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Abstract—Human Activity Recognition (HAR) is becoming
increasingly important in smart homes and in healthcare ap-
plications such as assisted-living and remote health monitoring,
especially in elderly care homes. In this paper, we leverage the
use of Ultra-Wideband (UWB) technology and WiFi Channel
State Information (CSI) for device-free HAR. An experiment was
performed where the transmitter and receiver were separated by
a fixed distance in a Line-of-Sight (LoS) setting. Then five activ-
ities were performed in between them, namely, sitting, standing,
lying down, standing from the floor and walking. We use the
high-resolution Channel Impulse Responses (CIRs) provided by
the UWB modules as features in machine and deep learning
algorithms for classifying the activities. Experimental results
show that a classification performance with an F1-score as high as
95.53% is achieved using processed UWB CIR data as features.
Furthermore, we analysed the classification performance of the
five activities using WiFi CSI in the same physical layout. In this
case, maximum F1-scores of 92.24% and 80.89% are obtained
when amplitude CSI data and spectrograms are used as features,
respectively. In this study it has been shown that in addition to
the primary function of the UWB system which is localisation,
it can also be used for HAR since it achieves excellent activity
classification performance.

I. INTRODUCTION

Recently, Human Activity Recognition (HAR) using device-
free methods has become a reality with the proliferation of
wireless devices in both residential and commercial environ-
ments. These methods, which are mostly based on Radio-
Frequency (RF) sensing, can provide an automated, inexpen-
sive and non-invasive solution for use in surveillance to predict
criminal activities in public places, vehicular technology and
in other scenarios that involve human and machine interaction
[1]. Furthermore, over the past decades, there have been
increasing concerns related to health issues such as mental
health problems, cardiovascular diseases, Alzheimer’s, strokes
among many others. Activity sensing can provide insightful
information related to pattern-of-life and can be used to
monitor a patient’s health in terms of inactivity or falls. These
indicators can then be used to identify chronic diseases or
any other health issues for which early treatment interventions
are critical [2]. This has inspired a number of research to
be carried out for automated human activity and behaviour
sensing using technological devices such as wearable sensors
[3] and camera-based systems [4].

On the other hand, device-free passive sensing using RF
waves provides a better alternative since the users or patients
do not have to face any discomfort by wearing devices on

their body. Moreover, passive sensing systems do not breach
the user’s privacy compared to camera-based systems and
also, they are not sensitive to lighting conditions and physical
obstacles do not pose a problem. In addition to these benefits,
wireless systems such as WiFi are found in almost all resi-
dential and commercial indoor environments nowadays. These
devices are also inexpensive and they do not require additional
infrastructure for passive wireless sensing.

Ultra-wideband (UWB) is another wireless communication
technology that has been used over the years for providing
ranging and positioning with centimetre-level accuracy. The
main features of this technology include a wide frequency
bandwidth (> 500 MHz) to provide high localisation accuracy,
high immunity against multipath phenomenon and interference
and low output power [5]. UWB systems are used extensively
in industry where manual operations have been replaced by
automated machineries and hence it is vital to track these
systems to ensure their proper functioning. This technology
can also be used to locate tagged assets in factories and
warehouses or track medical personnel in a hospital, among
many other applications.

In this work, we make the following contributions:

e Very limited work has been performed regarding HAR
using UWB technology. Therefore, in this paper we
present the techniques and address the feasibility of using
UWRB signals for HAR.

o We extract high-resolution Channel Impulse Responses
(CIRs) from UWB modules and use them as features
in machine/deep learning algorithms for classifying the
different human activities.

o We also compare the activity classification performance
using fine-grained WiFi Channel State Information (CSI)
in the same physical layout .

