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Automated design of synthetic microbial
communities

Behzad D. Karkaria® !, Alex J. H. Fedorec® ' & Chris P. Barnes 1,254

Microbial species rarely exist in isolation. In naturally occurring microbial systems there is
strong evidence for a positive relationship between species diversity and productivity of
communities. The pervasiveness of these communities in nature highlights possible advan-
tages for genetically engineered strains to exist in cocultures as well. Building synthetic
microbial communities allows us to create distributed systems that mitigate issues often
found in engineering a monoculture, especially as functional complexity increases. Here, we
demonstrate a methodology for designing robust synthetic communities that include com-
petition for nutrients, and use quorum sensing to control amensal bacteriocin interactions in a
chemostat environment. We computationally explore all two- and three- strain systems,
using Bayesian methods to perform model selection, and identify the most robust candidates
for producing stable steady state communities. Our findings highlight important interaction
motifs that provide stability, and identify requirements for selecting genetic parts and further
tuning the community composition.
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microbe is engineered and grown as a monoculture to per-

form a particular function. Novel functionality is imparted
by introducing heterologous genetic processes that would not
normally be found in the organism. Non-orthogonal interactions
between the introduced heterologous processes can cause the
engineered function to behave in an unintended manner!-3, while
the increased metabolic burden imposed can significantly slow
growth rates and encourage selection of mutants*. Limited cellular
resource availability and unforseen interactions can cause the host
organism and the introduced circuits to behave differently when
expressed alongside one another®>~. Using microbial communities
would enable us to allocate functional components between sub-
populations of cells, creating physical barriers that insulate pro-
cesses from one another and distribute the burden of heterologous
expression between members of the community’. This allows us to
scale complexity in a manner that could not be achieved under the
limitations of a monoculture. In natural environments, we observe
mixed-species microbial communities that exhibit competitive
advantages over monocultures in productivity, resource efficiency,
metabolic complexity and resistance to invasion?. Being able to
predictably and reproducibly construct microbial communities for
synthetic biology or biotechnology applications would allow us to
harness these advantages.

The maintenance and control of microbial communities comes
with its own challenges. Competitive exclusion occurs when mul-
tiple populations compete for a single limiting resource (in the
absence of other interactions); a single population with the highest
fitness will drive the others to extinction!?. Evidence from microbial
ecology has shown us that stability can arise through feedback
between subpopulations. Cooperative and competitive interactions
are both important for integrating feedback that can stabilise
communities by manipulating growth or fitness of the subpopula-
tions!1-16, Synthetic microbial communities have been built using
quorum sensing (QS) systems to regulate processes that manipulate
the growth rate or fitness of a population. Fitness can be manipu-
lated by the expression of lysis proteins, metabolic enzymes, toxins
and anti-microbial peptides (AMPs)!417-23, Here, we focus on the
use of bacteriocins to manipulate subpopulation fitness. Bacter-
iocins are gene-encoded AMPs that can be used to directly suppress
the growth rate of a sensitive population?4. They are exported into
the extracellular environment, and generally use “Trojan horse”
strategies to enter and kill sensitive strains. Expression of immunity
genes provides protection against the bacteriocin, and can be
expressed separately or in conjunction with the bacteriocin?®. A
single expressed bacteriocin can impact the growth of multiple
other strains in the system, as opposed to intracellular toxins which
require all strains to be engineered. Bacteriocins also offer variable
spectrums of sensitivity, enabling broad or narrow targeting of
microbial species?. Previously, we have demonstrated the use of
bacteriocin MccV to improve plasmid maintenance in a popula-
tion26 and for building stable cocultures that overcome competitive
exclusion®. Other bacteriocins, such as nisin, have also been used
to produce stable communities23.

Predicting how a system will behave before implementation is
essential for the efficient use of lab resources and fully under-
standing the interactions that occur?’. System design by intuition
alone becomes increasingly challenging when dealing with multi-
level interactions. We can use model selection to compare a set of
candidate models and identify the most promising designss. We
have previously performed model selection and parameterisation
using Approximate Bayesian computation with sequential Monte
Carlo sampling (ABC SMC)?° to design robust genetic oscillators3?
and multistable genetic switches?!. Similar approaches have been
used to compare the ability of genetic parts to produce logic gate
behaviours? and to design regulatory networks from databases of

Traditionally, in biotechnology and synthetic biology, a

characterised parts3334. Automated circuit design has the potential
to greatly improve the engineering process in synthetic biology.

Here, we build upon computational circuit design in synthetic
biology, presenting automated synthetic community design. Our
workflow automatically generates candidate systems from a set of
parts which can be used to engineer a community. We use ABC
SMC to perform model selection, identifying candidate systems
that have the highest probability of producing stable communities
in a chemostat bioreactor. Using these methods we reveal the
optimal designs for two-strain and three-strain systems. This
workflow also allows us to derive fundamental design principles
for building stable communities and reveals critical parameters to
control the community composition.

