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Abstract

In this thesis the basic theory of the lattice dynamics of molecular 

crystals is considered, with particular reference to the specific case 

of linear molecules. The objective is to carry out a critical 

investigation of a number of empirical potentials as models for real 

systems. Suitable coordinates are introduced, in particular 

vibrational coordinates which are used to describe the translational 

and rotational modes of the free molecule. The Taylor expansion of the 

intermolecular potential is introduced and its terms considered, in 

particular the (first-order) equilibrium conditions for such a system 

and the (second-order) lattice vibrations. The elastic properties are 

also considered, in particular with reference to the specific case of 

rhombohedral crystals. The compressibility and a number of conditions 

for elastic stability are introduced.

The total intermolecular interaction potential is divided into three 

components using perturbation methods, the electrostatic energy, the 

repulsion energy and the dispersion energy. A number of models are 

introduced for these various components. The induction energy is 

neglected. The electrostatic interaction is represented by atomic 

multipole and molecular multipole models. The repulsion and dispersion 

energies are modelled together in a central interaction potential, 

either the Lennard-Jones atom-atom potential or the anisotropic 

Berne-Pechukas molecule-molecule potential. In each case, the Taylor 

expansion coefficients, used to calculate the various molecular 

properties, are determined.

An algorithm is described which provides a relatively simple method 

for calculating cartesian tensors, which are found in the Taylor 

expansion coefficients of the multipolar potentials. This proves to be
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particularly useful from a computational viewpoint, both in terms of 

programming and calculating efficiency.

The model system carbonyl sulphide is introduced and its lattice 

properties are described. Suitable parameters for potentials used to 

model the system are discussed and the simplifications to the Taylor 

expansion coefficients due to crystal symmetry are detailed. Four 

potential parameters are chosen to be fitted to four lattice 

properties, representing zero, first and second order Taylor expansion 

coefficients. The supplementary tests of a given fitted potential are 

detailed. A number of forms for the electrostatic interaction of 

carbonyl sulphide are considered, each combined with a standard 

atom-atom potential. The success of the molecular octupole model is 

considered and the inability of more complex electrostatic potentials 

to improve on this simple model is noted. The anisotropic 

Berne-Pechukas potential, which provides an increased estimate of the 

compressibility is considered as being an improvement on the various 

atom-atom potentials.

The effect of varying the exponents in the atom-atom (or molecule- 

molecule) potential, representing a systematic variation of the 

repulsion and dispersion energy models, is examined and a potential 

which is able to reproduce all of the given lattice properties for 

carbonyl sulphide is obtained.

The molecular crystal of cyanogen iodide is investigated. 

Superficially it is similar to the crystal of carbonyl sulphide and 

the potentials used with success for the latter are applied to 

cyanogen iodide to determine whether they are equally as effective 

models for this molecule. These potentials are found to be far less 

successful, in all cases yielding a number of unrealistic results. 

Reasons for the failure of the model are considered, in particular the
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differences between the electrostatic properties of the two molecules 

are discussed. It is concluded that some of the simplifications which 

proved satisfactory for carbonyl sulphide are invalid for simple 

extension to the case of cyanogen iodide.

A first estimate of the differences in the electrostatic properties 

is attempted, calculating the induction energies of the two molecules. 

The assumption that the induction energy may be neglected is justified 

for the case of carbonyl sulphide but found to be far less 

satisfactory for cyanogen iodide.

Finally details of ab initio calculations are outlined. The amount 

of experimental data available for the electrostatic properties of the 

two molecules under consideration is relatively small and the 

experimental data which is available is supplemented by values 

obtained from these calculations.
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Chapter 1: Introduction

The primary objective of this thesis is to investigate a number of 

empirical potentials which are to be used as theoretical models for 

molecular crystals. The general procedure involves choosing a crystal 

for which a number of structural and vibrational properties have been 

experimentally measured and fitting the empirical potential to these 

properties. In general only a fraction of the potential parameters 

have been used in the fitting procedure, which has been carried out 

using least squares techniques. Similarly only a fraction of the 

molecular properties have been fitted directly by the procedure. 

Attempting to increase the number of parameters to be varied (and 

hence the number of properties to be fitted) would be a 

counterproductive procedure. For a larger set it would be unlikely 

that any successful fitting could be achieved and there would be no 

clear indication as to the reasons for the failure of the fitting 

procedure. It is more effective to fit a small number of parameters 

and then, using these fitted parameters, to calculate a number of 

other known molecular properties whose values provide a critical test 

of a given empirical potential.

The requirement that a small number of parameters (and properties) 

are to be used in the fitting procedure ensures that the crystals to 

be examined need to be relatively simple, so that the parameters 

chosen have realistic interpretation. Indeed, one of the conditions 

required of the empirical potentials is that their parameters should 

be physically realistic. The focus of attention in this thesis is on 

the molecular crystal of carbonyl sulphide and the objective is to 

find and critically analyse a number of empirical potentials acting as 

models for this system. Carbonyl sulphide is an ideal crystal, the
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molecule is small enough to permit a relatively simplistic fitting 

procedure but a large number of the crystal properties have been 

experimentally measured and consequently provide a number of critical 

tests for an empirical potential.

The empirical potential is generally divided into a number of 

separate terms, each of which models a different interaction within 

the molecular crystal. This separation is derived from a general 

perturbation treatment of the overall interaction. A number of forms 

for each of these components is considered, the procedure employed 

being such that each of the individual interactions is investigated 

separately. In each case a standard form for the other components is 

employed so that a simple analysis may be performed.

The potentials obtained with varying success for carbonyl sulphide 

are then applied to the molecular crystal cyanogen iodide, whose 

structure is similar to the former so that the transferability of 

these potentials to other systems may be examined.

One problem which is encountered within this thesis is the relative 

lack of experimental data available concerning the electrical 

properties of the molecules under consideration. To this end a number 

of ab initio calculations have been performed usinjg the now-defunct 

Amdahl 5890 supercomputer at the University of London Computer Centre 

with the aim of providing suitable values for properties such as the 

molecular multipole moments, distributed multipole analyses and 

molecular polarizabiiities.

The lattice dynamical calculations detailed within this thesis have 

been performed using a number computer programs written, in the 

Fortran (77) language, specifically for this purpose. The calculations 

have been performed on a number of systems; the GEC 4100 series 

minicomputers (Euclid), the Pyramid 98x minicomputer and the Sun
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Workstations all at the University College London Computer Centre plus 

the Amdahl 5890 previously mentioned. Although all of these computers 

are now defunct the programs may also be run on the Bloomsbury 

Computing Consortium Central Timesharing Service with a small number 

of modifications required to translate from non-standard Fortran 77. 

Development of these programs and algorithms for increase 

computational efficiency were a significant element of the work 

presented here. Much of the computational framework was based on 

earlier programs due to R.G. Della Valle and P.F. Fracassi, originally 

at the University of Florence.
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Chapter 2: Basic Lattice Dynamical Theory

2.1: Introduction

Lattice dynamics is a long established branch of solid state physics

and its basic theories have been extensively described by Born and 
[ l ]Huang . In particular their work is concerned with crystals

consisting of atomic and ionic units and when considering molecular

crystals there are certain aspects which much be taken into account

when constructing a suitable lattice dynamical theory. These basic
[ 2 - 5 ]theories have been developed by a number of authors but the

theory outlined in this thesis is based upon the work of
[2a 5a]Walmsley ' and the only aspects of the theory which are outlined 

here are those which are relevant to the work presented within this 

thesis.

This chapter is divided into three sections, the first of which 

describes the approximations which are inherent to the theory. The 

second describes a number of coordinate systems which are used within 

the theoretical treatment while the third details the basic lattice 

properties with which this thesis is concerned.

2.2: Fundamental Approximations 

Born Qppenheimer Approximation

The quantum mechanical basis of lattice dynamics rests on the Born- 

Oppenheimer approximation. For a system comprised of nuclei and 

electrons the Hamiltonian may be written:

H  = T + T_ + V (2.2.1)c N E

where T and T_ are the set of kinetic energy operators for the nucleiN E

and electrons and V is the set of Coulomb interaction terms.
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The first step in the Born-Oppenheimer approximation is to neglect 

the kinetic energy of the nuclei, on the basis that the kinetic energy 

is inversely proportional to the nuclear mass and thence solve the 

electronic problem for a fixed nuclear configuration. For example the 

variation of the lowest electronic energy with the nuclear 

configuration defines a function <P which under the scheme of the Born- 

Oppenheimer approximation acts as an effective potential energy 

function for the motion of the nuclei. It is this part of the 

procedure which is considered in detail within this thesis and the 

corresponding Hamiltonian may be written:

H  = Tn + <t> (2.2.2)

with wavefunctions which are dependent upon the nuclear coordinates. 

Rigid Molecule Approximation

The most outstanding feature of molecular crystals is that their 

component molecules persist virtually unchanged when the crystal 

melts, illustrating that the forces between the atoms within a single

molecule (the intramolecular interactions) are much stronger than the

forces between different molecules (the intermolecular interactions). 

The properties of molecular crystals tend to be divided into two

subgroups dependent upon the type of interaction concerned. The first 

set are those molecular properties which are relatively unaffected by 

the state of condensation and the second set are those crystal 

properties which are characteristic of the solid state.

A similar situation exists for the molecular and crystal vibrations. 

Molecular vibrations are generally high in magnitude and are

relatively unaffected by the state of condensation whereas the crystal 

vibrations, which arise through the loss of molecular translational 

and rotational degrees of freedom are much smaller in magnitude and
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are modified greatly when the crystal melts.

With the significant differences in magnitude between the molecular 

properties and the crystal properties the interaction between the two 

types is relatively small and as a first approximation these 

interactions are set to zero, so that considerations of the crystal 

properties are effectively considerations of a lattice of rigid 

molecules.

In the basic Hamiltonian (2.2.2), T becomes the kinetic energy ofN

the rigid molecules and <P is the intermolecular potential energy 

function.

Molecule Pair Approximation

To proceed further assumptions must be made about the form of the 

intermolecular potential energy function. As much of the information 

available concerning the interactions of molecules comes from 

experimental measurements on low temperature gases or theoretical 

calculations of pairs of molecules, the crystal potential energy is 

usually expressed as a sum of molecule-pair interactions, written as 

follows:

where it is assumed that is formally a function which is zero

everywhere and whose derivatives are always zero.

Harmonic Approximation

Following the Born treatment the intermolecular potential energy 

function <P may be expanded as a Taylor Series. The precise form of the 

coordinates chosen is given in the next section but in general terms 

they may be written:

(2.2.3)
i j

iO (2.2.4)
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where the superscript i labels the molecule with which the coordinate 

is associated and a labels the coordinate type within this molecule. X 

is the value of the coordinate, X° is the value of this coordinate at 

a given reference configuration and u is a displacement coordinate 

with respect to this reference.

In the case of a rigid molecule there are six coordinates, 

corresponding to the three translational and three rotational degrees 

of freedom of the isolated molecule. Throughout this thesis, attention 

is confined to linear molecules. The number of coordinates per 

molecule is reduced to five, there being only two rotational degrees 

of freedom for an isolated linear molecule. In the next section the 

choices for these five coordinates will be described. The Taylor 

expansion has the form:*=*°+zz *«a) u«+2 zz zz w ij> u« up +••••
«i ai

(2.2.6)
in which for example the term ^(i) is defined by:

=
d(P

3u*• a Jo
(2.2.7)

In the Harmonic Approximation terms other than quadratic are

neglected. The effect of cubic and higher order terms is assumed to be

small. Linear terms vanish provided that the reference configuration 

is at a minimum in the energy and the constant term is absorbed into

the energy. In this way the Taylor expansion becomes:

* - *0 = i 2 _  2 _  v ij) u« UP (2-2-8)
ai 0J
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2.3: Vibrational Coordinates

The work within this thesis concerns crystals comprised of linear 

molecules only and as discussed above these crystals possess only five 

degrees of vibrational freedom. The most logical representation of 

these degrees of freedom is to choose coordinates such that three 

represent changes of position (the three translational degrees of 

freedom) and two represent changes of orientation (the rotational 

degrees of freedom). The first set are chosen to be changes of the 

position of the molecular centre of mass and are represented by 

Cartesian displacements. The second set are more complicated and may
[ 2a ]be represented by a number of coordinate systems. Walmsley has

outlined a number of systems but attention here is restricted to 

direction cosine coordinates.

Cartesian Displacement Coordinates

The displacement coordinates usually used to represent the three 

translational degrees of freedom associated with the isolated molecule 

are translational coordinates locating the centre of mass of the 

molecule. The three Cartesian displacement coordinates are introduced:

u« = E« " Ra° : “ = 1,2,3 (2.3.1)

where R locates the centre of mass of the molecule. These coordinates

are often represented as t \

Direction Cosine Coordinates

Two further displacement coordinates are required corresponding to

the two rotational degrees of freedom associated with the isolated

molecule and these will represent the changes in orientation of the
[6 71molecule within the lattice. Walmsley ' has introduced a convenient 

method of representing the orientation of a molecule. This method uses 

the direction cosines relating the relative orientation of the
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Cartesian crystal fixed (external) axes and the Cartesian molecule 

fixed axes.

The orientation of a linear molecule, labelled i, within a crystal 

may be described by the set of direction cosines represented by A^, 

the direction cosine relating the oc’th crystal fixed axis and the 

molecular axis (strictly the direction cosine A^ should be written as 

but the z subscript, which conventionally is the molecular axis, 

is normally dropped). A second set of direction cosines are introduced 

which are represented by X^, relating to the equilibrium direction of 

the jS’th molecule fixed axis and the actual direction of the molecular 

axis. The two sets of direction cosines are related as follows:

A« = ] T  (2-3-2)
P

where A ^  is the value of the direction cosine relating the oc’th 

crystal fixed axis and the 0 ’th molecule fixed axis at the reference 

configuration. The direction cosines X^ are related by the relation:

XpX‘ = 1 (2.3.3)

where the convention has been introduced that repetition of Greek

suffices represents repeated summation over the three Cartesian axes

(ie X*xi = X*X* + X V  + X xX x) and this convention should be assumed P P  x x  y y  z z
throughout this thesis. The three direction cosines of the form X^ are

not independent, noting (2.3.4) the direction cosine X 1 can bez
expressed in terms of the other two direction cosines such that:

X 1 =z
.2 .2

1 - X 1 - x 1 x y
1/2

(2.3.4)

The first and second derivatives of A^ with regard to X^ at the 

reference configuration may be obtained and the expressions for these
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are as follows:

(d  A 1! a = (2.3.5)

f a  aa
axiax*

= - ao A i0 (2.3.6)py az '

Finally it may be noted that at the reference configuration the 

direction cosines defined have the values:

X 10 = X 10 = 0; (2.3.7)x y

X i0 = 1 (2.3.8)z

As the direction cosines X 1 and X 1 are both zero at the referencex y

configuration these are therefore the two remaining displacement 

coordinates required. Hence:

ua = Xa ; a = 4 ’5 (2.3.9)

Symmetry Coordinates

In lattice dynamics a crystal is considered as being comprised of a 

number of identical units which are referred to as unit cells. The 

regular arrangement of these units determines the symmetry of the 

crystal which may be described by a space group. The properties of 

space groups and their irreducible representations have been detailed
[ 3 ]by Califano, Schettino and Neto . The symmetry of the crystal can be 

exploited when considering the Taylor expansion of the potential, as 

the Taylor series possesses the same symmetry as the configuration 

about which the expansion is being made.

A space group is described by subgroups of translational operators ^  

which describe the periodic nature of the crystal lattice. These 

translational operators represent linear displacements of the crystal
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and are defined relative to an externally fixed origin. These 

translational operators are defined as being combinations of the 

vectors which define the unit cell of the lattice and can be expressed 

as follows:

T = n„a„ + n,a + n„a (2.3.10)- n 1-1 2-2 3-3 v '

where the vectors a. are the vectors defined by the sides of the unit-1
cell of the lattice in question; n. are integers and n represents the

three integers which characterise a particular operator.
[ 8 ]Born and von Karman introduced cyclical boundary conditions which 

may written in terms of the elements of ST as follows:

T = T = T s T  u (2.3.11)~n ,n ,n ~n +N ,n ,n ~n ,n +N ,n ~n .n ,n +N1* 2 ’ 3 1 1* 2 ’ 3 1* 2 2* 3 1 2  3 3

The numbers N t, N2 and N3 are large but finite and S'" is the cyclical 

group of order N2* Therefore each of the integers n. cycle

through a period of length N . A number of ranges may be chosen but 

the most convenient is:

n. = 0, ± 1,-----’ + i N i‘ (2.3.12)

The group IT is Abelian and has three independent cycles based upon at, 

a„ and a . The irreducible representations of a group such as this are 

all one dimensional and there are N2>< of them. These characters 

may be written as follows:

X (y)(T ) = exp [2 n iv•T ] (2.3.13)- n - - n

where the vector y labels the representation and may be written in 

terms of the basis b. , which is the set of vectors reciprocal to the■N, 1 ^

set of vectors a.. These are defined as follows:- 1
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b. = - (a.x a, ) (2.3.14)- i V ~J ~k

where i, j and k are in the cyclical order 1, 2, 3 and v is the volume 

of the parallelepiped bounded by the vectors a., ie the volume of the 

unit cell.

The vector y is generally known as the wave-vector and is also often 

identified by k instead. The space defined in terms of these 

reciprocal lattice vectors is often referred to as k-space. The full 

set of independent wave-vectors is found within the first Brillouin 

zone of the crystal. The vector y has the components in the reciprocal 

basis y. which are defined by:

y. = K./ N. (2.3.15)i l l

where K = 0, ± 1, . ..., ^ N .