The rest of the paper is organised as follows. The related
works on HAR using WiFi CSI and UWB signals are given in
Section II. Section III describes the system models for UWB
and WiFi CSI. Section IV presents the signal processing tech-
niques applied to the UWB and WiFi CSI signals for activity
sensing. The performance evaluation of the two systems is
investigated in Section IV in terms of activity classification
accuracy using machine and deep learning algorithms. Finally,
conclusions are drawn at the end of this paper.



x10* x10*

Amplitude
- :h n
Amplitude
=
= (52 N

o
o
o
w”

=)
o

0 200 400 600 800 1000 0 50 100 150
Samples Samples

(@ (b)

Fig. 1. (a) Raw captured CIR and (b) Denoised CIR.

II. RELATED WORK

The granularity of the information provided by RF signals
such as those emitted from WiFi may be used for different
applications. For instance, [6] leverages the fluctuations in
the WiFi Received Signal Strength Indicator (RSSI) from a
single Access Point (AP) to detect in-air hand gestures around
the user’s mobile device with an accuracy of 87.5%. The
downside of RSSI is that it is vulnerable to multipath fading
and has a tendency to fluctuate over time, even in a non-
dynamic environment. Hence, recent studies have considered
the fine-grained CSI extracted from WiFi signals for various
applications such as HAR [7], [8], fall detection [9], gait
[10], gesture [11], [12] and sign recognition [13], intrusion
detection [14] and crowd-counting [15] . The work in [7]
achieve a high activity recognition accuracy (=96%) for
activities such as sitting, walking and falling down by using
the time-frequency features of the WiFi CSI signals. The
authors of [10] used torso and limb velocities, derived from
the information obtained in CSI spectrograms, to detect a
walking human with an accuracy of 92% at a distance of 14 m.
While there are numerous studies on HAR using WiFi CSI,
it is not the case for UWB technology. The latter has been
designed for localisation, positioning or tracking purposes.
Since UWB chips are commercially available, a number of
research studies have been carried out to test this technology
in various scenarios in terms of localisation and ranging but
very limited research has been dedicated to activity recognition
using UWB signals. For instance, the authors of [16] proposed
to use the CIR data extracted from the UWB signals for HAR.
They achieved a classification accuracy as high as 95% for
simple activities such as sitting, standing and laying down
using machine learning algorithms.

III. SYSTEM MODELS
A. UWB Specifications

In the experiment, we use two Decawave EVKI1000 eval-
vation boards. Each board is of size 7 cmx 7 cm and
consists of a DW1000 chip, ARM Cortex M3 microcontroller,
LCD display, USB interface and an off-board antenna. The
evaluation kit uses the Two-Way Ranging (TWR) protocol to
provide accurate distance measurement based on the 802.15.4a
standard. The EVK1000 board provides various modes of
operation such that the user can choose between different
carrier frequencies (from 3.5 to 6.5 GHz), bandwidths (500
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Fig. 2. Raw UWB signals for five activities (CFR amplitude versus time
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Fig. 3. Filtered WiFi CSI signals.

MHz and 900 MHz), data rates (from 110 kbps to 6.81 Mbps),
Pulse Repetition Frequency (PRF) from 16 MHz to 64 MHz,
and preamble lengths from 64 to 4096 bits.

B. Channel Impulse Response (CIR) from UWB

The IEEE 802.15.4 frames consist of preambles. The
DW1000 chip estimates the CIR by correlating a known
preamble sequence with the received signal and accumulating
the result over a period of time [17]. The CIR characterises the
multipath propagation between the transmitter and receiver. A
wireless channel is often represented as

Zhl (t—7), (1)

where h; and 7; denote the amplitude and delay of the
lth path in the multipath channel. An UWB system has a
high multipath resolution capability and therefore the received
signal, r(t), in such a system can be expressed as [18]

t) = st —m)+n(t), 2)

where s(t) is the transmitted signal and n(¢) is the additive
noise in the channel. The first path delay 79 in a multipath
channel is known as the Time-of-Flight (ToF) of the transmis-
sion link and by using this value, the distance, d, between the
transmitter and receiver can simply be computed as

d=c X 79, 3)



where c is the speed of light (=3x10% m/s).