Results

Automated synthetic microbial Community Designer (AutoCD)
workflow. Figure 1 illustrates AutoCD, the workflow developed
and applied in this study. First, we set the available parts which can
be used to build a stabilising system in a chemostat environment.
This consists of the number of strains (N), bacteriocins (B), and QS
systems (A). Any QS system can regulate the expression of any
bacteriocin in the system by induction or repression. Strains in all
models are dependent upon a single nutrient resource (S), which is
consumed by strains and replenished through dilution of the
chemostat with fresh media. Importantly, all models therefore
include nutrient-based competition between subpopulations. Uni-
form distributions are used to encode our prior knowledge of
biochemical rate parameters informed by literature, describing
each part and their interactions with one another (Table 1).
The priors used are broad to allow the full range of possible
part characteristics; in scenarios where the parts have already
been selected and characterised, the prior parameters can be
constrained. The available parts and prior parameter distributions
serve as inputs to the model space generator, which conducts a
series of combinatorial steps to produce all possible genetic
circuits. The model space generator then builds unique combina-
tions of strains expressing different genetic circuits, where each
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Fig. 1 Overview of AutoCD pipeline. Model selection workflow begins with
definition of available parts and prior parameter distributions used to generate
system models from all the possible interactions. We use ABC SMC to
perform model selection for the desired population behaviour. The outputs of
ABC SMC provide us with community designs, insight into underlying motifs,
parameter requirements and information on composition tunability.
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Table 1 Prior distributions for both two and three strain systems. Constant parameters have the same min and max value. K, ¢ , K,
B,

Ka, and KB,z are sampled from log uniform distributions. The remaining parameters are sampled from uniform distributions.

Parameter/state variable Description Prior (min) Prior (max) Units Citation

Parameters

Cn OD to cell number scaling factor 1e9 1e9 None N/A

Cp Microcin scaling factor le—9 le—9 None N/A

Ca QS scaling factor le-9 le—9 None N/A

D Dilution rate 0.01 0.2 h=1 N/A

KAsz Half-maximal QS promoter activation/repression from A, to B, le—9 le—6 M 81

Ky Monod's half-saturation constant 3.9e-5 3.9e—5 M 82

K, Half-saturation killing constant le—7 le—6 M 83,84

So Substrate concentration of input media (0.4% glucose) 0.02 0.02 M M9 media

Y E. coli substrate yield Tell el cellm-1 8

ka, Production rate of AHL per cell le—22 le—15 Mh-T 86

KBmaxZ Maximal expression rate of microcin le—22 le—15 Mh-T 6

7 Maximum growth rate 0.4 3 h—1 39,40

n, Hill coefficient AHL induced expression 1 2 M 81

R Hill coefficient for killing 1 2 M 81

WOpmax Maximum rate of bacteriocin killing 0.5 2.0 M-Th-1 838487

Initial state variable

N OD of strain 0.01 0.5 OD N/A

S 0.4% glucose concentration 0.02 0.02 M N/A

B Microcin concentration le—81 le—81 M N/A

A QS concentration 1le—10 Te—10 M N/A

combination is a candidate model. Filtering steps remove unviable,
redundant and mirror systems, yielding a set of unique candidates
to be assessed. The model space generator produces an ordinary
differential equation (ODE) model for each system in the context
of the chemostat environment, and these models form our prior
model space (for details, see the “Methods“ section).

The final input is a mathematical description of the objective
population behaviour, a stable steady state. We use three distance
functions (d;, d,, d3) to describe how far away a simulation is
from the objective stable steady state (Eq. (1)). d; is the final
gradient of a strain population (N,), capturing the most
fundamental characteristic of stable steady state, where the
population level of a strain is unchanging. d, is the standard
deviation of a population, quantifying unstable behaviours such
as oscillations, favouring simulations that reach stable steady state
quickly. d; is the reciprocal of the strain population at the end of
the simulation, allowing us to define a minimum population
density. Given the three distances, er defines thresholds below
which a simulation meets the requirements of our stable steady
state objective. The distances of all strain populations in a
simulation must be below these thresholds to satisfy the objective
behaviour. €; was chosen to match the error tolerance of the

ODE solver and ¢g threshold was chosen through qualitative

assessment of simulation data to define a practical threshold for
what stable steady state simulations should look like. e is set to

ensure all populations have a minimum final OD of 0.001, chosen
for what could be realistically measured using flow cytometry.
The posterior distribution is made up of simulations where the
distances for each strain population are less than the ey thresholds
(Eq. (2)).

ABC SMC performs model selection on the model space for the
objective defined by these distance functions and er. A particle is a
sampled model and associated parameters. ABC SMC initially
samples particles from the prior distributions with an unbounded
distance threshold. Particles are propagated through intermediate
distributions, gradually reducing the distance thresholds until they
equal e (see the “Methods” section). ABC SMC provides an
estimation of model and parameter space posterior probabilities
for the given prior distributions and the objective behaviour. We
can use the outputs of ABC SMC to help us design synthetic
communities and chemostat settings in the lab.