For a molecular crystal each molecule i, within the crystal can be

labelled by the coordinate u^, where a labels the components of the

externally fixed coordinate system. To take advantage of the 

translational symmetry of the crystal the index i labelling the

, where 1 labels the unitmolecule is replaced by a double index u

cell and k labels the molecule within the unit cell. Standard 

projection operator procedure yields the symmetry coordinates:

ua = N 1/2 exp [-2rciyx(l)] ua (2.3.16)
l

where x(l) is the vector with components t. locating the unit cell 1.A, A, 1

This symmetry coordinate forms the basis for the irreducible

representation £ of
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2.4: Theory for the Lattice Dynamics of Molecular Crystals

It has been shown in section (2.2) how the interraolecular pair 

potential can be expressed as a Taylor series up to second order. Each 

element of the Taylor series can be shown to represent a different 

lattice property. The leading term, <PQ represents the total energy of 

the lattice at the reference configuration, the first order terms 

represent forces and torques acting on the molecules at the reference 

configuration while the second order terms represent the vibrations 

within the lattice.

Equilibrium Conditions

It has already been discussed that for the observed crystal 

structure to be at a stable equilibrium the reference configuration 

needs to be chosen such that the linear terms in the Taylor expansion 

of the intermolecular potential function disappear. For this condition 

to be satisfied the potential for each molecule within the lattice 

must be force-free in each direction. In the case of the infinite 

lattice model each unit cell is considered as being within an 

identical environment and therefore as long as each molecule within 

one unit cell is force-free then every unit cell and hence the whole 

crystal will be force-free. In terms of the notation given previously 

there will be 3n of these conditions. These may be expressed as 

follows:

<P<x lk = 0 (2.4.1)

Only one value of 1 (ie only one unit cell) need be considered.

One further consequence of the infinite lattice model is that the 

equilibrium conditions defined by (2.4.1) are incomplete. If the 

lattice is considered as being infinite then the forces acting on any 

single point due to the other molecules in any one direction will be
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exactly balanced by the equivalent molecules in the opposite 

direction. Born and Huang111 have shown that the additional

equilibrium conditions required are that the crystal must be free from 

stress. If the crystal is considered as being a homogeneous

macroscopic body then the stress is a measure of the forces due to a

small change in the dimensions of the crystal itself (known as a

strain). If the crystal is to be free from stress then the unit cells 

of the crystal must be free from stress and therefore their dimensions 

must be minimised with respect to the potential.

The symmetry of a given system may well lead to simplifications, for 

example any stress which is associated with a strain whose coordinate 

is not totally symmetric is automatically zero. Similarly any strain 

which automatically lowers the symmetry of the crystal under 

consideration will ensure that the associated stress is zero.

Lattice Vibrations

The second order terms in the Taylor expansion of the intermolecular 

potential function are non-vanishing and are of the form:

n i <t> (ik ̂ ’Kt)\ 1 '
up r 

■■ (2.4.2)

oc.l.k P.r.k*

This may transformed so that it is expressed in terms of the symmetry 

adapted coordinates introduced in section (2.3) as follows:

L l <t> y k k 1 ”-6) ■*(!•) (2.4.3)

I k,k’ a,j3

The kinetic energy for this system in terms of these coordinates is 

given by:

T = \ V ) K <k> U*IY! u IY!2 I   f   o r  a ( ^

X «,k

(2.4.4)
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where K^(k) is a general mass factor. For translational coordinates 

this factor is the molecular mass, for orientational coordinates this 

factor is the molecular moment of inertia as follows:

There are N of these secular determinants to be solved each of order 

3n, where N is the number of distinct values that y runs through

(2.3). For a system in which the rigid molecule approximation is being

vibration frequencies. Those belonging to the zero wave-vector (y=0) 

are of particular significance for Raman and infra-red spectroscopy.

These lattice vibration frequencies provide further information 

about the lattice structure. If the lattice is to be stable then all 

of the frequencies must be real (ie the corresponding second 

derivatives must be positive). For coordinates which are not totally 

symmetric it has already been mentioned that the first derivatives are 

automatically zero and therefore provide no information about the 

stability of the lattice with respect to that particular coordinate. 

The requirement that the second derivatives of these coordinates must 

be positive provides a test for the stability of the lattice with 

respect to these non-symmetric coordinates.

M(k); « = 1,2,3
(2.4.5)

I(k); a = 4,5

The following secular determinant may then be formed:

0 (2.4.5)

according to the cyclical boundary conditions discussed in section

2used the solutions of the secular equations oj are the lattice
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Chapter 3: Elastic Properties of Rhombohedral Crystals

3.1: Introduction

In the previous chapter a number of properties of molecular crystals

were discussed whose values could be calculated for a given empirical

potential and used as a test of the quality of that potential as a

model for a given system. Another property of molecular crystals which

can be examined as a test of an empirical potential is the elasticity

of the crystal. In this chapter the basic measure of elasticity, the

elastic constants of the crystal, will be introduced, the basic theory
[ 9 ]having been outlined in detail by Huntingdon and a suitable method 

for their determination will be described for the particular case of 

rhombohedral crystals.

The elastic constants of rhombohedral crystals such as carbonyl 

sulphide are in principle quantities which may be experimentally 

determined by a variety of techniques, including ultrasonic 

transmission and Brillouin scattering. However experimental values of 

; these constants do not, as yet, appear to have measured for the

crystals considered within this thesis. Nevertheless the calculated 

elastic constants may be used to derive other properties, such as the 

isothermal compressibility, which have been experimentally determined 

and to determine whether the system satisfies elastic stability.
|

3.2: Elasticity Theory 

i For an unstrained medium the position of each element of volume can

be described by a cartesian coordinate system with coordinates x„, x„i 1 2
i and x3< When the material is homogeneously stressed each volume

| element is subject to a force, with components AF. , at the bounding

surface, AA^ (perpendicular to the j axis).

32



The tensor T. is introduced, defined as the limit as Aa 0 of the * j j
ratio of AF. to A A .,i j

"AF '
T . . = lim

1J AA.-X) j a a
(3.2.1)

The symmetric part of T is the stress tensor, the antisymmetric part 

is the density of the resultant torque and is generally neglected in 

elastic theory. The normal stresses, T are tensions when positive. 

The T (i^j) are the shear stresses.

When the material is strained, each element of volume moves to a new 

position, the displacement being described by a cartesian coordinate 

system with coordinates u , u2 and u3. Using these coordinates the 

strains, labelled by have been defined by Love1101 as follows:

li
3u

3x 22

du

dx.
33

c>u.

d x .

du0 3uo2 3
e 23 = ---- +-----Cbc d x3 2

<3u du 1 3e = --- +----
13 6 x 3 6 x i

3u 9u 1 2
012 d x + ax 2 1

(3.2.2)

The e. . are the normal strains and are positive when the medium isii
extended. The non-diagonal components of e (i^j) are the shear 

strains. Both the stresses and the strains are symmetric to 

interchange of the subscripts and later in this chapter it will prove 

to be convenient to replace the double subscript notation by a single 

subscript notation which is introduced as follows:

Double Subscript 11 22 33 23 13 12

Single Subscript 1 2 3 4 5 6

so that for example e^2 may be rewritten as eg.

A further quantity is introduced which relates the stresses and

33



strains, derived from Thermodynamic calculations, being the stored

energy density function w defined as:
3

Sw = ) T. . 6e. . (3.2.3)
i   i j i j
i*j

and Sw is a perfect differential so that:

Sw
T. .--= --- (3.2.4)
1J Se..i J

The usual starting point for elasticity theory is Hooke’s law, which 

states that the stress is proportional to the strain for sufficiently 

small strains. This relationship may be expressed for an anisotropic 

medium as follows:

3

T. - = Y ~  c. , e. . (3.2.5)i j ___ i j k 1 k 1
k^l

and the constants of proportionality introduced, c. , are the elastici j k i

constants, otherwise known as the elastic moduli.

In the most general case the array of elastic constants would 

contain 36 (6*6) independent quantities. However, the requirement that 

the matrices should be symmetric to interchange of the pairs of double 

indices reduces this independent number to 21. This condition may be 

illustrated by considering the tensor T expressed in terms of the 

strain energy density w as follows:

dT. . d2w d2w dT
c ki = “ ^  = ----------  =   = = c ui- • (3.2.6)i j k 1 ~ ^ ^ - « klijoe, , de, , d e . , de. . de, , d e . .k1 kl lj ij kl l j

The values of these elastic constants may be illustrated as a 6X6 

matrix which is conveniently written in terms of the single subscript 

notation introduced previously (the indices running from 1 to 6) and 

illustrated in figure 3.1.
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Figure 3.1; General Elastic Constant Matrix

C 11 C 1 2 C 13 C 1 4 C15 C16

C 1 2 C 22 C 23 °24 C 25 °26

C13 C 23 C 33 C 34 C 35 C 36

C 1 4 °24 °34 C 44 °45 °46

C15 C 2S C 35 C 45 °55 C 56

C16 °26 C 36 °46 °56 °66

This matrix, which is necessarily symmetric about its leading diagonal 

is more usually expressed in upper triangular form.

The assumption of linearity between the stress and strain allows the 

expression for 5w (3.2.3) to be integrated to give w, also known as 

the strain energy density:

1
W 2

i , j£l
T. . e. . i j 1 j (3.2.7)

For an elastic medium, the forces on an element of volume are given 

by the divergence of the stress field as follows:

,2i. \  or. .
(3.2.8)

a u. r  

* ■ 1   dx  .j=x,y , z j

which after substitution of (3.2.5) leads to:

- - - - -  aa2u
at' j , k, 1=x,y,z j

i j k 1 2
fau au 1k 1—  + —
ax, ax,1 k-

(3.2.9)

For the particular case of an elastic plane wave one solution of 

this equation is given by:

UK = \  6
i (tot - k . x ) (3.2.10)

where Ak is the amplitude of the vibration component, to is the angular
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frequency related to the wave velocity v by v = w/lkl, k is the 

wavenumber vector with wavelength X = 27r/lkl and x is the vector 

describing the position of the element of the volume with components

X1> X2 and V

The equations of motion which follow, are known as the Christoffel 

equations:

pv2A. = ^ ^ ^ c,_„_ A . k_ k_ (3.2.11)
j=x,y,z m=x,y,z n=x,y,z

1 m j n j m n

where k is the component of the unit wave vector along the cartesianm
axis m. Solutions for the amplitudes, A exist providing that:

r  -  pv2 6i j i J = 0 (3.2.12)

where I\ . is defined as: i j

T. = ) ) c. . k k (3.2.13)ij I ________ [_________ imjn m n
m =x, y ,z  n=x,y,z

The 3x3 matrix formed by these components will be referred to here 

as the Gamma matrix and is symmetric about its leading diagonal. The 

individual components are written as follows, where the single suffix 

notation for the elastic constants is now adopted:

T = c k2+ c k 2+ c__k2+ 2c, k k + 2c,_k k + 2 c k  k (3.2.14)X X  11 x 66 y 55 z 16 x y 15 x z 56 y z v '

r = c £2+ c„_k2+ c k2+ 2c_.k k + 2c,ck k + 2c k k (3.2.15)yy 66 x 22 y 44 z 26 x y 46 x z 24 y z 7

T = c__k2+ c k2+ c k 2+ 2c,_k k + 2c k k + 2c_,k k (3.2.16)zz 55 x 44 y 33 z 45 x y 35 x z 34 y z ’

r xy = ° 1 6 k x + C 26k y+ C 45k !+ (° 1 2 + C 6 6 ) k xk y+ (° 1 4 + C 5 6 ) k xk y

+ (C2 5+ C 4 6 ) V z  (3.2.17)
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3.3: Elastic Constants and Acoustic Velocities

The relationship between the elastic constants of a crystal and the

wave-vectors which correspond to the acoustic waves propagating within

a crystal have been illustrated in the previous section by the

Christoffel equations (3.2.11) and the relations which follow from it

(3.2.12 - 3.2.19). For a rhombohedral crystal, with C3v (3m) space

group the effects of symmetry simplify the coefficients of the elastic

constant matrix and these simplifications have been extensively
[li]described by Bhagavantam . Using these and choosing the cartesian 

axis system such that the z axis represents the three-fold axis, the x 

axis lies in the symmetry plane and the y axis is perpendicular to the 

x and z axes, the full elastic matrix is simplified (and expressed in 

upper triangular form) as follows:

Figure 3.2: Elastic Constant Matrix for a Rhombohedral Crystal



and it may be seen that for a rhombohedral crystal there are only six 

independent elastic constants.

As a result of these symmetry simplifications the components of the 

Gamma matrix given by (3.2.14 - 3.2.19) reduce as follows:

A 4 A o A o A A
r = c _ k  + — (c - c,„) k + c k + 2c k k xx 1 1 x 2  11 12 y 55 z 15 x : (3.3.1)

T = ^(c. - c ) k2+ c. k2+ ccck2- 2 c . k  kyy 2 11 12 x 11 y 55 z 15 x z

r- C 2  C 2  C 21 = c k + c k + c kzz 55 x 55 y 33 z

T = - 2c k k + -(c + c,_) k kxy 15 y z 2 11 12 x y

r  =  cxz 15 + (c,-+ c ) k k13 55 x z

(3.3.2)

(3.3.3)

(3.3.4)

(3.3.5)

r = (c + c ) k k - 2 c k  k yz v 13 55 y z 15 x y (3.3.6)

These are the equations describing the components of the Gamma matrix 

for a rhombohedral crystal in the direction whose wave-vector has 

components k , k and k . For each such direction calculation of thex y z

initial slopes of the acoustic branches of the dispersion curves gives 

three velocities v^, v2 and each of which leads to a separate

solution of (3.2.12). For each of these solutions the Christoffel 

equation may be rewritten such that:

p v i A ioc =  F oc|3 A i p  ; 1 = 1 ’ 2 »3 (3.3.7)

and if the values of the amplitudes are normalised these three 

equations can be rearranged such that they are expressed in terms of 

the components of the Gamma Matrix, as follows:

r  „ = P V 2 A .. A<xp n<X n/3 (3.3.8)
n=l
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Consequently by choosing a particular wave-vector direction defined 

by k , k and k the non-zero components of the relevant Gamma matrixx y z

can be calculated in terms of the elastic constants using 

(3.3.1 - 3.3.6). Calculation of the wave velocities and their 

corresponding amplitudes leads to the numerical values of these 

components of the Gamma matrix and hence the values of the elastic 

constants. Three directions are conveniently chosen for this purpose 

and with the respective Gamma matrices are as follows:

k = 0, k = 0 ,  k = lx y z

k = 0 ,  k =  1, k = 0  x y z

kx= °> ky= A’ K= A

Consideration of these three directions within the Brillouin Zone 

will yield all six independent elastic constants, the first direction 

(which elsewhere within this thesis is illustrated by dispersion 

curves parallel to the molecular C3 axis for the calculations on the 

OCS crystal) yields the values for c__ and c__ (for example in the33 55
A A A

direction defined b y k  = 0 , k  = 0 , k  = 1 ;  c r = T and c_ _ = T ).
J  x  y Z  ’  55 X X 33 zz'

The second direction (elsewhere illustrated by dispersion curves 

perpendicular to the molecular C3 axis) yields the values for c,,. c,2 

and c„_. With the values of these five already determined the the15
third direction yields the value for the final elastic constant,

C55 0 0
0

0 0
C55 0

33

— (c -c ) 02* 11 12

11

-C 15

-C

0

c

15

55

1 t 1— (c -c )+—C4 V 11 12 2 55

-C 15
1
2° 15

-C 15

— (c +C ) 2 V 13 55

1
~ 2C 15

2^C 13+ C 55 ̂
1 / x-(c +C )2 33 55
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3.4: Elastic Properties

It has previously been discussed that the calculated values for the

but two other quantities, the compressibility and elastic stability 

may be derived from these elastic constants and then compared with 

experimental values as a further test of an empirical potential. 

Compressibility

The compressibility of a crystal represents the extent to which a

crystal is susceptible to deformation under an external force. The

lattice dynamical theory outlined within this work assumes zero

temperature and pressure. At high temperatures elastic properties vary

rapidly and are approximately proportional to the change in

temperature. At lower temperatures variation is slower and at very low

temperature variation is effectively temperature independent. This
[12]behaviour has been approximately represented by Bondi , relating 

x q , the compressibility at zero temperature and pressure and x t> the 

compressibility at temperature T (a quantity which can be measured 

experimentally) as follows:

The reciprocal compressibilities are often known as bulk moduli, is 

the Debye temperature at 0 K and d is a constant. The compressibility 

of a crystal can be expressed in terms of the elastic constants and 

for a rhombohedral crystal the relationship between the 

compressibility and the elastic constants is given by:

elastic constants cannot be directly compared with experimental values

x -1 T x*1 - d T exp [ \ /  2 t ) (3.4.1)

o

X (3.4.2)
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Elastic Stability

For a crystal to be stable the strain energy given by (3.2.7) must 

be positive. This may be rewritten in terms of the elastic constants 

such that:

3 3 3 3
1

W 2 c e ei j k l  i j k 1 (3.4.3)
i = 1 j = 1 k = 1  1 = 1

For the strain energy to be positive the determinant of the matrix 

of elastic moduli must be positive definite for ajl values. This is 

the condition for elastic stability:

IcI * 0 (3.4.4)

where c is the symmetric 6*6 matrix of elastic constants. For a 

rhombohedral crystal it was shown in section 3.3 how the elastic 

constant matrix can be simplified and the full expression for elastic 

stability of a rhombohedral crystal is written as follows:

°11 C1 2 C13 0 C 15 0

C 12 C11 C13 0 *”C15 0

C13 C13 °33 0 0 0

0 0 0 °55 0 *”C15

C15 'C15 0 0 C55 0

0 0 0 ~C15 o i (cil" C12}

> 0 (3.4.5)

This determinant may be factorised and leads to four independent 

conditions for elastic stability which are as follows:



S4 = CS5(Cir C12> - 2C1S > ° (3-4-9)

where the quantities S2 , S3 and S4 have been introduced and are

referred to as stability constants elsewhere in this thesis.
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Chapter 4: Potentials for Molecular Crystals

4.1: Introduction

Any empirical potential function which is used to model the 

interactions within a molecular crystal needs to be able to account 

for both long and short range interactions, the theories of which have 

been discussed by Buckingham^131.

