?2 with eigenvalue x%/2, we have

(4.27)

2 2
LS, = [i _i_z2 —] Sz, (4.28)

™1 r2 13 T23
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We note here that the potential terms in the bracket in equation 4.28 are anti-
symmetric with respect to the permutation of the labels 1 and 2, while the functions
S, and C, are symmetric with respect to that permutation. Therefore, as was the

case for positron-hydrogen calculations, we have
(52, LS2) = (Cg, LSQ) B O (429)

But because of exchange, we need to evaluate (S3, LS,) and (Cs, LS,) which contain
cross terms between S, or Cy and Pp35; or Po3C,, and are not symmetric with respect
to the 1 « 2 permutation. Using the notation, P35, = S; and P,3C; = C}, the
same analysis can be made for the S} and the C} terms with respect to the 1 « 3

permutation, and we have

B2 2 ™ T2 r13 23 2 ’
2 2 29 1 ) 1 I ) 2/ ( . )

where we have used (53, LS; = (S2, LS}) and (C}, LS;) = (Ca, LS}) which can be

shown using the properties of the P,3 operator.

The terms involving LC, are more complicated due to the presence of the shield-

ing function, but a similar analysis to that for LS, yields:

1

LUz = \/TQH6+ (T3)‘DP3(T12)V 2K
; 3
y ﬂe“‘" (1 +,up) sin Kp n 7] pe_m,cos Kp
2 Kp 2 Kp
2
- (i — _4_ - _2_ + _> Coskp (1 — e"“”(l + @.))]
™ Tr9 13 T23 Kp 2
1
+ =0+ (r2)®ps(r13) V2K

Vir

. / 3
« [Eﬁe"‘"" (1+ pp) sinkp’ p p’e_up,cos kp'

kp' + 2 kp'

_ (i _r_2 i) cos kp' (1 —e (14 ”—”I))] (4.32)

rL T3 Ti2 To3 kp' 2

where p’ is defined in equation 2.2.

The matrix elements (Sz, LC,) and (Ca, LC;) can then be found by premulti-

plying equation 4.32 by S or C,. For the matrix elements involving both channel 1
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and 2 long-range terms we use the symmetry relations from equation 4.19 and the
results for LS, and LC, to evaluate (51, LSs), (S1, LC3), (C1, LS,) and (Cy, LC,).
The reason for this is that, because these matrix elements involve the product of the
target and fragment wavefunctions, ®ge(r2,73) and ®ye+(r3)®ps(r12), we cannot
replace Ep. by the expectation value of ®y.(72,73), and use equation 2.6 as before.
It is therefore easier to operate with L on the channel 2 terms, as these contain

fragment functions which are eigenfunctions of part of the operator L.

The same symmetry properties which we have used for the long-range - long-
range matrix elements can also be applied to the long-range - short-range elements,

to show that

(¢i, LSk) = (Sk, L)
(¢i, LCx) = (Ck, L¢:) (4.33)

forz = 1,...,N and & = 1,2 (see appendix A). As will become clear when we
discuss the short-range - short-range matrix elements, the evaluation of the matrix
element with L¢; will be much more complicated than that with L operating on a
long-range term. For the (¢;L,S;) and (¢;L,C;) elements we can use the results
derived above in egs. 4.28 and 4.32. When evaluating (¢:, LS1) and (¢;, LC,), we
need to introduce Hy.®p.(r2,73) explicitly into the expression for LS; and LCy,
because we do not have the product form total wavefunction. This leads to extra

terms in the LS; and LC; formulae which are of the form, for LS; for instance,

1 sin kr 4 4 2
vk 1[—V2—V2—————+——2Ectl>er,r . (434
/47r krl T2 T3 Ty T3 T3 H H ( 2 3) ( )

The explicit form for this expression is simular as that used in the Rayleigh-Ritz

calculation of Ey. as discussed in chapter 3.

The general form of a short-range - short-range matrix element is

(6, L) = /751 [—Vi -V, -Vit ===
2 2 2 -
R T RS k2] 3,dr (4.35)
T2 T3 T23
where ¢; = (14 P23)¢ = ¢+ ¢'. The V2 operators will need to be expressed in terms

of all the interparticle distances, which makes their form very complicated. But by
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using integration by parts and the short-range nature of ¢, we can write

[ 8 [-9% - v, - V3] Gdr =
/T (V0 8:.V0,3; + ViV + V0, 8.V, dr, (4.36)

which is more convenient as the expression for V¢; is much less complicated than

that for V2¢;. And, therefore, we have

@13) = [{yvavg+[t-1-1

2 2 2 _
~ - S 9By - K33, ) dr (437
12 713 T23
with

3
z vkaiovkgj =
k=1
3
> [VeoiVid; + Vg Vid'; + Vid' . Vad; + Vid';. Vid';] . (4.38)
k=1
The short-range correlation terms are given as

é: = exp (—(ary + Bra + Brs)) reirg i raiehird (4.39)

and the explicit form for the first term on the RHS of 4.38 is

& 2 2 a B B
Y VidiVid; = ¢ig; {(a +28%) — —(ki + kj) — —(Li + ;) = —(ni +n;)
™ r2 T3

k=1

kikj l,'lj nn; Qm,-m]- 2p,'pj 2q,~qj
HE A A B A A
r24r2 — 2
(ry 2122 2) [—ari(m; + m;) + (kim; + k;m;)]
2riri,
r? 42—
(1 : 213 ) [_arl(p1 +p.7) + (k,pj + kJPz)]
2r1r13
r2 + ri, —
(rs 212 i) [—Bra(mi + mj) + (Limj + 1jm;)]
2rird,
r2 + ri, —
+ (3 _— 73) [—Bra(gi + ;) + (Lig; + 1;qi)]
27'27'23
r2 + ri, —
+ 2 s r2) [—Bra(g: + ¢;) + (nig; + njgi))]
2r3r23
r2 42
p A7) (k) 4 (nipy )]
2r3r13
r2 4+ri —r
+ ( = 27‘%::'13 23) [mtpj + mjpz]} (4.40)
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For the other terms in 4.38, for which we use

! ! 1 !

¢ = exp(—(ary + Bra + fra)) ri’riry ra'r

4

157'2{3 (4-41)

(with k; = kI, l; = nf,m; = pl,n; = ll,p; = m! and ¢; = ¢} ), we will have a similar

results as in eq. 4.40.
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Chapter 5

The computation of the matrix

elements

5.1 The numerical integration of the matrix ele-

ments

The evaluation of the various matrix elements needed in the Kohn variational
method involves an integration over the whole space of the problem (see figure
2.1). From the previous chapter it is obvious that, because of the complexity of the
matrix elements. it will not be possible to evaluate the six dimensional integration

analytically, and that we will have to resort to various numerical methods.

The position vectors of both electrons and of the positron span the whole space

and we have

dr = dridrqdrs. (5.1)
After integration over the three external Euler angles (see appendix B) we can write

dr = 8n%drirodroradrariadrigriadriaddes (5.2)

where ¢23 is the angle between the planes of the triangles (rq,r2,712) and (r1,rs, r13)

(see figure 5.1).
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Figure 5.1: The positron-helium coordinate system and ”23-
The angle O23 is related to the variable Jz by

A3 = A2+ A3 “MA3 [sings2 sin A13 cos 023 + cos o iz cos #13] (5.3)

and can, therefore, be used for the (3 integration. In the work of Humberston (1973)
and of Campeanu and Humberston (1977) the power of T23, i.e. g, was restricted to
be even only so that exact integration could be done over the variable 023- Indeed
for even powers of T23, the integrand for the 023 integration will be of the form of a
polynomial in cos 023, D{cos 023), which can be integrated numerically exactly using

27 A

2r
L Z)(COS (p23)d(f>23 = = 22, »~ COS I (5-4)

This can be seen to be exact for a polynomial in cos 023 of degree (2n —1) or
less. Because we have abandoned the method of models (and the product form of
wavefunction), and instead will be using very elaborate target wavefunctions, the
restriction on the powers of T23 needs to be lifted. This means that we do not expect

to have exact numerical integration for the 023 variable, but we have kept the same
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numerical procedure, as in equation 3.4, increasing the number of points, n, until
a sufficiently accurate result was obtained. The integration over ¢,3 is done within
the integration over all the other variables, and this means that it is done at specific
values of ry,ry,712,73 and r;3. Hence, the range of values of 73 is fixed between

T93min and T23mq2 by €q. 5.3 with @23 = 0 and ¢,3 = 7 respectively and

Plamin = T3 472 —2rors [sin 61 sin 013 + cos 8y cos ;) (5.5)
2 = 24722 in 035 sin § 0 6
Thamazr = T3+ 75— 2rors [—sinf;;sinbi3 + cos b3 cos ;5.

When the ratio raamin/T23maer 15 close to one, the variation of ro3 with @93 will be
smooth and fewer integration points in the ¢35 integration will be needed (see fig
5.2). On the other hand if the ratio is small , then r,3 will be a more rapidly varying
function of ¢,3 and we will need more integration points to achieve the required

accuracy.

Mas

T T | T |
0.0 0.5 10 15 20 25 3.0

¢23

Figure 5.2: The variation of ry3 as a function of @,3.

Ideally one would then wish to find for various values of ratio ro3min/T23maez the
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optimum number of integration points. The practical difficulty is that this would
require within the innermost integration loop of the computer program a series of IF
statement which would slow down the program dramatically. We have found that a
significant gain in computer time could be achieved, while still obtaining accurate
results, by considering only one value for the ratio, i.e. T23min/T23mez = 0.3. For
the ratio ragmin/T23mez < 0.3 we have taken a minimum of 15-25 integration points
depending on the type of matrix element, and for ratio ry3min/T23maz > 0.3 between
6 and 8 points gave very good results for all matrix elements. A second drawback of
the introduction of odd powers of ro3 into the target and the trial wavefunction is
that we do not have exact integration in the other variables anymore. Indeed from

eq. 5.3 and noting that

2 2 2
ritri—r

g (5.6)

cos §;; = S
iTj

we see that odd powers of ry3 will introduce half integer powers of the other variables,
which we will see makes their exact integration not possible. After having integrated
over 7,3, the integration which still needs to be done, in the case of a short-range -

short-range matrix element, is

I= /Zo“"l /zo‘ﬁrz /Zo‘ﬁrs /IT1+T2I sl F(ry,r2,r3,r12, r13)dridradradriadrys
0 ) 0 Iri=ra| Jlr1—-rs]

(5.7)
where F is a polynomial of finite degree for all variables only if we have previously
integrated exactly over even powers of r3. But even in this case, the limits of the
r12 and ry3 integration makes the integrand for r, and r5 no longer a polynomial
of finite degree. Humberston ( Armour & Humberston 1979) has shown that this
difficulty could be avoided by breaking up the integral I into several parts which
could each be integrated exactly for even powers of r,3, but because we have not
kept this restriction on the powers of re3 this method could no longer be used. We
have kept the same integration quadratures as were used in the work of Campeanu
and Humberston (1977), as they are very flexible and have achieved a good accuracy

by increasing the number of integration points in each variable.

The integration over the variables ry, r; and r3 was done using the Gauss-
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Laguerre quadrature,

o N
/0 e~ f(z)dz = >_wif(z:), (5.8)

i=1
where the weights and abscissae, w; and z;, can be calculated or found tabulated in
books on numerical integration (Abramowitz & Stegun 1964). This method is exact
if f(z) is a polynomial of degree n < 2N — 1. For the integration over the r; and
ri3 variables, as we do not have an exponential fall-off in these variables, we use the
Gauss-Legendre quadrature
b N

| fwdy = > uif(w) (5.9)

where u; and y; are the rescaled weights and abscissae obtained by mapping the

range a to b onto the usual -1 to +1 range.

The limits of the integration of ry2 and ri3 will depend on the values of ry, 7,
and r3, and a similar analysis as that made for the ry3 integration shows that for
a given condition on the values of r;,r; and r3; the number of integration points
can be greatly reduced and a very good accuracy achieved. The condition in this
case is that |ry — ra|/(r1 +72) < 0.3 or |ry — r3|/(r1 + r3) < 0.3. Also the presence
of the modulus sign in the lower limits of the r;2 and 7,3 integrations will create a
significant problem in the r; and r3 integrations and make accurate results impossible
to achieve, if a single Gauss-Laguerre quadrature is used for these variables. To see
how this comes about we can use the symmetry of the integrands in r; and r3, and
in 712 and r;3, and consider a form of integral with only ry,r, and ry; variables.
After the ry3 integration we have an integral of the form

oo 0 [r1472]
]12=/0 e“"‘”/o e"@”_/l ' f(ri,r2, 12, )dridradry,. (5.10)

r1—72|

Now the integrand for ri; will always be of the form r},, so the ry; integration is

simple and we have

o o + ’!‘2)"+1 '7'1 —- ,,.2|n+1
e [ [ [t .
2= [ e e [ o] m— dridry (5.11)

But |ry — 2] =1y —rp for ry < vy and |ry — 73| = 12 — 1y for r; < ry. Therefore I,

will have different forms for r; > r; and for v, > r; if n is odd or half integer. For
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instance, if n =0 , i.e. f(ry,r2,r12) =1 we have for r; < ry

I, = 2/00 e /oo e P2 dr,dry (5.12)
0 0
and for ry > ry
I, = 2/ e'o‘”/ e Pr2p dridr, (5.13)
0 0

Hence, the integrand for the r, integration has a discontinuity in its slope at ro = rq,
although it is continuous over the whole range of r;. This gives rise to a cusp in the
ro integrand (see figure 5.3) whose presence will prevent us from achieving accurate

integration unless some alternative strategy is adopted.
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Figure 5.3: The cusp in the r; integrand.

The solution has been to split the r; integration at r, = r; using Gauss-Legendre
quadrature for r; < r; and Gauss-Laguerre for r, > ;. For large values of ry, the
exponential fall-off in r; will reduce the effect of the cusp and a single Gauss-Laguerre
quadrature can be used over the whole range of r,. By symmetry a similar analysis

shows that the same method can be used for the r; integration.
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The accuracy of the integration is very dependent on the type of matrix element
one is considering. For instance the trigonometric functions in the long-range — long-
range and long-range — short-range elements make exact integration impossible, but
good accuracy can still be achieved with a reasonable number of integration points.
The use of the Gauss-Laguerre quadrature is justified in these elements because
there is in most of them an explicit or implicit exponential fall-off in r;,r; and r.
In the cases where no explicit exponential fall-off is present, we find that we can
introduce it artificially by multiplying the integrand by exp(—Ar)exp(Ar). This
method was tested and found to give very good results over a wide range of values
of A. Also, the use of helium target functions which contain odd powers of ro3 makes
exact integration over ry2, 73 and 723 not possible in the long-range - long-range and
the long-range - short-range terms. For these matrix elements we have determined
the number of integration points for each variable so as to achieve at least a 4-5
figure accuracy in each of them. We have also found that by reducing this accuracy
significantly, i.e. having 30% to 50% less points in each variable, the final result
was only affected to the order of one to two percent, and we are therefore confident
to have achieved sufficient accuracy in our integration procedure. Furthermore, if
we wished to achieve an accuracy of 6-7 figures in each elements, the increase in
the number of integration points would be such that the time taken to compute the

matrix elements would be much too long to make such a calculation feasible.

A significant gain in computer time can be achieved in the calculation of the
short-range - short-range matrix elements by integrating separately the integrands
with overall even powers of ry3 and those with overall odd powers of ry3 . As these
matrix elements do not contain the target wavefunction, if we calculate the 2/ry3
potential term separately, many matrix elements will contain only even powers of
93, and therefore the ry3, 73 and r,3 integrations can be done exactly using very
few points. Table 5.1 gives the number of terms with only even or both even and

odd powers of ry3 in a short-range expansion for a given value of w.

All short-range — short-range matrix elements which involve a product of two

terms with even powers of 733 or those with both terms having odd powers of 7,3
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w 1213 | 4 ) 6
n |5 [18 |50 | 120 | 256 | 502
nos |4 (14 |30 | 84 | 172|330

Table 5.1: n:total number of short-range correlation terms in the trial function,

nes:number of terms with only even powers of r3.

will have an overall even power of ry3. Also because (¢;,L¢;) = (¢j,Le;), we
need to calculate only the upper or the lower triangle of the full (¢;, L¢p;) matrix.
This means that the total number of elements that needs to be evaluated for w =
6 is (502 x 503)/2 = 126253 and the total of "even type ” matrix elements is
(330%x331)/2+(172%x173)/2 = 69493. Thus more than half of the short-range - short-
range matrix elements can be evaluated exactly for the 712,713 and ry3 integrations.
This leads to a very significant gain in computer time, as typically one needs 3 to 4
times more points in each of these variables to achieve a reasonable accuracy in the

inexact integrations than is required for exact integration.

As mentioned above, the evaluation of the 2/ry3 potential term in the various
matrix elements where it appears was done separately. The integration of an inverse
power of 753 using the ¢,3 integration procedure and, in general, the integration of
an inverse power in any variable, can never be done exactly, and a great number
of integration points needs to be used to achieve reasonable accuracy. All potential
terms other than 2/rz3 could be easily integrated because of the implicit or explicit
presence of at least a power one of the variables in the volume element which cancels
out the inverse power. This is not the case for the 2/ry3 term and a reasonable
accuracy could only be achieved with a great number of points in all variables which
is not required for the other terms in the matrix element. This problem can be
overcome by noticing that the order in which one does the integration over the six
variables is arbitrary. If we choose to take for instance the variable rj, as that to
be integrated over first, and therefore integrate over the angle ¢y, i.e. the angle

between the planes formed by the triangle ry, 73,713 and 7y, r3, 793, then the volume
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element d7’ is given by
dTI = 87T2T1d7‘1d7'27'3d7'37‘~23d7"231"13d7'13d¢12 (514)

The potential term 2/r;3 can now be integrated trivially on its own with very few
points. We note that in this case, the terms with odd powers of ri2 cannot be
integrated exactly in the ¢;, integration, but because of the restriction imposed by
exchange on the various powers in the Hylleraas functions there will be fewer odd
r12 type matrix elements than odd ry3 elements. Also the change of the order of
integration means there is no more a symmetry in r, and rs and, therefore, the cusp

condition will change , giving a cusp in r3 at r3 = r; and in r; at ro = 7s.