Distance functions:

Distance thresholds:
ep = {1e77,0.001, 1000}
dy <€y,
d,<ep,

ds <ep,

Designing two-strain cocultures that achieve steady state. Here
we apply AutoCD to the design of a stable steady state coculture
containing two strains. In Fig. 2 we define a model space con-
sisting of two strains (N;, N,), two bacteriocins (B;, B,) and two
QS systems (A}, A,). We set model space limits to enable feasible
experimental implementation, allowing expression of up to one
QS per strain and expression of up to one bacteriocin per strain.
Each strain can be sensitive to up to one bacteriocin. Given these
conditions, the model space generator yields 69 unique two-strain
models (mg,m,...mgg). These 69 models serve as a uniform prior
model space upon which we perform model selection using ABC
SMC (see Supplementary Fig. 4 for visualisation of each candidate
model). From the available genetic parts, there are 17 possible
interaction options that could exist between state variables in each
candidate model. We perform hierarchical clustering on the
interactions present in each model, grouping models based on the
similarity of their interactions. This clustering is visualised as a
dendrogram in Fig. 2a. ABC SMC approximates the posterior
probability of each model for the stable steady state objective,
indicating how effective the candidate system is in producing
a stable steady state. m, has the highest posterior probability, and
is therefore the system which most robustly produces stable steady
state (Fig. 2a). myg, consists of two strains exhibiting a cross-
protection mutualism relationship®®. Each strain expresses an
orthogonal QS molecule that represses the expression of a self-
limiting (SL) bacteriocin in the opposing strain (Fig. 2b). In the
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Fig. 2 Output of AutoCD for the two-strain stable steady state objective. a Dendrogram generated by hierarchical clustering of the adjacency matrices
for each model in the two-strain model space. All possible interactions are shown in the network illustration. Each column of the heatmap represents a
possible interaction between state variables, where green indicates the interaction exists for the model and black indicates absence of the interaction. The
bar chart shows the mean posterior probability of each model. The scatter points indicate the posterior probability of each replicate and the error bars
indicate the standard deviation. n = 3, where each replicate consists of 180,000 accepted particles. b Shows the mean posterior probability of three models
with the highest posterior probability when subsetted for number of parts expressed in order of increasing complexity (2, 3 and 4 parts). The scatter points
indicate the posterior probability of each replicate and the error bars indicate the standard deviation. n =3, where each replicate consists of 180,000
accepted particles. Bayes factors (BF) are shown for pairwise comparison of the three models. Model schematics show the interactions between strains
(blue and green), bacteriocin (red) and QS molecules (purple). ¢ Posterior parameter distributions of several tunable parameters in mgg and mg,. The top
and left plots show 1D density distributions of each parameter, central distributions are 2D density distributions for each pair of parameters. Pearson
correlation coefficients are shown on the top side of the diagonal for each parameter pair.

. Max growth rate of
strain

absence of the opposing strain, the SL bacteriocin is expressed
freely. This creates an interdependence between the two strains
where the extinction of one strain would result in the extinction of
the other. This closed feedback loop is a feature of the topology of
My, overcoming the competitive exclusion principle.

Table 2 Bayes factor categorisation to describe evidence in
favour of m;, compared with m,.

Bayes factor (BF) value Evidence against m, (in favour of m,)

When designing new systems, minimising the number of genetic | 1-3 Very weak
; ; ; ; ; 3-20 Positive
parts will reduce the number of experimental variables, improving 50-150 5t
the ease of construction and optimisation of a system. We subset rons
>150 Very strong

the model space by the number of expressed parts in the system
(maximum two QS and two bacteriocin), yielding subsets contain-
ing candidate models with two, three and four expressed parts (low

complexity to high complexity). We identify the candidates with the
highest posterior probability in each subset (Fig. 2b). The posterior
probability increases despite the larger parameter spaces, which is
important because ABC SMC will naturally favour models which
yield stable steady state with the smallest possible number of
parameters (Occam’s razor)3¢. We see that all three models have SL
motifs, where a strain is sensitive to the bacteriocin it produces. All
three models are devoid of other-limiting (OL) motifs, where a
strain is sensitive to a bacteriocin produced by another strain.
The Bayes factor (BF) is a ratio between the marginal likelihoods
of two models, giving a quantification of support for one model

compared with another. BF > 3.0 indicates evidence of a notable
difference between the two models, while BF <3.0 suggests
insubstantial evidence?” (Table 2). The BF of mg compared with
myg suggests substantial improvement in the posterior probability
can be made by increasing complexity. However, the BF of myg
compared with myg, suggests insubstantial evidence behind this
improvement in posterior probability (Fig. 2b). These diminishing
returns when increasing system complexity hold important
ramifications for system design. The introduction of an additional
QS part to move from myg to mg, may not be worthwhile for the
minor improvement in steady state robustness.
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Model selection has identified the best performing designs for
producing stable communities. However, the parts used in the
design may require specific characteristics or chemostat settings.
ABC SMC also produces posterior parameter distributions for
each model, giving us information about the parameter values
necessary to yield stable steady state. Figure 2c shows the
posterior distributions of several tunable parameters in mgs and
mg,. The dilution rate of the chemostat (D) is a directly tunable
parameter and the maximal expression rate of the bacteriocin
(KB,,,,) can be tuned through choice of promoter and ribosome-
binding site3%. The growth rates (u,. ) can be tuned through
choice of base strains or auxotrophic dependencies3%49,

For mgg, the correlation coefficients between strain maximal
growth rates (fmax; and pmayo) shows the parameters are loosely
correlated. Additionally, we see that N requires a higher maximal
growth rate (Upq) than that of Ny (Umax). The faster maximal
growth rate of N is necessary to counteract self-limitation that is
negatively regulated by the population of N,. Conversely, ms;
shows a wider distribution of strain growth rates at stable steady
states and a low correlation coefficient. This indicates that this
topology does not heavily depend on specific growth rates or
related growth rates between the two strains in order to produce a
stable steady state. KB, for all bacteriocins is tightly constrained
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to high maximal bacteriocin expression rates. The distributions of
D in both systems show a lower dilution rate is important for
stable steady state. The steady state compositions for mge
frequently contain N; in high proportion compared with N,
whereas mg, will commonly yield compositions with more even
representation of N; and N, at steady state (Supplementary Fig. 2).