Long range interactions are considered as being those interactions 

for which the electron overlap between the two molecules is 

negligible. Using standard quantum mechanical perturbation theory the 

ground-state energy of a pair of molecules may be developed as a 

perturbation series. The first order perturbation energy is known as 

the electrostatic energy and represents the Coulomb interaction 

between the two ground-state molecular charge distributions. This 

contribution may be positive or negative dependent upon the form of 

the molecular charge distributions concerned.

The second order terms can be divided into two components, the 

induction energy and the dispersion energy. The induction energy 

represents the distortion of one molecules ground-state charge 

distribution due to its interaction with a second molecules 

unperturbed charge distribution and is necessarily always negative. 

The dispersion energy represents the interaction of two perturbed 

charge distributions and is also always negative. Each of these 

energies has a radial dependence and for the interactions between two 

neutral ground-state molecules the leading term in the electrostatic
_ 3energy varies as R while the leading terms for the (second order) 

induction and dispersion energies vary as R 6. Within this thesis the 

induction energy, which is generally small, is initially neglected.

Short-range interactions are generally considered as being those for
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which there is a significant degree of electron overlap. These 

interactions do not lend themselves to a convenient perturbation 

treatment. It is well known that at short-range the dominant 

interactions are repulsive and they increase rapidly as the 

intermolecular distance R decreases. Empirical observations suggest 

that such behaviour may be well represented by a radial function of 

the form e R or R n (where n is usually chosen to be not less than 9).

Within this thesis the potential function is represented by a

combination of two basic potentials. The first is the atom-atom model,

which has been used to construct empirical potentials for a wide range
[2 3 4 14]of molecular crystals ' * ' and models both the short-range

repulsion and the long-range dispersion energies, both being functions

of the intermolecular distance R. Two variants of this type of

potential are used, the well known Lennard-Jones potential and an

anisotropic molecule-molecule potential derived by Berne and
[15]Pechukas . In addition the electrostatic energy is represented by 

one of two expansions of the molecular charge distribution. The first 

is an expansion in terms of the molecular multipole moments while the 

second is an expansion in terms of charges and multipole moments 

located on the individual atoms.

Generally the values of the exponents employed within atom-atom 

potentials are considered as being fairly restricted. It is unusual 

V  for the repulsive power to be considered as anything other than six 

and it is similarly unusual for the dispersive power to be considered 

outside the range nine to thirteen. Within this thesis the values of 

the atom-atom exponents employed will exhibit wider flexibility and 

the exponents themselves will be considered as empirical parameters.

The basic theory of lattice dynamics has been introduced in Chapter 

2. For a crystal to be in stable equilibrium the forces and torques
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(the first derivatives of the potential) acting upon the molecules 

must vanish, the crystal must be free from stress and the force 

constants corresponding to the normal coordinates (the second 

derivatives) must be positive. The forces, torques and force constants 

are represented by the appropriate Taylor expansion coefficients.

Each of the potentials utilised within this thesis is considered in 

detail in this chapter and expressions for the first and second 

derivatives of the potentials with respect to the vibrational 

coordinates are given, these being required to determine the values of 

the various lattice properties described in Chapter 2.

4.2: Lennard-Jones Atom-Atom Potential

The molecule pair approximation given by (2.2.3) may be more 

conveniently rewritten as:

v = z
.AB (4.2.1)

.AB
A B^A

where V is the total potential and V"“ is the potential between 

molecules A and B. The intermolecular interaction is expressed as a 

sum of these molecule-pair interactions. In the case of the 

Lennard-Jones potential the molecule-pair potential is further 

partitioned into atom-pair potentials between the constituent atoms of 

the two molecules. The full potential is given by:

V = 2
A i B j (4.2.2)

B^A

where i labels the atom within molecule A and j labels the atom within 

molecule B. The Lennard-Jones potential has the general form:

VA i B j n-m
Ai B j
A i B j 
0

- n
A i B j
A i B j 
0

(4.2.3)
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where rAlB  ̂ is the interatomic distance. The potential tends towards 

zero as rAlBj tends to infinity. The potential has a minimum at the 

configuration for which rAlB  ̂ = rAlBj and the value of the potential

at that configuration is given by £, otherwise known as the well

depth. The magnitude of n is a measure of the steepness of the

repulsive part of the potential and the magnitude of m is a measure of

the steepness of the attractive part of the potential. The potential

is a central interaction potential and its two components can be

easily seen to model the repulsion and dispersion components of the

intermolecular potential.

The Lennard-Jones potential is a function of the interatomic

coordinate rAlB ,̂ whereas the Taylor expansion coefficients required
A Aare those with respect to the vibrational coordinates t and X . Toa a

relate the two sets of coordinates a set of intermediate coordinates,
A ir , are introduced such that: a

where is the oc’th component of the coordinate of the centre of mass

component of the coordinate of atom i in molecule A relative to the 

molecule fixed origin of molecule A. For convenience the molecule 

fixed axis system is chosen to be a cartesian system such that the 

molecular axis is the z axis and (4.2.5) may be simplified:

a
(4.2.4)

where the coordinate rA i is defined by:a

(4.2.5)

A

A iof molecule A relative to the crystal fixed origin and is the jS’th

(4.2.6)
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where are the direction cosines discussed in section 2.3. The
Acoordinates above are related to the vibrational coordinates, R area

A Adependent only upon the translational coordinates t^, while are
Adependent only upon the orientational coordinates

The first derivatives of the interatomic potential with respect to 

the vibrational coordinates may now be formed using the chain rule:

a v AiB j

au a

a v A i B j

arA i B j
arA i B j

arA ia

arA ia
au

y

(4.2.7)

and the second derivatives may similarly be formed:

a 2 v A i B J
A Aou OU cy a <*,0

a2yAlBj
arAiBj arAiBJ

f >- A idra
f
dr

- ( A i B j ) 2ar
< > 0

~ A iara 0
~ A i

p 0 ■s
<

, 0
du

A i
7>

«>P

a v A t B J -2 AiBja  r
f >~ A i 
ar«

fa Ail
drp

a r A i B Js. -0
~ Ai -v Ai
3r« d r {3K ' J 0

duAyK. * J 0
a u AV. y

r
a

a v,A i B j

arA i B j
arAi B j

dr A ia

-2 Ai 
9 ra
/v A AC7U OUc
. y 5

(4.2.8)

a 2 v A i B j

a u A  a U o y a «,P

a 2V A i B j

ar ( A i B j ) 2
arAi B j

a r A ia

3rAiB j

ar Bj0

arA ia
du

y J

ar Bj0
a u

a,

aa<>
V * ~2 AiBja  r

r< 
8 
fc.

v

[p.or

a r A i B J
0

arAi arBJ
 ̂ ~ J 0

a u AyK. * 0
dui.

Bj
■0

r
a

a v A i B j

arAi B j
arA i B j

3rA i(X

^2 Ai a r« (4.2.9)
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The derivatives of rAlB  ̂ with respect to rAl and r ^  at the 

equilibrium configuration are given by:

drAiBj

dr A i 
a

AiBj 
_a___
AiBj ’ (4.2.10)

drAiBj

dr Bj

AiBj
= ___

AiBj (4.2.11)

2̂. AiBj d r
~ A i - A idr drD a p J

<x0
AiBj

AiBj AiBjr r o« P
3AiBj

(4.2.12)

~2 AiBj d r

drAI ar!J
. « 0 J

AiBj AiBj 
r« ^

3AiBj AiBj
(4.2.13)

A iThe derivatives of r^ with respect to the vibrational coordinates are

given by consideration of (2.3.5), (2.3.6) and (4.2.6):

drA i a
dt

dr Bja
dt

= 6ay (4.2.14)

„2 Aia r«
at; at;

~2 Ai 
3 r«
atA at!7 5

= 0 (4.2.15)

f >- A idra
f >^ A i 

a
f
dA

dXA 9AftI P J
dX

I 7 0 0 L

Ai aAOP A z ay (4.2.16)

.2 Aid ra
dXA dXA y 6

-  6  *  aA 0yo az (4.2.17)
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Using these relationships the non-zero first and second derivatives of 

the Lennard-Jones potential with respect to the vibrational 

coordinates may be written:

avAiBJ AiBj
r7 avAiBJIS J AiBjr arAlBj

0 L J 0

avAIBJ
- V  oAl

AiBj
a a ° a W AiBj

r- Q> >> >

0
Z _a

<xy AiBj r drAiBjv j

(4.2.20)

(4.2.21)

a 2 v A l 3 j

a t A  a t i  
y 5J

AiBj AiBj 
= r?

A i B j 2

a 2 v A i B j

d r

( A i B j )2

AiBj AiBj
h  rs

AiBj AiBj

4 0
f

a v A i B J

J

a r A i B J ̂ 4

(4.2.22)

a 2 v A i B j
V "  oAi AA0 «

/• AiBj Ai Bj
rT

a2yAiBj

a t A  a x A* 4 0
/ z V  
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AiBj AiBj

AiBj AiBj

\
a v A i B J

>

J
a r A 1 B Ji 4 0,
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a2vA1BJ AiBj AiBj ' d 2vAiBj •
\ Ai .AO .AO > P A A osr / z ay 06

ra r0
axA ax~ r 5J 0

2AiBjrV
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c AiBj AiBj
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AiBj AiBj

avAiBJ
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J

- AiBjar
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azvAiBJ AiBj AiBjry ra
2AiBj

a2vAiBJ
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(4.2.25)

a2vAiBj
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AiBj AiBj
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ra r0 Ai Bj .AO .BO
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4.3: Anisotropic Berne-Pechukas Molecule-Molecule Potential

The atora-atom Lennard-Jones potential described in the previous 

section is isotropic in the sense that there is no direct accounting 

for the molecular surroundings. An alternative approach to considering 

the short-range repulsive part of the potential would be to consider a 

moment expansion about the centre and allocate the terms within this 

expansion to the atomic centres as interactions which are locally 

anisotropic.

There is no unique form for the functions representing the terms

within the expansion and one particularly compact form has been
115]suggested by Berne and Pechukas . Within their treatment the 

interaction between two molecules is represented by a function which 

is directly related to the overlap of two ellipsoidal Gaussian charge 

distributions. The charge distributions are of the form:

G(x,y,z) = exp£-(x2+ y2)<J~2 - 2J (4.3.1)

where x, y and z are Cartesian coordinates, z being the principal axis

of the molecule. The quantities and quantify the spatial extent

of the distribution perpendicular and parallel to the principal axis.

The total potential interaction is given by the sum of the

interactions of these ellipsoids and this interaction is considered as

being proportional to the mathematical overlap between the ellipsoids.

Thus an alternative model for the short-range repulsion term has been

proposed which is dependent upon the shape of the molecules concerned.

A suitable set of coordinates for describing the relative
[16]orientation of the two Gaussians have been introduced by Walmsley 

and consist of the direction cosine coordinates introduced in Chapter

2 plus R, the distance between the origins of the two Gaussians. A*

relates the principal (z) axis of molecule A and the a ’th crystal
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fixed axis. The relative orientation of the two Gaussians is given by 
A B where the summation convention is assumed. This quantity is

represented by t :A B

t = AV (4.3.2)
a b  y y v '

Berne and Pechukas detail the derivation of the overlap integral and 

point out a number of simplifications for the treatment of overlap 

integrals of axially symmetric functions such as the Gaussians under 

consideration here. Furthermore the formulae which they detail may be 

simplified if the two functions are the same, ie the values of o and 

<J|| are the same for both molecules. Under these circumstances, the

overlap, S, is given by:

S = £ exp(-R2 X 2) (4.3.3)

where £ and X are angular functions whose definitions are as follows:

m AB) = 5 t 1 /2  ( 4 . 3 . 4 )

XZ(A*, A®, tAB) = X2 t (s/R2)'1 (4.3.5)

where the quantities t and s are defined by:

t  = 1 -  X2t 2B ( 4 . 3 . 6 )

s = R R„ fs „t - X(AAA* + ABA®> + 2X2 a V a V ]  (4.3.7)a J3 [ a)3 a p ' a p y yj

The parameters, £, X and X represent the strength, the range and the

degree of anisotropy of the Gaussian function and the latter two may

be expressed purely in terms of o ^ and as follows:

X = /2 o± (4.3.8)
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[ 17 ]Corner has suggested that such a potential should be developed

such that the interaction is through a Lennard-Jones potential. Berne 

and Pechukas have further developed this idea by proposing that the 

strength of the Gaussian function parameter, £ should be identical 

with £, the value of the energy at the minimum of a standard atom-atom 

pair potential (for example the Lennard-Jones potential discussed in 

the previous section) and X should be identical to RQ , the value of 

the interatomic distance, R at the minimum. Explicitly the expressions 

for these functions are as follows:

1/2£(tAB) = e/t (4.3.10)

n / A n B  ̂ t R „R (A , A0, t ) = ------  Ro' a ’ 8 ’ AB 1/2 0s
(4.3.11)

These two expressions represent systematic anisotropic replacements 

for the quantities £ and RQ and may be substituted directly into any 

suitable potential. In the case of the standard Lennard-Jones 12-6 

potential the anisotropic treatment may be applied to both the 

repulsion and dispersion terms to give:

V = £ 11/2 - 6 1 2  5/2 - 3 6t s R n - 2t s0 0 (4.3.12)

It should be noted that for a molecule whose degree of anisotropy, X
2is zero then from (4.3.6) and (4.3.7), t = 1 and s = R so that the 

above expression becomes:

„AiBjV = £
r a 12R.

-  2
v 6 (4.3.13)

which is the standard isotropic Lennard-Jones 12-6 potential.



The anisotropic Berne Pechukas potential is therefore a function of 

three variables; £, RQ and X* It should be noted that the theory 

introduced here is appropriate only to the interaction of linear 

molecules as it accounts only for the direction of the symmetry axis 

of the ellipsoidal function. It is also adapted to functions which are 

located at the molecular centre of mass. The potential may be extended 

so that it may be used as an atom-atom potential but within this 

thesis it is only employed as a molecule-molecule potential.

The Taylor expansion coefficients may be obtained in a similar 

manner to the procedure described in the previous section, applying 

the chain rule and using s and t as intermediate variables.

4.4: Molecular Multipole Potential

It has already been discussed that in addition to the short-range

potentials described in the previous sections any suitable model will

also require a contribution from the molecular charge distributions.

The simplest method of describing this distribution is to express it

in terms of a set of charges located on the atoms. The simple form of

the interatomic potential described in section 4.2 is retained and a

term which is a function of (rA 1B-̂ ) 1 is added.

Alternatively the charge distribution may be represented by a series

of molecular multipole moments, each referred to the molecular centre

of mass as the origin. For a pair of neutral linear molecules Neto,
[18]Righini, Califano and Walmsley have provided a convenient form for 

expressing this multipolar series:

Each term represents the interaction between two multipole moments,

00 00

(4.4.1)
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the moment of order m on molecule A and the moment of order n on
ABmolecule B. The component of the potential, V is given by:mn

VAB = MA(m) MB(n) * [LA(m)*TAB(m+n)*LB(n)]mn ~ ~ ~ (4.4.2)

where M (m) is the m ’th multipole moment of molecule A defined by:

MA(m) = ^ e.(r.)m P (r. /r.)  1 1  m 1 z l (4.4.3)

where the sum is over all charges, e. within molecule A which are a 

distance r. from the molecular centre of mass and have the Cartesiani
coordinate r. along the molecular axis. P (r. /r.) is the Legendrei z m l z l

function of degree m. The first four multipole moments are more 

commonly known as the dipole (/-0, quadrupole (©), octupole (0) and 

hexadecapole (4>) moments. The term LA (m)•TAB(m+n)•L°(n) is the inner 

product of three tensors. L (m) is a tensor of rank m and its 

components are the direction cosines introduced in Chapter 2, relating 

the crystal fixed Cartesian axes and the linear axis of the molecule 

such that its components may be written:

LA (m) = A V  AA<xp...yK ' « P , ,  (JIW J
(4.4.4)

The subscript (m) indicates the number of terms A^. The tensor,
A BT (m+n) is of rank (m+n) and its Cartesian components are given by:

( m + n ) /D A B \
a. ,y<x' ' AB _AB — AB ^ AB0R (m ) 6R dR , (n) dR /a /Li oc y

.AB (4.4.5)

where RAB is the intermolecular coordinate and locates the centre of 

mass of molecule a from molecule b and is defined by:

i 1/2

RAB r (r« - <) (4.4.6)
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where R is the intermediate coordinate introduced in (4.2.5) and is a
Arelated to the translational coordinate t by the relation:

. a A AOt = R - R a a a (4.4.7)

AO Awhere R is the value of R at the reference configuration, a a °
The expression for the components of the multipolar potential given 

by (4.4.2) can now be written such that:

v AB = a a .mn (X (m)
, A aB aB m (m + n) /^AB. A. , . B , ■.A A , A , T ,, , ,,, (R M m) M (n)p a  p a.pa .p v ' v

( n )
(4.4.8)

The connection between this expression and the vibrational coordinates 

used in the Taylor expansion of the potential can now be easily seen. 