5.2 The computer program

From the general formulation of the Kohn variational method developed in chap-
ter 2 and from the specific form of the various matrix elements which need to be
evaluated as given in chapter 4, it is clear that the main computational work in our
calculations will be in the numerical evaluation of the different matrix elements. We
have therefore broken up the general structure of the computer algorithm used for

positron-hydrogen scattering (see Brown 1986) into three separate programs.

The first program calculates and stores the long-range - long-range and the short-
range - long-range type of matrix elements, which are energy dependent. The second
program evaluates the short-range - short-range elements, which are also energy
dependent because of the —k? term in the operator L. But by calculating and storing
the matrix elements (¢;, L'¢;) and (¢, d;), where L' is the operator L without the
—k? term, the energy dependence can be reintroduced trivially after the matrix
evaluation using (@i, Lé;) = (b, L'¢;) — k*(¢i, #;). The third program reads in
all the calculated matrix elements, reconstructs the (¢;, L¢;) terms, builds up the
matrices for equation 2.103, and evaluates the value of the linear parameters from
which the optimized trial function, the variational K matrix elements and the cross

sections can be calculated.
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The first program contains two separate subroutines for the evaluation of the
long-range - long-range and the short-range — long-range types of elements without
the 2/ry3 potential terms. These are referred to as subroutines SINGLE and COL-
UMN (see Brown 1986). Two similar SINGLE and COLUMN subroutines where
the order of integration has been changed, as explained above, are then used for
the evaluation of the 2/ry3 potential term. In the second program, SQUARE, the
short-range - short-range matrix elements are evaluated in the same manner with
the 2/ry3 potential term done separately. In this program, we only need to evalu-
ate the upper or lower triangle of the (¢, L¢;) matrix, as by symmetry we have
(¢:y, Ld;) = (&, L), and this reduces the number of these types of element which
need to be evaluated for a matrix of dimension N from N? to N(N +1)/2, i.e by
nearly 50 percent. A flow chart of the computer program is given in figure 5.4. The
subroutines CONST and CONSTHEL create the powers of the various variables in
the short-range terms and in the helium target function respectively. The RMAT
subroutine solves the set of non-linear equations (see equation 2.103) and calculates

the cross sections.

The general structure of the matrix elements evaluation subroutines is that of
six nested loops corresponding to the six dimensional integrations. One extra loop
is added in the COLUMN subroutines to create the (¢;, LS) and (¢;, LC) types
of terms, and the matrix elements (¢;, L¢;) are created in two extra loops within
the most inner integration loop in the SQUARE program. The length of each
integration loop can be varied depending on the type of matrix element and also on
the complexity of the integrand within the specific loop, for instance the presence of
the cusp or the value of ratio ry3 as explained above. Because of the symmetry in the
r2 and the 73 variables, we can choose to integrate over only half the (r;,73) space.
Therefore, the r; integration loop needs to go up to the value of the r, loop if the
order of integration is ry,79,73,.... This reduces the computation time by 50% but
it cannot be used in the subroutines where the 2/r,3 potential term is evaluated as
the new order of integration gives rise to a volume element which is not symmetric

in o and ra.
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Figure 5.4: Flow chart of the computer program.

The evaluation of the weights and abscissae for the Gauss-Laguerre and the
Gauss-Legendre quadratures was done using two subroutines written explicitly into
the program. The main difference between the computational effort in this work and
that for positron-hydrogen scattering (Brown 1986) and positron-lithium scattering
(Watts 1994) is the increase of the computational time due to the six dimensional
integration. This increase can be estimated by multiplying out the number of points
for the ry3,713 and ry3 integration loops considering that the numbers used in the
r1,7 and r3 are similar to those used in the hydrogen case. We find that if we have an
integrand in ry2, 713 and 93 which can be integrated easily, the increase in time is of
the order of 23 = 8. But for more complex integrands we could readily have a factor
20® = 8000. Fortunately, because of the various methods we have developed to deal
with the ry2, 713 and 723 integrations, i.e. the ratio conditions explained above, the
average increase is much more manageable and for the SQUARE program we have

a factor 200. The actual time for the evaluation of an s-wave (¢, L¢;) matrix, for
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w =5 (256 terms), was of the order of 150 hours on a Digital DEC 300 workstation.
The increase in computational time has meant that the various programs needed
to be written in a very efficient manner but at the same time we have taken care
to make them as readable as possible, so that they could be understood relatively

easily by an outsider.

The SQUARE program is. by its nature, the one which is the most time consum-
ing even though it is only run once for all energies. We have developed an algorithm
for the s-wave calculation which makes it possible to reduce the time taken by
SQUARE by a factor 2 to 3, but this has made the structure of the program much

more complicated.

In this new method we use the relation

[ #rbumdr = [ 16udr (5.15)

even if k # | and m # n, provided that the sum of the powers of each variable is

the same in each case. For instance, for a one variable function we have
/r”"rp"‘dr = /rp'r”"dr, (5.16)

if pr + pm = p1 + pn. Therefore, we find that when we integrate the matrix elements
(¢, ¢;), for 1,7 = 1,..., N, many elements will be exactly the same and need to
be evaluated only once. Also, equation 4.40 can be written in a different form,
as a sum of products of (¢;, ;) type terms multipied by a polynomial function,
F(ry,72,73,712,T13, r23) Which is independent of : and j, and a constant coefficient
which depends only on ¢ and j. As the polynomial is independent of ¢ and 5, we know
that if 2 matrix elements, (¢;, #;) and (¢, ¢1), are indentical the same will be true
for the elements (¢;, ¢;)F(r1,7r2, 73,712,713, T23) and (@k, ¢1)F(r1,72,73,T12, 13, T23)-
So that, although no two elements of the upper triangle of the (¢;, L¢p;) matrix are
identical, each of them is made up of various terms which are identical for different
values of 7z and j. The integration structure of the program is the same as before,
but now in the most inner loop various (¢;, ¢;) and (¢, ¢;)F(r1,72,73,712,T13,T23)
types of terms are evaluated at specific values of ¢ and j. The complete (¢;, Le;)

matrix elements are rebuilt after the integration is done in a new set of loops which
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w | 2 3 4 3 6

ny | 171 | 1275 | 7260 | 32896 | 126253
ng | 116 | 485 | 1561 | 4106 | 9468
ng | 133 | 653 | 2293 | 6414 | 15395

Table 5.2: nj:total number of terms in upper triangle of (¢i, L¢p;) matrix,
ny:number of (¢;, ¢;) terms which need to be evaluated, nz:number of (¢;, Py3¢;)

terms which need to be evaluated.

run over all the values of ¢ and j. To find which (¢;, ¢;) matrix elements are identical

we can use the prime number relation
141342543744 1145 1346 — 1B13B25B:7B4 11851356 (5.17)

if, and only if, A; = By, A2 = Bs,..., etc. Table 5.2 shows how many (¢;, ¢;) and
(¢i, P23¢j) matrix elements need to be evaluated as compared to the total number
of elements in the upper triangle of the (¢;, L;) matrix for a given value of w. As
expected, the probability of matrix elements being identical increases as w increases
and, therefore, this technique becomes more efficient for high values of w. This
method has given a gain in computer time but, because the (¢;, ¢;) and (¢;, Pa3¢;)
types of terms need to be evaluated separately and the operations within the most
inner integration loop are now much more complicated, the gain in computer time
is not simply propértiona.l to the reduction of matrix elements which need to be

evaluated as given in table 5.2.

We have also rewritten the SQUARE program so that it could be run on the
parallel supercomputer Intel iPSC/860 at the Daresbury Laboratory. Because of
the loop structure of the program we have been able to implement the changes to
our program in a straightforward manner as a first test. The main structure of our
parallel program is the use of one node (i.e. one processor) to create the various
parameters needed to evaluate the (¢;,4;) and (¢;, L@;) matrix elements (i.e. the
value of the powers for each ¢ and j, the weights and abscissae, etc ...) and to send

these parameters to the other nodes where the matrix elements are evaluated. On
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the parallel computer at Daresbury, one must request a number of nodes equal to
powers of 2 (i.e. 2,4,8,16,32,64(max)). Therefore, if 16 nodes have been requested
we can use 15 to evaluate the matrix elements and the gain in time will come from
the fact that each processor must only calculate a 15th of the full matrix. We have
found that each processor on the Intel iPSC/860 is slower than the workstation we
have used before, and we estimate the gain in computer time to be of a factor 4

when 15 nodes are used.

We have only adapted the ’old’ SQUARE program to the parallel architecture
and have not yet fully optimized it, for instance the first node could also be used to
calculate the matrix elements. Also we believe that the transformation of the new
method of evaluation of the (¢;, L¢;) matrix will lead to a much greater gain in

computational time.
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Chapter 6

s-wave positron-helium scattering

results

6.1 Introduction

Having established in chapter 4 the s-wave scattering wavefunction and the form of
the matrix elements which need to be evaluated when using the Kohn variational
method, we can now calculate, with the numerical techniques described in chapter 5,
the variational K matrix and both the elastic scattering and positronium formation

cross sections for s-wave positron-helium scattering.

Before any information can be inferred about the cross sections, the quality of
the calculation must be considered. As described in chapter 2, when flexible trial
functions (i.e. with high w, see equation 2.87) are used, a reasonably good agree-
ment between the Kohn and inverse Kohn results for all the K matrix elements is
a necessary, but not a sufficient, condition which needs to be satisfied to ensure an
accurate result. Also the monotonic convergence of the diagonal K matrix elements
is an important feature of the Kohn method and any results which do not satisfy
the empirical lower bound on the K;; and the K3; matrix elements must be treated

with some suspicion. Furthermore, by investigating the energy region around the
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threshold for positronium formation we will know if our variational results are con-
sistent with the threshold behaviour of ¢1; and oy, predicted by Wigner’s threshold
theory. Therefore, before presenting and analyzing the results for the cross sections,

we will investigate these various aspects of our calculations.

However, prior to undertaking a full variational calculation, i.e. an evaluation
of the linear parameters for a large value of w, we need to find the optimum values
of the non-linear parameters in the trial wavefunction and this is the subject of the

next section.

6.2 The choice of the non-linear parameters

The optimization of the non-linear parameters in the trial wavefunction is a very
important first step in any variational calculation, because only when this is achieved
in a satisfactory manner can the variational principle work efficiently. For instance,
a clear convergence pattern of the diagonal K matrix elements with respect to
increasing values of w and a smaller probability of Schwartz singularities occurring,

can only be obtained if the non-linear parameters have been correctly optimized.

In this work the optimized values of the non-linear parameters o, 3, A and g in
equations 4.2 and 4.3 are not determined by the variational principle itself but by
a trial and error method. This method relies on the empirical lower bound on the
diagonal K matrix elements. A small calculation (for instance w = 3) is repeated
with a trial function in which the value of the non-linear parameter we wish to
optimize is varied. The results for K;; and K, are then analysed and the value of
the non-linear parameter which gives rise to the most positive values of K;; and K,
is taken as the optimum value. The difficulty with this procedure is that the choice
of non-linear parameters giving rise to the most positive value of K;; is unlikely
to give the most positive value of Kj;. This can be understood by considering the
physical interpretation of the non-linear parameters. There are two types of these

non-linear parameters, first A and g which are contained in the shielding functions
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of no(kr;) and no(xp). and secondly a and S which control the exponential fall-off of
the short-range terms. The values of A and p will determine the region over which
the Neuman functions are effective. A shielding factor with too small a value of
these non-linear parameters will cut off the 'y and C; types of function too far from
the origin (see figure 6.1 curve C) and, therefore, there will be a region of space in
which the short-range terms will have to try and represent these asymptotic type

functions.

1.0+

0.8

0.4

0.2

0.0 - T T T

Figure 6.1: Variation of the shielding function F(z) = (1 — exp(—uz)(1 + 0.5uz))3

with respect to r. Curve A: p = 1.5; curve B: g = 0.9; curve C: p = 0.5.

The difficulty in this case is that the short-range terms are not well suited to
represent this type of function and this will lead to less positive values of K;; and
K3,. If X and u are too large ( curve A in figure 6.1), then the shielding factor will
become more effective close to the origin in a very rapid manner. This will lead to
a very abrupt variation of the C type terms in the trial function close to the origin
and would correspond to rapidly varying kinetic energy in this region, which is not
a correct representation of the system under consideration. This is particularly so

for the C; terms, which depend on p, as this variable relates to the center of mass
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of the positronium atom and there is therefore no particile at the position p = 0.
The choice of the values of o and 3 will determine the range over which the short-
range terms are effective. Although the K matrix formulation implies the coupling
of all the possible channels, one can loosely associate the K;; matrix element with
et- He elastic scattering and K, with Ps - He™ elastic scattering. These are two
very different processes; a point like particle, the positron, scattering on a relatively
tightly bound He atom in one case and a very diffuse positronium atom scattering on
a very tightly bound He* ion in the other. It is therefore clear that the optimization
of a and 3. which are closely related to how diffuse the e*- He system is, that gives
the most positive value of Kj; is unlikely to give the most positive value for K.
We have chosen the values of a and S which give the most positive value of Ki;
because it was recognized from the start of our investigations that the s-wave elastic
scattering cross section would be a major component of the total elastic scattering
cross section. while the s-wave positronium formation cross section was not expected
to contribute much to the total positronium formation cross section in the Ore gap.
[t was therefore decided that the s-wave elastic scattering cross section should be
calculated with the best accuracy (i.e. the best convergence) possible, to reduce the

error in the total cross section.

The calculation to find the optimized value for a given non-linear parameter was
undertaken with the other non-linear parameters not having their optimized values
(for instance for the optimization of x4, the other non-linear parameters o, § and A
had the same values as in the trial function for elastic scattering below the positro-
nium formation threshold). Once an optimized value was found in this manner for
all the non-linear parameters, the calculation for each one was repeated with the
other parameters now having there optimized values, to verify if the optimization
was still correct. The results of this optimization procedure are presented in figure
6.2 to 6.6. Before analysing the results one must bear in mind that these calcula-
tions were done with a relatively low value of w and therefore recognise that when a
full calculation is done, the values of K;; and K3, will be less sensitive to the value
of the non-linear parameter ( for instance a maximum type of feature will flatten

out in a similar manner as the minimum features in the bound state calculation did
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when w was increased (see figure 3.4)). Also, as discussed in chapter 2, we know
that Schwartz singularities will become much narrower as w increases and accurate

results will be easier to infer.

In figure 6.2. we show the variation of Ky; and K3; with respect to A. One sees
that there is a maximum in the Kj; curve where both the Kohn and the inverse
Kohn results are identical. The Kj; curve shows very little variation with A and
a systematic difference between the Kohn and inverse Kohn results. The value of
A = 0.75 was taken because it is in the region of the maximum of the K;; curve
and is identical to that found when optimizing for the s-wave phase shift below the
positronium formation threshold. Figures 6.3 and 6.4 show the variation of K,
and K, with respect to u at two different energies (one close to the positronium
formation threshold and another in the higher energy range of the Ore gap). Again,
the optimum value is not the same for K;; and Ky, and one can see that it will
not be the same for all energies. Although the best value at k¥ = 1.204(a.u) for the
Ki; curve is at g = 0.6. the fractional difference is very small and will become even

smaller for higher values of w. so we have chosen u = 0.9 as a compromise value.

The variation of A; and A, with respect to o shows in a more dramatic way
the difficulty in optimizing the non-linear parameters. In figure 6.5 we see that there
is a clear maximum in the K’j; curve, but not in the K5, curve which contains many
Schwartz singularities making the analysis even more complicated. We have chosen
a = 1.05 as the optimum value for a as this gives the most positive value for K,
and lies in a region where K5,. although far from its most positive value, does not
vary very much and is not affected too dramatically by Schwartz singularities. In
figure 6.6 a similar pattern can be seen in the variations of the diagonal K matrix
elements with respect to 3 and the optimum value was taken to be 8 = 1.6, for the

same reasons as indicated in the a optimization.

This analysis of the optimization of the non-linear parameters highlights the
difficulty in obtaining a trial function perfectly optimized for all possible channels,
but we believe the compromise set of values we have chosen, A = 0.75, ¢ = 0.9,

a = 1.05 and 3 = 1.6 gives reliable and accurate results.
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Figure 6.2: The variation of the K matrix elements K;; and K, with X for s-wave

scattering at k= 1.169 (a.u.) and w=3.
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Figure 6.3: The variation of the K matrix elements K; and K, with y for s-wave

scattering at k= 1.144 (a.u) and w=3.
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6.3 The convergence of the diagonal K matrix

elements

As mentioned in the previous section and in chapter 3, there is no rigorous bound on
the variational values of the K matrix elements, contrary to the case in a Raleigh-
Ritz calculation of the ground state energy. The only bound that exists in a two
channel variational calculation is an empirical one on the diagonal K matrix el-
ements. This pseudo-bound translates into a monotonic convergence pattern for
K1 and K5, with respect to increasing values of w, which makes extrapolation to
infinite w possible. This is shown in figure 6.7 where we have plotted K;; versus k,
for energies within the Ore gap, for w = 2(1)6. The monotonic convergence is very

clear and is seen to hold for all energies.

-0.24 \
—0.26 w =6
w =35
N w =4
w =3

—-0.28
—0.3 w =2
1 I 1 | i

1.14 1.16 1.18 1.2 1.22 1.24

k (a7)

Figure 6.7: The convergence with respect to w of the K matrix element K;; for
s-wave positron-helium scattering plotted as a function of the positron wavenumber

k.
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Figure 6.8: The convergence with respect to w of the K matrix element K;; for
s-wave positron-helium scattering. The solid and dashed lines correspond to the

Kohn and inverse Kohn results respectively.

In figure 6.8 we have plotted the convergence of K;; with respect to w for only
3 energies, and a rapid rise for low w and small increase for large w can be noticed.
The extrapolation to infinite w. i.e. the closest to an exact result one could get, can

be obtained by using the extrapolation formula

K (w) = Kij(w=00) + u% (6.1)
where D and n are fitting parameters. A more empirical method has been used in
this work: we have plotted K;; versus 1/w" and varied n until all points lie on a
straight line (see figure 6.9). The value of Ki;(w = 00) is then the intercept of this
line with the y axis. Because of the complexity of the positron-helium calculation we
have not been able to go to as high values of w as was done in the positron-hydrogen
case (Watts 1994). Therefore, the extrapolation procedure is less precise and the
uncertainty in the value of Kj;(w = o0) is greater. Also, this procedure can only be

used for K;; and Ky, and as the cross sections depend on all K matrix elements,
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Figure 6.9: The convergence with respect to w of the K matrix element K;; for
s-wave positron-helium scattering according to equation 6.1. This is Kohn result for

k=1.144 (a.u).
it is not possible to find extrapolated values for oy, and oy,.