Self-limiting motifs stabilise two strain systems. The dendro-
gram of Fig. 2a highlights a cluster of high performing models
that are closely related. This suggests underlying interactions of
the model space exist that are important for producing com-
munities with stable steady state.

Non-negative matrix factorisation (NMF) is an unsupervised
machine learning method we can use to reduce the dimension-
ality of the interaction space*!. We can use NMF to help us
understand the underlying motifs and how they affect community
stability. We represent each model by the interactions present in
the system (Fig. 2a). NMF takes these interactions and learns a
number of clusters (K), models can be rebuilt by a weighted sum
of these clusters. In our case, these clusters can be represented as
interaction motifs. We set K=14, in order to give us a digestible
summary of the model space. Figure 3a shows the learned motifs
that can be used to represent the entire model space. Figure 3b

Non-negative matrix factorisation
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Fig. 3 Contribution of network motifs to stability. a, b Non-negative matrix factorisation (NMF) analysis to learn motifs in model space using four
components (K= 4). a Four components learned by NMF, the line opacity indicates the coefficient of the interaction. b Visualisation of the component weights
for each model. Each column is a model, with light colours corresponding to high weight and dark colours low weight. c-e Manually curated minimal motifs
capture interaction importance. ¢ Minimal motifs split into self-limiting (SL) and other-limiting (OL) by the direction of bacteriocin killing. d lllustration of the
algorithm used to generate each datapoint in e. Moving from a model to the nearest neighbours that can be built by adding a motif will produce a change in
model posterior probability. e Boxplots and scatter plot showing the change in posterior probability when adding each motif to a model. The boxplots show the
median, first and third quartile. The lower and upper whiskers mark the 5th and 95th percentiles, respectively. n = 224 for each motif.
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shows the component weights for each model, defining the
membership each model has for each motif. The models
are shown in descending order of posterior probability, we can
see that K1 is heavily weighted in the top performing models. The
motif K1 refers to SL only interactions where the strain is
sensitive to the bacteriocin it produces (Fig. 3a, b). The top
models are consistently assigned low weights for K4 (Fig. 3a, b), a
motif which refers to OL only interactions, where the strain is
sensitive to a bacteriocin produced by the other strain (Fig. 3a).

We use the indications produced by NMF to curate our own
discrete motifs, improving the ease of interpretation. K1 and
K4 show us the direction of bacteriocin sensitivity is an important
feature and we proceed to investigate this further. All models can
be built by combining eight fundamental motifs which can be
categorised as either SL or OL, based on the direction of
bacteriocin sensitivity (Fig. 3c). Within each category, motifs are
differentiated by the mode of bacteriocin regulation (Fig. 3¢c). For
example, mgs = SL,, myg=SLs+ SL, and mg, =SL, + SL,. In
order to assess the importance of each motif for producing stable
communities we perform a motif impact analysis. For each model
we identify the nearest neighbours in the model space that can be
built by adding each motif and calculate the change in posterior
probability for each neighbour (Fig. 3d). By repeating this across
the entire model space, we are able to quantify whether a motif is
stabilising or destabilising (Fig. 3e). The lower quartiles of SL
motifs all show lower negative change magnitudes compared with
the lower quartiles of OL motifs. The upper quartiles of SL motifs
show a higher positive change magnitude than that of OL motifs.
Together these show the addition of SL motifs more often result
in an improved posterior probability, whereas addition of OL
motifs more often result in decreased posterior probability. The
upper quartile of SL, shows the motif has the most stabilising
effect, closely followed by SL,. We see these findings are reflected
by top models identified in Fig. 2b, where all models are
constructed with SL, and SL, motifs.

The total output of bacteriocin by a population is a function of
the population’s density. All SL motifs therefore possess a
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Fig. 4 Output of AutoCD for three-strain stable steady state objective. a
for each model in the three-strain model space. We set the limit of number

fundamental negative feedback relationship between growth rate
and density, augmented by the mode of QS regulation.
Conversely, the population density and growth rate of a strain
in OL motifs are decoupled. This lack of feedback is a clear
explanation as to why we see SL motifs as positive contributors to
stability while OL motifs have a destabilising effect. By comparing
the posterior probabilities of mg, and Supplementary Fig. 4, we
show that while self-limitation interactions are important for
viability, interdependence between the strains is necessary to
produce the most robust design (Supplementary Fig. 3).