The expression for the multipolar potential has been split up into the 

components of the orientation of molecule A (the direction cosines
AA^), the components of the orientation of molecule B (the direction

^ ( m + n ) ,„AB, , , , , r. .cosines A /) and T ,, / (R )» the only term which is a function a <x.. pa .. p
of the positions of the centres of mass. Thus the derivatives of the 

potential with respect to the translational coordinates will be simply 

given by differentiation of the tensor component, p ' ^ ^ )

while the derivatives of the potential with respect to the 

orientational coordinates will be given by differentiation of the
Aappropriate direction cosines A . This may be illustrated by forming 

the first derivatives of the potential using the chain rule:

avAB

■ >
«,P

avAB * > aR r >aRAa p
aRABaV. 0 6 r p

V. ~  J 0
atA1 V

(4.4.9)

avAB . V "

rm<> r y

d A Aa
axA " Z _ Q> > > axA
I y J a0 I « 0 I yJ

(4.4.10)
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The first and second order Taylor expansion coefficients may now be

written in full:

av
at

AB

= - AAOaz' (m )
*A O .BOA A , /Liz a z

BO , (m+ n+ 1 )

( n ) /j z aa./ia ./Li,(RAB) MA (m) MB(n)

(4.4.11)

avAB
ax

a A O aAO a A O aBO aBO _(m+n) ,~AB. A, . W B . .m A A0  A A ,  A , T , , (R ) M (m) M (n)aa 0z, /Jz a z , y M z a./ua ,\i 7 v 7 v 7(m-1) (n)
(4.4.12)

a2vABmn
9t* 3t*<7 T

aA0 aA O aBO aBO _(m+n+2) /~AB. A , . . B , .
= A  A A ,  A , T , / (R ) M (m) M (n)az . , /Liz a z . /i z ara./ia ./i v 7 v 7 v 7( m ) ( n )

(4.4.13)

a2vABmn
atA atBa r

aAO a A O aBO aBO _(m+n+2) /„AB. W A , . ..B. .
-  A  A A ,  A , T , , (R ) M (m) M (n)az . . |Jz a z ii z aa./ira ./i v ' v 7 v 7I m ) ( n )

(4.4.14)

a2vABmn
axA axAa r

A O aAO c aA O aAOÂ , - 6 A A 0aa /3r ar az pz
AO a A O aBO a b o ̂ .... A A ,  A ,
*Z(m-2) ^  “ 2 („. ^ Z

(n + m) /nAB. A, y B, .
a./ia' .// ̂  ) M (■) M (n) (4.4.15)

a2vABmn
axA axBa r

aAOaAO aAOaBO aB0 .BO _(n + m) /w,ABymnA An .... A A , An/  A , T  , /(R )aa pz, /Liz a r 0'z, * ! /J z a , /Lia * /Li 7( m-1) ln-1)

MA (m) M°(n) (4.4.16)

a2vABmn
atA a\Aa r

aA 0 a A0 aAOaBO aBO _(m + n+l) /r_ABv- mA A0  A A ,  A , T / / (R )
a r  Pz, fiz a z , . /i z o<x.ii<x ,/iim -1 1 in}

MA (m) MB(n) (4.4.17)
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4.5: Atomic Multipole Potential

The multipolar model detailed in the previous section may be further 

developed by considering multipoles located on the individual atoms 

rather than at the molecular centres of mass. The treatment which was 

employed for the molecular multipole potential is followed and for a 

pair of linear molecules the atomic multipole series is given by:

in which it should be noted that unlike the molecular multipole 

expansion the terms m,n = 0 are included within the expansion, for 

while the molecules are restricted to being neutral the individual 

atoms will commonly have charges associated with them. The components 

of the multipolar expansion are given by:

The Taylor expansion coefficients for the atomic multipole potential 

are not as simple to obtain as for the molecular multipole potential 

because the tensor is no longer independent of the orientational 

coordinates. Recalling (4.2.6) the first derivatives of the potential 

with respect to vibrational coordinates may be formed using the chain

00 00

(4.5.1)

mn a
A

(m) (n)

B ( m + n )
/i7 a./ia7 ./i

(4.5.2)
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arAiBja
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avAiBj
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arA i

ax
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(4.5.4)

and the final term, the derivative of the intermediate coordinate with 

respect to the orientational coordinates is non-zero in the case of 

the atomic multipole potential. Its value is given by differentiation 

of (4.2.6):

drA i

ax
y J

6 p
p y z

A i (4.5.5)

The Taylor expansion coefficients may now be formed as follows:

avAiBj
at

aA0 a A O aBO a B 0 _(m+n+l) , AiBj.- A   A A ,   A , T  / ,(r )az , , Pz a z p z aa.pa .p v(. m ; ( n )

MAl(m) MBj(n) (4.5.6)

avAiBj
axa
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MAl(m) MBj(n) (4.5.8)
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Chapter 5: Tensors and Legendre Polynomials

5.1: Introduction

The multipolar potentials introduced in Chapter 4 all contain 

derivatives with respect to the intermolecular (or interatomic) 

distance and these have been expressed in terms of the tensors defined 

by equation (4.4.5). In principle each tensor has 3° components (where 

n is the order of the tensor) but as these tensors are symmetric to 

interchange of indices this number reduces to -^(n+1) (n+2 ). For low 

values of n the components may be determined explicitly without too 

much inconvenience. However for higher values this procedure becomes 

very time consuming it will be more efficient to find algorithms for 

the values of the components which may be included within the computer 

programs used to perform the lattice dynamical calculations. In this 

chapter the tensors involved will be discussed and it will be shown 

that they may be related to Legendre polynomials and their derivation 

from these polynomials will be illustrated.

5.2: Legendre Polynomials and Associated Legendre Polynomials 

Legendre Polynomials

The series of Legendre Polynomials, represented by P (z) may ben

defined as follows:

PJ Z > = - T ------- A z 2- l ) n ( 5 . 2 . 1 )
2 n! dz

where n is an integer and the series runs from n=0. The first two

Legendre polynomials are as follows:

P0 (z) = 1 (5.2.2)

P^z) = z (5.2.3)
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The series of Legendre Polynomials are related by the following 

recursion formula:

P n+ ,<Z > = iT S T )  Z P n<Z) ' ( ^ 1 7  P n - 1 (2) ( 5 ‘2 -4)

and it may be seen that once the zero and first order Legendre 

polynomials have been defined all other polynomials may be determined. 

The polynomial in z given in (5.2.1) may be expanded using the 

binomial theorem as follows:

/ 2  xn 2n n! 2 n - 2 n! 2n-4 , / \ n
(Z _1) = Z ' lTTF-I jT Z + 2 ! (n-2 )! z ....

(5.2.5)

and the general derivative of order n is given by:

-(z -1 ) = 2n(2n-l)..(n+1 ) z - T T T ^ T T T  (2n-2 )(2n-3)..(n- 1 )n 1 !(n-1 )!

+ 2!(^ 2), (2n-4) (2n-5).. (n-3) z""4 - .... (5.2.6)

1This expression will terminate with a term in z if n is an odd
ointeger and a term in z if n is an even integer. Noting that:

2n »2n(2n-l)...(n+1) = (5.2.7)

equation (5.2.6) can be expressed as a series as follows:

- V - D "  = >f7 L

U/2|
(-1)“ .yn! (yni m ?! Zn~2ro (5.2.8)L  m!(n-m)! (n-2m)!

m=0

where the slightly clumsy summation denoted by m=0 ,|n/2 | is used to 

indicate that m is an integer which runs from 0 to — ■ if n is an 

odd power and runs from 0 to ^ if n is an even power.

The expression for the n ’th Legendre Polynomial given by (5.2.1) can
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now be written using this summation as follows:

I n/2 I
P (z) = L^Izl^_12nz2-il zn-2.
n I  m!(n-m)! (n-2m)!

m=0

It is now noted that the factorial (2n-2m)! may be rewritten as:

(2n-2m)! = 2 (n_m)(n-m)!(2n-2m-l)! ! (5.2.10)

where the double factorial (2n-2m-l)!! represents the number:

(2n-2m-l)!! = (2n-2m-l)x(2n-2m-3)x(2n-2m-5)x xi (5.2.11)

and using this (5.2.9) may be rewritten to give a series generating 

the n ’th Legendre Polynomial:

1 n/2 |
P (,) = ) g ^ L l i^ n- ^ - l )!! zn-2m
n' [_____  m!(n-2m)!

m=0

Associated Legendre Polynomials

A second series of polynomials in z which are closely related to the 

Legendre Polynomials are the series of Associated Legendre Polynomials 

which are defined as follows:

Pt(z) = (l-zZ )t/2 — P (z) (5.2.13)n a t. fio z

These polynomials are also related by a recursion formula:

(2n+l) z Pl(z) = (n-t+1) P1 (z) + (n+t) P*- (z) (5.2.14)n n+1 n-1

The series given by (5.2.12) may now be differentiated with respect to 

z to give the explicit expressions for the first and second 

derivatives which form the first and second series of Associated 

Legendre polynomials:
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^  , x |(n-1 )/2 |

^  = l z z  a'"(- i ? ; a s ? ),! z"'2”-1m=0

.2d 1(n-2 )/2 |
n _ \  2 _m (— 1 )m (2n-2m-l ) ! ! n - 2 m - 2  , r „

d z 2 - I ________  m! (n-2m-2 )! Z
m=0

It should be noted that each successive differentiation reduces the 

power of zn 2m by one and reduces the factorial (n-2m)! by one. The

summation is effectively reduced by one term every other derivative as
l othe z term is successively reduced to z and then disappears. The

general derivative may be expressed as follows: 

t _ \ I (n-t )/21

= > 2'"('1??2r 2̂ )!! zn'2m't <5-2-i7>0 t {__________ m!(n-2m-t)!
m=0

so that the a general Associated Legendre Polynomial can be expressed 

as a sum of terms as follows:

I(n-t)/2 |
Pl(z) = (l-z2 )t/2 ) -— z"'2- 1 (5.2.18)n l__________ m!(n-2m-t)!

m=0

It may be easily seen by inspection that by setting t = 0 the standard 

series of Legendre Polynomials are recovered.

5.3: Tensors

The set of tensor components which are under consideration may be 

defined as follows:

. . _ d  d  d  d
<xpy6,.v' ~ dR^ dR p  d R  dR^

- 1 (5.3.1)

where <x,/3,y,6 label the cartesian axis system. The first few tensors 

are written explicitly (note that it is usually taken as implicit that
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T 0 (R) may be written as T 0 ,, instead).(xp..L> ap. .v

- R (5.3.2)

T = -R R a a
-3 (5.3.3)

T 0 — 3R RoR — 8 qR ap a p ap (5.3.4)

-7T a., = -15R RoR^R + 3apy a p y 8 0 R + <5 R0+ 8 oR^< py a  ay p a p  yj
-5 (5.3.5)

- 9T o - . - 105R RoR^RcR ~ 15 R Ro^ c+ R R R Ro50 + RoR 5 capyo a p y o  l a p y o  a y po a 0 py p y a o

+ R0Rc5 + R Rc5 o R + 3  P o ay y 8 ap
-7 ^ 0*5 c+ 5 <50c + ^ c^o a0 yo ay po ao Pyj

-5 (5.3.6)

It can be seen that the expressions for the tensors rapidly become 

clumsy, especially for terms such as the second in (5.3.6) which is 

simply the six different ways that the suffices a, p , y and 8 can be 

arranged in the form of R R 6 To simplify this an expression isa b cd

introduced which is of the form:

RaR06 y6
(6)

which represents the sum of the six different terms obtained by 

rearrangement of the suffices. For example (5.3.6) would be more 

conveniently rewritten as:

-9 _ \  _  * „-7+ 3y ~ 5 cR-5 (5.3.7)
Ta0y6 = 105RaRpRyR5R 15^ RaR06 y6R + 3)  5a p 6 y8R

(6) (3)

The next two tensors in the series are as follows:

W e  = -945W » W 1,+ 105) W / & R '9 - 15) R«5gy55 ER '7
(10) ( 15 )

(5.3.8)
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V r S e n  = l O S S S R ^ p R ^ R ^ ^ - 13- 945) RaRpRYR5SEnR'”
( 15 )

+ 1 0 5 2 _ R aRp5r55Er)R-9- 15) V y g V 7 (5.3.9)
(45 ) (15)

The tensors are now partitioned and the first four terms for a general 

tensor may be written as follows:

T (n)1 = (-1)"(2n-l)!!R  R R'(2n+1> (5.3.10)<X. . . V  v ' <X V( n )

T«n>Zy = (‘1)ntl(2n‘3)!!) SocBR y  R„R" <2nl * (5.3.11)
L. r P ( n - 2 )(X )n

(-l)nt2 (2n-5 )!!) 6^  R£.....8|/ <2"-31 (5.3.12)
yr— r (n-4 )

n

= ( - D M 3 ( 2 n - 7 ) H ) _ V / £A .....R„R-<2n-5) (5.3.13)
( T Tn

The numbers X 1 $ and <p represent the number of terms whichn n n

contribute to each summation. These numbers are related and each may 

be expressed as an arithmetic progression:

n-1

X = > i = |(n-l)n (5.3.14)n /__ 2
i = 1

n-1 n - 3

<f>n = Y ~  (j-2)Xj = Y ~  p ( j  + l)(j+2) (5.3.15)
j=3 j=l

n-1 n -5

) = ) (k-4 )<#>. = ) ^k(k+l)(k+2)(k+3)(k+4) (5.3.16)n / k____/__  8
k = 5 k = 1

These arithmetic progressions may now be evaluated and compared:
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X = -(n-l)nn 2 (5.3.17)

(5.3.18)

(5.3.19)

Each one of the numbers can be recognised as having the value:

^  = 7 7 T --- 5" (n-2m+l)(n-2m+2)...n = "m ,. (5.3.20)n 2 . 4 . 6 . . . . 2m m!(n-2m)!

4> = — (n-3 ) (n-2 ) (n-1 )nn 8

<P = — (n-5 ) (n-4 ) (n-3 ) (n-2 ) (n-1 )nn 4 8

where the number m corresponds to the number of Kronecker delta 

functions which appear in each component of the tensor given by 

equations (5.3.10 - 5.3.13). The numbers X i $ and <p can ben n n
1 2  3recognised as £ , £ and £ .n n n

The table of values from £° to £ ^ 2 is presented as follows:

Table 5.1: Values of £ for n = 0 to 12n

Emn

oiis m=l m=2 m=3 ii6 s n CJ1 m=6

OIIa 1 - - - - - -

n=l 1 - - - - - -

n=2 1 1 - - - - -

n=3 1 3 - - - - -

iic 1 6 3 - - - -

n=5 1 10 15 - - - -

n=6 1 15 45 15 - - -

3 II 1 21 105 105 - - -

n=8 1 28 210 420 105 - -

n=9 1 36 378 1260 945 - -

n=10 1 45 630 3150 4725 945 -

n=ll 1 55 990 6930 17325 10395 -

n=12 1 66 1485 13860 51975 62370 10395
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The general expression for a tensor of order n may be written as 

a summation of terms as follows:

I n/2 I
( n ) / i-v \ \ , -,»n + m,_ _ \ c c ^ ~-(2n-2m+l)

T« . „ (R) = /  '-1 ’ 2n-2m-l) • !y 5« p - - - 5 £XET  V *
L -̂----  (m ) ( n - 2 m )m=0 ( n , m )

(5.3.21)

where the summation over (n,m) indicates that there are terms ofn

the form 6 0 . . . S  . R  R to be considered.<xp e \  z v
( m ) (n - 2 m )

Each of these components is expressed in a cartesian axis system and

consequently each subscript can take one of only three values; x, y or

z. The subscripts can therefore be logically "grouped” together and

the above expression can be greatly simplified dependent upon which

tensors are being considered.

The most simple subset of tensors will be those of the form T^n)
( 6 )(for example T ) representing the n ’th derivative of 1/R with
Z Z Z 7 7 2

respect to the component R^. For tensors such as this the product of 

terms of the form replaced by ^aa***^a<x an(  ̂ consequently
(n )all terms in the general expression contribute to T^ . The summation 

is over terms, all of which are identical, so that the summationn

may be simply replaced by the number

( n , m )
V - ' 6e*RT  *» (“=P= ^  " En R«n'2m> <5-3 -22’(m ) ( n-2m )

The general expression for n ’th order tensor given by (5.3.21) may be 

written:

l.a/g.1 _m
T (n) (B) = <-l)nn! R-<ntl> g. (R /R)‘"-Z"»a. .a v I____  m! (n-2m)! or

m=0
(5.3.23)

and recalling equation (5.2.12) the summation component can be
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recognised as being the Legendre Polynomial of order n. Hence the 

expression for the tensor T^n)a (R) may be simply written as:

T U) (R) = (-l)nn! R'(n + 1> P (R /R) (5.3.24)a . . a n a

It may be seen that by evaluating just four Legendre polynomials, 

namely PQ , P^R^/R), P^R^/R) and P ^ R ^ R ) ,  application of the

recursion formula given by (5.2.4) will yield all higher Legendre 

polynomials and hence all tensors of the form T^n)a may be generated 

using (5.3.24).

The next set of tensors to be considered are those which represent

differentiation with respect to two different cartesian components, ie

those tensors of the form ^(R)» where o#|3.

If n is the order of the tensor, a is introduced as the number of

occurrences of the cartesian subscript oc and b is introduced as the

number of occurrences of the cartesian subscript |3 (and hence n=a+b).