In figure 6.10 we have plotted K,; versus x, the positronium wavenumber, for
w = 2(1)6. In this case N3, increases monotonically with w, but convergence is only
apparent at the higher energies. As explained in the previous section, the choice
of non-linear parameters was made in such a manner as to optimize the results for
K1, instead of K3, and, therefore, the poorer convergence of K3, with respect to w
is to be expected. At energies just above the positronium formation threshold, the
slow incoming positronium atom is strongly distorted by the helium ion. This is of
a long-range nature which is not very well reproduced by the choice of non-linear
parameters we have made, and leads to a lack of convergence for K3, in this energy

region (see figure 6.10).

The inclusion in the trial function of additional long-range polarization terms,

similar to those included in calculations of the scattering length ( Drachman 1971,
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Figure 6.10: The convergence with respect to w of the K matrix element K5, for

s-wave positron-helium scattering plotted as a function of the positron wavenumber

k.

Humberston and Wallace 1972 and Humberston 1973) is needed if an improvement
in the rate of convergence is to be obtained. We have not included such a term in
our calculation because we are not primarily investigating the positronium-helium-
plus elastic scattering process as such, and we know that the lack of convergence
of K»; in this energy region will not have a strong effect on the values of &1 and
012, which are the main interest of this work. Figure 6.11 shows the convergence of
K2 with respect to w for two energies. We can see very well that the convergence
is much more rapid for the higher energy, but for both cases it is too slow for the

extrapolation procedure (equation 6.1) to be applied.
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Figure 6.11: The convergence with respect to w of the K matrix element K3, for
s-wave positron-helium scattering. The solid and dashed lines correspond to the

Kohn and inverse Kohn results respectively.

6.4 The positronium formation cross section.

The absence of a bound. whether rigorous or empirical, on the off-diagonal K matrix
elements makes it very difficult to analyse the convergence of the K7, matrix element.
A test on the reliability of A7, is the confirmation of the threshold behaviour with
respect to energy of the positronium formation cross section as predicted by Wigner’s
threshold theory (Wigner 1948). However one should recognise that in general this
energy dependence can also be reproduced by more approximate methods, such as
the Born approximation. and that it is therefore not a very severe test on the quality

of our calculation.

For a given partial wave, [, Wigner’s threshold theory requires the positronium

formation cross section to behave as
ol, x g (6.2)
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Ke

and, as close to threshold 0!, x K7;, we expect

K o« 677 (6.3)

172 close to the positro-

Therefore, for s-wave scattering we expect to have Kj; o« &
nium formation threshold. Our most converged results (w = 6), which are plotted
in figure 6.12, reproduce this threshold behaviour, as can be seen by the linearity of

the K, versus £!/? curve from the threshold up to a value of x!/? = 0.4(a51/2).

0.08
0.06
0.04 —
0.02 E
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Figure 6.12: The variation of the K matrix element Kj, with k12 for s-wave

positron-helium scattering( th.2 is the 25 excitation threshold of He).

The s-wave positronium formation cross section is plotted as a function of positron
energy in figure 6.13. There is a very rapid rise from threshold up to a value of
k% = 1.34(a5?) and then a much less rapid increase up to the 2S excitation thresh-
old of He at 20.58¢V. At the positronium formation threshold itself, the cross section
has an infinite gradient, with respect to k2, which is a consequence of equation 6.2.
The gradient of the cross section with respect to k is (Watts 1994)

dal,

5 = 2k(20 4+ 1)x¥-1, (6.4)
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and, therefore, as k — 0, the s-wave cross section will have an infinite derivative

with respect to k.
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Figure 6.13: The variation of the s-wave positronium formation cross section (w = 6)
with positron energy for positron-helium scattering (th.1 is the positronium forma-

tion threshold and th.2 is the 215 excitation threshold of He).

The general form of the s-wave positronium formation cross section for positron-
helium scattering which is presented here, is very similar to that found in variational
calculations of positronium formation in positron-hydrogen scattering ( Humberston
1982, Watts 1994), although an even sharper rise from the threshold is found there
and a clear plateau region is then reached (see figure 6.14). We believe that with
a trial function better optimized for the threshold energy region and containing
polarization terms, the fully converged results for the e*- He positronium formation
cross sections will be even more similar to those for et- H. Also, the magnitude of
the cross section in the plateau region is very similar (4 — 6 x 10737a2) for both
hydrogen and helium, and as yet no explanation has been found as to why the s-
wave partial wave contribution to the positronium formation cross section is much

smaller than the elastic scattering cross section for both target atoms. In figure 6.15
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Figure 6.14; Comparison of variation the s-wave positronium formation cross section
with excess positron energy —Eth{asé”™)) for s-wave positron-helium (w = 6)

and positron-hydrogen (u- = 7) scattering.

we have plotted (Ji: with respect to u' for 3 different energies. One can easily see the
non-monotonic convergence but we believe we can estimate the a; = 6 results to be
within 10% and 20% of the exact results. Also we note how the agreement between

Kohn and the inverse Kohn improves as u increases.

The s-wave positronium formation cross sections presented here are the first ac-
curate values for energies within the Ore gap. Various workers have investigated
positronium formation in positron-helium scattering; however, as they were mainly
interested in collisions at positron energies greater than 30 eV, they used approxi-
mation methods which are more suitable for these higher energies. The first such
calculation was by Massey and Moussa (1960) using the first Born approximation,
and the total positronium formation cross sections they found were much larger than
the experimental data. A coupled static approximation by Mandai et al (1975 &
1976) did not agree with experiment either. The s-wave contribution to the positro-
nium formation cross section at 20 eV (the only energy they calculated within the

Ore gap) given in the second paper is @ = 0.00593(7rao), which is close to our
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Figure 6.15: The convergence of the s-wave positronium formation cross section
with respect to « for two energies within the Ore gap. The solid and dashed lines

correspond to the Kohn and Inverse Kohn results respectively.

result, but the total positronium formation cross section is wrong by a factor 4. The
same group have investigated the energy region 20-100 eV using the distorted wave
method and have calculated the positronium formation cross section for four partial
waves ( Mandal et al 1979). For the s-wave they found o1, = 0.00619(7a3) at 20
eV, which is in reasonable agreement with our results, and their total cross section
agrees well with experiment. However, as will be shown in the next chapter, there
is a disagreement between their results for the p- and d-wave cross sections and
the Kohn results of this work. More recent calculations by Hewitt et al (1992) and
McAlinden and Walters (1992), using a close coupling approximation, concentrated
only on the higher energy region were elastic scattering, positronium formation,
excitation of either the helium or positronium atom and ionization of the helium
atom can all occur. In figure 6.16 we present a comparison between the s-wave
positronium formation cross section in the Ore gap calculated using the first Born
approximation and the variational Kohn method. The first Born results were cal-

culated by McAlinden (1996) as an extension to a calculation undertaken for the
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Figure 6.16: Comparison of the variation of the positronium formation cross section
with positron energy for s-wave positron-helium scattering calculated with the first

Born approximation and the Kohn variational method.

higher energy range. They are not expected to be in good agreement with the Kohn
results, and we see that there is a factor 200 difference between both calculations,
which is very similar to the ratio of the positronium formation cross sections for

et-H calculated with the same two methods.

6.5 The elastic scattering cross section

We have calculated the elastic scattering cross section in the Ore gap using the
two channel trial function and have extended our calculations to energies below the
positronium formation threshold in order to find better converged phase shifts than
the earlier results of Humberston (1973) and Campeanu and Humberston (1977),

and also to investigate the threshold behaviour of oy;.
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k(au)| H5 H22
0.1 0.031 | 0.0310
0.2 0.040 | 0.0404
0.3 0.030 | 0.0300
0.4 0.007 | 0.0081
0.5 |-0.023 | -0.0210
0.6 |-0.057 | -0.0542
0.7 |-0.093 | -0.0889
0.8 |-0.128 | -0.124
0.9 |-0.163 | -0.157
1.0 |-0.195 | -0.189

Table 6.1: The phase shifts for helium model H5 (Humberston (1973), w = 4) and

H22 ( this work, w = 6) for positron-helium s-wave elastic scattering.

Below the positronium formation threshold we have used a one channel trial
function of the form

N
\I’t = 51 + tan T](t)Cl + Z(l + P23)C,‘¢,’ (6.5)

=1
where 7o is the s-wave phase shift and S, C; and ¢ are defined as in 4.12, 4.14
and 4.16 respectively. We have chosen for consistency to use the same values of the
non-linear parameters above and below the threshold so that the same calculation

of the (¢i, L¢p;) matrix could be used in both cases.

In table 6.1 we compare the present phase shifts with w = 6 for helium model
H22 to the results obtained with w = 4 for H5 by Humberston (1973). The H5 phase
shifts were obtained with the method of models while for the H22 calculation the
method of models was not used and, as mentioned in chapter 3, because there is no
bound on the phase shift with respect to the helium target function used, we believe
no direct comparison can be made between the H5 and H22 results presented in table
6.1. On the other hand, the reasonable agreement between the two sets of results

indicates that there is no breakdown in the convergence, as discussed in chapter 3,

112



in the H22 phase shifts and that these can therefore be considered as accurate and

reliable results.
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Figure 6.17: The variation of the s-wave positron-helium elastic scattering cross

section with positron energy.

The general form of the elastic cross section below the positronium formation
threshold as can be seen in figure 6.17 is similar to that of previous work, with a
Ramsauer minimum due to the cancellation of the attractive dipole potential and the
repulsive static potential, which make the s-wave phase shift go through zero close
to k = 0.4 (ag'). For energies greater than the positronium formation threshold
energy the cross section is seen to vary only slowly with k% and a small discontinuity
is noticed at the threshold itself. In figure 6.18, the enlarged plot of the elastic
scattering cross section in the energy region just around the threshold shows this
discontinuity more clearly. The curve A is that obtained with the trial function of
equation 6.5 and the solid line just above the threshold is the elastic cross section

obtained with the two channel trial function for energies greater than 17.78 eV.

This type of discontinuity has been noticed in previous variational calculations of
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Figure 6.18: The variation of the s-wave positron-helium elastic scattering cross
section with positron energy. Curve A gives the cross section obtained without
the inclusion of the explicit virtual term 6.6 in the elastic scattering trial function.

Curve B gives the cross section with the term included.

positron-hydrogen elastic scattering at the positronium formation threshold, most
prominently in the d-wave cross section (Watts 1994). The main reason for this
discontinuity was found to be the poorer convergence of the results just below the
threshold, as compared to those just above, due to the absence of an explicit rep-
resentation of virtual positronium formation in the elastic scattering trial function
(equation 6.5). Just below the positronium formation threshold, virtual positron-
ium can be formed but cannot escape as an open channel. One can imagine the
positronium atom having been formed, trying to escape from the interaction region
but not having enough energy to detach the electron from the helium atom. The
possibility of virtual positronium formation is implicitly included in our calculation
as we use the full Hamiltonian of the system and because the short-range terms are
included in the trial function to describe whatever occurs in the interaction region.

But the virtual positronium formation process is of somewhat longer range than
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the short-range correlation terms and will therefore not be very well reproduced by
the trial function. To ameliorate the convergence of the phase shifts just below the
threshold, we have therefore included in the trial function (6.5) an extra term of the
form

)exp(—np) [

f=[1+ Pu]®py(riz)® g+ (rs 1 — exp(~6p)]° (6.6)

which represents more explicitly virtual positronium formation. The virtual positro-

nium ”wavenumber”, «, is now defined by (see equation 2.14)
1
k® 4+ 2Egy. = —5,8 —4.5. (6.7)

The 1/p term is shielded at the origin and the exponential fall-off in kp ensures
that this term vanishes in the asymptotic region and does not affect the results
for energies away from the threshold region. The optimization of the non-linear
parameter § was carried out in a similar manner to that explained above, but in
this case the optimum value of 6 = 0.75 corresponded to that which gave the most

positive value for the phase shift.

The elastic cross section just below the positronium formation threshold, calcu-
lated with the inclusion of this explicit virtual positronium term, is shown in figure
6.18, as curve B, and one sees that the cross section is now continuous at the thresh-
old and displays a ‘rounded step’ type of feature. This behaviour of the elastic cross
section at threshold is also predicted by R-matrix threshold theory (Meyerhof 1995).
In the R-matrix analysis, described by Watts (1994), the effect on the elastic cross
section of opening a new inelastic channel is investigated and threshold features just

below and above the threshold are predicted.

The s-wave elastic cross section close to the threshold in this formalism is given

as
2sin? E > FEy,

(20 + 1) sin? o — 02, oo &= Seh (6.8)
sin 2770 FE < Ethr

4r
oo = 2
where 79 is defined within the R-matrix theory as the s-wave elastic phase shift
uncoupled from either the real and virtual positronium formation channel above the

threshold or from only the virtual positronium channel below (Meyerhof 1962, 1963
and Watts 1994). In the Kohn formalism it is not possible to uncouple completely
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Figure 6.19: Comparisons of the Kohn calculation (solid line) and the R-matrix fit

(dashed results) of the variation of the s-wave elastic cross section.

the two channels in the Ore gap or to totally suppress the virtual positronium
channel as there is always an implicit reference to positronium formation in the use
of both the exact total Hamiltonian of the system and the Hylleraas short-range
functions. But as it is assumed that 7o varies very little in the threshold region,
it can be taken to have the value of the phase shift at the threshold itself. From
6.8, R-matrix theory predicts that the elastic cross section will fall immediately
above the threshold as the positronium formation cross section rises with an infinite
slope and 7o does not vary much. Also, as the phase shift is between 0 and —7/2,
just below the threshold region, we have sin2n < 0, and from equation 6.8 the
elastic scattering cross section is expected to increase as we move away from the
threshold. Both these predictions are confirmed by our calculations, and the full
R-matrix evaluation of the threshold behaviour by Meyerhof (1995) based on the
present values of the scattering parameters gives results very similar to ours ( see

figure 6.19).
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We have also investigated the effect of uncoupling the elastic channel from the
positronium formation channel on the elastic scattering cross section in the Ore gap.
As indicated earlier, because we have included the full Hamiltonian in our calcula-
tions the short-range terms will always attempt to represent the virtual positronium
channel. We have undertaken these uncoupled calculations both with and without
the explicit virtual positronium term (6.5) and the results are plotted in figure 6.20.

The uncoupled elastic cross section both with and without the virtual positronium

O. 1 8 | : \‘
i
I ‘\‘
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i
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P
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(S i
S—rt 0.165
b
0.16
0.155 . .
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Figure 6.20: Comparison of the s-wave elastic scattering cross section obtained with
and without the coupling of the positronium channel. Curve A: the coupled results;
curve B: the uncoupled results with no explicit virtual positronium term in the trial
function; curve C: the uncoupled results with the explicit virtual positronium term

included.

term are seen to be inaccurate, especially close to the threshold, and a resonance-
type feature is seen in both cases. This feature, which is known to be unphysical,
arises from the uncoupling, and is very similar to features found in close-coupling
calculations when open channels are neglected. An extreme example of this type

of phenomenon, is the Higgins-Burke resonance (1991) in positron-hydrogen scat-
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tering. In this close-coupling calculation a resonance feature was found above the
ionization threshold, but its width and position were very dependent on the number
of states and pseudo-states included in the calculation. There is no physical reason
for a real resonance to occur in this energy region and there are theoretical grounds
(Simon 1978) for believing that such resonances can not exist. It has been shown
(Kernoghan et al 1995) that this resonance feature is due to the lack of complete
representation of the continiuum of states which the pseudo-states try to represent,
in the same manner as the non inclusion of the positronium channel affects the

elastic channel in the Ore gap.

k? =1.36656

0.16- }
k* = 1.30874

0.15 . , ,
2.0 3.0 4.0 5.0 6.0

Figure 6.21: The convergence of the s-wave elastic scattering cross section with re-
spect to w for two energies within the Ore gap. The solid and dashed lines correspond

to the Kohn and Inverse Kohn results respectively.

Figure 6.21 shows the convergence of the elastic cross section with respect to w
for two energies within the Ore gap. One can see that we have achieved reason-
ably well converged results, with good agreement between Kohn and inverse Kohn

method, and we believe they can be estimated to be within less than 3% of the exact
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results. As was the case for the positronium formation cross sections, the elastic
scattering cross sections presented here are the first accurate ones calculated for en-
ergies within the Ore gap. Various workers have investigated the elastic phase shift
below the positronium formation threshold using variational methods (Drachman
1968, Humberston 1973, Aulenkamp et al 1974) or other approximation methods
(see Gosh et al 1982 and Campeanu 1977 for a review). McEachran et al (1977
and 1978) have used the polarized orbital method and have extended the calcula-
tion above the threshold (1996), without the positronium channel, and found elastic
cross section 5-8% smaller than those presented in this work. The calculations which
have explicitly investigated elastic scattering above the threshold have used approx-
imation methods which are more suitable for the high energy range (>30eV), and
give no information on the elastic scattering cross section in the Ore gap ( Dewagan

and Walters 1977, Hewitt et al 1992, and McAlinden 1993 ).

6.6 Conclusion

The complexity of the positron-helium system, and the difficulty of representing all
the processes with the same trial function, have affected the quality of our results.
Indeed, because of the computer time required to calculate the various matrix ele-
ments needed in the Kohn variational method, we have only been able to calculate
the s-wave cross sections with trial functions corresponding to w = 6. In the latest
positron-hydrogen calculations, Watts (1994) was able to go up to w = 8 and it is

therefore to be expected that the helium results will not to be as well converged.