Designing three strain communities that achieve steady state.
While several studies have demonstrated the ability to establish
synthetic two-strain systems!%2242-31 efforts with three strains
are sparser?>523, Having demonstrated the automated design of
two-strain systems, we next tackle the far larger challenge of
designing stable three-strain communities. The addition of a
single strain significantly increases the parameter space, engi-
neering options and possible interactions. We define our available
parts consisting of three strains (N;, N,, N3), three bacteriocins
(B, By, B;) and two orthogonal QS systems (A;, A,). We main-
tain the same strain engineering restrictions, allowing up to one
QS expression and up to one bacteriocin expression per strain.
Each strain can be sensitive to up to one bacteriocin. Given the
available parts and engineering limits, the model space generator
yields 4182 unique models (see Supplementary Fig. 5 for visua-
lisation of each candidate model). Due to the much greater
number of models, we group models based upon the interactions
in each model by hierarchical clustering for up to five levels. The
average posterior probabilities of each cluster are shown (Fig. 4a).
3289 models have a posterior probability of zero, highlighting
how much more difficult this design scenario is. ABC SMC
identifies 4,19 as the system with the highest posterior prob-
ability for producing stable steady state. 11,9 consists of two QS
molecules; A; is produced by N,, A, is produced by N; (Fig. 4b).
The QS molecules repress the expression of SL bacteriocins

BF = 1.1 BF = 1.1
0.015 o T wiek °
0.010
~ <
© N~
] ]
0005 & &
0.000 . :
DR it) M5 iif) m,. V) Mg
) e«
o
=,
iy oD o
®... W?
g GS)
(]

Dendrogram is generated by hierarchical clustering of the adjacency matrices
of levels to 5, in order to show high level groups. Each column of the heatmap

represents a possible interaction between state variables, where green indicates the interaction exists for the model and black indicates absence of the
interaction. The posterior probability plot shows the average posterior probability within each group of models. b Shows the models with highest posterior
probability when subsetted for number of parts expressed, in order of increasing complexity (3, 4, 5 and 6 expressed parts). The bar chart shows the mean
model posterior probability across three experiments, represented by the scatter points, the error bars indicate the standard deviation. n =3, where each
replicate consists of 825,000 accepted particles. Bayes factors (BF) are shown for pairwise comparison of the three models and error bars show the
standard deviation between three repeat experiments. Model schematics show the interactions between strains (blue, green and red), bacteriocin (red)
and QS molecules (purple). Models with two parts showed posterior probability 0.0 and are not shown.
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produced by each population. Using the minimal motifs defined
in Fig. 3¢, my; 9 can be summarised as m4;,9 = 3 x SL,. We group
the model space on the counts of heterologous expression in the
system, yielding subsets containing candidate models with three,
four, five and six expressed parts (Fig. 4b). Models with two
heterologously expressed parts all had a posterior probability of
0.0 and are not shown. Again, we see a diminishing increase in
posterior probability that comes with increasing complexity.
M393g is the more complicated neighbour of 9, where Nj is
also contributing with production of A;, resulting in a fall in the
posterior probability. The increase in posterior probability that
occurs when moving from 55 to my4;;9 has BF < 3.0, indicating
the difference between the posterior probability of the two models
is not substantial. These system comparisons highlight the trade-
off between increasing complexity and improving system per-
formance. In a similar fashion to the two-strain model space, the
top performing models are dominated by SL only interactions
(Supplementary Fig. 1).

Multiple engineered bacteriocins are more important than
multiple orthogonal QS systems. Our results have identified top
performing models in the two-strain and three-strain model spaces.
We have also highlighted the diminishing returns that occur with
increasing model complexity in top performing models. Next we
aim to summarise the importance of different parts and their
contribution to the stable steady state objective behaviour, further
enabling us to triage genetic parts for construction in the lab.
Figure 5 shows a summary of the parts used to construct three-
strain systems and the average posterior probabilities they yield.
This gives us important information to form heuristic rules in the
design of three-strain systems. Figure 5a shows a very similar
posterior probability when comparing two QS systems rather
than one. Figure 5b demonstrates the substantial advantage of
repressive QS regulation of bacteriocin production over inducible
systems. Figure 5c shows very strong evidence in favour of using
three bacteriocins to produce stable steady state in three-strain
systems. These three statistics suggest that on average there is
little advantage to be gained in the use of two QS systems, and
priority should be given to the use of a single repressive QS to
regulate three bacteriocin systems, such as we see in #1,;5s.

Defining stable steady state population ratios in three-strain
systems. Natural microbial communities are observed to contain
species in abundances differing over orders of magnitude®*>,
Together the individual species can contribute to an aggregate
community function®®’. Synthetic communities can take
advantage of aggregate community output by their application to
improving yields and efficiency of bioproduction pathways via the

distribution of genetic processes between subpopulations*3->0.
Biosynthesis studies using cocultures have shown the importance
of optimising inoculation ratios to maximise community
outputs®$3%. Therefore being able to define the steady state
composition of a synthetic community is a valuable feature. Here
we demonstrate that a form of post-processing can be applied to
the output of ABC SMC by applying a secondary threshold,
identifying key parameters that enable fine tuning of stable steady
state population densities.

The ey, threshold value ensures all simulations in the final
populatlon have an OD > 0.001. Figure 6a shows the community
composition distribution of ;9. The majority of accepted
particles show a final community composition that is dominated
by a single strain. Using the final population distances from ABC
SMC we can apply a secondary threshold and identify how the
system can be tuned to produce a more evenly distributed
community composition. We set a secondary threshold, stipulating
that all strains must be of OD > 0.1 (pink) (Fig. 6b). Therefore
strains that do not meet the secondary threshold have 0.001 <
OD<0.1 (blue) (Fig. 6b). From these two subsets we generate
separate parameter distributions and calculate the divergence using
Kolmogorov-Smirnov (KS). Parameter distributions that show the
greatest divergence are important for changing the system
behaviour from one that is dominated by a single strain, to one
that has a more even distribution of strain densities. The
distributions of four parameters that exhibit greatest divergence
are shown in Fig. 6¢c. A higher dilution rate (D) and lower maximal
bacteriocin expression rates (K, Kp ,, K 3) are associated
with producing a more evenly distributed community composi-
tion. Importantly, all three parameters are realistically tunable. The
dilution rate can be controlled directly through the chemostat
device, while bacteriocin expression rates can be changed through
the choice of promoters and ribosome-binding sites.