The CIR is stored in the accumulator of the DW1000 chip
and it spans one symbol period. This represents 992 and
1016 samples for the nominal 16 MHz and 64 MHz PRFs,
respectively. Each sample is made up of a 16-bit real integer
and a 16-bit imaginary integer and the sampling period is equal
to 1/(2 x 499.2 MHz) = 1.0016 ns [19].

C. WiFi CSI System

In this work, we extract the CSI from an Intel 5300 chipset
using the Linux CSI tool [20] which is based on the IEEE
802.11n standard. In a WiFi system based on the Orthogo-
nal Frequency Division Multiplexing (OFDM) physical layer
waveform, the channel bandwidth is shared among multiple
orthogonal and overlapping subchannels which carry the data
in a wireless channel. When a signal is transmitted through a
wireless channel, it suffers from various propagation phenom-
ena such as multipath fading, attenuation, scattering, phase
shift, etc. In order to ensure reliability of the communication
link and recover the transmitted data, the receiver needs to
estimate the channel. Similar to the UWB system which uses
preambles to estimate the CIR, the WiFi system also sends
pilot symbols on specific OFDM subcarriers, which are known
by both the transmitter and receiver, through the wireless
medium. This process is also known as channel sounding. The
receiver basically uses the known transmitted and received
pilot symbols to compute the channel estimates (i.e., CSI)
as complex-valued coefficients in the frequency domain. The
equaliser then uses the CSI to reverse the effects of the channel
and recover the transmitted data. For a Wi-Fi system with
Multiple-Input Multiple-Output OFDM capability, the CSI in
each received packet is obtained as a 3-dimensional (3D)
matrix with n; X n, X N complex values, where n; is the
number of transmit antennas, n, is the number of receive
antennas and N is the number of subcarriers. For a given
packet, the CSI for the kth subcarrier can be represented as

hl,l h1,2 hl,”t
h2,1 h2,2 hQ,ﬂf

He=| . Ml 4)
hnr,l hnr,Q hnmnt

where h; ; is the complex-valued channel coefficient between
the jth transmit antenna and 7th receive antenna. Each complex
value can be broken down into its amplitude and phase
information as

hig = |hijle’*™?, (5)
where |h; ;| represents the amplitude and 6 the phase. Using
the tool in [20], CSI can be extracted over only 30 subcarriers
in the 20/40 MHz channel bandwidths for both the 2.4 GHz
and 5 GHz bands.

IV. SIGNAL PROCESSING FOR ACTIVITY SENSING

A. UWB

For the UWB system, we use the high-resolution CIRs as
features for activity classification using machine/deep learning
algorithms. However, before proceeding with this step, the raw
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Fig. 4. MVS for standing activity (a) CSI stream (b) Corresponding moving
variance sequence.
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CIR is denoised, where the samples before the first peak in
Fig. 1(a) are considered as noise and removed and the 150
subsequent samples as from the first peak are retained to obtain
the processed CIR in Fig. 1(b). This pre-processing step also
reduces the dimensionality of the data, thereby decreasing the
computational complexity of the system. In order to show how
the activities affect the UWB signals, we convert the raw CIR
signal (1016 samples) to the frequency domain using FFT
and the resultant signal is known as the Channel Frequency
Response (CFR). Fig. 2 shows the signals recorded for the
five different activities in terms of CFR amplitude (in dB)
versus time duration (in s) for one frequency sample out of the
1016 samples. As can be observed in Fig. 2, the UWB signals
do not suffer from environmental noise or interference and
hence do not require denoising in this domain. On the other
hand, the raw WiFi CSI signals are much noisier in nature due
to the WiFi channels being overcrowded and hence they are
susceptible to a lot of interference and environmental noise, in
addition to electrical noise in the hardware. Therefore, some
filtering or de-noising techniques need to be applied to obtain
clean signals. This will allow the classification algorithms to
learn the patterns in the signals more efficiently. From Fig.
2, it can be observed that each activity results in a distinct
pattern that can be easily distinguished from each other.

B. WiFi CSI

The signal processing techniques that are applied to the raw
CSI data for the purpose of HAR are described next.