A positron-helium scattering trial function with w = 6 corresponds to 502 short-
range terms, of which 330 have only even powers of the inter-electron coordinate
ro3. As explained in chapter 3, the removal of the terms with odd powers of ry3
affected very little the phase shifts calculated with the method of models. However,
when the method was not used, this removal had a dramatic effect if the target
function did not itself contain odd powers of ry3 and was not very elaborate. In

an effort to try to identify the short-range terms in the scattering wavefunction,
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used in the two channel calculations, which do not contribute significantly to the
value of the cross sections. we have investigated the effect of removing terms with
odd powers of ry3 from the two channel trial function. In table 6.2 we present
the cross sections for w = 6 both with and without terms containing odd powers
of ro3. We have also included a calculation in which the first 14 terms with odd
powers of rpz, corresponding to this type of terms for w = 2, have been kept in
the trial function. One can see that the elastic and positronium formation cross
sections are not affected by the total or partial removal of terms with odd powers
of ry3, the differences being less than one percent. Only the o, results, close to
the positronium formation threshold, are affected to any extent and this could be
due to the poor optimization of the trial function for Ks; in this energy region. We
believe that the good agreement between the results calculated with scattering trial
function containing terms with and without odd powers of ry3 for both oy; and oy,
shows that there is no breakdown in the calculation as discussed in chapter 3, and is
a further confirmation of the reliability of our results and of the quality of the H22
target function we have used in this calculation. We have also investigated the effect
of the removal of terms with odd powers of r3 and, because of the Py3 operator, odd
powers of ry2, from the short-range terms in the trial function to see if this variable
had the same behaviour as the ry; variable. In table 6.3 we present a comparison
of the results with all terms included in the trial function and those obtained with
the removal of either all or some of the terms containing odd powers of r;3. We see
that the total removal of this type of terms strongly affects the results for all the
cross sections, but that if only the terms with odd powers of r;3 greater than one
are removed, then the results are much closer to those of the full calculation. In this
case also, the removal of terms with odd powers of r3 does not change the results

significantly.

The removal from the trial function of terms containing odd powers of r;3 reduces
the number of short-range terms in the trial function for w = 6 from 502 to 440 only,
and we have therefore not investigated further this reduction of the number of short-
range terms because it seemed clear that any significant reduction in computational

work would come from the removal of terms containing odd powers of ry3. Also,
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k% (a.u)

11

012

g21

022

1.30874

0.158191
0.158234

0.001194
0.001188

0.586010
0.582810

2.153840
2.240170

1.40186

0.162841
0.162894

0.005413
0.005446

0.040167
0.040414

6.361640
6.166550

1.498138

0.165799
0.165822

0.006219
0.006223

0.024417
0.024435

6.914570
6.944030

case A

1.30874

0.158255
0.158318

0.001185
0.001175

0.581611
0.576566

2.570080
2.722510

1.40186

0.162904
0.163013

0.005513
0.005457

0.040911
0.040496

6.575650
6.156440

1.49818

0.165914
0.165974

0.006298
0.006399

0.024731
0.025125

6.954820
7.014290

case B

1.30874

0.158710
0.158771

0.001154
0.001147

0.566015
0.562588

2.761640
2.921490

1.40186

0.163294
0.163399

0.005444
0.005374

0.040398
0.039877

6.677660
6.321120

1.49818

0.166289
0.166356

0.006255
0.006352

0.024559
0.024943

7.003910
7.064120

case C

Table 6.2: Cross sections for positron-helium s-wave scattering in ra? (w = 6). Case
A: all terms with powers of ry3 even and odd included in the trial function; Case
B: all terms with even powers of 753 and only first 14 terms with odd power of ry3
included ; Case C: only terms with even powers of ry3 included. The first entry is

the Kohn result and the second entry is the inverse Kohn result.
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Table 6.3: Cross sections for positron-helium s-wave scattering in 7a

k% (a.u)

a11

012

021

022

1.30874

0.158191
0.158234

0.001194
0.001188

0.586010
0.582810

2.153840
2.240170

1.40186

0.162841
0.162894

0.005413
0.005446

0.040167
0.040414

6.361640
6.166550

1.49818

0.165799
0.165822

0.006219
0.006223

0.024417
0.024435

6.914570
6.944030

case A

1.30874

0.182899
0.183061

0.000721
0.000692

0.353841
0.339632

5.511030
5.740530

1.40186

0.187511
0.187246

0.004087
0.004457

0.030326
0.033077

7.688330
7.379800

1.49818

0.190348
0.190333

0.005684
0.005706

0.022319
0.022405

7.252920
7.347070

case B

1.30874

0.158745
0.158784

0.001169
0.001166

0.573396
0.572160

2.575530
2.679890

1.40186

0.163367
0.163433

0.005470
0.005424

0.040594
0.040252

6.535960
6.331280

1.49818

0.166379
0.166426

0.006267
0.006332

0.024609
0.024862

6.957010
6.990900

case C

1.30874

0.159340
0.159395

0.001132
0.001127

0.555192
0.553131

2.842280
2.958220

1.40186

0.163886
0.163971

0.005410
0.005353

0.040147
0.039735

6.702320
6.468890

1.49818

0.166879
0.166946

0.006239
0.006314

0.024498
0.024793

7.027270
7.070070

case D

2
0

(w = 6). Case

A: all terms included in the trial function; Case B: no terms with odd powers of

13 included; Case C: only the terms with odd power of r13 equal to one included;

Case D: only the terms with odd power of r13 equal to one and no odd power of ry3

included.
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k (a.u) Kn K, Koy K,
1.144 | -0.233740 | 0.020324 | 0.020324 | -0.038030
-0.233770 | 0.020269 | 0.020269 | -0.038784
1.149 | -0.235660 | 0.034155 | 0.034155 | -0.135840
-0.235700 | 0.033987 | 0.033987 | -0.140150
1.159 | -0.239310 | 0.041119 | 0.041119 | -0.313680
-0.239330 | 0.041594 | 0.041594 | -0.289400
1.169 | -0.242770 | 0.046351 | 0.046351 | -0.440070
-0.242800 | 0.046393 | 0.046393 | -0.430780
1.184 |-0.247830 | 0.053795 | 0.053795 | -0.657790
-0.247860 | 0.053608 | 0.053608 | -0.643400
1.224 | -0.261450 | 0.086084 | 0.086084 | -1.403300
-0.261490 | 0.086480 | 0.086480 | -1.412200

Table 6.4: K matrix elements for positron-helium s-wave scattering (w = 6).

we believe that, as this is the first very accurate calculation of positron-helium

scattering in the Ore gap. it is prudent to keep the same systematic increase in the

number of short-range terms as given in chapter 4.

To conclude this chapter, we present two tables of the K matrix elements and
the related cross sections at various energies in the Ore gap for w = 6. The results

obtained by both the Kohn and inverse Kohn method are included and are seen to

agree very well.
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k? (a.u)

o1

012

o2

022

1.30874

0.158191
0.158234

0.001194
0.001188

0.586010
0.582810

2.153840
2.240170

1.32020

0.158875
0.158920

0.003281
0.003245

0.169214
0.167359

2.814660
2.993020

1.34328

0.160224
0.160259

0.004324
0.004483

0.080940
0.083929

4.968030
4.284260

1.36636

0.161368
0.161411

0.004960
0.005003

0.057288
0.057781

5.456150
5.263490

1.40186

0.162841
0.162894

0.005413
0.005446

0.040167
0.040414

6.361640
6.166550

1.49818

0.165799
0.165822

0.006219
0.006223

0.024417
0.024435

6.914570
6.944030
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Chapter 7

Higher partial waves contributions

and the total cross sections

7.1 Introduction

At the low energies being considered in this work, the positron does not have enough
energy to provoke a change in the total angular momentum of the helium atom:.
Therefore, we require, by conservation of angular momentum, that the incoming
positron and the outgoing positron or positronium atom, have the same orbital

quantum number, .

The asymptotic form of the scattering wavefunction for higher partial waves is
then similar to the [ = 0 case (see equations 4.2 and 4.3) but with the appropriate
Bessel and Neumann functions and spherical harmonics. In the interaction region,
where the short range terms are effective, the total angular momentum is not as-
sociated solely with either the positron or with one of the target electrons, but it
is shared between all three particles. There is in theory an infinite number of ways
in which the total angular momentum, I/, can be constructed from the sum of the
individual angular momenta, /; and I3, of each particle. Schwartz (1961b) has shown

that when the total Hamiltonian is used, the interparticle potential terms will in-
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troduce a form of coupling between the individual momenta, and the sum over all
possible couplings to produce the correct total angular momemtum can be greatly

reduced.

This coupling is introduced by the use of the vector coupled state, ¥ (i3, l2,[,m),
with specific values of the angular momentum on the particles, and an eigenstate of
the total angular momentum can be expanded as

U(ry.re.r3,lim) = Z Yy, by, l,m)F, 4,(r1,72, 712,73, 13, T23). (7.1)

12

Schwartz showed that the summation is restricted by the constraint

and, therefore. there are [ + 1 types of short range terms, Fj,;, of a given parity,
which are referred to as symmetries. In the case of s-wave scattering the wavefunc-

"as r — 0. However, for the higher partial waves, as the

tion was required to go as r
angular momentum can be shared, we require that each type of short-range terms
satisfy the boundary conditions and we find that the wavefunction must go as ri
and rl; as r; — 0 and r; — 0 respectively. One must note that because of the ex-
change between the two target electrons, the coupling is effectively between all three

particles, but we have not included symmetries where the total angular momentum

is shared between the two target electrons for the partial waves >2.

7.2 The p-wave trial function and matrix elements

In the case of p-wave positron-helium scattering we find that, as [=1, we need to
include two symmetries in our trial function, i.e. two types of short range term are
required, one of which can be associated with the one unit of angular momentum
as being mainly on the positron and the other with the angular momentum being

mainly on one of the target electrons. The function ¢ in equation 7.1 is now given

by

1/)(113127 lam) = E }/IIml (015¢1)M2m2(92a ¢2) < llamlal27m2 I lm > (73)

my,m2
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where the summation is subject to the constraints
mi+mz=m (7.4)

and

—L<m; <; (7.5)

and the term < l;,m,l3,m2 | [;m > is the Clebsch-Gordan coefficient. Because
of the axial symmetry of the scattering system, we can choose to work with the z
componant of the total angular momentum set to zero,1.e. m=0and as{ = 1+l =1

we have m; = my = 0. Therefore we have,
2[)(1,0, 10) = }/10(91, ¢1)Y00(02a ¢2) < 1a03030 I 10 > (76)

and

¢(0~ ]-7 1~0) = }/60(615 ¢1)}/10(02v ¢2) < 0,0, 170 | 10 > (77)

One must bear in mind that because all the interparticle distances are included
in the short-range terms in the trial wave function, there is automatically a cou-
pling of the angular momentum between the positron and the target electrons, and
therefore in a given symmetry the unit of angular momentum cannot, strictly speak-
ing, be considered to be solely on a given particle. Also, because of the boundary
conditions discussed above, we need to multiply the short-range terms of the first
symmetry (that associated with the positron) by r; and those of the second sym-
metry (associated with one of the target electrons) by r; (or r3 for the exchanged

form).

The p-wave trial function therefore has the form,

7, 01)® (2, 73 )VE {1 (kr1) — Kyna(kry) [1 — exp(—Ar)]}

(
“‘\}——2 [1 + P23] }’10(99)(I>p3(r12)¢’H6+(7'3)
x V26 Kt {ni(kp) [l —exp(—pp)(1 + %p)] }

+ (1 + Pa3) Yio(61) exp (—ary — B(r2 +13)) 11 Z aﬂ'l 7'2 12 T3 T13rss
1..1

+ [1 + P23] Y10(8:) exp (—ary — B(ry + 13)) 2 E b; rl 7'2 7'12 r;’rférgé (7.8)

j=1
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1+ Py
Uy, = [—+\/——2]Y10(‘9p)‘I’Ps("12)‘1’H6+(7’3)

o {jl(np) = K (i) [1 = expl=r)(1 + G )]}

—Y10(91)‘I’He(7‘2, 1‘3)\/’;1\'{2{”1(]”'1) [1 - eXP(_)‘Tl)]B}

N
+ [1 4 P23)Yio(61) exp (—ar; — B(rz+rs))r Z Ci"’f‘ 7“2‘ 12 T3 13735

=1

N
+[1 4 Pys] Yio(8;) exp (—ary — B(rs +13)) 12 S djri ryrly ry’riirls  (7.9)

Jj=1
where we have absorbed the Clebsch-Gordan coefficients into the variational linear

parameters and Yjo(f) is the p-wave spherical harmonic given by

/3
Y10(0) = e €08 9. (7.10)

The first order spherical Bessel and Neumann function are

sin(kr)  cos(kr)

Ji(kr) = (kr)? ~  kr (7.11)
na (kr) —C?Z(r’;)—sm]ffr). (7.12)

As was the case in the s-wave trial function, the singularity in the Neuman function is
removed by an appropriate shielding function, subject to the condition of equations
4.8 and 4.10. Using a similar notation to that in the s-wave case, we can write the

two componant p-wave trial function as,

(14 Py3)
V2

N
+Y10(61)(1 + Pa3) D _riai¢i + (1 + Pys)

1=1

‘I’i = Yi0(61)S1 + Yi0(01)K1,C1 + Ylo(ap)Kélcz

i=1

1+P 1+ P
g, = UHPa)y gy, U1 Po)

V2 V2
+Y10(61)(1 + Pa3) i r1ci¢; + (1 + Pas)

=1

Y10(0,) K35C2 + Yao(61) K1,C1

)’10(02) iv: ngj¢j] . (714)

i=1
The various matrix elements of (¥*, L®*) can now be evaluated in a similar manner

to that used in the s-wave calculation, except that now the angular part of the

wavefunction is not a constant but is a function of the external angles 6,, 05, 65, 8,,
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and §,, on which L will operate. The method used for the angular integration of the
external angle dependent terms of the p-wave trial function is given in appendix B

together with the results for various combinations of p-wave spherical harmonics.

The matrix elements which contain LS; or LS; terms (with LSy = (14 Py3)53/v/2 =

S, +53) are of a similar form as those for s-wave scattering, and we find, for instance,

that
4 2 2
Slle = S] [—‘ - —] 51 (715)
™ T12 13
and
— 4 4 2
5L, = 25, [— _A_2 —] s, (7.16)
1 T2 ™3 T23

The elements containing LC or LC, are more complicated than in s-wave scattering

because of the more complex form of the Neuman and related shielding functions.

We find, for instance, that

CiLC, = &Y, (ra,ra)km(kry) (1 - )
y [2 (_nl(krl) B cos(krl)) Ao (1 3 e_/\rl)z

™ ™

+na(kr1)3A2 (4677 — 3¢ — 1) ]
+0%, (v, v Y (kry) (1 — e=1)° [i _2_ i]
and
C1LC; = ®pe(r2,73)per (rs)®pa(r12)V2Zhany (kry) (1 — e77)
x {g (1 —e(14 ’;—p))a e
x [nl(np) [—u (1= +50) (% bt )+ e ;ﬂp)z]

_cosf)ﬁp) (u+ yzp) (1 —e(1 4 l;_p)>l

—n1(xp) (1 _ (1 4 "2—”))5 [5“— _A_zy 2 } (7.18)

m Tz T3 T23
from which (C; LC;) can be found. Note that, for clarity, the above matrix elements
have been given without the appropriate factor from the external angle integration
which can be found in appendix B ( for instance for C; LC; we will have to inte-

grate Yi0(61)Y10(6,)). Again, the long-range - short-range matrix elements can be
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formulated in a similar manner as in the s-wave case, using the results above and

including the two types of short-range term.

The main difference between the p-wave and s-wave short-range - short-range
matrix elements, is that in the p-wave case we need to include the action of the
kinetic energy operator from the Hamiltonian on the spherical harmonics. For the
matrix elements which involve only short-range terms of the same symmetry this
will give rise to a centrifugal term of the form {({+1)/r?. This repulsive centrifugal
term, becomes even more significant for the higher values of [, and its effect is to
keep the positron away from the atomic region, therefore making the short-range
terms less needed for the higher partial waves. Also, there are extra terms, with
respect to equation 4.40, which arise from the cross terms of the form V0. Vi¢;
in the matrix elements containing either only second symmetry terms and those
containing both first and second symmetry terms. For instance, before the external
angle integration, the terms involving the kinetic energy operator (see 4.38) in the
matrix elements containing both symmetries can be written, excluding exchange for

clarity, as
3
/ Lpdr = / S [Vk(cos 01 :). Vi(cos 0,¢;)] dr (7.19)
k=1

where we have absorbed the r; and r; factors into the ¢; and ¢; terms. Expanding,

we have

k=

3
/ Ipdr = / S [cos 010502 Vi(:). Vi ;) + Vi(cos b1) pi.cos0, V()
1
+ 08 6,V i($:).Vi(cos2)d; + ¢:6;Vi(cos 0;).Vi(coss)] dr (7.20)

which after integration over external angles becomes,

3
L, = 2n {Z cos 012V ¢i. Vi ;

k=1

—mir1 . 4 4T3
+¢:9; [r_zr—_ sin” 612 — —— (cos 613 — cos 015 cos 0;3)

1272 T'23T2
—m;T2 |, q;73
—2—]— sin® 6,5 — 21 (cos f23 — cos 013 cos 013) | ¢ (7.21)
T1271 T13T1

where V¢, V¢, is given by equation 4.40. For the matrix elements containing only

second symmetry terms, we find that, including exchange and after external angle
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integration,

3
]ﬁ = 27 {Z [Vko;,vkqﬁj + quyz.,vkqg,j
k=1

[ oo

+ cos 0,3 (ch;'),-.vkqﬁ'j + Vk¢'i-vk¢j) +(5+ )¢1¢]l

oo B9
Wi

r

!
L iT1 . qiT2 q;Ts3
—o.-cp} 2 (cos 812 — cos 013 cos z3) + sin? Oy3 — + 2’——
1
m.ry
+—2— (cos 13 — cos 015 cos By3)
T1272

/ ’ .
—0.0; [ﬂ (cos 612 — cos b13 cos Oa3) + sin? 0,3 ( (12,7‘2 n q;T3 )]

2
T3T3  Ta3T2

mj’l'l

(cos 613 — cos 0,2 cos 923)] } (7.22)

7‘127‘2

7.3 The p-wave results

The non-linear parameters «, 3, 4 and A have been optimized in a similar manner
as in the s-wave calculation. using a p-wave trial function with only first symmetry
terms (w = 3), and we have found that the values of a, # and A which gave the
best compromise between the optimization for K7; and K3; were the same in both
the s-wave and p-wave trial functions. The new value of the non-linear parameter p
was g = 1.5 and again. as in s-wave scattering, it was not possible to obtain a value
which gave the most positive values for both Kj; and Kj;. We have found that the
poorer representation of the positronium - He* system is more pronounced in our
p-wave calculation and this has lead to a greater difference between the Kohn and

inverse Kohn results for Kj,.