Discussion

Synthetic communities built to date have employed the use of QS,
metabolic dependencies, intracellular lysis proteins, toxins and
extracellular AMPs to engineer interactions that enable commu-
nity formation?3>1>2, When designing a synthetic community,
the fundamental interactions in the system itself is often directed
by mimicking ecological interactions found in nature, or by
rational judgement. As the possible types of engineered interac-
tion increases, so does the need for comprehensive assessment of
the vast model spaces. The modelling and statistical framework
demonstrated here addresses this design problem. With our
examples we have highlighted important design features and
heuristic rules for building synthetic steady state communities. As
we move to increasingly complex multi-strain systems, bottom-
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Fig. 5 Average posterior probabilities associated with the number of genetic parts. a Comparing systems with one and two orthogonal QS parts.
b Comparing modes of bacteriocin regulation in the system by subsetting for systems with induction (4ve), repression (—ve) or both (+ve, —ve).

¢ Comparing systems with one, two and three bacteriocin.

| (2021)12:672 | https://doi.org/10.1038/s41467-020-20756-2 | www.nature.com/naturecommunications 7


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

a °,

100

0 20 40 60 80 100 0 20 40 60

All strains OD > 0.1

Particle density

Low High

All strains  OD > 0.001 —
Any strain OD < 0.1

0.25
\ oL—=

06 -50 -

D log(KB,,.,)
0.25
80 100

0 50 -

log(KB,,..) log(KB,,.,)

Fig. 6 Distribution of population densities in model 4119. Axes of ternary diagrams (a and b) show percentage composition of the community. a Heat
map showing the community composition at stable steady state in model 4119. Axes refer to percentage representation for each strain in the community.
b Scatter plot of the stable steady state systems, highlighting the secondary threshold where all strains have OD > 0.1 (red), and the primary objective only
where any strain has 0.001<OD < 0.1. ¢ Density plots comparing the parameter distributions of four parameters that show the greatest divergence to
produce the secondary threshold: Dilution rate (D) and maximal bacteriocin expression rates (KBmaxi, KBmax2, KBmax3). The Kolmogorov-Smirnov values for

the two objectives are 0.25, 0.12, 0.13 and 0.12, respectively.

up approaches have shown that understanding pair-wise inter-
actions can be used to build up to larger stable communities®.

We have identified optimal system designs using bacteriocins
and QS for stable steady state in two-strain and three-strain
communities. g, the top model of the two-strain model space
uses a cross-protection mutualism, whereby the density of each
subpopulation inhibits the self-limitation of the other. Similarly,
in the three-strain model space m,;19 has pairwise cross-protec-
tion mutualism between two subpopulations and a dependent
subpopulation (Fig. 4b). Cross-protection mutualism has pre-
viously been incorporated in synthetic microbial communities via
the mutual degradation of externally supplied antibiotics®.
Metabolic interdependencies can also be employed to engineer
mutualism?”-48. All top performing models used SL interactions
to produce stable steady state dynamics. Self-limitation is
observed in many natural biological communities, normally in a
response to stress®1:92. These processes, while detrimental to the
individual, provide a net benefit to the community through
release of a public good—they are altruistic processes®3. Altruistic
cell death is conserved throughout different species implying a
competitive advantage in natural environments®*. SL interactions
have previously been used to overcome competitive exclusion by
employing lysis proteins regulated by QS in a two-strain cul-
ture>!. The inducible expression of SL bacteriocins under tightly
controlled promoters has also been demonstrated®®. Additionally,
in our recent work we have demonstrated the use of bacteriocins
to stabilise communities®®. Random sampling or encapsulation of
microbial networks has been demonstrated experimentally in
both ecological and synthetic contexts®”:%8. These high through-
put approaches could be used to validate our findings, combining
differentially engineered strains with one another to give a view of
strain combinations that form stable communities.

The robustness of SL interactions can be explained by the feed-
back loops involved. Total bacteriocin output by a subpopulation is
heavily dependent upon its population density; low population
density will naturally have a low output of bacteriocin®, making QS
a secondary level of regulation. This is supported by both two-strain
and three-strain scenarios where we observe the diminishing
returns that come with increasing complexity. Figure 5 shows that
increasing the number of bacteriocins in a system yields greater
increases in stability than increasing the number of QS systems.

A closed feedback loop exists between the bacteriocin expression
rate and the population density, an important reason why we see all
SL motifs generally show positive contribution to stability. Con-
versely, in OL motifs the population expressing the bacteriocin will
not be negatively affected and therefore a closed feedback loop does
not exist.

Ecological studies using generalised Lotka—Volterra approaches
frequently show that negative, intraspecific interactions are of
central importance to the stability of ecological networks’?-72. In
our models, SL interactions, dilution rate and limited nutrients are
all analogous to negative, intraspecific, density-dependent inter-
actions described at a more detailed level; particularly regarding
time delays and accumulation of bacteriocin or QS molecules that
may occur. Our results align with previous findings and provide
insight into the relative importance of different types of interac-
tions in a synthetic biology context. Additionally, studies have
previously shown that higher connectance in mutualistic ecolo-
gical networks promotes persistence and resilience’3. All our top
performing models contain forms of mutualism; in these models
we also see a trend of increasing robustness with complexity which
is analagous to connectance (Figs. 2b and 4b).