Of the £m terms which are of the form <5 0...$ .R^......R,, in then ap eX r v
general expression for the tensor, (5.3.21) the only non-zero 

components will be those of the form:

6 ...6 R ....... R R 0 ......R0 .aa aa BB BB a a B B(i) H K (j) (a- 2 i) (b- 2 j) K

where two further indices have been introduced, i is the number of

Kronecker delta functions of the form d and j is the number ofaa °
Kronecker delta functions of the form <5^ (and hence m=i+j). Noting

(5.3.22) the number of the terms which will be of the above form may 

be written in a number of ways:

2 a! 2 Jb! _ 2 a! (5.3.25)i !(a—2 i )! j !(b— 2 j )! i !(a— 2 i )! b a b

The general expression for the tensor given by (5.3.21) may now be
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rewritten for this specific case:

la/2]. lb/2]& V r> = (_i,n+itJ <2n-2 i-2J-i>!! i.u-zi).
i=0 j=0

(Ra/R)(3"2i> Sb(Rj3/R) <b 2J * I5-3-26)

Recalling the expression for the Associated Legendre Polynomial given 

by (5.2.17) then the component of (5.3.26) which is given by:

I a/2_j_
2 ~ ‘ (-1 ) 1 (2n-2 i-2.j-l)! ! <a-2i)

i!(a-2 i)! or
i=0

can be recognized as being closely related to the Associated Legendre 

Polynomial Pb "!(R /R), recalling that b=n-a. The general expressionn - j (X

for the tensor simplifies to give:

Jb/2I ab_Jp .(r /r)
T o o(R) = (-1)" a! R" ' “
a -a P , P ’ a (Ra/R)b-j

(-1)J ^pRfi/R) (5.3.27)

The final set of tensors to be considered are those which represent 

differentiation with respect to three different cartesian components, 

ie those tensors of the form ^ ^(R)» where Two further

indices are introduced, c is the number of occurrences of the

cartesian subscript y (so that now n=a+b+c) and k is the number of

Kronecker delta functions of the form 6 (and m=i+j+k).

The only non-zero components of the Em terms which are of the formn

^a/3** *  £eneral expression for the tensor (5.3.21)

will be those which are of the form:
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<5 . ..<$ <5dd...<5006 . ..<5 R  R R0 ......RoR^,...... R^-aa aa 00 00 yy yy a a 0 0 y y(i) (j) (k) (a-2i) (b-2j) (c-2k)

and the analogue of (5.3.26) may be written:

a/2 I Ib/ 2 1 I c/2 I
T <a*o*o! ^(R) }  (-1 )" (2n-2 i-2j-2k-l)!! - 2 a!a.a0 .0y,yv   f_  [_  J '' i ! ( a— 2 i )!

i=0 j=0 k=0

(-l)itJtk (Ra/R)<a-2 U  ^ ( R p/R)(b-2j>

Ek(R /R)(c-2k> R-(ntn (5.3.28)c y

After recognition of the derivative related to the Associated Legendre
fa +  C  ”  j ~ kPolynomial, P . , (R /R) the analogue of (5.3.27) may be written:n - j - k OC

Ib/2 I Ic/ 2 1 ab+c-j-kp /R /R) 
T <ato+ol J B )  = (-1)" a! R'(ntl) n'j‘k “a.a0 .0y .y ’__________ /______ (______  b + c _ j _ kj=0 k=0 d<VE)

(-l)j + k E h R fi/R)b'2J E k(R /R)°'2k (5.3.29)
b p  c y

This is the general expression required and permits any general tensor
( a + b + c )of the form ^  ^ ^(R) to be evaluated. It may be seen by

inspection that by setting c=0 (and by implication k=0 ) the expression 

(5.3.27) for tensors of the form ^ ^ ^ ^ ( R )  is generated and that by 

setting b=c=0 (and by implication j=k=0) the expression (5.3.24) for
( a )tensors of the form T (R) is generated.a.a °

An alternative derivation of (5.3.28) may be obtained by treating 

all three subscripts in identical fashion and not using the Legendre 

Polynomials at all. In this case either the number £* may be 

identified within (5.3.28) or the derivative in (5.3.29) may be 

recognised as being given by:
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Hence the general expression for a tensor given by (5.3.29) may be 

alternatively written without any reference to Legendre polynomials:

la^2j_ |b/2[ |c/2i
m (a + b + c) , ̂ . \ \ \ , ...n + m . . . -(n+1)
Ta.«^.^.y(R) = Z  I   I   ('1} 2n-2m-l R

i=0 j=0 k=0

S 4(R /R)a"zi E^(Ro/R)b“2J Ek(R /R)c"2k (5.3.31)a (X b p  c /

k c " 2 kIt may be seen that when c=0 (and k=0) the term £ (R /R) reducesc K
to one and the analogue of (5.3.27) is generated. Similarly with b=c=0 

(and j=k=0) the analogue of (5.3.24) is generated.

5.4: Discussion

Two forms for obtaining the values of tensors have been detailed 

above, the general expressions (5.3.29) and (5.3.31) enabling the 

tensors to be evaluated with and without the Legendre Polynomials. The 

second general expression illustrates the symmetry inherent to these 

tensors, a symmetry which is not apparent within the first general 

expression. The primary objective for the derivation of these 

relationships is for the purpose of calculating tensors within a 

computer program. For this purpose both expressions will have their 

uses.

In general the second expression is likely to prove to be the most 

convenient to use, for it is basically a triple summation with a 

function of two numbers (£m ). As an illustration the tensorn
( 8 )T (R) is considered. If the expression (4.3.28) is used toxxyyzzzz



calculate the tensors, to minimise the summation required over the 

indices j and k the cartesian component within the Legendre 

Polynomials, a is chosen to be z, the most common subscript. The 

indices b and c are both equal to two and it can be seen that three 

derivatives of Legendre Polynomials would be required, the fourth 

derivative of P8 (Rz/R), the third derivative of P?(Rz/R) and the 

second derivative of P (R /R). As each is generated by a different6 z

recursion series six initial values for the derivatives of Legendre 

Polynomials are required to generate the single tensor. Unless a 

number of other tensors are required in the calculations whose 

components include second, third and fourth derivatives of Legendre 

Polynomials of (R^/R) it is likely to be more efficient to program the 

second expression (4.3.30).

However under certain circumstances the tensors required are much 

simpler than that given above. For the crystal of carbonyl sulphide, 

discussed later, symmetry reduces the tensors required to those of the 

form T (n) , T (n) and T (n) only. In the case of the first it isZ . . Z  X Z . . Z  X X Z . . Z

clearly more efficient to use the Legendre Polynomial algorithm (it is 

actually the simplified expression, (5.3.24) which would be utilised), 

the zero and first order polynomials given by (5.2.2) and (5.2.3) are 

simple to determine and these generate all of the other polynomials 

required. For the latter two tensors the expression (5.3.29) will be 

less efficient, the function is required with or without then

Legendre Polynomials and its usage should therefore be maximised. It 

should be stressed that in all cases either form may be used and that 

no qualitative analysis of computational processing time has been 

described here.
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Chapter 6: Carbonyl Sulphide: A Model System

6.1: Introduction

The empirical potentials which have been discussed previously are to 

be used for modelling real systems. The technique followed here is to 

vary a number of the potential parameters to fit a set of known 

lattice properties. The basic theory concerning the lattice properties 

of a general system has been described in Chapter 2. In this chapter a 

specific crystal will be considered and the general properties 

discussed previously will be detailed.

To be suitable for such an investigation the crystal concerned needs 

to be one for which the values of appropriate lattice properties are 

known. The number of lattice properties cannot be too low or it will 

be too easy to fit the empirical potential and the fitted potential 

obtained would be unlikely to prove satisfactory if it were required 

to satisfy further conditions. Similarly the number of lattice 

properties cannot be too high or it would be virtually impossible to 

ever fit any potential and be in a position to make any critical 

evaluation of a given empirical potential.

Commonly this fitting procedure has been applied only to zero and 

first order properties. Where attempts have been made to fit second 

order properties as well, the process has been of least-squares type 

and not exact. The inherent disadvantage of this particular procedure 

is that it is not clear how much deviation from an exact fit should be 

expected by the least-squares procedure. When a calculated property 

deviates from the experimental value there will always be some doubt 

as to whether the deviation is due to an intrinsic shortcoming in the 

empirical potential used for the modelling or due to the inefficiency 

of the iteration procedure in the fitting.
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Within this thesis an intermediate procedure is adopted. The 

empirical potential is fitted exactly to a limited number of 

properties (which include zero, first and second order) of a crystal 

with relatively low symmetry. The solution will be unique and the 

parameter values obtained by the fitting may be examined to determine 

whether they are physically reasonable. A number of additional lattice 

properties, not used within the fitting procedure, are also calculated 

to enable a critical evaluation of the potential. An ideal crystal for 

this purpose is carbonyl sulphide, OCS.

6.2: Lattice Properties of Carbonyl Sulphide 

Lattice Energy
[ 19 ]Kemp and Giauque have investigated the thermodynamic properties

of solid and liquid carbonyl sulphide from 15 K to its boiling point.

Their data has been analysed by Aung and Strausst20i who have given a
- 1value of -6.485 kcal mol for the enthalpy of sublimation at zero

temperature and pressure. An estimate of the lattice energy of the

crystal may be obtained by the addition of a small correction for the

zero-point energy. The value of this energy is not known exactly but

it may be estimated from the Debye temperature at 0 K which Aung and

Strauss have estimated at 104.9 K and leads to a zero-point energy of

-0.2345 kcal mol 1 and thence an estimate of the lattice energy at 
-1-6.72 kcal mol . The lattice energy is the first property to which an

empirical potential is fitted for carbonyl sulphide.

Lattice Structure

The crystal structure of carbonyl sulphide has been investigated by 
[21]Vegard using X-ray diffraction at liquid air temperature and

[ 2 2 ]subsequently by Overell, Pawley and Powell using neutron powder

diffraction at 90 K. Both experiments agree that the crystal structure
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is rhombohedral, with space group R3m (C3 ) and only one molecule per 

unit cell. Their results for the values of the unit cell dimensions 

differ slightly and within this thesis the values obtained by Overell
X °et al are used, namely a = 4.063 A and « = 98.81 . The results for the 

bond lengths differ greatly and the values obtained by Overell et al 

are, unlike the Vegard values, in good agreement with gas phase 

measurements. These are the values which are used within this thesis, 

r(C-O) = 1.21 A and r(C-S) = 1.51 A.
The lattice structure of carbonyl sulphide is illustrated in figure

6.1. It may seen that the single molecule within each unit cell lies 

along the crystal fixed three-fold axis and has the full C3v symmetry 

at the crystal site. With there being only one molecule per unit cell 

the position of the molecular centre of mass is fixed and with the 

molecule lying along the three fold fold axis the orientation is also 

fixed. Consequently the equilibrium conditions described by (2.4.1), 

representing the first derivatives of the potential with respect to 

the five vibrational coordinates, are all automatically satisfied 

by the symmetry of the system.

This only leaves the requirement that the crystal should be stress 

free (or equivalently that the dimensions of the unit cell should 

correspond to a minimum in the potential energy). Chandrasekharan and
[ 23 ]Walmsley have shown that some components of the stress vanish by 

symmetry. In the case of carbonyl sulphide all off-diagonal components 

of the stress are zero and there are only two independent diagonal 

stresses, the components along the three-fold axis and perpendicular 

to the three fold axis. It is these last two conditions, referred to 

within this thesis as the z-stress and the x-stress which constitute 

the second and third properties to which an empirical potential for 

carbonyl sulphide is fitted.
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Figure 6.1: Lattice Structure of Carbonyl Sulphide Crystal

t c3
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Lattice Vibrations

The far-infrared spectrum of solid carbonyl sulphide has been
[ 24 ]measured at 77 K by Anderson and Walmsley and yields a single

fundamental frequency of 92 cm *. Cahill, Treuil, Miller and Leroit25J

have also investigated the Raman spectrum at 90K and obtained a single 
-1peak at 89 cm . Theory predicts that there should be only one

fundamental vibration and that it should appear in both the infrared

and Raman spectra and these results are reasonably consistent with 

this prediction. The vibration concerned is a torsional vibration 

(libration) in which all of the molecules tilt away from the

three-fold axis in phase. The vibration is doubly degenerate. The
_ itorsional frequency of vibration (whose value is taken as 92 cm ) is

chosen to be the fourth property to which an empirical potential will

be fitted. Thus the four properties chosen, the lattice energy, the 

x-stress, the z-stress and the torsional frequency of vibration, which 

will be those to which an empirical potential is fitted, cover zero, 

first and second order terms in the Taylor expansion.

As has been mentioned in Chapter 2 the lattice vibration frequencies 

obtained from infrared and Raman spectroscopy are associated with the 

zero wave-vector. In general each normal vibration of the crystal may 

be classified in terms of a wave-vector which determines the relative 

phase of the motion from one unit cell to another. The complete set of 

wave-vectors may be found within the first Brillouin zone of the 

crystal. The corresponding frequencies of vibration are in principle 

accessible using neutron scattering but no such results have been 

published. However, there is an additional requirement, namely that

for the crystal to be stable the normal modes must all be real. These

frequencies may also be obtained from an empirical potential and 

although the values cannot be used for direct comparison with
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experimental values the requirement that they must all be real 

provides a further test of an empirical potential. The lattice 

vibration frequencies are calculated along specific wave-vector 

directions in the first Brillouin zone of the crystal. The 

corresponding ranges of values for the frequencies constitute 

"branches” of the "dispersion curves". For carbonyl sulphide, a linear 

molecule with one molecule per unit cell, there are five of these 

branches in any given direction. As the magnitude of the wave-vector 

tends toward zero, the frequencies of three of the branches also tend 

toward zero and are known as acoustic branches, being associated with 

the propagation of sound within the crystal. The frequencies of the 

remaining two branches tend towards a finite limit and are known as 

optical branches. For carbonyl sulphide the two finite frequencies 

have the same value, being the fundamental frequency 92 cm 1 discussed 

previously.

Within this thesis the results quoted are for the wave-vectors in 

two directions, the first along the three-fold axis (referred to as 

the parallel direction) and the second perpendicular to the three-fold 

axis in one of the planes of symmetry (referred to as the

perpendicular direction). The symmetry of carbonyl sulphide reduces 

the number of independent branches in the parallel direction to three, 

the two optical branches being degenerate and two of the three 

acoustic branches also being degenerate. No such degeneracy occurs in 

the perpendicular direction and all five branches persist.

It should also be noted that these two directions are also the first 

two directions conveniently chosen for the formation of the Gamma 

matrices used for the determination of elastic constants from wave 

velocities described in Chapter 3.
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Compressibility

As discussed in Chapter 3 the elastic constants of carbonyl sulphide 

are, in principle, quantities which may be determined experimentally 

but as yet they have not been measured. However the calculated values

for the elastic constants may be used indirectly as a further test of

an empirical potential. The compressibility of carbonyl sulphide may 

be derived from the elastic constants using (3.4.2) and the value for 

the compressibility at zero temperature has been estimated by 

Deakint261 at = 0.22 GPa 1 from pressure-volume measurements by
[ 27 ]Stevenson . Additionally the conditions for elastic stability 

detailed in section 3.4 also permit the calculated elastic constants 

to be used as a further test of an empirical potential.

6.3: Potentials for Carbonyl Sulphide

Lennard-Jones Atom-Atom Potential

Carbonyl sulphide is comprised of three different atoms and for an 

atom-atom Lennard-Jones potential there would generally be six 

different interaction types; 0-0, 0-C, 0-S, C-C, C-S and S-S. All of 

the four crystal properties to which the function is to fitted are 

linear in the £ parameters (strictly it is the square of the frequency 

which is linear). Furthermore all four properties depend equivalently 

upon the different homonuclear interactions and consequently the 0 -0 , 

C-C and S-S interactions are not independent. The three are combined 

so that there are only four independent interaction types, like-like 

(L-L), 0-C, 0-S and C-S.

The fitting procedure involves supplying suitable values for the 

four parameters r^L, rQC » rQS anc* r()S *n Lennard-Jones potentials 

which model each interaction type and then solving the four equations 

(the values for the lattice energy, the x-stress, the z-stress and the

80



torsional frequency) in the four unknowns (erTi anc* *Vo)*
L  L  U t  v o

This procedure will yield a unique solution. The requirement that the 

£ parameters obtained should be physically realistic provides a 

further test of the parameters obtained.

The choice of the rQ parameters is generally governed by packing 

considerations within the crystal. Each atom pair can contribute a 

maximum of -e to the lattice energy if the pair separation is exactly 

rQ and a favourable structure is likely to result when a number of 

atom pairs have a separation close to the appropriate value of rQ. The 

near-neighbour contact distances for carbonyl sulphide are presented 

in table 6 .1 :

Table 6.1: Atom-Atom Contact Distances for OCS

Atom Pair

like-like

0-C

0-S

C-S

Distance (A) 

4.063 

5.288 

5.861 

3.639 

4.469 

4.651 

4.765 

3.141 

3.644 

3.755 

5.877 

3.590 

4.294 

4.351 

4.969

Molecule

(100)

(110)

(111)
(100)

(110)

(1 1 1)
(100)

(111)
(100)

(110)
(100)
(100)
(110)

(111)
(100)

No.Contacts 

18 

18 

6 

6 

6 

2 

6 

2 

6 

6 
6 

6 

6 

2 

6
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It may be seen that there is generally a clustering effect for the

various interactions and the values of rQ may be chosen such that the

equilibrium distances do fall reasonably within these ’’cluster

ranges”. However there are exceptions, in particular the 0-S

interaction at 3.141 A, which is the interaction between the oxygen

and sulphur atoms along the three-fold axis. This ’’anomalous” short
[28]contact has been considered by Deakin and Walmsley as being one of

the primary contributors to the failure of a purely atom-atom model

for modelling carbonyl sulphide. Instead the atom-atom potential is

combined with some sort of multipolar potential to include the

electrostatic interaction discussed in Chapter 4. The procedure

adopted to include these multipolar interactions is to calculate the

contribution of the multipolar potential to the specimen lattice

properties and fit the atom-atom potential to the adjusted values.

Multipolar Potentials

The molecular multipole and atomic multipole potentials have been

discussed in Chapter 4. For carbonyl sulphide both the molecular

dipole and molecular quadrupole moments have been determined

experimentally. Both of these moments have been measured using

molecular-beam electric-resonance spectroscopy by de Leeuw and 
[29 30]Dymanus ' and their values are 0.71512 Debye and -0.79 Debye A 

respectively. Both moments are relatively small and correspond to a 

molecule with relatively little dipolar or quadrupolar character. 