The first results we obtained for p-wave scattering above and below the positro-
nium formation threshold highlighted a problem in our calculation and we have
therefore investigated in detail the convergence of the diagonal K matrix elements
to verify the accuracy of our results. The phase shifts below the positronium forma-
tion threshold with w=4 in both symmetries agreed very well with those obtained
by Campeanu (1977) and a clear convergence pattern with w could be seen. Above

the positronium formation threshold the convergence pattern of the K;; and Kj,
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matrix elements did not correspond to that obtained in the s-wave scattering cal-
culation. We found that when the value of w was increased simultaneously in both
symmetries, the values of the diagonal K matrix elements at first became more
positive and then, for larger values of w, behaved erratically. By increasing first the
value of w in the first symmetry, and then adding in the second symmetry, we found
that the problem was mainly due to the first symmetry terms. To investigate this
phenomenon in more detail, we decided to consider the convergence of the diagonal
K matrix elements not with respect to w but with respect to the number of terms

in the trial function.

The choice of parameter with respect to which the convergence of K;; and K,
is considered is arbitrary as long as the parameter represents, in some sense, the
quality of the trial function, i.e. the variation of the parameter can be linked to
how close the trial function tends to the exact wavefunction. In the analysis of
the s-wave results and of the previous Kohn variational calculations of positron-
hydrogen scattering, the convergence was always considered with respect to w, as
this parameter represents the improvement of the trial function in a systematic way.
Indeed, from the definition of w, i.e. k;+l;+m;+n;+p;+¢; < w, one can see that an
increase in w corresponds to adding a specific set of terms to the trial function and
therefore making it more flexible and closer to the exact wavefunction. On the other
hand, for a given value of w, the order in which the terms are added individually to
the trial function is completely arbitrary and while the inclusion of some terms may

play an important role, it is known that some terms do not contribute much to the

improvement of the trial function.

In fig 7.1 and 7.2 we have plotted the variations of the diagonal K matrix
elements with respect to the number of terms in the trial function, for two different
energies. The total number of terms corresponds to w = 6 in both symmetries (with
only even powers of ry3) and we have chosen to start with the first symmetry up to
330 terms (in steps of 5) and then add the second symmetry. One can see in the
graphs for K;; that there is a rapid rise when the first symmetry starts, up to =

80-120 terms, at which point a plateau region is reached. Between 200-330 terms,
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Figure 7.1: The variation of the K matrix element K;; with the number of terms

in the trial function for p-wave scattering at k= 1.144 (a.u.) and k= 1.174 (a.u.)
with w=6 in both symmetries.

133



0.25
0.2
0.15

o14 a4

_____
-

-
I3

0.05

K,, * 10°

0.0 Vo-—-* === Kz, NV. KOHN

—0.05

1
1
]

-0.1-1+ T T T T T T
0 100 200 300 400 500 600 700

NUMBER OF TERMS

40.04

30.0

20.0

10.0

0.0+

K,, * 10?

’ ==K,z NV. KOHN

-10.0

=
~~

—20.0

-30.0 I | l I | ]
0 100 200 300 400 500 600 700

NUMBER OF TERMS

Figure 7.2: The variation of the K matrix element Kj; with the number of terms
in the trial function for p-wave scattering at k= 1.144 (a.u.) and k= 1.174 (a.u.)

with w=6 in both symmetries.

134



===:K,;, NV. KOHN

— K, . KOHN

-0.05

-0.25

700

300 400 500 600
NUMBER OF TERMS

200

100

—— K, ; KOHN

===:K,, NV. KOKN

500

400

300
NUMBER OF TERMS

200

700

600

100

o

Figure 7.3: The variation of the K matrix element K;; with the number of terms

in the trial function for p-wave scattering at k= 1.144 (a.u.) and k= 1.174 (a.u.)

with w=6 in both symmetries.

135



there is some resonance-type structure, which clearly violates the empirical lower
bound which we have assumed to hold for the diagonal K matrix elements. When
the second symmetry terms are included, at 330 terms, there is again a very rapid
rise in the value of Aj; up to a plateau region where K;; varies very little. One
can see that, although some resonance-like structure appears when more than 600
terms are included, on the whole the results are much smoother than when only the
first symmetry was included. There is a clear disagreement between the Kohn and
inverse Kohn results when only the first symmetry is included, but it is important
to note that the resonance-type structure appears in both results at the same place
(note that the number of terms in the graph have been increased in steps of 5)
and that they are therefore not identical to the Schwartz singularities discussed in
chapter 2. When the second symmetry terms are included, both the Kohn and the
inverse Kohn results agree well and the small resonance structure around 600 - 630

terms appears in both methods.

The variation of K3, with respect to the number of terms in the trial function (see
figure 7.2) shows a similar pattern to that of Kj; but, because the optimization of
the trial function for Ny, is less good as that for i;;, we do not have the same rapid
rises and plateau regions. Again, at around 200 terms in the first symmetry, there
is a resonance-tvpe structure, in both the Kohn and inverse Kohn results, which
disappears when the second symmetry is included but reappears when around 600
terms in total are included. In this case, the inclusion of the second symmetry did
not make the Kohn and inverse Kohn results agree better in terms of magnitude,
and this we believe can be explained by the poorer optimization of the non-linear
parameters for Ny,. In figure 7.3 we present the variation of K, with respect to the
number of terms in the trial function, and a similar pattern to that described above
is found. In this case there is no empirical bound on the K matrix element, but
again we see a resonance-type structure appearing in the first symmetry, followed
by smoother results when the second symmetry is included and some structure
around 600 terms in the trial function. We have also calculated trial functions
which included both even and odd powers of ry3 in the short-range terms but, as in

s-wave scattering (see table 6.2), the inclusion of odd powers of ry3 did not improve
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the results. We found that including terms containing odd powers of ry3 in the first
symmetry introduced many resonance features when the second symmetry terms
were included and destroyved completely the convergence pattern for all K matrix

elements.

From the results presented above, we can clearly see that there is a new type
of breakdown in the convergence pattern of the diagonal K matrix elements, which
makes the analysis of the results more complicated than in the s-wave calculation.
We believe that there are various reasons which combine to create the partial break-
down of our calculations. If we first consider the case of the K;; matrix element,
we see that the resonance-type features in the first symmetry appear in the plateau
region where the value of Kj; does not increase significantly. In this region, we find
that adding new terms to the trial function does not make the value of K;; much
more positive. This is consistent with the fact that for the higher partial waves, the
inclusion of the centrifugal barrier reduces the importance of the short-range terms.
Also, we know that when two identical terms are included in the trial function,
the linear independence is removed in equation 2.103 and the matrix A becomes
ill-conditioned. giving values of K;; which lie between —oco and +oo. It seems,
therefore, that the resonance-type structure could be explained by the fact that,
in this plateau region, the addition of more and more first symmetry terms to the
trial function, is not very effective in making K7; more positive. This would then
be very much like adding two identical terms, making the matrix A numerically ill
conditioned. We have also found this type of phenomenon in the d-wave positron-
hydrogen scattering results, but there the breakdown was much less dramatic. This
indicates that the breakdown is not due to the inexact integration of the (¢;, L¢;)
matrix elements in the positron-helium p-wave scattering results, as these elements
are integrated exactly in the positron-hydrogen case. Also, the fact that the res-
onance features seem to be mainly due to the addition of short-range terms could
explain why they appear in nearly exactly the same place for both the Kohn and

inverse Kohn methods.

It is important to notice that the ill-contidionong of A is due to the combination
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of all matrix elements and not just of one element on its own. Therefore, if a
resonance feature appears at a given term in the trial function, it may disappear
completely if some other term is removed. Hence, it is not possible to identify a
specific element which creates the problem, but from the analysis of the variation of
K11 with the number of terms in the trial function, it is clear that it is in the set of
terms between 150 and 330 in the first symmetry that the problem first arises. In the
case of the Ky, matrix element, the same phenomenon occurs with the additional
problem of the poor optimization of the non-linear parameters, which explains why
the Kohn and inverse Kohn results do not agree very well in magnitude. Again,
here, and also in the K, case (see figure 7.3), the resonance structure starts when

at least 150 terms of the first symmetry have been added to the trial function.

We have, therefore, repeated the K matrix evaluation for p-wave scattering
with a trial function containing 150 terms of the first symmetry and 330 terms of
the second symmetry. The results, presented in figures 7.4, 7.5 and 7.6 show that in
general we have a much better convergence pattern in all K matrix elements and
that the resonance-type features have nearly completely disappeared. The removal
of these first symmetry terms has not affected the most converged values of K;; and
K, by more than a few percent, but it has dramatically reduced the magnitude of
K,,, which can be explained by the poor optimization of the non-linear parameters
for K;;,. We believe that we can accept these poorer results for the Ko, matrix
element, because we have found that, although all K matrix elements are involved
in the evaluation of the elastic scattering and positronium formation cross sections,
the effect of the K5, element is minimal except if K3, goes to £o0. To verify this,
we have calculated the p-wave cross sections with the calculated K;, matrix element

and also with K3;=0, and have found that the difference was less than 0.1%.

In figures 7.7, 7.8 and 7.9 we show the energy dependence of the K matrix
elements. As predicted by Wigner’s threshold theory, the K}, matrix element has
a linear dependence on k%2 close to the threshold, and we see that the Kohn and
inverse Kohn results agree very well for both K;; and K, while, as expected, they

do not for the K,; matrix element. The p-wave positronium formation cross section
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Figure 7.4: The variation of the K matrix element K;; with the number of terms
in the trial function for p-wave scattering at k= 1.144 (a.u.) and k= 1.174 (a.u.)

with up to 150 terms in the first symmetry and up to 330 terms in the second.
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is plotted as a function of positron energy in figure 7.10. There is not such a rapid
rise from the threshold as in the s-wave positronium formation cross section, and
one sees that there is a nearly linear dependence of o1, on k2. The magnitude of the
p-wave positronium formation cross section is relatively small, reaching only twice
the value of the s-wave cross section for the higher energies in the Ore gap. In figure
7.11 we present a comparison of the variational Kohn results and the results of the
first Born approximation of McAlinden (1996). We see that, for the higher energy
region, the ratio of the two cross sections is approximately three, very similar to
that found in hydrogen (Humberston 1996). As was the case in s-wave positron-
helium scattering, there has been no previous detailed investigation of the p-wave
scattering within the Ore gap, and the only results with which comparisons can
be made are those of Mandal et al. (1979). They quote a p-wave positronium
formation cross section of 0.0583 wa? at 20 eV which is approximately five times

larger than that found in this work. As there are no other energies in the Ore gap
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Figure 7.8: The variation of the K matrix element K;; with positronium wave

number for p-wave positron-helium scattering with up to 150 terms in the first
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Born approximation and the Kohn variational method.
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at which these authors have calculated the positronium formation cross section, it
is very difficult to make a meaningful comparison. The only information which may
indicate a weakness in the results of Mandal et al., is that their results for positron-
hydrogen scattering, which is a much simpler system, do not agree with the various

very accurate results.
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Figure 7.12: The variation of the p-wave elastic scattering cross section with positron

energy for positron-helium scattering.

In figure 7.12 we present the p-wave elastic scattering cross section above and
below the positronium formation threshold. The results below the threshold have
been calculated using a p-wave scattering trial function similar to that used in the
s-wave calculation (see equation 6.5), including both types of short-range terms.
These results did not display the same behaviour as those above the threshold, but
for consistency we have included the same number of terms in each symmetry for
all energies. In the Ore gap, the p-wave elastic scattering cross section is found
to be = 20% of the s-wave and again at the threshold a slight discontinuity in the
cross section can be noted. We have not investigated this discontinuity because

the magnitude of the p-wave cross section at threshold would make any effect very
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small. Also. as the uncertainty in o;;, due to various problems described above, is
significantly greater above the threshold than below, it is very unlikely that exact

matching of the cross sections at the threshold could be achieved.

7.4 The d-wave wavefunction and matrix elements

The d-wave trial function and matrix elements are derived using the same formalism
as the one developed for p-wave scattering, but now, as /=2, there are three differ-
ent symmetries of short-range correlation terms, one of which represents the total

angular momentum shared between the positron and one of the target electrons.

The three combinations which give the correct total angular momentum are:
(h=2.0b=0). (4, =1. 1 =1) and ({; =0, [ = 2). The first and third cases,

referred to as first and third symmetries, can only have m; = my, = 0, and we have
L‘(Q. 0.2. 0) = }'-'20(91, él)Ybo(gz, (;52) < 2, 0, O, 0 I 2., 0> (723)
and
‘U‘(02 2. O) = Ybo(gl, d’l)}/20(02, (252) <0,0,2,0 | 2, 0>. (724)

Again, as in the p-wave calculation, both the Clebsch-Gordan coefficients and the
first order spherical harmonics. Yy0(8, ¢), will be absorbed into the variational pa-
rameters of the short-range terms and we only need to consider the second order

spherical harmonics which are of the form

1
Yao(6. 8) = ,/% <gcoszt9 - 5) . (7.25)

The main difference in the formulation as compared to the p-wave scattering formu-
lation is the second symmetry case with (l; = 1, I; = 1). From equations 7.4 and
7.5, we see that there are now three sets of values of m which need to be considered,

and we have

¥(1,1,2,0) = Yi_1(61,61)Y1,41(02,02) <1,-1,1,41 2,0 >
+Y1,0(01, 41)Y1,0(02, 42) < 1,0,1,0]20 >
+Y1,+1(04, 451)}’1,_1(02,(252) <1,41,1,-1 I 2,0 > (7.26)
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Using the first order spherical harmonics, | = 1, for m = 0 given in equation 7.10

and those for m = 4+1 which are

Yi.41(0,¢9) = —\/%sin fe'? (7.27)

. 3 '
- _ . _1¢
Yi1(0,4) = 4y B sinfe™*?, (7.28)

we find that, including the appropriate Clebsch-Gordan coefficients,

1
¥(1,1,2.0) = % [_\/—E] (3 cos 0 cos B2 — cosyz). (7.29)

The form of the two component d-wave scattering trial function is then

(14 Py3)
V2

N N
+Y20(01)(1 + Pa3) Y _ riai¢i + (1 + Pa3) [1/)(1,1,2,0)(01,92) > 7‘1T‘2bi¢i]

=1

U = Yio(61)S: + Yaoo(61)K1,Ch + Y20(0,)K3,Co

=1

+(1 + Pz3) [3/20(92) i r%ciq&,—] (7.30)

(1 + Py3) (1 4+ Pa3) -
V2 V2

N
+Y20(01)(1 + Pa3) >_rid;¢; + (1 4 Pps)

i=1

Y20(0,)S:2 + )/20(9;»)1"5202 + Y‘A’O(gl)KltzCl

N
P(1,1,2,0)(01,62) Y 7°17”2fj¢1]

i=1

+(1 + Pz3) [Yzo(az) i ngjsﬁj] : (7.31)

i=1

where we have used a similar notation to that in the s-wave and p-wave calculations.

The second order Bessel and Neumann functions for d-wave scattering are

. 3 17 . 3
J2(kr) = [W - E] sin(kr) — yE) cos(kr) (7.32)
and
3 1 k 3 . k
le(kT') = - [W - E] COS( T’) - WSIH( 7") (733)

respectively, and the shielding function which removes the singularity in the Neu-

mann function, subject to the conditions of equations 4.8 and 4.10, is, for ny(kr;)
fon(ry) = (1 — e72)3, (7.34)

and for ny(kp) .
falp) = [1-em 1+ 5] (7.35)
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The specific forms of the various matrix elements which are required for a d-wave
scattering calculation are similar to those of the p-wave scattering matrix elements
and, therefore. we will only give a brief description of them, and not their explicit
form. The long-range — long-range and long-range — short-range matrix elements
are more complex because of the more complicated form of the Bessel and Neumann
functions and the associated shielding functions for [ = 2. The short-range - short-
range matrix elements involving first and third symmetry terms are very similar to
those found in p-wave scattering, but a more complex external angle integration has
to be performed. The elements which involve either only second symmetry, or cross
terms between second symmetry and either first or third symmetry terms, are more
complicated in both the formulation of the explicit form of the matrix element and
also in the external angle integration, mainly because in the second symmetry terms
the angular function depends on two external angles. In appendix B, we give the
results of the various external angle integrations which are required for a d-wave

scattering calculation.

7.5 The d-wave results

We have included in the d-wave trial function only short-range terms of the first
and third symmetries because, although most of the formulation for the second
symmetry terms has been done, there has not been sufficient time to complete it
and to write a reliable computer program to perform the calculations. It is not
possible to estimate in a rigorous manner how strongly the omission of the second
symmetry terms affects both the convergence of the K matrix elements and the
magnitude of the cross sections. The only guide that we have is the calculation of
the d-wave positron-hydrogen K matrix elements (Watts 1994), from which we have
found that the removal of the second symmetry terms does not change the values of
the K matrix elements significantly (see table 7.1). We see that the removal of the
third symmetry affects the K5; and K;; matrix elements strongly, while the removal

of the first symmetry affects mostly K;, and less Ks,.
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K K, Ky K,
all three symmetries | 0.10806E+400 | 0.97455E-01 | 0.97455E-01 | 0.18033E+00
only first and third | 0.10676E+00 | 0.97374E-01 | 0.97374E-01 | 0.17678E+00
only first and second | 0.10217E+00 | 0.90257E-01 | 0.90257E-01 | 0.11683E+00
only second and third | 0.63984E-01 | 0.96995E-01 | 0.96995E-01 | 0.14018E+00
only first 0.99390E-01 | 0.88997E-01 | 0.88997E-01 | 0.10929E+00

Table 7.1: Analysis of the removal of a symmetry in the calculation of the d-wave
K matrix elements for positron-hydrogen scattering. w = 6 in each symmetry and

k=0.75 (a.u.).

We believe that, although this analysis of positron-hydrogen d-wave scattering
can only serve as a guide, we can estimate that our positron-helium d-wave K matrix
elements are not affected by more than a few percent because of the omission of the
second symmetry terms. On the other hand, we must recognise that, as both systems
are very different, there may be physical factors, such as the inclusion of exchange
in the positron-helium case, which make the effect of the second symmetry less

important for positron-hydrogen scattering than for positron-helium scattering.

The non-linear parameters ¢, 8, 4 and A have been optimized in a similar manner
to that used in the s-wave and p-wave calculations, and the same values as in the p-
wave trial function were found to give the best compromise between the optimization
of K11 and K5,;. As was seen in the p-wave calculation, the poorer representation
of the positronium - He* system has lead to a greater difference between the Kohn

and inverse Kohn results for K5, than for Ki;.