Studies have traditionally used eigenvalue analysis to investi-
gate the stability properties of random interaction ecological
networks”17374, Similar approaches could be applied to the
synthetic community model spaces shown here. The Bayesian
approach and time series analysis used here allows us to select for
defined temporal characteristics of transient behaviour that
represent a definition of a stable system that is achievable
experimentally. In principle, eigenvalues could also be included
within a distance measure of asymptotic local stability. However,
we found they did not improve the classification of behaviour in
these models. Finally, we showed that the posterior parameter
distribution from ABC SMC can be used to make decisions on
part characteristics and experimental conditions (Figs. 2¢ and 6c¢).
Our results show the dilution rate (D) is an important experi-
mental parameter for producing stable steady state, and tuning
the community composition. The rate of removal of molecules
from the environment can produce very different population
dynamics. This is supported by previous work where the dilution
rate has been demonstrated to be important for determining the
population dynamics®2%46. We also show our methodology can
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identify systems that are robust to differences in growth rate,
highlighted by the comparison of mgs and ms, in Fig. 2c. Toge-
ther these draw attention to important part characteristics that
should be considered when constructing a stable community. It
should be emphasised that while the design rules we have iden-
tified hold true for a stable steady state objective, it may not be the
case for other objective population dynamics, such as oscillations.
New objectives can be investigated by changing the distance
functions which describe the population dynamics.

The framework we have developed offers a natural entry point
to the design-build-test cycle, providing a data informed roadmap
for building a robust synthetic community with a desired beha-
viour. We have revealed stable steady state systems in a two-strain
and three-strain model space, and generated impactful rules and
heuristics for their construction. The flexibility of this framework
enables us to quickly redefine population level behaviours
depending on the required application.

Methods

Model space generator. Models are generated from a set of parts, which are
expressed by different strains in the system. We represent an expression config-
uration through a set of options. We define the options for expression of A in each
strain, where the options are not expressed, expression of A;, and expression of A,
(0, 1 and 2). We define the options for expression of bacteriocin, which for the two-
strain model space includes no expression, expression of B; or expression of B, (0,
1, and 2). For the three-strain model space, this includes includes no expression,
expression of B;, expression of B, or expression of B; (0, 1, 2 and 3, respectively).
Lastly we define the mode of regulation, R, for the bacteriocin, which can be either
induced or repressed (0 and 1). This is redundant if a bacteriocin is not expressed.
Two strain:

A=1{0,1,2}
B={0,1,2}
R={0,1}
Three strain:
A=1{0,1,2}
B=1{0,1,2,3}
R={0,1}
This enables us to build possible part combinations that can be expressed by a
population. Let P be a family of sets, where each set is a unique combination of parts:
P. =AxBxR

Each strain in a system can be sensitive to up to one bacteriocin. Let I represent the
options for strain sensitivity. In the two-strain model space, the options are
insensitive, sensitive to B; or sensitive to B, (0, 1 and 2, respectively). In the three-
strain model space, the options are insensitive, sensitive to Bj, sensitive to B, or
sensitive to B; (0, 1, 2 and 3, respectively).

Two strain:

1={0,1,2}
Three strain:
1=1{0,1,2,3}
Each strain is defined by its sensitivities and expression of parts. Let Pg be all
unique engineered strains:
Py = Ix P

which can be combined to form a model yielding unique combinations in two
strains and three strains:
Two strain:

Py = Pyx Py
Three strain:

Py = Pgx Py x Py
Finally, we use a series of rules to remove redundant models. A system is

removed if:

1. Two or more strains are identical, concerning bacteriocin sensitivity and
combination of expressed parts.

2. The QS regulating a bacteriocin is not expressed by a strain.

3. A strain is sensitive to a bacteriocin that is not expressed by a strain.

4. A bacteriocin is expressed that no strain is sensitive to.

This cleanup yields the options which are used to generate ODE equations for system.

System equations. State variables in each system are rescaled to improve speed of
obtaining numerical approximations:

N;c = NxCN (3>
B, = B.Cy (4)
A’y =A,Cy (5)
Each model is represented as sets defining the system:
N ={1,2..x} (6)
B={1,2..2} (7)
A={1,2..y} (8)
The system is represented as differential equations:
dN,
— N, (B)) 9
3= NS Z )
ds S N
—=D(§,—-8)— ) == 10
PG ; v (10)
(kg N%)
2)8 B, (11)
da, Lk, N,
v _ N2 % pa 12
dt ; Ca 7 (12
Growth is modelled by Monod’s equation for nutrient limited growth:
oS
) — ma 13
Bl = (13)

Killing by bacteriocin is modelled via a Hill function, where w,,,, = 0 if strain is

insensitive:

max

'n

B
/ t4
w(B,) = wmum (14)
Induction or repression of bacteriocin expression by QS, A,:
A n,
ky(z,y) = KBy m (15)
n,
ku(z,y) = KB 5 (16)

z—=
'max 7, n.
KB‘: + Ay g

Simulations were conducted for 1000 h, the final 100 h were used to calculate the
summary statistics and were stopped early if the population of any strain fell below
le—10 (extinction event). Simulations with an extinction event have distances set
to maximum in order to prevent excessive time spent simulating collapsed
populations.