Inclusion of the molecular dipole and molecular quadrupole moments 

into the overall potential do not lead to any significant improvements 

on the atom-atom model. The molecular octupole moment has not been 

determined experimentally but calculations discussed in the next 

chapter suggest that the octupole is the first molecular moment which 

contributes significantly to the specimen lattice properties for
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carbonyl sulphide.

The lattice structure of carbonyl sulphide also leads to 

simplifications in the Taylor expansion coefficients for the 

multipolar potentials (both molecular and atomic). With all the 

molecules lying in the same direction the crystal fixed axes are 

conveniently defined such that they are coincident with all of the 

molecule fixed axes. Consequently the values of the direction cosines 

at the reference configuration may be written:

.AO c
a p ' a(3 (6.3.1)

and the Taylor expansion coefficients detailed in sections 4.4 and 4.5 

may be rewritten without the multiple (implied) summations over the 

cartesian subscripts in the direction cosines and tensors. For example 

the derivative given by (4.4.15):

a2vABmn
axA axAa z

= m / -.v * A O a A O aAO aA O aBO a B0 _(n + m) /t,AB x(m-1) A A0 A  A A , .....A , T / / (R )v 7 oc(7 fiz Hz . /iz a z z a./ja 7l m - 2 ; in;

c- aA O a A O aAO a A O aBO a B0 _(n+m) /~AB. ,,A , x ,,8. x- $ A A 0 A  A A ,  A , T , / (R ) M (m) M (n)a z az Kz. /iz a z , x /J z a./ia .n v 7 v J v 7(m-2 ) (n ) J

is simplified and rewritten:

aVBmn
axA axAa  z

= m (m—1) T ‘"+m) (RAB)o z z ..z s T <n+m)(RAB) 
O Z  Z . . Z MA (m) MB (n)

(6.3.2)

It may be seen that for carbonyl sulphide the only tensors required

for the multipolar potentials will be those of the form T <n+m)(RAB),z • • z
m (n+m)._AB. /nAB. , .T^ (R ) and T ^ (R ) and as discussed in Chapter 5 the values o z..z o z z ..z
of these tensors may be determined relatively easily.
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Anisotropic Berne-Pechukas Molecule-Molecule Potential

The procedure adopted for fitting the atom-atom Lennard-Jones 

potential cannot be directly applied to the Berne-Pechukas potential, 

the four atom-atom £ parameters having been replaced by a single 

molecule-molecule parameter. As discussed in Chapter 4 the 

Berne-Pechukas potential is a function of three parameters; £ (the 

energy minimum), RQ (the intermolecular distance at the reference 

configuration) and X (the degree of anisotropy). Two of the parameters 

may be conveniently rearranged:

A = £R*2 (6.3.3)

B = 2 £ R 6q (6.3.4)

so that the potential given by (4.3.12) may be rewritten:

VAiBj = At11/2s"6 - Bt5 /2s'3 (6.3.5)

and it may be seen that the potential is linear in both A and B. The

Berne-Pechukas potential is then combined with a molecular octupole

potential so that the total potential is a function of four

parameters; A, B, X and C (where C is the square of the molecular
2octupole moment; C = 0 ). The crystal properties are also linear in C 

but not in X« The procedure adopted is to fit the three linear 

parameters to the zero and first order lattice properties; the lattice 

energy and the two components of the stress. Then, the non-linear 

parameter, X is adjusted so that the empirical potential yields the 

correct value for the torsional frequency of vibration.
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Chapter 7: Carbonyl Sulphide: 12-6 Potentials

7.1: Introduction

A wide range of potentials have been used to attempt to model the 

lattice properties of carbonyl sulphide. In this chapter a number of 

potentials will be considered, each of which is composed of a 12-6 

Lennard-Jones atom-atom potential combined with some form of 

multipolar potential. The atom-atom potential is kept in a standard 

form so that the different representations of the multipolar 

interaction may be compared, the objective to gain an insight into the 

nature of the multipolar interactions in carbonyl sulphide.

Also the anisotropic Berne-Pechukas molecule-molecule potential is 

considered as an alternative to the atom-atom potential and is 

combined with a suitable form for the multipolar interaction, the 

molecular octupole. This potential utilises the multipolar potential 

in a slightly different manner, with the molecular octupole moment 

being employed as an empirical parameter. This provides an indication 

as to the direction of further development of these potentials.

7.2: Atom-Atom Potential

An empirical potential comprised of only an atom-atom potential with

no multipolar component to model carbonyl sulphide has been
[ 28 ]investigated by Deakin and Walmsley and they have found that

although the 12-6 Lennard-Jones potential can be fitted to the four 

specimen lattice properties there are no solutions which also yield 

reasonable £ parameters. For all fittings of the four lattice 

properties at least one of the four £ parameters is negative and 

frequently the magnitude of one of the parameters in unreasonably 

large. Furthermore at least two of the acoustic branches are imaginary
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throughout all directions within the first Brillouin zone. Further 

investigation of the atom-atom components shows that for each of the 

components at least one acoustic branch is imaginary in all directions 

and in certain regions at least two branches are imaginary for all 

components. Consequently no combination of the four components could 

be able to yield a full set of acoustic branches which are real 

throughout the first Brillouin zone. The atom-atom model is clearly an 

inadequate model for carbonyl sulphide and the "close" contact between 

adjacent sulphur and oxygen atoms along the three-fold axis discussed 

in the previous chapter has been considered as contributing to the 

failure of the pure atom-atom model.

7.3: Atom-Atom + Molecular Octupole Potential

The simplest model of the electrostatic interaction for carbonyl 

sulphide is to use molecular multipoles. As discussed in the previous 

chapter the molecular dipole and quadrupole moments of carbonyl 

sulphide are available from experimental measurements but the values 

suggest that carbonyl sulphide is a molecule with low dipolar and 

quadrupolar character. Calculation confirms this, the contributions of 

the molecular dipole and quadrupole moments to the lattice properties 

are small and in no way do either of the multipoles significantly 

improve the inadequate atom-atom potential.

The molecular octupole of carbonyl sulphide is not available

experimentally but it is expected to be relatively large. The

quadrupole moments of carbon dioxide and carbon disulphide have been
[ 31 ]measured by Battaglia, Buckingham, Neumark, Pierens and Williams 

at -4.491 Debye A and 3.60 Debye A respectively. Carbonyl sulphide can 

be considered as being comprised of two halves, both strongly 

quadrupolar but of opposite sign. The quadrupole moment of carbonyl
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sulphide would therefore be expected to be low, a result which is 

consistent with experiment, while the octupole moment would be 

expected to be large. Ab initio calculations (see Appendix A) indicate 

that the octupole moment will be in the range 12-15 Debye A .

The first potential used is an atom-atom + molecular octupole 

potential, taking the value for the octupole moment as 10.0 Debye A . 

It is found that this potential can be fitted to the specimen lattice 

properties and that the resultant potential, given in table 7.1 has 

realistic values for the £ parameters.

Table 7.1: Atom-Atom Lennard-Jones 12-6 + Molecular Octupole Potential 

for PCS: Parameters

Atom Pair - 1£/kcal mol V A
like-like 0.06256 3.7

0-C 0.33476 3.9

0-S 0.04929 3.9

C-S 0.20619 3.9

ft = 10.0 Debye A 2

As discussed in the previous chapter a further test of this potential 

is that all of the lattice vibration frequencies should be real. The 

frequencies within the first Brillouin zone may be illustrated by 

plotting the relevant dispersion curves in the two directions detailed 

in the previous chapter. These are given by figures 7.1 and 7.2. It 

may be seen that the frequencies are real for all branches, though it 

should be noted that the lowest acoustic branch in the direction 

perpendicular to the three-fold axis is small in magnitude.

A further test of the potential is to calculate the elastic 

constants and thence to determine the compressibility and the
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Figure 7.1: Atom-Atom Lennard-Jones 12-6 + Molecular Octupole

Potential for PCS: Dispersion Curves Parallel to C3
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Figure 7.2: Atom-Atom Lennard-Jones 12-6 + Molecular Octupole 

Potential for PCS: Dispersion Curves Perpendicular to C3
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"stability constants". The values of the elastic constants, the 

compressibility and the stability constants are given in table 7.2.

Table 7.2: Atom-Atom Lennard-Jones 12-6 + Molecular Octupole Potential 

for PCS: Elastic Properties

IIr*
o 10.5967 GPa C 12 9.3948 GPa

C 13 -0.0111 GPa C 15 = 0.3052 GPa

O 00 CO

II 30.8875 GPa C 55 0.5352 GPa

S 3 = 687.4872 _  2 GPa S 4 = 0.4570 GPa

X o II 0.1325 GPa'1

It can be seen that the four stability constants are positive (it

should be recalled that = c33 and S2 = c44) so that the requirement

that the potential should be elastically stable is satisfied. The
-1compressibility, at xq = 0.1325 GPa is significantly lower than the 

experimental value (0.22 GPa 1) and this is identified as being the 

most serious failing of the atom-atom + molecular octupole potential.

Fittings have also been attempted with higher values for the 

molecular octupole of carbonyl sulphide. However increasing the value 

of this moment above 10.0 Debye A leads to unsatisfactory results. 

The fitted parameters £ll and £cg are found to be negative and 

therefore unrealistic. It is also worth noting that for octupolar 

values below 9.0 Debye A the parameter £qc is found to be negative. 

Consequently while a relatively successful fitting of this particular 

potential can be performed for carbonyl sulphide the value for the 

molecular octupole is very restricted and does lie below the range 

suggested by Ab Initio calculations. Nevertheless the model should not 

be discounted and it is notable that such a relatively simplistic 

potential is successful in modelling so many properties.
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7.4: Atom-Atom + Atomic Charge + Molecular Octupole Potential

It has already been discussed that the molecular dipole and 

quadrupole moments are small in magnitude and that their contributions 

to its lattice properties are small. The next potential used to model 

carbonyl sulphide is an extension of the molecular octupole potential 

with the addition of a set of three charges located on the atoms,

modelling these lower moments in a different form.
[ 32 ]Bentley has recently discussed the idea of fitting atomic

multipole moments so that they reproduce known molecular moments and 

this has led to the "atomic multipole expansion” (AME) method. The 

number of atomic moments which may be fitted is equal to the number of 

available molecular moments (including the zeroth order moment, the 

molecular charge). The procedure adopted to form this particular 

potential is to fit the three atomic charges to the molecular charge 

(zero), the molecular dipole moment and the molecular quadrupole 

moment. The contribution of these calculated charges to the molecular 

octupole is then determined and a separate molecular octupole term is 

added so that an overall value for the effective molecular octupole

moment of 11.0 Debye A is obtained.

The fitting procedure yields a set of physically realistic £

parameters and these are given in table 7.3. The dispersion curves for

this potential are given in figures 7.3 and 7.4 and are of the same 

general form as those of the molecular octupole potential. The curves 

are generally poorer than their equivalents for the molecular octupole 

potential. In the parallel direction the curves are real throughout 

but the lower acoustic branch is smaller in magnitude and the 

frequency minimum which generally occurs in the upper acoustic branch 

at around k = 0.3 is much lower for this new potential. In the 

perpendicular direction the lowest acoustic branch, which for the
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Table 7.3: Atom-Atom Lennard-Jones 12-6 + Atomic Charge + Molecular

Octupole Potential for PCS: Parameters

Atom Pair _ ie/kcal mol V A
like-like 0.16700 3.7

0-C 0.09869 3.9

0-S 0.05495 3.9

C-S 0.36025 3.9

Atomic Charges: q(0) = -0.0745 a.u.

q(C) = 0.0356 a.u.

q(S) = 0.0389 a.u.

Molecular Octupole: 0 = 9.0764 Debye A2

molecular octupole potential was small but real, is imaginary between

k = 0.0 and k = 0.2 so that the requirement that the frequencies 

should be real throughout the first Brillouin zone is not fulfilled. 

The quality of the potential may be further tested by calculating its 

elastic properties and these are given in table 7.4.

Table 7.4: Atom-Atom Lennard-Jones 12-6 + Atomic Charge + Molecular 

Octupole Potential for PCS: Elastic Properties

11r-<r*a 9.9054 GPa nCMr*o 9.7373 GPa

C13 = -0.1578 GPa C15 -0.3026 GPa

C33 34.0082 GPa °55 0.1576 GPa

CO CO II 667.9631 GPa2 S4 = -0.1566 _  2 GPa

IIoX 0.1322 " 1GPa

It can be seen that the potential does not satisfy the condition for 

elastic stability, the fourth stability constant being negative. 

Neither does the potential offer any improvement in the calculated
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Figure 7.3: Atom-Atom Lennard-Jones 12-6 + Atomic Charge + Molecular

Octupole Potential for PCS: Dispersion Curves Parallel to C3
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Figure 7.4: Atom-Atom Lennard-Jones 12-6 + Atomic Charge + Molecular

Octupole Potential for PCS: Dispersion Curves Perpendicular to (L
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compressibility, its value being is virtually identical to that 

obtained from the molecular octupole potential.

Overall this potential compares unfavourably with the molecular 

octupole potential, a slightly surprising result. Unlike the molecular 

octupole potential it does not satisfy the basic criteria for an 

empirical potential. It exhibits imaginary dispersion curves and is 

not elastically stable. Even if the potential did not fail these 

criteria it offers no improvement to the property which is the major 

deficiency of the molecular octupole potential, the compressibility.

7.5: Atom Atom + Atomic Quadrupole Potential

The previous two potentials considered are a purely molecular 

multipole model and a model comprising both atomic and molecular 

terms. It has been shown that the addition of atomic charges to the 

molecular octupole does not improve the quality of the potential 

fitting and that in fact the Mimproved” potential is actually less 

satisfactory. The next multipolar potential which is considered is a 

potential comprised purely of atomic quadrupoles.

It has been discussed in section 7.3 that the multipolar character 

of carbonyl sulphide can be approximated to two quadrupoles of 

differing signs. This simple approximation leads to the next model 

used for the multipolar interaction, using quadrupoles located on the 

atoms. A first approximation to these moments would be simply to halve 

the molecular quadrupole moments of carbon dioxide (-4.491 Debye A) 

and carbon disulphide (3.60 Debye A) to obtain atomic quadrupoles for 

the oxygen and sulphur atoms. Further sets of quadrupoles may be 

obtained by varying these approximate values.

It is found that this potential can be fitted to the specimen 

lattice properties but to obtain a full set of realistic £ parameters
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the atomic quadrupoles are generally smaller than the values suggested 

above. The full set of parameters is given in table 7.5.

Table 7.5: Atom-Atom Lennard-Jones 12-6 + Atomic Quadrupole Potential 

for PCS: Parameters

Atom Pair _ ie/kcal mol V A
like-like 0.16926 3.7

0-C 0.20237 3.9

0-S 0.06258 3.9

C-S 0.22677 3.9

Atomic Quadrupoles: ®(0) = -1.4869 a.u. = -2.0 Debye A
0(C) = 0.0000 a.u.

0(S) = 0.8178 a.u. = 1.1 Debye A

The dispersion curves for this potential have also been determined and 

are given in figures 7.5 and 7.6. Again the curves are poor in 

comparison to those obtained with the molecular octupole potential and 

imaginary frequencies are apparent. The lowest acoustic branch in the 

perpendicular direction, small but real for the two previous 

potentials, is small and imaginary for values of the wave-vector below 

k = 0.07. The lowest branch in the parallel direction is also 

imaginary throughout the first Brillouin zone. This particular 

potential clearly does not satisfy the condition that the frequencies 

should be real throughout and this alone is a major failing of the 

atomic quadrupole potential. Additionally, the elastic properties have 

also been calculated for this particular potential and these are 

presented in table 7.6.
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Figure 7.5: Atom-Atom Lennard-Jones 12-6 + Atomic Quadrupole Potential

for PCS: Dispersion Curves Parallel to C3
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Figure 7.6: Atom-Atom Lennard-Jones 12-6 + Atomic Quadrupole Potential

for PCS: Dispersion Curves Perpendicular to C3
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Table 7.6: Atom-Atom Lennard-Jones 12-6 + Atomic Quadrupole Potential

for PCS: Elastic Properties

C 11 12.0278 GPa C1 2 6.0289 GPa

C 13 0.7129 GPa C 15 = 1.0511 GPa

C 33 33.4059 GPa C 55 -0.0806 GPa

S 3 = 602.1839 GPa2 S 4 = -2.6931 GPa

X = 0 0.1362 GPa"1

These results illustrate further the failings of the potential, two of 

the four stability constants are negative and the compressibility 

obtained is not significantly higher than for the molecular octupole 

potential.

Overall the atomic quadrupole potential has little to offer for the 

modelling of carbonyl sulphide. To obtain realistic e parameters a set 

of atomic quadrupoles has to be used which represent an effective 

molecular octupole of only 4.5 Debye A , significantly lower than the 

value suggested by calculation. It does not offer any significant 

improvement to the calculation of the compressibility and it fails to 

produce a full set of real dispersion curves or to satisfy the 

conditions of elastic stability.

7.6: Atom Atom + Atomic Multipole Potential

The atomic quadrupole potential has been clearly shown to be an 

unsatisfactory model for carbonyl sulphide and it would appear that 

any atomic multipole potential would have to be more sophisticated 

than the simplistic quadrupole model proposed. StoneC33,341 has 

proposed a method, known as distributed multipole analysis (DMA), 

which generates atomic multipole moments from the charge density in an 

ab initio calculation. This method has been used for carbonyl sulphide
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using CADPAC, the Cambridge Analytic Derivatives Package developed by 
[ 35 ]Amos and others . Details are given in Appendix A and the moments 

obtained are very dependent upon the quality of the basis set used. A 

typical set of moments, obtained from the TZP (triple-zeta plus a 

single polarisation function) basis set are given in table 7.7.