We have calculated the K matrix elements for positron-helium scattering in the
Ore gap, with a trial function containing 84 short-range terms (w = 4) of the first
symmetry and 172 terms (w = 5) of the third symmetry ( with the power of ry3
even only), and we have found a similar behaviour for the variation of the K matrix
elements with respect to the number of short-range terms in the trial function as

that described in the analysis of the p-wave results. We believe that the resonance-
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Figure 7.13: The variation of the K matrix element K;; with the number of terms

in the trial function for d-wave scattering at k= 1.144 (a.u.). Top figure: up to 84

short-range terms (w = 4) in the first symmetry and up to 172 terms (w = 5) in

the third symmetry. Bottom figure: up to 36 short-range terms (w = 3) in the first

symmetry and up to 172 terms (w = 5) in the third symmetry.
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type features which are found in the d-wave results have the same origin as those in
the p-wave calculations and,we have, therefore, used the same technique to reduce
their effects. i.e. we have included only 36 short-range terms (w = 3) of the first
symmetry and 172 terms (w = 3) of the third symmetry. In figure 7.13, 7.14 and 7.15
we compare the results obtained with all the matrix elements and those obtained
with the reduced first symmetry, and we can see that there is a great amelioration

of both the convergence and the agreement between the Kohn and inverse Kohn

results. In figure 7.16 we present the variation of K, with respect to «%/2, and
0.0
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Figure 7.16: The variation of the K matrix elements Ky, with respect to the positro-

nium wavenumber.

we find that Wigner's threshold law (equation 6.2) is indeed confirmed up to more
than leV above the positronium formation threshold. As mentioned previously, this
is not a very constraining check on our calculation as such, but we believe that the
confirmation of the threshold behaviour of the K, matrix element indicates that
there is no fundamental error in our calculation which would have given rise to the

resonance features we have discussed above.
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Figure 7.17: The variation of the d-wave positronium formation cross section with

positron energy for positron-helium scattering.

The positronium formation cross section for d-wave positron-helium scattering
within the Ore gap is presented in figure 7.17. There is a slow rise from threshold, as
is expected from the energy dependence of o12(! = 2), and we find that the d-wave
positronium formation cross section becomes dominant for energies 1 eV above the
threshold (i.e. at % =~ 1.41(a.u.) ), reaching a value three times that of the p-wave
at the highest energy in the Ore gap. Our results do not agree very well with those
of Mandal et al. (1979) who found a15( = 2) = 0.0237 (7ay?) at 20 eV, which is
~ 25% less than the value we have found. In figure 7.18, we present a comparison
of our variational results with the Born results of McAlinden (1996) and we find
that, as was the case in positron-hydrogen scattering (see Humberston 1986), the
Kohn results are now greater than the Born results. Both cross sections are now of
comparable magnitude which confirms that the first Born approximation gives more

reliable results for the higher partial waves than for the lower ones.

We have calculated the d-wave elastic scattering cross section above and below

the positronium formation threshold in a similar manner to that described in the
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Figure 7.18: Comparison of variation the positronium formation cross section with
positron energy for d-wave positron-helium scattering calculated with the first Born

approximation and the Kohn variational method.

section on the p-wave elastic scattering cross section. The results are plotted in
figure 7.19, and one can see that there is a significant difference between the results
just above and just below the threshold. This gap at the threshold is much larger
than was the case in the s-wave and the p-wave elastic cross sections, and it is
very similar in relative magnitude to that found in positron-hydrogen d-wave elastic
scattering (Watts 1994). Again, as discussed in the section on the s-wave elastic
scattering cross sections. we believe that this phenomenon is due to the poorer
convergence below the threshold and that the inclusion in the elastic scattering trial
function of a virtual positronium term is needed to ensure the continuity of the cross
section at the threshold. There was not sufficient time to include such a term in our
calculation and it is not expected that any threshold features will be found in the
d-wave elastic scattering cross section similar to that found in the s-wave case. The
elastic phaseshifts of this work below the threshold agree very well with those of
Campeanu (1977) for k > 0.6 (a.u.) and the difference at the lower energy is mainly
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Figure 7.19: The variation of the d-wave elastic scattering cross section with positron

energy for positron-helium scattering (th.l is the threshold for positronium forma-

tion).

due to the fact that the trial function in this work has been optimized for the higher
energies. The results we obtain for the d-wave elastic scattering cross section in the
Ore gap are seen to increase smoothly with energy, and they are found to be ~ 50%

greater than those of McEachran et al.(1996).

7.6 The total cross sections and the comparison

with experiment.
We have not used the Kohn variational method to evaluate the scattering parameters
of positron-helium scattering for partial waves with [ > 2 because of the complexity

of both the formulation and the numerical evaluation. Indeed, as can be seen from

the formulation for d-wave scattering, an increase in [ not only involves an increase
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in the number of symmetries which need to be included into the trial function, but it
also involves much more complex external angular functions for which the analytical

integration becomes more difficult.

Fortunately, it is well established that because the centrifugal term, {({ 4+ 1)/r?,
becomes more effective at keeping the positron away from the nucleus as [ increases,
the role of the short-range terms becomes less significant for the higher partial waves.
Hence, the results obtained with more approximate methods than the Kohn varia-
tional method ( for instance the first Born approximation, where no attempt is made
to include short-range interactions) are expected to be sufficiently reliable. Also, we
find that, as was the case in positron-hydrogen scattering, for both positronium
formation and elastic scattering, the contribution from the sum of all the partial
waves with [ > 2 is much smaller than the sum of the s-, p- and d-wave contri-
bution. Therefore. the errors in the cross sections for the higher partial waves are
not expected to contribute very significantly to the error in the total positronium

formation and elastic scattering cross sections.

We have chosen to evaluate the partial wave elastic scattering cross sections for
l > 2, below the positronium formation threshold. with the approximation formula

for the elastic phaseshift of O’Malley et al (1962).

_ rak?
"= @I - DRI+ 1) +3)

(7.36)

where « is the dipole polarizability of the helium atom. We have also used the same
formula above the threshold for these higher partial waves, even though it does not
take into account the coupling of the positronium formation channel. We believe
this choice to be reasonable because for these higher partial waves the coupling is
expected to be very small and, as their contribution is also small, the error introduced
into the total elastic cross section will be relatively small. From figure 7.20 we can
see from the [ > 2 curve that the smooth continuation of the cross section through
the threshold confirms the validity of our choice. In figure 7.20 we present the
total elastic scattering cross section for positron-helium scattering above and below
the positronium formation threshold, together with the individual contributions of

the first three partial waves. The sum up to | = 60 of all partial waves with
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Figure 7.20: The variation of the elastic scattering cross section with positron energy
for positron-helium scattering. The [ = 0, ! = 1 and [ = 2 results were obtained
with the Kohn variational method. The [ > 2 results were obtained using equation

7.36.

l > 2, calculated using 7.36, is plotted as curve labelled | > 2, and it is found
to contribute = 5% to the total elastic cross section in the Ore gap. One can see
that the discontinuity at the positronium formation threshold due to the d-wave
component is significant and that within the Ore gap the elastic scattering cross

section increases only very slightly with positron energy.

The contribution to the total positronium formation cross section from all par-
tial waves with [ > 2 has been evaluated using the total positronium formation
cross section calculated in the first Born approximation by McAlinden (1996), and
subtracting the contributions from s-, p- and d-wave scattering calculated by the
same author. In figure 7.21, we plot the resulting total positronium formation cross
section for positron-helium scattering within the Ore gap together with plots of each

component separately up to /=2 and the sum of all [ > 2.
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Figure 7.21: The variation of the positronium formation cross section with positron
energy for positron-helium scattering. The [ = 0, [ = 1 and | = 2 results were
obtained with the Kohn variational method. The [ > 2 results were obtained using

the first Born approximation by McAlinden (1996).

Again, the threshold behaviour of oy, is clearly seen with the initial rapid rise
due solely to the s-wave component. Also, the d-wave component is confirmed as
becoming the dominant component for positron energies greater than leV above
the threshold, rising to more than 50% of the total cross section at the highest
energy calculated. The contribution of partial waves with [ > 2 is found to be
~ 10% of the total cross section for the highest energy, approximately equal to
the s-wave component. We believe it is possible that the Born approximation may
underestimate the contribution of the [ > 2 cross sections and that there are two
main reasons for this. First, as can be seen from the comparison of the Kohn results
with the first Born results for s-, p- and d-wave positron-helium scattering ( see
figures 6.16,7.11 and 7.18), when [ increases not only does the agreement between
the Born and the Kohn improve, going from a ratio of ~ 200 for s-wave to nearly 1

for the d-wave, but we also notice that for the d-wave the Born results of McAlinden
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are lower than the Kohn results of this work. A similar pattern was found in the ratio
of the Born and Kohn results for positron-hydrogen scattering ( Humberstom 1986)
and this seems to indicate that the Born results for [ > 2 are likely to be too low.
The second reason which makes us estimate the higher partial waves contributions
to the total cross section should be larger is the fact that as the d-wave component
is the main contributor at the higher energies, it is likely that the f-wave and g-wave
components will also be contributing significantly at these energies to the total

positronium formation cross section.

0.0 T T T T T
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Figure 7.22: Comparison of theoretical and experimental total positronium forma-
tion cross section for positron-helium scattering. E; is the excess energy of the
positron, i.e. E; = Ec+ - Ery. The experimental data (x) are those of Moxom et

al. (1994)

In figure 7.22 we present a comparison of the theoretical positronium formation
cross section within the Ore gap with the experimental results of Moxom et al. which
agree well with other experimental data ( see figure 1.3). We find that our results

are on average 30% lower than the experimental data and display a less pronounced
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slope. There are both theoretical and experimental considerations which we believe
can explain the discrepancy between our results and experiment. First, we recognise
that there is still a possibility that some formulation or computational error is present
in our calculation. We have checked thoroughly all the computer programs as well
as the formulations and believe that both the reasonable convergence pattern we
obtain for Aj; and for K, and the good agreement between the Kohn and inverse
Kohn results are proofs of the reliabilty of our calculations. On the other hand, the
presence of the non-physical resonances in the p- and d-wave calculations which we
have attributed to an over representation from the first symmetry terms, could still
be attributed either to a formulation or computational error. We believe that such
an error is very unlikely because of the various checks we have made and also because
the smooth behaviour of the variation of the K matrix elements with respect to the
increase in the number of short range terms is reestablished when second symmetry
(or third symmetry for d-wave scattering) terms are introduced. Therefore, it is
more likely that part of the disagreement between theory and experiment is due to
the fact that the Kohn results for s-, p- and d-wave cross sections are not yet fully
converged and also that the Born estimate for the { > 2 contribution is too low. The
uncertainty in the contribution of the [ > 2 partial components has been discussed
above and can unfortunately not be estimated. Furthermore, it is not possible
to extrapolate the results for the positronium formation cross section to find fully
converged results as there is no bound on the Kj; matrix element. However, we
believe that, from the behaviour of the convergence patterns for K, we have shown
for the s-, p- and d-waves, we can estimate the error in the positronium formation
cross section to be in the range 10% to 20%, even though we must recognise that, as
there is no bound on Kj,, fully converged partial cross sections may be lower than
those presented here. Also, the omission of second symmetry terms in the d-wave

calculation may have a greater effect than we have estimated.

Experimentally, the uncertainties are mainly due to the normalization of the
data and the estimate of the positronium formation threshold. The positron data
presented here were normalized at very high energy to the total ionization cross

sections for electrons and positrons (where 0%’ = o1+ op,) and the absolute values
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are estimated to be accurate +£20%. Note that this normalization procedure is
different to that given in Moxom et al. (1994) and confirms the results of that work
(Laricchia, private communication). The positron energy scale, which determines
the positronium formation threshold, was calibrated to £0.1eV by linearizing a plot
of the ion yield as a function of energy (see Moxom et al. 1994). In this paper
the authors have made an analysis of the threshold behaviour of the experimental
results for 01,. From their analysis, they concluded that the main contribution to
the positronium formation cross section close to the threshold came from p-wave
scattering and they have used this result for the calibration of the positron energy
scale. From the theoretical results which we present here, we believe that, even by
taking into account the lack of convergence of our results, the p-wave component is
not dominant in the Ore gap, but the d-wave is, although not overwhelmingly so.
Therefore, there is still an uncertainty in the calibration of the experimental data
but we do not expect the error to be such as to explain all the differences between

theory and experiment.

In figure 7.23, we present a comparison of the theoretical total cross section, i.e
011 below the threshold and o4, + 12 above, and the experimental results of Stein et
al. (1978) and Mizogawa et al. (1985). We see that the relative difference between
theory and experiment is now much smaller, & 10% for the results of Mizogawa et
al. and = 5% for those of Stein et al. ( for both sets of experiments the uncertanties
are estimated to be £5%). Again, at the threshold itself the discontinuity in the
total theoretical cross section due to the d-wave elastic cross section can be seen,
but one can notice that there is a disagreement between theory and experiment as
to the value of o4, at the threshold. If one neglects the unreliable experimental
result at the threshold itself, and takes the theoretical value of o, just above the
threshold ( which is mainly o4; and can be considered to be very accurate), there
is a difference of nearly 3% between theory and the experiment of Mizogawa et al..
Again, this difference is not sufficient to totally resolve the disagreement between
theory and experiment but it seems to indicate that the normalization of the data at
the threshold and the calibration of the positron energy scale could be an important

factor in explaining the differences between theory and experiment.
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Figure 7.23: Comparison of theoretical and experimental total cross section for
positron-helium scattering. The experimental data are those of Stein et al.(1978)

(O) and Mizogawa et al. (1983) (A).

In figure 7.24 we have plotted the positronium formation cross sections of Moxom
et al. (1994) for positron-helium scattering within the Ore gap with respect to the
excess positron energy. E; = E.+ - Ery,. We have also included the difference bétween
the total cross section of Mizogawa et al. and the theoretical elastic cross section
within the Ore gap, referred to as of;. The theoretical elastic cross section are
expected to be correct to within 1-2% and will not affect the uncertainty in of}.
Therefore, we believe that, as both experimental data sets have been measured
under completely different conditions, we have here two independent measurements
of the positronium formation cross section. We can see that there is a reasonable
agreement between both sets of data in terms of the magnitude but the slope is
slightly different, which may be related to the positron energy calibration procedure
of Moxom et al. (1994) (note that, because of the beam resolution, the data points

close to the threshold have a larger uncertainty and comparisons there are less

reliable).
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Figure 7.24: Comparison of the positronium formation cross section of Moxom et
al. (1994) (x) and the difference between the experimental total cross section of

Mizogawa et al. (1983) (A) and the theoretical elastic cross section.

164



Chapter 8

Annihilation in low energy

positron-helium scattering

8.1 Introduction

One of the major differences between electron-atom and positron-atom scattering,
is the possibility of annihilation of the low energy incoming positron with one of the
electrons of the target atom. At the low energies we are considering in this work,
the cross section for electron-positron annihilation is negligible compared to that
for elastic scattering or positronium formation, except in the limit of zero incident
energy when it tends to infinity. However, the investigation of this process gives
very useful information on the nature of positron-atom interactions, on the atoms
themselves and on the quality of the scattering wavefunction we have used in this

work.

A free electron-positron pair will decay mainly into two or three y-rays as the
one ~v-ray decay is not possible, since energy and momentum cannot be conserved,
and because the higher order processes, although possible, are highly improbable. In
an experiment with an unpolarized positron beam, which is in general the case, the

two v-ray decay comes from the 25% of electron-positron pairs which are in a singlet
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spin state. while the three y-ray decay arises from the annihilation of the other 75%
of electron-positron pairs which are in a triplet spin state. The annihilation rate for
three ~v-ray decay is found to be only 1/370 of that for two v-ray decay (see Bransden
1969) and. therefore, only the annihilation into two 5-rays needs to be considered.
For low energy incoming positrons, the total energy of the electron-positron pair is
essentially equal to the rest energy, 2mc?, where m is the mass of the electron, and in
the reference frame of the centre of mass of the electron-positron pair the two v-rays

are emitted in opposite directions, each with the same energy of mc? = 511keV.

In this chapter we will investigate the two 4-ray annihilation rate in positron-
helium scattering and also calculate the angular correlation function of the two
~-rays which arises because, in the laboratory frame of reference, the two y-rays are
not observed to be emitted in exactly opposite directions. The analysis of this an-
gular correlation function is of interest as it gives information about the momentum

distribution of the annihilating electron-positron pairs.

8.2 The annihilation rate and Zeﬂ'

The annihilation rate into two y-rays of a singlet spin state electron-positron pair is
A = mrien, (8.1)

where g = €2/(mc?) is the classical radius of the electron, ¢ is the speed of light and

n is the electron density in the vicinity of the positron where annihilation occurs.

We can rewrite equation 8.1 as
A= nroeNZyg, (8.2)

where N is the number density of atoms in the vicinity of the annihilating positron
and Zg, which is velocity dependent, is the effective number of electrons per atom.

In terms of the annihilation rate, the annihilation cross section, o,, is given by

A1
No = ;wrcheﬁ', (8.3)
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where v 1s the velocity of the incoming positron.

The effective number of electrons per atom, Z., can be thought of as the number
of electrons with which the positron can annihilate, and this is greater than the real
number of electrons in the atom because the positron polarizes the atom and distorts
the electron cloud. For annihilation to take place, the positron and the electron must
be at the same position in svace, or at least within ry of each other, and therefore,
Zosr is a measure of the probability of the positron being at the same position as one

of the target electrons. This can readily be calculated from the elastic scattering

wavefunction, ¥, described in chapter 6 for s-wave scattering, using
Zoff = 2/ | Ua(Py = 72,72,73) |* dradrs (8.4)

where U, is normalized to unit positron density as r; — 0o and the factor 2 comes
from the fact that both electrons are equally likely to annihilate with the positron.
Because equation 8.4 does not constitute a variational principle, the error in Z.g
is of first order in the error in the trial function and not of second order as was
the case in the evaluation of the phaseshift. Therefore, the accuracy of Z g will
be a sensitive test of the quality of the trial function we have used in our elastic
scattering calculations, although one must bear in mind that the evaluation of Z.g

involves the trial function in a very restricted region of space, i.e. 1 = r3.