1) Noise Filtering: The raw CSI values that are measured
are inherently noisy. The noise reduction process is an im-
portant step to minimise the impact of environmental factors
in the monitoring area such as interference or variations in
the signal due to moving objects or people in the vicinity
[16]. For de-noising the WiFi CSI data, we utilise the Discrete
Wavelet Transform (DWT) technique for filtering in-band
noise while preserving the high frequency components to pre-
vent the signal from being distorted. This technique transforms
the signal into the wavelet domain by passing it through a
number of lowpass and highpass filters which provide the
approximation and detailed coefficients, respectively [9]. The
detailed coefficients in the first level hold information about
the noise and the abrupt changes as a result of human activities.
These coefficients are used to compute a threshold which is
adapted for lower wavelets and the noise is eliminated in all
levels without significantly distorting the signal. Fig. 3 shows
the de-noised WiFi CSI signals for different measurements



which cover the five activities. As can be observed, the CSI
measurements across the received packets capture the changes
in the wireless signal due to the latter’s interaction with the
human activities. The signals show distinct patterns for each
activity and therefore after the activity segmentation step,
the resultant signals can be directly fed to a classification
algorithm or retained for further processing.

2) Activity Segmentation: The variations in the signal due
to a given activity can be segmented using the Moving
Variance Segmentation (MVS) [21] approach. The key idea
behind this technique is to compute, in a stepwise fashion, the
moving variance in the CSI stream like the one shown in Fig.
4(a). Basically, in each step, a moving variance is computed
over a sliding window of length L across neighbouring CSI
samples, and the window is centred about the CSI sample in
the current position. The moving variance for a CSI stream
which consists of M packets is computed as

M 1 L
Sl = Y |77 2 [CShier — 4[| (6)
m=1 =1
1 L
p=73 > Csl,
=1

where p and [ denote the mean and packet number in the
sliding window of length L, respectively, and m is the current
sample position in the CSI stream. The CSI stream in Fig.
4(a) corresponds to the variations in the signal due to the
standing up activity and its corresponding moving variance
stream is shown in Fig. 4(b), where a sliding window of length
L =100 has been chosen. L needs to be selected empirically
to achieve the best results [21]. As can be observed in Fig.
4(b), the variations in the signal due to human motion result
in high moving variance values while slight fluctuations such
as those obtained in a static environment, result in smaller
values. Using the MVS method, the start and end points of an
activity can be easily identified and therefore segmentation can
be performed to remove undesired samples and consequently
improve the system’s performance.

C. Data Size Reduction

In this experiment, an AP sent data across one transmit
antenna (n; = 1) and CSI was extracted at the receiver over
three antennas (n, = 3). For this setup, 1 x 3 x 30 = 90
complex CSI values are obtained in each packet. The packet
rate was set at 1 kHz and this results in significant amount
of data that needs to be processed. In this work, we also
consider the Principal Component Analysis (PCA) technique
for reducing the dimensionality of the CSI data, thereby
decreasing the computational complexity. PCA identifies the
time-varying correlations between the CSI waveforms which
are then optimally combined to obtain components that repre-
sent the variations due to human activities [22]. We extract the
first six PCs but discard the first one since it contains noise
due to reflection from stationary objects like walls, furniture,
etc., and therefore discarding it will not result in any loss of
information [7], [10], [15]. Thus, only the next five PCs are
retained for further processing.
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Fig. 5. Experiment Layout for HAR.

D. Time-Frequency Analysis

The CSI data is sensitive to changes in the monitoring area
such that the signals which are reflected from the human
body result in different frequencies when various activities
are performed. These frequencies can be identified in the
time-frequency domain by applying the Short-time Fourier
Transform (STFT) to the signal. The basic idea behind STFT
is to apply a sliding window to the signal to obtain equally-
sized segments and then FFT is applied to the samples in each
segment. The Doppler spectrogram obtained after performing
STFT identifies the change of frequencies over time. The
window size selected for the FFT determines the trade-off
between time and frequency resolutions. A large window size
results in a high frequency resolution but low time resolution,
and vice versa.