Table 7.7: Atomic Multipole Model for PCS - Distributed Multipole 

Analysis - TZP Basis Set

atom type q(e) !*( Debye) 0(Debye A)
0 -0.4736 -0.1621 -0.0228

C 0.6189 -0.9654 -0.2888

S -0.1453 0.3930 1.9108

This set of atomic moments may be combined with the atom-atom model in 

the standard manner and fitted to the four specimen lattice 

properties. The parameters obtained are given in table 7.8.

Table 7.8: Atom-Atom Lennard-Jones 12-6 + Atomic Multipole Potential 

for PCS: Atom-Atom Parameters

Atom Pair _ ie/kcal mol R0/A
like-like 0.04504 3.7

0-C 0.44398 3.9

0-S 0.05696 3.9

C-S 0.09371 3.9

The four e parameters are seen to be physically realistic. The 

dispersion curves have been calculated and are given in figures 7.7 

and 7.8. There are no imaginary frequencies, although the lowest
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Figure 7.7: Atom-Atom Lennard-Jones 12-6 + Atomic Multipole Potential

for PCS: Dispersion Curves Parallel to C3
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Figure 7.8: Atom-Atom Lennard-Jones 12-6 + Atomic Multipole Potential

for PCS: Dispersion Curves Perpendicular to C3

1 2 0 _

100_

80_

60_

l

20_

- 2 0 __
0 . 0 0.1 0.2 0.3 0.4 0.5

Wave-vector

102



acoustic branches in each direction are small in magnitude. The 

elastic properties of the potential have also been determined and 

these are given in table 7.9.

Table 7.9: Atom-Atom Lennard-Jones 12-6 + Atomic Multipole Potential 

for PCS: Elastic Properties

C 11 12.4537 GPa C 1 2 6.0105 GPa

° 13 1.2654 GPa C 15 1.2193 GPa

C 33 31.2502 GPa C 55 1.3532 GPa

S 3 = 573.8075 GPa2 S 4 = 5.7456 GPa

X = 0 0.1323 -1GPa

All four stability constants are real and the potential satisfies the 

conditions for elastic stability. The calculated compressibility does 

not differ significantly from the values calculated for previous 

models. However unlike the previous two models the atomic multipole 

model does fit the specimen lattice properties and satisfies the other 

conditions required of a model to the extent of being as successful as 

the molecular octupole model.

The success of the atomic multipole model also offers an indication 

as to the reasons for the failure of the atomic quadrupole model. The

values of the quadrupoles within the atomic multipole model indicate

that the oxygen atom has a very small quadrupole moment while the

sulphur atom has a large positive quadrupole moment. This would 

suggest that the atomic quadrupole model does not provide a successful 

representation of the charge distribution for carbonyl sulphide.

The effective molecular multipole moments due to the atomic 

multipole model are given by; /Jeff = 0.964 Debye, 0eff = -3.82 Debye A 

and Qeff = 11.82 Debye A2. The effective dipole moment is reasonably
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close to the experimental value but the effective quadrupole moment is 

significantly higher than the experimental value. The evidence of this 

calculation and the consideration of carbon disulphide and carbon

dioxide which led to the atomic quadrupole model suggests that 

carbonyl sulphide exhibits far less quadrupolar character than would 

be generally expected.

Furthermore the effective octupole moment for the atomic multipole 

potential is significantly higher than that inherent to the atomic

quadrupole potential. In common with the molecular octupole potential 

it would appear that it is critical to the success of any model for 

carbonyl sulphide that the value of the molecular octupole moment, in 

the range 10-15 A, is reproduced by the multipolar potential.

7.7: Anisotropic Berne-Pechukas Molecule-Molecule + Molecular Octupole 

Potential

The final potential considered in this chapter is the anisotropic 

Berne-Pechukas molecule-molecule + molecular octupole potential. It is 

of a similar form to the potentials previously considered, with the 

Lennard-Jones 12-6 potential being retained. However instead of being 

used as an atom-atom interaction it is utilised in the form of an

anisotropic molecule-molecule potential. The multipolar component is

modelled by a molecular octupole potential. The molecular octupole 

moment is now considered as being one of the four parameters fitted to 

the specimen lattice properties (the details of this procedure are 

given in Chapter 6).

As with the other potentials considered it is required that the 

value of the single £ parameter obtained by the fitting procedure 

should be positive. The value obtained for the molecular octupole 

moment may also be used as a further test of the quality of the
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potential, with estimates for the magnitude of the octupole moment for 

carbonyl sulphide having been discussed earlier. Finally the usual 

properties which provide tests for an empirical potential, the 

dispersion curves and elastic properties, may be determined for this 

potential.

The molecule-molecule + molecular octupole potential is only one 

possibility for a potential of this form. In principle an anisotropic 

atom-atom potential could be used instead of the molecule-molecule 

potential and the multipolar interaction could be modelled by a more 

complex system such as the atomic multipole system. However the former 

is by far the simplest representation and the considerations of the 

previous models do not suggest that the more complicated multipolar 

potentials prove to be any better than the molecular octupole model. 

Consequently the attention here is confined to the molecule-molecule + 

molecular octupole potential.

The fitting procedure yields a large number of solutions with

physically realistic parameters (recalling that three parameters; £,
2Rq and 0 are fitted to the lattice energy and the two stress

components) for differing values of the anisotropy parameter, X* It is

found that in general a particular value of X may be chosen such that

the torsional frequency of vibration is obtained to within ±0.1 cm 1
- 1of the required value of 92 cm . The potential parameters obtained by 

this method are given in table 7.10.

Table 7.10: Anisotropic Berne-Pechukas Molecule-Molecule + Molecular 

Octupole Potential for PCS: Parameters

£/kcal mol 1 V A 0/Debye A 2 X

0.58325 4.0654 12.296 0.41440
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The parameters obtained are excellent. £ is positive and relatively 

large while RQ is found to be in the range expected by clustering 

considerations (recalling that the separation of the molecular centres 

of mass of nearest neighbours is the unit cell length, 4.063 A). The 

value obtained for the molecular octupole moment is consistent with 

the value suggested by ab initio calculation. The dispersion curves 

for the potential have also been calculated and are illustrated in 

figures 7.9 and 7.10. The most important characteristic of the 

dispersion curves is the absence of any imaginary frequencies though 

the magnitudes of the frequencies for the lowest acoustic branches in 

each direction are relatively small. Nevertheless the requirement that 

the curves should be real is satisfied. The elastic properties for 

this potential are given in table 7.11.

Table 7.11: Anisotropic Berne-Pechukas Molecule-Molecule + Molecular 

Octupole Potential for PCS: Elastic Properties

C11 9.9026 GPa C12 = 7.4252 GPa

C13 0.4195 GPa C15 = 1.0007 GPa

°33 17.0027 GPa °55 1.7342 GPa

S3 = 294.2672 GPa2 S4 = 2.2935 GPa2
X = 0 0.1687 GPa"1

The four stability constants are seen to be positive, satisfying the 

conditions for elastic stability. However, the most notable result for 

this potential is the value for the calculated compressibility. Whilst 

it is still lower than the experimental value it is significantly 

higher than the values obtained from the other potentials detailed and 

as such this potential offers the first improvement on the calculation 

of this particular property which has been previously identified as
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Figure 7.9: Anisotropic Berne-Pechukas Molecule-Molecule + Molecular

Octupole Potential for PCS: Dispersion Curves Parallel to
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Figure 7.10: Anisotropic Berne-Pechukas Molecule-Molecule + Molecular

Octupole Potential for PCS: Dispersion Curves Perpendicular to C3
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being the main failing of the molecular octupole and atomic multipole 

models for carbonyl sulphide.

7.8: Discussion

Within this chapter a number of different potentials have been 

examined, with varying degrees of success, to test their suitability 

as models for carbonyl sulphide. The focus of attention has been on a 

number of different forms for the multipolar component of the overall 

potential such that these different representations may be compared. 

In addition the anisotropic Berne-Pechukas potential has been 

investigated but this will be discussed at the end of this section.

The most important conclusion is that the molecular octupole of 

carbonyl sulphide needs to be successfully reproduced by an empirical 

potential. The two potentials which do provide satisfactory models for 

carbonyl sulphide (disregarding their inability to reproduce the 

compressibility, a fault common to all of the potentials) are the 

molecular octupole and the atomic multipole potentials, each of which 

reproduces the high value for the octupole moment. The atomic 

quadrupole potential fails to reproduce the molecular moment and does 

not provide a satisfactory model. The atomic charge + molecular 

octupole model, essentially the molecular octupole potential with a 

small modification, would be expected to improve the latter potential, 

as it also reproduces the molecular dipole and quadrupole moments. 

However the effect of the addition of the atomic charges is to 

destabilise the potential, not by a large amount but enough to prevent 

it from satisfying the required conditions for stability.

In general all of the potentials can be fitted with realistic values 

for the £ properties and all of the potentials yield a value for the 

compressibility of approximately 0.13 GPa, significantly below the
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experimental value and the uniform failing of this set of potentials. 

In each case the lowest acoustic branch of the dispersion curves acts 

as the main indicator of the quality of the potential. In each 

direction it is always small and it is this branch which is found to 

become imaginary for the unsatisfactory potentials. The stability 

constants, which are closely related to the initial slopes of the 

acoustic branches of these dispersion curves support these results.

It is not apparent that the hybrid potentials are improved by 

increasing the complexity of the molecular multipole potential 

relative to the molecular octupole potential. The effects of the 

dipole and quadrupole moments are small and only the atomic multipole 

potential (which greatly overestimates the molecular quadrupole) 

provides results which are as satisfactory as those obtained for the 

molecular octupole potential (which negates the molecular quadrupole).

The anisotropic Berne-Pechukas molecule-molecule + molecular 

octupole potential retains the qualities of the molecular octupole 

potential but offers a significant improvement in the calculated value 

of the compressibility. It has to be considered as providing the best 

model for carbonyl sulphide of the various potentials considered 

within this chapter. Although the molecular octupole used within this 

potential, 12.296 Debye A is significantly higher than that used for 

the atom-atom + molecular octupole potential, 10.0 Debye A it is not 

significantly higher than the effective molecular octupole, 

11.82 Debye A inherent to the atomic multipole potential. The 

improvement in the calculated compressibility for the Berne-Pechukas 

potential cannot be attributed to the molecular octupole and it is 

concluded that it must be due to the anisotropic molecule-molecule 

component of the hybrid potential. This conclusion forms the basis for 

the next chapter.
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Chapter 8: Carbonyl Sulphide: Variation of the Atom-Atom Potential

8.1: Introduction

In the previous chapter a number of potentials were introduced and 

considered as models for carbonyl sulphide. Attention was focussed on 

finding suitable forms for the multipolar interaction. A standard 

atom-atom potential was used in conjunction with the various 

multipolar components for all but the last potential. This final 

potential, the anisotropic Berne-Pechukas potential provided an 

improvement on the calculated compressibility and it was suggested 

that this might well be due to the change in the atom-atom/molecule- 

molecule component of the overall potential rather than any change in 

the multipolar model.

In more general terms it has already been discussed in Chapter 4 

that the overall interaction between two molecules can be separated 

into three components, the electrostatic energy, the short-range 

repulsive energy and the dispersion energy. The previous chapter 

focussed on different forms for the electrostatic energy with no 

variation in the modelling of the repulsive and dispersive components. 

These two components are modelled by the two terms in the 

Lennard-Jones potential, whether it is utilised in an atom-atom or 

molecule-molecule form. This chapter will focus on the investigation 

of the Lennard-Jones potential, varying the exponents of its repulsive 

and dispersive components. A similar procedure is adopted as in the 

last chapter, with a standard multipolar model being used in 

conjunction with each Lennard-Jones potential. In this vein the 

repulsive and dispersive exponents are varied separately and the 

results presented such that the effect of varying each exponent may be 

critically examined.
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Three sets of potentials are considered in this chapter. First, the 

effect of varying the repulsive exponent in the atom-atom + molecular 

octupole potential is examined, this potential being considered as the 

"basic” model for carbonyl sulphide. The same procedure is then 

examined for the anisotropic Berne-Pechukas potential, which was shown 

in the previous chapter to provide the best model for carbonyl 

sulphide. Finally the anisotropic Berne-Pechukas potential is 

considered with variation of the dispersive exponent.

8.2: Atom-Atom + Molecular Octupole Potential: Repulsive Variation

As discussed in the previous chapter the 12-6 Lennard-Jones 

atom-atom + molecular octupole potential satisfies all the required 

conditions of a model for carbonyl sulphide except the calculated 

value for the compressibility. Consequently the principal requirement 

of any improved potential is that it produces a higher value for the 

compressibility whilst still satisfying the other conditions for an 

empirical potential detailed previously.

Qualitatively it would seem likely that the variation of the

exponents in the Lennard-Jones potential could effect a variation in 

the compressibility. The Lennard-Jones potential can be considered as 

forming an "energy well” and the steepness of the two sides are

determined by the values of the two exponents. The compressibility of 

the crystal can be equated with the steepness of this energy well and

it would be expected that lowering the exponents, hence reducing the

steepness, would effectively increase the compressibility.

It has been mentioned in Chapter 4 that in general the repulsive 

exponent in atom-atom potentials is varied more frequently than the 

dispersive exponent. The dispersive exponent is rarely employed with a 

value other than six whilst the repulsive exponent is usually employed
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in the range nine to thirteen. It is important to note that these are 

only general "guidelines". Much greater ranges for the exponents have 

been considered elsewhere and will be employed here. However in line 

with general philosophy, the first set of potentials to be considered 

investigate the effects of the variation of the repulsive exponent.

A series of four potentials is considered, centred on the atom-atom 

Lennard-Jones 12-6 potential considered in the previous chapter. In 

addition the results for the 14-6, 10-6 and 8-6 potentials are

presented and discussed. The standard fitting procedure is applied to 

the four potentials, each being combined with a molecular octupole 

moment of 10.0 Debye A . The fitted potential parameters are presented 

in table 8.1.

Table 8.1: Atom-Atom Lennard-Jones 14-6, 12-6, 10-6 and 8-6 +

Molecular Octupole Potentials for PCS: Parameters

Atom
Pair

_ i£/kcal mol
V A14-6 12-6 10-6 8-6

L-L 0.13728 0.06256 -0.02386 -0.12112 3.7

0-C 0.38941 0.33476 0.21808 -0.03632 3.9

0-S 0.03276 0.04929 0.07360 0.10916 3.9

C-S 0.11085 0.20619 0.36101 0.64291 3.9

ft = 10.0 Debye A2

It can be seen that the £ parameters obtained by the fitting procedure 

follow a general trend, £LL and £oc decrease with the repulsive 

exponent while £QS and £cs increase. The atom-atom parameters for the 

10-6 and 8-6 potentials are unrealistic, possessing at least one 

negative £ parameter. The dispersion curves have also been determined 

for this series of potentials and are presented in figures 8.1 to 8.8.
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Figure 8.1: Atom-Atom Lennard-Jones 14-6 + Molecular Octupole

Potential for PCS: Dispersion Curves Parallel to C3
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Figure 8.2: Atom-Atom Lennard-Jones 12-6 + Molecular Octupole

Potential for PCS: Dispersion Curves Parallel to C3
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Figure 8.3: Atom-Atom Lennard-Jones 10-6 + Molecular Octupole

Potential for PCS: Dispersion Curves Parallel to C3
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Figure 8.4: Atom-Atom Lennard-Jones 8-6 + Molecular Octupole

Potential for PCS: Dispersion Curves Parallel to C3
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Figure 8.5: Atom-Atom Lennard-Jones 14-6 + Molecular Octupole

Potential for PCS: Dispersion Curves Perpendicular to C3
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Figure 8.6: Atom-Atom Lennard-Jones 12-6 + Molecular Octupole

Potential for PCS: Dispersion Curves Perpendicular to C3
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Figure 8.7: Atom-Atom Lennard-Jones 10-6 + Molecular Octupole

Potential for PCS: Dispersion Curves Perpendicular to C3

60_,

1 20_

100_

80_

60_

l

20_

- 20_

Wave-vector

120



Figure 8.8: Atom-Atom Lennard-Jones 8-6 + Molecular Octupole

Potential for PCS: Dispersion Curves Perpendicular to C3
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A number of trends are apparent in the dispersion curves, in the

parallel direction the optical branch increases from 92 cm 1 to 
-1140 cm for the 14-6 potential but as the exponent is decreased this 

"upward" slope is also decreased, to the extent that the branch slowly 

drops for the 8-6 potential. The higher acoustic branch is relatively 

unaffected by variation of the exponent, though the magnitude of the 

frequency "maximum" around k = 0.15 decreases slightly as the exponent 

decreases. The lower acoustic branch is virtually identical for the

14-6, 12-6 and 10-6 potentials and yet remarkably different for the

8-6 potential. In this instance the initial slope is significantly 

lower and instead of continually rising it drops sharply at k = 0.38 

and the branch becomes imaginary.

In the perpendicular direction similar trends are followed, the two 

optical branches exhibit the same behaviour as their (doubly 

degenerate) parallel counterparts, rising for the 14-6 potential and 

decreasing as the exponent decreases. The upper acoustic branch is 

also relatively unaffected, though the frequency of the maximum at 

k = 0.3 increases from the 14-6 to the 10-6 potential and then 

decreases for the 8-6, with the "hump" becoming more pronounced. The 

two lower acoustic branches also vary significantly. The upper of the 

two (the middle acoustic branch) mirrors its parallel counterpart, 

shallow but real for the 14-6, 12-6 and 10-6 potentials and sharply 

dropping into the imaginary region in the same wave-vector region for 

the 8-6 potential. The lowest acoustic branch exhibits significantly 

greater variation. For the 14-6 potential it is imaginary from k = 0 

to k = 0.15, then turning real but small, a failing which it may 

recalled was characteristic of the atomic charge + molecule octupole

potential. For the 12-6 and 10-6 potentials the branch is real

throughout, yet for the 8-6 potential it is imaginary throughout,

122



starting small in magnitude with a significant drop at k = 0.32, the 

wave-vector region when all the lower acoustic branches are seen to 

"fail" for the 8-6 potential.