Before annihilation, the positrons, which we assume to have thermalized in the
helium gas, have a mean energy of (3/2)kgT, where T is the absolute temperature
of the gas, kg is Boltzmann’s constant, and therefore at T = 300K we have an
average energy £ = 0.04¢V. In this energy region, the dominant contribution
to Zegr is from s-wave scattering and the only other significant contribution comes
from the p-wave. We have evaluated Z ¢ at different energies below the positronium
formation threshold using the s-wave elastic scattering wavefunction (equation 6.5)
with w = 6 for helium model H22, as well as a similar p-wave elastic scattering trial
function with w = 4 in each symmetry. The polynomial fits to the dependence of

Zog(l =0) and Z g(I = 1) on k, the positron momentum, are given by
Zg(1=0) = 3.9321+0.18584k — 19.563k* + 46.670k° — 38.212k* (8.5)
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g(l=1) = 3.8741k% — 1.6910%> — 0.64117k*, (8.6)

which are plotted in figure 8.1. We have restricted the polynomial fit for Z g(Il = 1)
to have no constant and linear terms because the expansion of Z (! = 1) around

k = 0 should not contain these terms.
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Figure 8.1: The theoretical dependence of Z.g on the positron momentum.

The value of Z,g measured experimentally is an average over the Maxwell-
Boltzman distribution of the positrons in the gas. We have therefore convoluted
the sum of the fits for the s-wave and the p-wave contributions to Z.g with this

speed distribution using

—k2
[ Zg(k)kreTaT dk
Z g =0 Ze .
T e pae o g

(8.7)

The variation of 7eff with gas temperature is plotted in figure 8.2, and at T' = 293K
we obtained Z,g = 3.88 + 0.01 (one should note that at the higher temperature
(> 5000K’) the contributions of higher partial wave (I > 1), which are not included

here, will become more significant).
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There has not vet been any accurate experimental investigation of the variation
of Z g with gas temperature for helium, and the most accurate result for Zog at
room temperature is that of Coleman et al. (1975) who found Z g = 3.94 £ 0.02
at T = 293K". which is in reasonable agreement with the present theoretical results.
Although the scattering wavefunction we have used for the evaluation of Z g was
not fully optimized for the low values of k considered here, we believe that we have
obtained a well converged value of Z.g, and that the agreement with experiment

indicates that the trial function we have used is of a high quality.
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Figure 8.2: The theoretical dependence of Z g on the temperature of the helium

gas.
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8.3 Angular correlations from positron annihila-

tion in helium

As mentioned in the introduction of this chapter, the most probable outcome of the
annihilation of an electron-positron pair is the production of two ~-rays, each of
which, in the frame of reference of the centre of mass of the electron-positron pair,
has an energy Ey = hvy = mc? = 511 keV. These two y-rays emerge in exactly

opposite directions, i.e. the angle between them is 7.

However, because of the motion of the centre of mass of the electron-positron pair,
the angle between the two v-rays as observed in the laboratory frame of reference
is not 7 but (7 - ) (see figure 8.3 in which one should note that § (=6; + ;) is

greatly exaggerated as in reality it is of the order of a few milli-radians). Also, in the
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Figure 8.3: Illustration of the relationships between the momenta of the annihilation

v-rays in the centre of mass coordinate system and in the laboratory system.
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laboratory frame of reference, the pair has a velocity v and a momentum p = 2mw,
and the two y-rays are therefore Doppler shifted to other energies F; = hv; and
E; = hyy. The measurement of this energy shift, and the angle 8, are related to
the momentum distribution of the annihilating electron-positron pair just before the
annihilation, and can be used to infer the momentum distribution of the electrons in
the atom. This type of analyis forms the basis of a technique widely used to study

the momentum distribution of electrons in solids and liquids.

The angular shift between the two y-rays of the annihilating pair is measured
using the angular correlation of annihilation radiation (ACAR) technique in which
both 7-rays are detected in coincidence through two narrow slits, and therefore only
the projection of the angle between them onto one particular plane is measured
(Stewart et al. 1990. Coleman et al. 1994). The energy shift measurement involves
recording the Doppler shift in the energy of only one of the y-rays from 511keV,
i.e. its value in the centre of mass reference frame (Shizuma et al. 1978, Tang et
al.1992). This technique makes it possible to have large count rates and therefore
much more accurate results. Theoretically, the angular and the energy aspects of
the annihilation process can be related by considering the transformation from the
centre of mass reference frame to that of the laboratory. Because of the isotropy of
the system, we can choose without any loss of generality a set of axes which makes
the transformation simpler to implement and clearer to visualize. For instance, we
can consider that in the centre of mass reference frame the momenta of the two
annihilation y-rays, £pe (both of magnitude Ey/c = mc ), lie along the positive
and negative y-axis (see figure 8.3). Also the velocity of the centre of mass in the
laboratory frame may be chosen to lie in the z — y plane, making an angle a with the
positive r-axis. The momenta of the two y-rays in the laboratory reference frame,
p1 and p2, add up to the momentum of the electron-positron pair, p = p; + p2, and
as p = 2muv, p also makes an angle o with the positive z-axis. Because the velocity
of the electron-positron pair is much less than the speed of light, the transformation
of the momenta of the two v-rays from the centre of mass reference frame to that

of the laboratory can be done non-relativistically.
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From figure 8.3 we have
p1 = mcj + mo and P2z = —mcj + mo, (8.8)

where j is a unit vector along the y-axis. To first order in v/c, and noting that the

angles 0; and 6, are of the order of milli-radians. we have

p1 = mc+musine = me+ 5Py (8.9)
1
p2 = mc—musina = mc— 5Py (8.10)

where p, = 2muvsin « is the y-component of the momentum of the electron-positron

pair. The Doppler shift from the centre of mass energy of the y-rays is
AE; = (Ei—E,)=c(pr —mc)=(1/2)cp,

AE, = (E;-E,)=c(p2 —mc)=—(1/2)cp,. (8.11)

We see that it is the same in magnitude for both v-rays and it is sufficient to detect

only one v-ray to make a Doppler shift measurement.

In the laboratory frame of reference the angle between the two vy-rays is = — 8

and from figure 8.3 we get

0 = 6,+6,

mv Cos ¢ muv CoSs «x

mec+ muvsina  mc—mvsina

2m2vccos o
BT 252 5in? (8.12)
m2c? — m2v?sin® a

which to first order in v/c reduces to

g o ZTVCOSQ (8.13)

mc

As 2muv cos « is the z-component of the momentum of the electron-positron pair, we

have

o="L= (8.14)

mc’
However, because of the isotropy of the positron-atom system, all directions of p, the
total momentum of the annihilating pair, are equally likely, and therefore p, and p,

will have the same distribution function. Hence, we can use either the distribution
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function for 6F (equation &.11) or the angular correlation function for the angle

(m — 8) (equation 8.14), and from both these equations we find

1 0 |

5CPy = SF = mc2—2—. (8.15)
We have calculated the angular correlation function in a similar manner to that of
Humberston (1979) and transformed the results to an energy shift function using
equation 8.15. The probability of the two y-rays emerging with the angle between
them in the range (7 — ) to (7 — (6 + df)) is F(0)d#, where F(8) is the angular

correlation function given by

F(6) x /_oo /_Oo ['(p: = mcb, py, p.)dp,dp,. (8.16)

The function I'(p) is the momentum distribution function of the annihilating electron-
positron pair, which for the positron-helium system has the form

2

I(p) = /dra /eXP(iP-Tz)‘I’(H = r2,T2,73)dT2| , (8.17)

i.e. the overlap of the momentum eigenstate, exp(¢p.rz), with the scattering wave-

function, ¥, evaluated at r; = r,.

By fixing p; in equation 8.16 we have restricted ourselves to the p, - p, plane

and we can easily change to plane polar coordinates to evaluate the double integral.

So we have

Py p: — P\ (8.18)
and
dp,dp. = p'dp'dB (8.19)
with p’ = \/pZ + p2.
Hence
FO« [ [TT@)piras (8.20)

and using p? = pZ 4 p2 + p? = p + p’?, remembering that p, = mc =const, we get,
d(p')* = d(p)’ (8.21)
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and

p'dp’ = pdp. (8.22)

Integrating over 3 gives a factor 27 so that,
o
F(0) « 27 /,, T(p)pdp. (8.23)
The momentum distribution function, I'(p), is a function of the magnitude of p
only as we are dealing with a spherically symmetric system, and we can therefore
choose for the 7, integration in equation 8.17 to put the vector p along 73 for
instance, if we take the case of the positron annihilating with electron 2. Now
using dradry = radrarsdrsrasdraes sin§,df,d¢, and performing the external angle
integration, we have

2
exp(—ipra cos 823)¥(ry = 7g, 72, 73)rodroroadras| radrs.

(8.24)

2473

F(p) =4r

lra—r3]
The evaluation of F'(f) can be done using the variational scattering function for
elastic scattering, and the value of F'(8) for a given § now corresponds to a different

range of integration in equation 8.23, as we integrate from p, to oo with p, = mcf.

In figure 8.4 we present the angular correlation function, F'(#), normalized to
unity at § = 0, for four different s-wave scattering wavefunctions ( with either only
the S; type of terms or with w = 2, 4 and 6 respectively) and the previous results
obtained by Humberston (1979) for H5 using the method of models. At the time,
Humberston's results were in disagreement with the most accurate experimental
data of Briscoe et al. (1968) and it was proposed that this could be due to the fact
that the theoretical results corresponded to annihilation in a gas while the exper-
imental data referred to measurements in liquid helium. In figure 8.4 we see that
the calculation with a wavefunction containing only S; type of function, which is
essentially a Born approximation and corresponds to scattering from an undistorted
helium target, gives a much wider spectrum than that obtained when the full wave-
function, including short-range terms, is used. This Born approximation spectrum
represents the momentum distribution of the electrons in the undistorted target, as

opposed to that of the electron-positron pair, and the broadening of the spectrum is
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Figure 8.4: Angular correlation function calculated with an elastic scattering wave-
function containing only S; type of terms or with the full wavefunction and w=2,4

and 6 respectively. Also included are the previous H5 results from Humberston

(1979).

due to the fact that the electrons in the undistorted target have higher momentum
than is the case when the positron distorts the atom, pulling the electrons away from
the nucleus and slowing them down. Furthermore, one can notice that the w = 6
results can be considered to be well converged, although there is no rigorous bound
on the value of F(#) and that, as was the case in the calculation of Z.g, the error

is of first order in the error in the trial function.

The new theoretical results of this work were also found not to agree with the
experimental results of Briscoe et al., but recently new measurements of the Doppler-
broadened annihilation y-ray spectrum for positrons annihilating in helium have
been made by the San Diego group, and more accurate results have been obtained
with which our theoretical data can be compared. A Penning trap was used in

which a large number of positrons with characterized energies can be stored, and
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great accuracy was achieved in these measurements because of the increased count

rate and improved signal-to-noise ratio (Tang et al. 1992 and Iwata et al. 1995).
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Figure 8.5: Theoretical annihilation spectrum with and without the convolution by

the experimental detector response function.

The observed spectrum also contains the detector response, which is accurately
approximated with a combination of a Gaussian with FWHM of 1.16 keV and a step
function due to Compton scattering in the Ge crystal of the detector. To compare
these results with theory the detector reponse needs to be extracted from the data,
and while the substraction of the step function does not create any difficulty, the
deconvolution of the data with the Gaussian function is found to be numerically very
unstable. Therefore, instead, the theoretical results of this work, transformed into
an energy spectrum using equation 8.15, have been convoluted with the Gaussian
detector response, and we can see in figure 8.5 that this leads to a broadening of the
spectrum. In figure 8.6(a) we present the convoluted theoretical energy spectrum

calculated at a positron energy of 0.04 eV together with the experimental data from
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the San Diego group ( Van Reeth et al. 1996).

The agreement between the convoluted theory and experiment extends over three
orders of magnitude without using fitting parameters and we find the value of
x?/(degrees of freedom) = 1.2 (see figure 8.6 ¢ for residuals). In the analysis of
previous experimental data (Stewart et al. 1990, Coleman et al. 1994) it was as-
sumed, but with no theoretical justification, that the spectrum had a Gaussian form,
but as indicated by the residuals in figure 8.6 b, the Gaussian does not give a very
good fit, with x2/(degrees of freedom) = 4.7 instead of approximately unity if the

model of the Gaussian fit were correct.

8.4 Conclusion

The excellent agreement between the theoretical calculation and the experimental
measurements of the y-ray annihilation spectrum shows that we have achieved a
very high degree of accuracy in the elastic scattering trial function, ¥, used in
our scattering calculations. One must emphasize that this does not constitute an
exhaustive test of ¥, as this calculation, as well as that for Z g, involves the scat-
tering wavefunction only in a restricted region of space. Nevertheless, the agreement
for the annihilation spectrum is such that we believe that both the theoretical and
the experimental results can be considered to be very close to the exact results. Also,
we expect that better agreement between theory and experiment could be achieved
for the value of Zg if a scattering wavefunction including polarization terms was
used and if a similar experimental technique to that employed for the annihilation
spectrum measurement was used, i.e. a trap to confine the positrons with a well

defined energy.
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Figure 8.6: (a) Annihilation v-ray spectrum for positrons interacting with helium
atoms, as measured in the laboratory frame of reference. Solid line: theoretical
prediction convolved with the response of the Ge detector; dashed line: Gaussian
function fitted to the experimental data; o, experimental measurements. (b) Resid-

uals from the Gaussian fit. (c) Residuals from the theoretical calculation.
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Chapter 9

Conclusions

In this work, we have presented the results of a very elaborate variational calculation
of the scattering parameters for low energy positron-helium scattering. The Kohn
variational method has beer used with multi-channel trial wavefunctions, and we
have made a detailed investigation of the effect of using non-exact helium target
wavefunctions in this type of variational calculation. The outcome of this inves-
tigation is that accurate and reliable results can be obtained when the method of
models is not used. but only if very elaborate helium target wavefunction are used
in the scattering calculation (see also Van Reeth and Humberston 1995a). We have
created a very accurate helium wavefunction, refered to as H22, which contains 22
Hylleraas-type short-range terms, and gives very good results for both the ground
state energy and the dipole polarizability of the helium atom. The results we have
obtained for s-wave scattering below the positronium formation threshold without
the method of model and using the helium target function H22, agree very well with
those of Humberston (1973) and Campeanu and Humberston (1977) which were
obtained with the method of models.

The main difficulty in the formulation and the computational work in these
investigations have been concerned with the setting up of the four-body two channel
Kohn variational method and the evaluation of the various matrix elements. The

general formulation of the problem was found to be somewhat similar to that for
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positron-hydrogen scattering, but both the inexactness of the target wavefunction
and the inclusion of exchange between the two electrons in the target, as well as
the increased number of interparticle coordinates, have made the formulation for
positron-helium much more complicated. Because the method of models is not
appropriate for the two channel problem, we have had to include new types of terms
in several matrix elements, terms which contain the operation of Hy. on the target
wavefunction explicitly, and which were not present in the positron-hydrogen case.
Moreover, the exchange between the electrons in the target has meant that more
complicated angular functions occurred, and that some of the matrix elements which
could be shown. using symmetry arguments, to be zero in the hydrogen case, are

now non-zero and therefore need to be evaluated.

In terms of the evaluation of the matrix elements, the main difficulty was to
create a six dimensional numerical integration procedure which was at the same time
reliable, flexible. accurate and could also be performed in a reasonable amount of
time. We believe that the various numerical methods and computational techniques
we have developed have made it possible to get reasonably accurate results for the
integration of all types of matrix elements. We recognize that we will never achieve
excellent accuracy in the integration of most matrix elements, but the accuracy
which we have achieved, 4-5 figure in the worst case, was found to be sufficient.
We have investigated the sensitivity of the accuracy of the final results, i.e. the K
matrix elements and the cross sections, by comparing our results with those obtained
by reducing the accuracy of the integration in all matrix elements significantly, for
instance to 3-4 figures in the worst case. We have found that there was less than
1% difference in K’1; and only a few percents in K7, and Kj,, and we are therefore
satisfied that we have achieved sufficient numerical accuracy. We have also made
great efforts in the optimization of the computer programs to reduce significantly the
computational time, so that the matrix elements for trial functions with large w could
be evaluated. This was done by developing both the parallelization of the computer
code and the new method we have used in the s-wave scattering calculations to

evaluate the (¢;, L$;) matrix elements, both of which are described in chapter 5.
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An important feature of the s-wave calculation we have presented in chapter 6,
and which is also present in the p-wave and d-wave calculations, is the impossibil-
ity of a perfect optimization of the non-linear parameters in the two channel trial
functions for both Kj; and K,;. As explained in the analysis of the various partial
waves diagonal K matrix elements, the reason why one set of non-linear parameters
will not optimize the trial function for both K;; and K,, is that these K matrix
elements are related to physical processes which do not have the same interaction
region. Therefore, as the nonlinear parameters o and f, for instance, effectively
define the region of space where the short-range correlation terms are effective, it is
to be expected that one given set of @ and B will not be correct for both K;; and
K,;. We have chosen a set of non-linear parameters which optimizes the value of
K11, because this K matrix element is directly linked to the elastic scattering cross
section for positron-helium scattering, while K5, is linked to the elastic scattering
of positronium from the helium-plus ion, which is not the primary interest of our
work. In addition, we have found that, although the definition of the cross sections
in terms of the K matrix elements (equation 2.25) couples all K matrix elements
together, there seems to be very little coupling of the K, element in the evaluation

of both ¢y; and oq,.

A further difficulty in the optimization of the non-linear parameters is that, as
there is no bound on the K, matrix element, which is closely related to the positro-
nium formation channel, it is not possible to investigate precisely the optimization
for K1, and to determine with rigour the accuracy of ¢12. The formation of positro-
nium is a longer range process than the elastic scattering of positrons from helium,
so one would expect that a set of non-linear parameters which optimizes the values
of K;; would be suitable for the optimization of K;,. The analysis of the opti-
mization of the non-linear parameters did not indicate that this was the case and,
futhermore, the optimization of the non-linear parameters (see figures 6.2 to 6.6 for
s-wave scattering) clearly shows that the optimized values for K; would gave poor
values for K;;. Therefore, we propose as a next step in this type of investigation,
to include two short-range expansions into the trial function, each with a different

set of non-linear parameters. It is expected that, if such a scheme were to be used,
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less terms would be needed in each expansion to achieve good convergence for both
K1, and K5, than is the case when only one type of short-range expansion is used.
Unfortunately, this would make the formulation more complicated and require more
computational work, and the main difficulty would be the integration of the ma-
trix elements involving the non-linear parameters chosen to optimize K;. Indeed,
the best set of non-linear parameters for K,; is one which creates a more diffuse
interaction region so as to represent the polarization of the positronium atom by
the helium-plus ion more effectively. This means that the short-range terms with
this set of non-linear parameters have a longer range behaviour than those which
we have been considering in this work and that, therefore, difficulties could emerge
in the integrations of the matrix elements containing such terms. We expect that
a substantial increase in the number of integration points and computational time

would be required to achieve the accuracy we have obtained in this work.