V. PERFORMANCE EVALUATION
A. System Description

The UWB CIR and WiFi CSI data collection was carried out
in a monitoring area of dimension 4 m x 5 m with furniture
and other objects in the surroundings. As shown in Fig. 5, one
EVK1000 board is configured as an anchor (receiver) while
the other is configured as a tag (transmitter). Since HAR is the
main focus of this study, the two boards were kept fixed at a
separation distance of 3 m in a LoS setup and 5 activities were
performed between them, namely, sitting, standing, walking,
lying down and standing from the floor. It should be noted
that the activities were performed in a random fashion or
different orientations in a natural way, as would be the case
in the real-world scenario. The two boards were configured in
Mode 3, which specifies a bandwidth of 500 MHz for a carrier
frequency of 4.0 GHz, PRF of 64 MHz, 1024-bit preamble
length and data rate of 110 kbps. The anchor was connected
to a laptop and CIR data was logged for offline processing.

The WiFi CSI was extracted using the Linux 802.11n [20]
tool which was also stored for offline processing. The trans-
mitter was a TP-Link AP transmitting data with one antenna
while the receiver was an Intel Next Unit of Computing (NUC)
device equipped with the Intel 5300 NIC from which CSI is
extracted from 30 out of 56 subcarriers for each transmit-
receive antenna pair. The CSI data was collected over 3
antennas in the 5 GHz band (40 MHz bandwidth) by pinging
the AP at a rate of 1000 packets/s. This rate was selected
to capture noticeable changes or patterns in the time domain
signal which are caused by human motion. The UWB CIR
and WiFi CSI data were collected alongside video recording
to obtain ground truth labels. Both the wireless data (UWB and
WiFi) and video were timestamped using an external Network
Time Protocol (NTP) server for synchronisation purposes.
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B. Experimental Results

In this section, we evaluate and compare the performance of
the HAR system using UWB CIR and WiFi CSI as features.
For this purpose, we considered six classification algorithms,
namely, 2D Convolutional Neural Network (CNN), Deep
Neural Network (DNN), Gaussian Naive Bayes (GNB), K-
Nearest Neighbour (KNN), Random Forest and Support Vector
Machine (SVM). The 2D CNN consists of a convolutional
layer with 64 filters and 2x2 kernel size and the rectifier
(ReLU) as the activation function. The next layer is the max-
pooling layer with a stride of 2. The output from the max-
pooling layer is then flattened to create a single 1D feature
vector. The latter is fed to two fully connected layers (with
ReLU activation), the first and second layers consisting of 64
and 32 filters, respectively. Finally, a softmax layer is used for
classification of the 5 classes of activities. The DNN consists
of 3 fully connected neural network layers with 128, 64 and
16 nodes, respectively. ReLU is used as the activation function
in these layers. The output from the third layer is flattened
and then fed to a softmax layer for activity classification. For
KNN, the number of neighbours was set to 5. A maximum
depth of 50 was selected for the Random Forest algorithm
while a linear kernel was considered in the SVM algorithm.

80% of the dataset was randomly chosen and used for
training while the remaining 20% was used for testing. Fig.
6(a) shows the classification performance of the 6 algorithms
when UWB CIR data are used as features. As can be observed,
five out of the six algorithms achieve an Fl-score above
90% when only 150 samples are considered in the CIR data
as features and used for activity classification. The Random
Forest algorithm achieves the highest Fl-score at 95.53%
while the lowest score is achieved with GNB at 88.04%. The
lower score in the GNB case may be attributed to the fact that
it assumes feature independence within a class, which may
not be true in our case [16]. The high score achieved by the
Random Forest algorithm may be attributed to its ensemble
learning method and its lower susceptibility to over fitting the
data even when the number of trees increases.