Bayesian inference. Let 6 € ® be a sampled parameter vector with a prior 7(6).
Given an objective of x,, where x, exists in the solution space, x, € D. We define
the likelihood function for the objective behaviour as f(x|0). Bayes’ theorem gives
us the posterior distribution of 6 that exists for the objective x;:

_ fxl9)n(6)

(%)

7(6]x,) (17)

We can rewrite 71(xo) where a and b represent the lower and upper bounds of the

parameter value:
b b
tx) = [ S 0)0 = [ fixlo)n(6)ae (18)

The posterior distribution informs us of the parameter distribution that gives rise
to the objective:

fx0|6)7(6) 19)
Jof (ol )m(6)d0
Let m be a model from a vector of competing models, M, such that m € M = {m,
My,...M,}. Each model has its own parameter space, allowing us to define a joint
space, (m, ) e M x ©.
We can write Bayes’ theorem in the context of a model space:

S (Gxolm)m(m)

m(mlxo) = S s f o) (m")dm!

(6]xy) =

(20)
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Since the M is discrete, we can rewrite this as:

f(xolm)m(m)
S S (AT ey
The marginal likelihood of the model, f{xy|m), is the expectation of the likelihood
function taken over the model parameter prior distribution. It measures a
model’s fit:

flaslm) = [ (Ol (0. )0 (22)

Approximate Bayesian computation. Writing the likelihood function, f (xo|6), in
terms of summary statistics can be difficult. We bypass this and approximate the
posterior by generating data from a model. We can sample a parameter vector from
the prior, 0" ~ m(6), which is simulated to yield a data vector, x". This can be
written as a conditional, x* ~ f (x|§"), which also gives the joint density, 7(6,x). In
order to obtain the posterior distribution that satisfies our objective behaviour, xo,
we apply a conditional to define whether a generated data vector, x", belongs to the
objective x,.

If x=1x,
__ n(0)f(x]9)
7(0)x, xy) = W (23)
Else
7(0)x,x5) =0 (24)

Let p(x, xo) be a distance function that compares a simulation to the objective.
Using distance threshold, €, we can define values below which the distance is
acceptably small. We can redefine 7(6|x, xo) in the context of thresholds to obtain
an approximation of the posterior.

If p(x, x0) <€

(6, %) = — n(6)f (x16)

(0)f (x]0)dxd6 25)

Else
7 (0]x, %) = 0 (26)

The smaller € is and the larger the number of simulations conducted, the more
accurate the representation of the true posterior will be. We can write this marginal
posterior distribution as:

70 lp(x" xp)) <€ = m(6lxy) 27)

Model selection with ABC SMC. In this paper, we use a variant of ABC, ABC
Sequential Monte Carlo (ABC SMC)3®. Particles are sampled from the prior dis-
tributions. Each particle represents a sampled model and sampled parameters for
that model. ABC SMC evolves particles sampled from the prior distribution
through a series of intermediate distributions and perturbations. Importance
weighting is used to define their sample probability for the next distribution. The
distance threshold, ¢, is decreased between distributions, moving the acceptance
criteria closer to the objective. These features aim to improve the acceptance rate of
particles while maintaining a good approximation of the posterior distribution (see
Supplementary Algorithm 1 for more details).

Bayes factor. The BF can be used to help us interpret how much better (or worse)
one model is than the other. Given two models, m, and m,, the BF is calculated as
o Plm[x)/P(my|2) 28)
P(m,)/P(m,)
P(my;) is the prior, and P(m;|x) is the posterior probability. Given uniform priors, P
(m;) = 1/M, where M is the number of models. Therefore we can simplify to:

P(m,|x)

P(m,|x)

The BF is a measure of the support for m, relative to m,. It accounts for the
number of parameters, or complexity of the two models. The BF allows us to
directly compare the weight of evidence for and against the two models and has the
advantage that it can be used to compare non-nested models. Two BFs can be
compared directly, since they both represent evidence in favour of the
hypothesis3®37. We therefore use BFs to directly compare the ability of two models
to represent the objective population behaviour. Table 2 allows us to interpret BF.

BF =

(29)

Software packages and simulation settings. ABC SMC model selection algo-
rithm was written in python using Numpy’>, Pandas and Scipy’®. ODE simulations
were conducted in C++ with a Rosenbrock 4 stepper from the Boost library””. All
simulations use an absolute error tolerance of 1e—9, and relative error tolerance of
le—4. NMF was conducted using Scikit-learn’®. Dendrograms were made from
SciPy, using the unweighted pair group method with arithmetic mean (UPGMA)

clustering algorithm’®. Ternary diagrams were made using python package
python-ternary’®. Parameter distribution plots were made in R using ggplot280.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The data generated and used to create figures can be found at https://doi.org/10.5281/
zen0do.4286040. Any other relevant data can be obtained from the authors upon
reasonable request.

Code availability

AutoCD code repository can be found at https:/github.com/ucl-cssb/AutoCD/%3. The
repository includes configuration files for the two- and three- strain experiments
conducted in this study. All code to recreate figures can be found at https://doi.org/
10.5281/zenodo.4286040.
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