The s-wave positronium formation and elastic scattering cross sections have been
calculated using trial functions containing 502 short-range terms (w=6). The elastic
scattering cross section for s-wave scattering was found to be dominant within the
Ore gap, and a small discontinuity was noted at the positronium formation threshold.
This discontinuity was removed by introducing an explicit virtual positronium term
in the elastic scattering trial function below the threshold and a Wigner ‘rounded
step’ feature was found. The s-wave positronium formation cross section was found
to be relatively small and very similar in both magnitude and energy dependence
to the s-wave positronium formation cross section in positron-hydrogen scattering.
We believe that the results presented in this work for s-wave scattering are within

2-3% for 041 and 10-20% for oy, from the exact ones.

The calculation of the p- and d-wave scattering parameters was more complex
than that for s-wave scattering and the results we have obtained do not display
the same clear convergence pattern as found previously. For both partial waves,
there seemed to be a breakdown in the convergence pattern of the K matrix el-
ements with respect to the increase in the number of first symmetry terms, with

the appearance of resonance-type features which disappeared when higher symme-
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try terms were included. We have not been able to determine exactly the reason
why this occurred, but we have managed to reduce the effects of this breakdown
on the convergence of K matrix elements by reducing the number of first symme-
try short-range terms. Reasonably accurate p- and d-wave elastic scattering and
positronium formation cross sections have been obtained within the Ore gap with
p-wave trial function containing 150 short-range terms in the first symmetry and
330 in the second symmetry, and d-wave trial function containing 36 first symmetry
terms and 172 third symmetry terms. We estimate oy; to be within 5% of the exact
result and o2 to be within 10-20% for both p-wave and d-wave scattering. We find
that the d-wave positronium formation cross section is dominant in the Ore gap for
energies 1eV higher than the threshold, reaching & 50% of the total cross section at
the highest energy at which we have calculated. In both the p- and d-wave elastic
cross sections a discontinuity was found at the threshold itself, and there was not
sufficient time to include an explicit virtual positronium term in the calculation as
was done for s-wave scattering to achieve continuity. This discontinuity was seen to
be very pronounced in the d-wave scattering, which is very similar to the case for
positron-hydrogen d-wave elastic scattering , and, therefore, we expect the inclusion
of a virtual positronium term in the trial function to be very important for this par-
tial wave. On the other hand, we do not expect to find any threshold features in the
elastic scattering cross sections for p- and d-wave scattering similar to that found

in s-wave scattering. An account of the s-wave and p-wave results has also been
published (Van Reeth and Humberston (1995b) and Humberston and Van Reeth
(1996)).

Total elastic scattering and positronium formation cross sections have been ob-
tained using the sum of the s-, p- and d-wave components calculated in this work and
adding an estimate of the higher partial waves contribution calculated with more
approximate methods. The formula of O’Malley et al. (1962) ( equation 7.36) was
used, both below and above the positronium formation threshold, for the evaluation
of the elastic scattering cross sections for [ > 2, and the sum of these was found to
contribute = 5% to the total elastic cross section. The positronium formation cross

sections for [ > 2 calculated by McAlinden (1996), using a first Born approxima-
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tion, are believed to be underestimates, but it was not possible to determine exactly
by what amount. The total positronium formation cross sections calculated in this
work are % 30% lower than the experimental results of Moxom et al (1994) and
the total cross sections, i.e. are % 5 —10% lower than the experimental

total cross section of Mizogawa et al. (1985) and Stein et al (1978). The difference

E 0.08-

0.06 —

-0.04-

002-

Figure 9.1: Comparison of theoretical and experimental total positronium formation
cross sections for positron-helium scattering. E2 is the excess energy of the positron
beyond the positronium formation threshold, i.e. E2 = Egt+ - Ejh- The experimental
data (x) are those of Moxom ef al. (1994). The boxes and the shaded area are the
compound uncertainties of the experiment and the theory respectively (see text

below).

between theory and experiment is believed to come from the uncertainties in both
sets of results. Those in the theoretical calculation are mainly due to the lack of
convergence of the Kohn variational results for (Ji2, the underestimate of the Born
results for the higher partial waves contributions, and the omission of the second
symmetry short-range terms in the d-wave calculation. Experimentally, the uncer-

tainties are due to the normalization of the data as well as to the calibration of the
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positron energy scale. In figure 9.1 we present a comparison of the theoretical and
experimental results for the positronium formation cross section, with an estimate
of the compound uncertainties. The height of the boxes around the experimental
data represent the 20% uncertainty in the magnitude of oy, and the width is a mea-
sure of the +0.1eV uncertainty in the positron energy scale. The uncertainty in
the theoretical results due to lack of convergence (£20%) is represented by the grey
area surrounding the theoretical curve for 0. The difference between theory and
experiment is now found to be nearly compatible with the uncertainties in both sets
of results and this shows that, although there is still a disagreement on the exact
energy dependence of o;,, the magnitude of the positronium formation cross section
in positron-helium scattering within the Ore gap is now reasonably well established

both experimentally and theoreticaly.

Low energy positron-electron annihilation in helium has been investigated using
elaborate s- and p-wave elastic scattering trial functions. The annihilation parameter
Zog- which can be thought of as the number of electrons with which the positron
can annihilate, was calculated and the thermally averaged value of Z g = 3.8840.01
was found to be in good agreement with experiment. We have also calculated the
annihilation energy spectrum which is related to the momentum distribution of the
electron-positron pair before the annihilation, and the results we have obtained are
in excellent agreement with the recent experimental data from the San Diego group
(Van Reeth et al. (1996). Ac the calculation of these annihilation parameters is not
based on a variational principle, the error in the results will be of first order in the
error in the trial function and not of second order as was the case in the evaluation
of the scattering parameters. Therefore, we believe that the quality of our results

for Z g and for the annihilation energy spectrum indicates that we have developed

very accurate and flexible trial scattering functions.
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Appendix A

Symmetry arguments

The number of matrix elements which need to be evaluated to solve equation 2.103
can be reduced by symmetry arguments leading to a significant gain in computa-

tional time.

The general form of a matrix element is (g, Lf), where g and f are any of the
short-range or long-range terms in the trial function and L = 2(H — E) with H

being the total Hamiltonian. Hence,

@LD=(0l-v3-v,-vi+ 222 2 2.2 gy (A

] T2 r3 12 ™3 T23

If we consider the functional F' = (g,Lf) — (f, Lg) we have
F= (=g, V. N)+(£,V9)+ (=9, V5, ) +(£,V7,9)+ (=9, V7, £)+(f,V5,9), (A.2)

which using Green’s theorem (equation 2.52) can be written as

F = Al Al [gvnf - erlg] .dO’ldTl -/Vz [42 [gV,,f—fV,zg] -da'szz

+/V3 _/:43 [9V s f = FVrsg].dosdrs (A.3)

where A; is the surface which encloses the volume V; for ¢ = 1,2 or 3. These surfaces
can be taken to be spheres of infinite radius (i.e. r; — 0o) and the surface element
is then do; = r?sin6;df;dé,#;. Therefore, if each integrand in equation A.3 tends

to zero faster than r;? the surface integrals will vanish as r; — oco. This will be
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the case if either f or g is a short-range term, as these contain an exponentially

decreasing dependence on ry.r; and r3 and we therefore have

(6:,L6;) = (85 L)
(85, LS1) = (S1,Lé)
(6, LC1) = (Ci,Lés)
(85, LS2) = (S2,Lé)
(6, LC2) = (Cy, L) (A.4)

where @; = (1 4 Py)¢; = (¢i + ¢i'), Sz = 1/V2(1 + Pa3)S2 = 1/4/2(S2 + S3'), etc.

For the long-range — long-range matrix elements, we first consider those which in-
volve cross-terms between channel one and channel two type of terms, i.e. (Sy, LS5),
etc. In this case also, the exponential dependence of the helium target function on
T, and r3 in the S; and C; terms ensures that the two last surface integrals in
equation A.3 vanish as r; or r3 go to infinity. For the first term in equation A.3
we see that, if we keep r, and r3 fixed, the exponential fall-off in r;; or 13 of the
positronium fragment function in the S; and C, type of term also ensures that this

surface integral vanishes as r; — o0o. Hence we have,

(SI,L?) = (_S—;,le)
(51, LCh) = (Co, L)
(Cl,LSQ = (E,LCH)

)

)
(€, LT3) = (CoLCy (A.5)

For matrix elements with terms of the same channel we only need to consider those
which involve the cross product between the S and C types of term. We first
consider the (S;,LC, ) matrix element for which we can rewrite the functional

F = (53, LC;) — (Cy, LS;) ,using the properties of the Py operator, as

F = (\/-[52 + 52] L\/—[C2 + 02]) (\/—[02 + 02] L\/—[S2 + 52])
= [(S2, LC2) = (C2, LS:)] + [(S2, LC3) — (C3, LS2))
= FR+F (A.6)
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We can, using equation 2.11, write equation A.3 for the Fj functional as,

v 'V
/V 1 /A m [52 2204~ C4 52] do p, dry (A7)
+ /V /A [5:9:,03 = C1V,, 53] dosdr,

+ / [$:2V,.,C — C12V,..Sy] .dor1adrs.
V3 JAr2

The S, term contains an exponential fall-off in 3 and r; from the Het(r3) and the
Ps(ry2) wavefunctions, and therefore the two surface integrals on Az and A;, will
vanish as r3 — oo and ri;; — oo respectively. Also the Cj term has an exponential
dependence on r; from the He*(r;) wavefunction (which comes from PysHet(r3));
therefore as p, — oo, with ry; and r3 fixed, the surface integral on A,, will vanish

too and we have

F! = (S5, LCL) — (CL, LS;) = 0 (A.8)

For the F, functional we have

£z Sz] -dO'pzd‘lj (Ag)

o, [0

+ /V 2 /A (895,02 = Ca9,,3] dasdr,

+ /V 3 /A 1522V1,0 = 02V, 3] doryzdrs.

Here also, because of the exponential fall-off from the positronium and the
helium-plus wavefunctions, the two last surface integrals vanish, but as we do not
have an implicit fall-off in p; the first term will not go to zero. Also, as we are consid-
ering surface elements which are normal to p, we can ignore the angular dependence
in V,, and equation A.10 reduces to

1 aS 0C,
F, = '/Vl 5 [/ (C’za—p: -5 9 ) pasin 992d0p2d¢,,2] dn (A.10)

On the surface A,,, using the asymptotic form of C; and S, for s-wave scattering,

we have
a5S, V2K | kpg cos Kpg — sin kp,
922 N By (rs)Bp,
By Proo Het (T3)®@ps(T12) in [ Py
aC, V2K | —Kpy sin kpy — cos Kp;
922 @y (rs)0p, . (A
Bpz #rco He+(73)0p ("12)\@—7-[ Y (A.11)
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Hence,

1

Fz = v -‘;)-(DHG+(7'3)@P3(1'12) (A12)
<\ 2 sinwpa’ | coskpa’ 0 ig db,.da,,| d
-_ sin
A, ir P% ,0% P2 SN Gy, GV, AQp, | ATy

which using the normalization properties of @+ (73)Pps(r12) gives
(52, LCQ) = (Cz, LSz) + 1 (A13)

and therefore

(82, LC,) = (Cy, LS;) + 1. (A.14)

Using similar argumnents we can also show that

(S],LCl) = (C1,LS]) + 1. (A15)
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Appendix B

Angular integration

For s-wave scattering the spherical harmonic, Yp0(f, ) , has no azimuthal or polar

dependence. and the external angular integration is relatively simple.

The volume element

dr = dridrydrs (B.1)

can be rewritten as

dr = rfa'rl sin 91d01 d¢1'f‘§d7‘2 sin 02d82d¢27‘§d7’3 sin 03d93d¢3, (B2)

where r;,6; and o; (i=1,2) are defined in figure B.1. Because of the spherical sym-
metry of the s-wave wavefunction, we can choose to rotate the whole four-body
system in such a way as to facilitate the integration over a given external angle. For
instance, when we do the 72 or 73 angular integration, we can choose to rotate the
coordinate system so that the z-axis lies along the vector 7;. Furthermore, when the
r3 angular integration is performed, we can choose to rotate the coordinate system

so that the vector r, now lies in the 2/, z’ plane (see figure B.2). Hence , we have
dT = rfdrl sin 01d01d¢17‘§d7‘2 sin 012d612d¢’27"§d7'3 sin 013d013d¢23, (B.3)

where ¢,3 is the angle between the planes of the triangles (ry, s, 712) and (r1,73,713)
and is an internal angle. The angle ¢} is the azimuthal angle of r, with the z’-axis

before the rotation of r; into the z’ — 2’ plane.
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Figure B.1: The positron-helium atom coordinate system in an arbitrary (z,y, z)

coordinate system.

Therefore, for s-wave scattering, after the external angle integration, the volume

element becomes
dr = 87T2T%d7'17‘§d7‘2 sin 912d0127‘§d7‘3 sin 013d013d¢23, (B.4)
and using the relation r}; = r + r? — 2rr; cos 4, we have

dT = 87T2d7‘1T'2d1"27'3d7‘37‘12dT'127‘13d7‘13d¢23 (B5)

For the higher partial wave calculations, the absence of spherical symmetry in the
Yi0(0, ¢) functions makes the external angle integration more difficult, but a similar
method as for the s-wave calculation can be used (i.e. rotation of the cooordinate
system with the new z-axis along one of the position vectors) if one takes care to

transform the various angular functions in the appropriate manner.

For p-wave scattering, the spherical harmonic is Y;¢(8,¢) = /3/47 cos 8 and

a typical angular function which will need to be integrated will be of the form
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Figure B.2: The positron-helium atom coordinate system. in the transformed

(z',y',2') coordinate system.

cos 0 cos 0; with k,1 = 1,2,3. Here again, we can choose the vector r; as z-axis
to do the angular integration over the vector r;. For this we rotate the coordinate
system about the z-axis so that the vector 7 lies in the £ — z plane, and then rotate
about the y-axis so that the z-axis lies along the vector rg. In this new coordinate
system, the angle cos 6, is given by cos§; = 2.7, where 2 is the unit vector of the

original z axis in the new coordinate system. Using

2 = (—sinb,0,cos6k)

-~

L}

(sin By cos @}, sin Oy sin @}, cos k), (B.6)

where 0y, is an internal angle and @] is the azimuthal angle of the vector r; in the

new coordinate system, we have
cos 8; = cos 0 cos 8i; — sin Oy sin Ox; cos ¢;. (B.7)
If we now consider a specific case, for instance

I= cos 0 cos 02dT.: (B.8)

Tezxt
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where dr.;; implies that we are only considering the external angular integrations,

we have

T 27 T . 27 T 2
I= / cos 0, sin 6,df, / déy / cos 0y sin 0,d0; / dds / sin B5dfs / dés
0 0 0 0 0 0
(B.9)
The 03 and ¢3 integrations can be performed in a similar manner to that used in the
s-wave calculation and they will be transformed into internal angular integrations,
with respect to 6,3 and ¢s3 respectively. The r, angular integration can now be

done using the transformation outlined above and we have
T p2m p2m . .
I= / / / cos 8;(cos 6; cos 81, — sin §; sin 01 cos @) sin 61d0,dd,dé, (B.10)
o Jo Jo
which, after integration over ¢; and ¢5, gives

I = 47r2/7rcos201 cos 01, sin 0,d6,
0
2
- §§—605012 (B.11)

Using the same method we can establish the following relation

8r?
/ cos 0y cos 0;dTegs = —— cos Oy (B.12)

JTez, 3

for k,1=1,2,3. One can also show that for the case £k = [ we have

2

/ c0s? 0y dTep: = 8% (B.13)

In the evaluation of the long-range — long-range matrix elements, the spherical
harmonics in the C; and S; terms depend on §,, and 6,,. To perform the integration

with respect to the external angles for such functions we use the relation

6 6
cos,, = T COS 12-;krk cos 0 (B.14)

to transform the angular integration into one involving only the angles 6y, 6,, and

65 which can be done using the technique described above.

The various angular integrations which need to be evaluated for a p-wave calcu-
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lation, and their solutions, are

Jroze Y1,0(0, 65)Y1,0(0, Ok )dTers - o7 F=1.23
Jrowe Y1000k, 0)Ya0(01, $1)dTere = 2mcosfy k,0=1,2,3.
Jreze Y10(01, 01)Y10(0,,, b0 )dTer: = 22pk (r1 + T cos O1x) k=23
Fraw Y100 04)Yi0(0pr 0 )Tews = 2 =23
Jrewe Y1,0(0005 60, )Y1,0(00 60))dTere =

43:91 (r? + ryrg cos 01y + r17y cos By + rir; cos 0) k=2,3.

For a d-wave calculation we have,

Jreze Y2.0(0k, 65)Y2,0(0k, bk)dTere = 2r k=1,23.
Jreze Y200k, 91)Ya,0(01, d1)drect = 2r (1 — 2sin? 9kz) k=123
Jrow Y20(00,, 85,)Y20(00,, 69, )dTeze = 27 k=23
Jrewe Yo(01, $1)Y20(0,, B, ) dTezt = 2r{1- _bss_‘;‘,ﬂ) k=23
frow Yo O 90 YaBpy $p)rese = 2 (Msoshupcostal 4} j93
fnu Y2.0(001s 0:)Y2,0(0,,, B0, ) dText = 2r [g’-“—"gt—;’%};—gﬁ}ﬁ — %] k=23
fnu ¢(1,1,2,0)(91, 0k)Y2,0(01, $1)dTezt = 6\/§cos O k=23

fTe.ﬂ ¢(171.2,0)(01) 0k)Y2_o(9pk, ¢pk)d7'ezt = %\/? [8 cos Oy + S—A‘E‘g—mr T :inz § ] k= 2,3
Jroae ¥(,1,2,0)(01,06)Y2,0(0,,, 6 )dTear =

3 /x [3 [cosﬂuc(rf-{-rlr; c0501¢)+cos€k,(r1r,+r,2 cosﬂu]

3\/s o7

_4C050ik] k=23
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