Fig. 6(b) shows the Fl-score comparison when different
number of UWB CIR samples are used as features. The F1-
scores have been averaged over the 6 classification algorithms
and plotted for each number of CIR samples in Fig. 6(b). As
can be observed from the latter figure, the highest Fl-score
is achieved at 92.57% when 150 CIR samples are used as

features. However, when 50 and 75 samples are used, the F1-
scores are 90.05% and 92.39%, respectively, which are close
to the value for the 150 samples case. Therefore, as the number
of CIR samples is increased above a certain value, around 50
in this case, there is no major increase in the performance.
This means that the rest of the CIR samples do not benefit the
machine and deep learning algorithms and can therefore be
safely removed when the raw CIR data is de-noised. This will
further reduce the size of the data and thus the computational
complexity is also decreased. From Fig. 6(b), it can also be
deduced that using all the 1016 CIR samples (as illustrated
in Fig. 1(a)) as features is not beneficial to the classification
performance.

Next, we compare the performance of the HAR system
when UWB CIR data (150 samples) and WiFi CSI data are
used as features. For the WiFi CSI data, we considered two
types of feature representations. In the first case, we use
the filtered/de-noised amplitude values of all 90 subcarriers
as features and these are fed to the classification algorithms
for performance evaluation. In the second representation, the
WiFi CSI data is de-noised, reduced in size using PCA and
then transformed into spectrograms, which are then fed to the
classification algorithms. Fig. 7 presents spectrograms for the
5 activities. As can be observed in Fig. 7, the activities that
involve rapid body motion such as walking have high energy in
the higher frequencies in the spectrogram. From Fig. 8, it can
be observed that for most classification algorithms, the UWB
CIR data (150 samples) achieves better results than WiFi CSI.
However, it can also be noticed that the performance with the
amplitude WiFi CSI data is very close to the UWB CIR data.
For instance, the amplitude CSI data achieves an F1-score of
92.24% using DNN. The main difference is that the UWB CIR
data has a much lower data size than the amplitude WiFi CSI
data and still achieves a higher score. As for the case when
the CSI spectrograms are used as features, the performance is
even lower. For example, a maximum F1-score of 80.89% is
achieved using the DNN. The lower scores may be attributed to
the fact that when PCA was used for dimensionality reduction,
the optimum number of PCs might not have been selected
to represent a good variance of the data. Furthermore, in
some studies, higher packet rates are used, for example, 2500
packets/s, to capture maximum variations/details in the CSI
data caused by human activities of smaller durations [10].
However, this would have resulted in an even larger data size,
increasing the computational complexity.

VI. CONCLUSION

The scope of this work was to evaluate the HAR perfor-
mance in a LoS setup using the high resolution UWB CIR
as features. The features were trained using machine/deep
learning algorithms to classify five classes of activities includ-
ing sitting, standing, lying down, standing from the floor and
walking. Our results showed that by using CIR samples as
features, the five activities could be classified with an F1-score
as high as 95.53%. We also evaluated the HAR performance
with WiFi CSI data. By considering two types of features



Time (s)

(©)

Time (s)

(d) (e

Time (s)

Fig. 7. WiFi CSI spectrograms: (a) walk, (b) sit, (c) stand, (d) lie down, (f) stand from floor.

WiFi CSI (amplitude data) m WiFi CSI (spectrogram data) m UWB (150 CIR samples)

100.00%

90.00%
80.00%
2D CNN DN

70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

F1 Score (%)

Random
Forest

Gaussian
Naive Bayes

Fig. 8. Performance comparison between WiFi CSI and UWB CIR for HAR.

for the WiFi CSI data; firstly, denoised amplitude values of
90 subcarriers and secondly, spectrograms obtained from a
few principal components, maximum Fl-scores of 92.24%
and 80.89% were obtained with a DNN, respectively. We can
conclude that the UWB technology not only provides a better
performance than its WiFi counterpart in terms of HAR but
also has several benefits like smaller data dimension and lower
signal processing requirement as compared to WiFi systems.
Thus, we believe that the UWB technology can also be used in
the context of device-free HAR in addition to its main purpose
which is localisation/tracking.
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