Finally the elastic properties have been determined for this series 

of potentials. These are presented in table 8.2.

Table 8.2: Atom-Atom Lennard-Jones 14-6, 12-6. 10-6 and 8-6 +

Molecular Octupole Potentials for PCS: Elastic Properties

Property 14-6 12-6 10-6 8-6

ctl/GPa 12.0160 10.5967 9.1099 7.5489

cl2/Cpa 11.0364 9.3948 7.8046 6.3017

c^/CPa 0.3377 -0.0111 -0.3356 -0.6556

cls/GPa 0.6981 0.3052 -0.1854 -0.7711

c33/GPa 34.1750 30.8875 27.5466 24.1320

cS5/GPa 0.6906 0.5352 0.4013 0.2411

S3/GPa2 787.5877 617.4872 465.7117 333.3831

S /GPa24 -0.2982 0.4570 0.4551 -0.8885

X0/GPa_1 0.11434 0.13249 0.15750 0.19418

It may be seen that the magnitude of each of the elastic constants 

decreases as the repulsive exponent decreases. The stability constant 

S4 is negative for both the 14-6 and 8-6 potentials, thus denying 

these two potentials elastic stability. The most important 

characteristic is the variation of the compressibility, Xq which as 

expected increases as the exponent decreases. The variation is also 

significant, the calculated values for each successive potential being 

around 15-25% higher than for the previous potential. In comparison it 

should be recalled that the compressibilities for the various
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atom-atom + multipole potentials considered in the previous chapter 

were all within 5% of each other. The variation is such that the value 

for the 8-6 potential is 88% of the experimental value (0.22 GPa 1).

These results show that the variation of the repulsive exponent does 

offer significant improvement for the compressibility but the failings 

of the various potentials must also be recalled. The 14-6 potential is 

unsatisfactory because of its imaginary dispersion curve and its 

failure to satisfy the conditions for elastic stability. The 10-6 

potential has no imaginary curves and satisfies elastic stability but 

has an unrealistic £ parameter. The 8-6 potential, although offering a 

great improvement in the compressibility has unrealistic £ parameters, 

imaginary dispersion curves and is elastically unstable. For this 

series of potentials only the 12-6 potential satisfies the basic 

requirements of an empirical potential.

Despite the fact that the variation of the repulsive exponent has 

failed to provide a satisfactory improvement on the atom-atom 

Lennard-Jones 12-6 + molecular octupole potential as a model for 

carbonyl sulphide, the results presented here indicate that the 

modelling of the compressibility can be improved by this method.

Atomic Charge + Molecular Octupole and Atomic Quadrupole Potentials

The other atom-atom hybrid potentials, the atomic charge + molecular 

octupole, atomic quadrupole and atomic multipole potentials which were 

described in the previous chapter have been investigated in a similar 

manner and the results obtained are not unexpected. The general trend 

that the compressibility increases as the repulsive exponent decreases 

is exhibited for all three sets of potentials.

For the first two sets, none of the fitted potentials satisfy the 

conditions for elastic stability. Each also exhibits imaginary 

dispersion curves. Overall they all prove to be unsatisfactory, each
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set following the same internal trends as detailed above for the 

molecular octupole potential. Consequently each fails in comparison to 

its analogous molecular octupole potential for the reasons detailed in 

the previous chapter when the various multipolar potentials were 

considered.

Atomic Multipole Potentials

The atomic multipole potential differs from the two discussed above.

It should be recalled that this potential proved to be as good but no

better than the molecular octupole potential as a model for carbonyl

sulphide. The compressibility for the atomic multipole 14-6, 12-6,

10-6 and 8-6 series of potentials follows the same trend as for the

molecular octupole series, with the 8-6 potential yielding a
-1near-identical value of 0.1939 GPa . However the dispersion curves 

are better than their counterparts for the molecular octupole 

potential, no imaginary frequencies are apparent for any of the
i

potentials and all four exhibit elastic stability, unlike the 

I molecular octupole series for which the 14-6 and 8-6 potentials failed

these requirements. However the 10-6 and 8-6 potentials atomic 

raultipole potentials are unsatisfactory, for in each case the

parameter £LL is found to be negative (the same failing as the 10-6

atom-atom + molecular octupole potential) and therefore the fitted 

potentials are unrealistic. Thus while the series of atomic multipole

potentials exhibit less failings than the molecular octupole

potentials the only models which satisfy the basic requirements of a 

hybrid potential are the 14-6 and 12-6 potentials, neither of which 

offers an improvement in the compressibility. Consequently the series 

of atomic multipole potentials is unable to provide an improved model 

for carbonyl sulphide.

j
i
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8.3: Anisotropic Berne-Pechukas Molecule-Molecule + Molecular Octupole

Potentials: Repulsive Variation

The problem encountered in the previous section was that whilst the 

reduction of the repulsive exponent effected an increase in the 

calculated compressibility it also caused a number of other properties 

to fluctuate. This variation was such that at least one of the 

conditions required of an empirical potential, realistic £ values, 

real dispersion curves or elastic stability, failed. Of all the 

potentials discussed in the previous chapter the best model for 

carbonyl sulphide was found to be provided by the anisotropic Berne- 

Pechukas potential. Therefore it is logical to examine the effects of 

varying the repulsive exponent for this potential.

Once again the same series of potentials are considered and the 

fitting procedure is successful for all four. The parameters obtained 

are presented in table 8.3.

Table 8.3: Anisotropic Berne-Pechukas Molecule-Molecule 14-6. 12-6, 

10-6 and 8-6 + Molecular Octupole Potentials for PCS: Parameters

Potential £/kcal mol 1 V A 0/Debye A2 X

14-6 0.61087 4.0182 12.045 0.4145

12-6 0.58325 4.0654 12.296 0.4144

10-6 0.54951 4.1332 12.548 0.4138

8-6 0.50588 4.2374 12.776 0.4119

These parameters are seen to be physically realistic for all four 

potentials and the variation in their magnitudes is less than for the 

atom-atom + molecular octupole series. The dispersion curves for this 

set of potentials have also been determined and are presented in 

figures 8.9 to 8.16.
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Figure 8,9: Anisotropic Berne-Pechukas Molecule-Molecule 14-6 +

Molecular Octupole Potential for PCS: Dispersion Curves Parallel to
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Figure 8.10: Anisotropic Berne-Pechukas Molecule-Molecule 12-6 +

Molecular Octupole Potential for PCS: Dispersion Curves Parallel to
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Figure 8.11: Anisotropic Berne-Pechukas Molecule-Molecule 10-6 +

Molecular Octupole Potential for PCS: Dispersion Curves Parallel to
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Figure 8.12: Anisotropic Berne-Pechukas Molecule-Molecule 8-6 +

Molecular Octupole Potential for PCS: Dispersion Curves Parallel to
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Figure 8.13: Anisotropic Berne-Pechukas Molecule-Molecule 14-6 +

Molecular Octupole Potential for PCS: Disp. Curves Perpendicular to
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Figure 8.14: Anisotropic Berne-Pechukas Molecule-Molecule 12-6 +

Molecular Octupole Potential for PCS: Disp. Curves Perpendicular to
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Figure 8.15: Anisotropic Berne-Pechukas Molecule-Molecule 10-6 +

Molecular Octupole Potential for PCS: Disp. Curves Perpendicular to CL
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Figure 8.16: Anisotropic Berne-Pechukas Molecule-Molecule 8-6 +

Molecular Octupole Potential for PCS: Disp. Curves Perpendicular to C3
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The most important characteristic of the dispersion curves is that

there are no imaginary frequencies for any of the four potentials. In

addition there are a number of other notable characteristics. The 

dispersion curves in each series are remarkably similar, the large 

variation exhibited by the series of atora-atom + molecular octupole 

potentials being much smaller for this set.

In the parallel direction the "falling” of the optical branch is 

apparent but nowhere near as pronounced for this series. The upper 

acoustic branch is near identical for all four potentials, exhibiting 

the same trend of having a frequency "maximum" around k = 0.18, which 

decreases as the exponent is decreased. The lower acoustic branch,

generally found to be the branch which acts as a "pointer" to the

quality of the curves and a branch which varied greatly for the 

atom-atom + molecular octupole potential, is virtually identical 

throughout this series, the frequency rising to 40 cm 1 and remaining 

steady, a relatively stable value for this particular branch.

In the perpendicular direction similar trends are observed. The

optical branches are similar, the highest dropping as the exponent is

decreased. The variation of the acoustic branches is small, though the

middle branch drops as the exponent decreases. The lower acoustic

branch, the "pointer" in the perpendicular direction is also very
-1stable, although it only rises to 20 cm it remains steady at that 

frequency and does not drop significantly as the exponent decreases.

The dispersion curves exhibit the same basic characteristic as the 

potential parameters obtained by the fitting procedure, namely that 

the variation in the parameters/properties obtained is significantly 

smaller for the series of anisotropic Berne-Pechukas potentials than 

for their atom-atom + molecular octupole counterparts. The final test 

of this series of potentials is to determine their elastic properties



and these are presented in table 8.4.

Table 8.4: Anisotropic Berne-Pechukas Molecule-Molecule 14-6, 12-6. 

10-6 and 8-6 + Mol. Octupole Potentials for PCS: Elastic Properties

Property 14-6 12-6 10-6 CO100
c ^/GPa 11.1809 9.9026 8.5528 7.1064

c,2/GPa 8.8508 7.4252 6.0722 4.7994

Ci3/GPa 0.7113 0.4195 0.1375 -0.1325

c is/GPa 1.4470 1.0007 0.5054 -0.0218

C33/GPa 19.5433 17.0027 14.4190 11.7582

C5S/GPa 1.9077 1.7342 1.5501 1.3533

S3/GPa2 390.473 294.267 210.602 139.955

S,/GPa24 0.2575 2.2935 3.3343 3.1211

XQ/GPa~1 0.14411 -j 0.16874
-

0.20353 0.25688

The first characteristic of these elastic properties is that each of 

the potentials fulfils the requirements for elastic stability. The 

compressibility shows a great variation with the exponent and the 

value for the 8-6 potential is actually higher than the experimental 

value (0.22 GPa 1), the first potential discussed which yields this 

result. The variation in the magnitude of the compressibility shows 

the same general trend as for the atom-atom + molecular octupole 

potential, each successive potential yielding a value 15-25% higher.

The advantages of this potential over the atom-atom + molecular 

octupole potential are two-fold, first the anisotropic Berne-Pechukas 

potentials yield higher values for the compressibilities than their 

counterparts. Secondly the variation in the fitted parameters and the 

frequencies of the dispersion curves is significantly smaller for the
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Berne-Pechukas potentials, such that all four potentials satisfy the 

basic requirements of an empirical potential, yet the variation in the 

compressibility is not restrained by the same extent. The original 

problem discussed at the start of this section, of the potentials 

being too "sensitive” is effectively solved by this model. The series 

of Berne-Pechukas potentials can be considered as being far more

"stable" than any of the other potentials and as such provide the best

model for carbonyl sulphide. For the potentials presented in this

section the compressibility^for the 10-6 potential is slightly below 

the experimental value while for the 8-6 potential it is slightly

above. The 9-6 potential would be expected to give the best estimate 

and this potential is discussed in the next section.

8.4: Anisotropic Berne-Pechukas Molecule-Molecule + Molecular Octupole 

Potentials: Dispersive Variation

It has been discussed that both the repulsive and dispersive 

exponents in the atom-atom/molecule-molecule potentials may be varied. 

The effects of varying the repulsive exponent for the potentials 

presented in the previous chapter have been discussed in the previous 

sections with the dispersive exponent kept fixed as six. It is 

expected that the general treatment applied to repulsive variation 

should also apply to dispersive variation and this is investigated in 

this section. As before a fixed value for the repulsive exponent is 

chosen and a fixed multipolar model is employed. In line with the 

conclusions of the previous section the standard potential is chosen 

to be the anisotropic Berne-Pechukas molecule-molecule 9-6 potential. 

In addition, the 9-7, 9-5 and 9-4 potentials are considered.

All four potentials are successfully fitted in the normal manner and 

the parameters obtained are given in table 8.5.
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Table 8.5: Anisotropic Berne-Pechukas Molecule-Molecule 9-7, 9-6, 9-5

and 9-4 + Molecular Octupole Potentials for PCS: Parameters

Potential £/kcal mol V A 0/Debye A2 X

9-7 0.57501 4.1131 12.482 0.41443

9-6 0.53031 4.1782 12.633 0.41304

9-5 0.47625 4.2680 12.793 0.41090

9-4 0.41291 4.3934 12.961 0.40817

As with the series of potentials for the variation of the repulsive 

exponent all of the parameters obtained here are realistic and the 

effect of reducing' the dispersive exponent is the same on each 

property; £ and X decrease while RQ and 0 increase. The degree of

variation is comparable, though it should be noted that in this series

the dispersive powers differ by one, whereas the series of repulsive 

powers differed by two. The variation of X» the degree of anisotropy

is significantly greater for this series.

The dispersion curves have also been calculated for this series of 

potentials and these are presented in figures 8.17 to 8.24. They do 

not differ strikingly from the n-6 series of dispersion curves, all of 

the four potentials produce curves without imaginary frequencies and 

the variation from one set of curves to the next in the series is 

relatively small. The lower acoustic branch in the parallel direction 

remains real, with a stable frequency in the region of 40 cm 1 for 

each of the potentials. Similarly the lowest acoustic branch in the 

perpendicular direction also remains real, in the region of 20 cm 1. 

The curve which shows the greatest variation for these potentials is

the middle acoustic branch in the perpendicular direction, approaching
- 1 - 1a frequency of 40 cm for the 9-7 potential but dropping to 20 cm

for the 9-4 potential, almost crossing the lower branch.
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Figure 8.17: Anisotropic Berne-Pechukas Molecule-Molecule 9-7 +

Molecular Octupole Potential for PCS: Dispersion Curves Parallel to C3
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Figure 8.18: Anisotropic Berne-Pechukas Molecule-Molecule 9-6 +

Molecular Octupole Potential for PCS: Dispersion Curves Parallel to C3
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Figure 8.19: Anisotropic Berne-Pechukas Molecule-Molecule 9-5 +

Molecular Octupole Potential for PCS: Dispersion Curves Parallel to
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Figure 8.20: Anisotropic Berne-Pechukas Molecule-Molecule 9-4 +

Molecular OctuDole Potential for OCS: Dispersion Curves Parallel to C   _3
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Figure 8.21: Anisotropic Berne-Pechukas Molecule-Molecule 9-7 +

Molecular OctuDole Potential for OCS: DisD. Curves Perpendicular to C    3
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Figure 8.22: Anisotropic Berne-Pechukas Molecule-Molecule 9-6 +

Molecular Octupole Potential for PCS: Disp. Curves Perpendicular to
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Figure 8.23: Anisotropic Berne-Pechukas Molecule-Molecule 9-5 +

Molecular Octupole Potential for PCS: Disp. Curves Perpendicular to C3
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Figure 8.24: Anisotropic Berne-Pechukas Molecule-Molecule 9-4 +
Molecular Octupole Potential for PCS: Disp. Curves Perpendicular to
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In general the potential parameters and dispersion curves for this 

series of potentials exhibit the same trends as for those considered 

in the previous section. The elastic properties have also been 

determined and these are given in table 8.6.

Table 8.6: Anisotropic Berne-Pechukas Molecule-Molecule 9-7, 9-6, 9-5 

and 9-4 + Molecular Octupole Potentials for PCS: Elastic Properties

Property 9-7 9-6 9-5 9-4

clt/GPa 8.7598 7.8344 6.8816 5.8980

c12/GPa 6.2647 5.4202 4.6310 3.8990

c13/Gpa 0.1826 0.0079 -0.1701 -0.3614

c /GPa
I  b

0.5809 0.2502 -0.0839 -0.4153

C33/GPa 14.8852 13.0768 11.2685 9.4932

C55/GPa 1.5751 1.4524 1.3209 1.1697

S3/GPa2 223.579 173.327 129.672 92.743

S /GPa24 3.2551 3.3812 2.9587 1.9933

*0/GPa"1 0.19709 0.22718 0.26783 0.32594

Once again all of the potentials satisfy the conditions for elastic 

stability and the great variation in the compressibility is observed, 

the 9-4 potential yielding a value almost 50% larger than the 

experimental value. The 9-6 potential yields a value for the

compressibility which is in excellent agreement with the original

estimate from experiment. It is also interesting to note that the 

value of the stability constant S for the 9-6 potential is the4

highest for any of the potentials presented in either this or the 

previous chapter. Indeed, unlike the other three stability constants

which tend to decrease consistently with the exponent (whether
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repulsive or dispersive), generally exhibits a maximum. It would 

appear that as a rough guide for the comparison of potentials, not 

only is S required to be positive but that the higher its value the4
better the potential proves to be as a model for carbonyl sulphide. 

8.5: Discussion

In this chapter the effects of varying the exponents for the 

repulsive and dispersive terms in the hybrid potential have been 

systematically investigated. It has been shown that the variation of 

these exponents produces a significant variation in the 

compressibility, with the reduction of either exponent increasing the 

calculated compressibility. However, for all of the atom-atom 

potentials considered it is found that the improvement in the

compressibility is obtained to the detriment of other properties, in

particular the energy-well parameters and the acoustic frequencies.

The dispersion curves are found to be very sensitive to this variation 

and often it leads to imaginary frequencies. The anisotropic

Berne-Pechukas potentials exhibit all of the beneficial qualities of 

the atom-atom potentials but without the associated failures. All of 

the Berne-Pechukas potentials which have been considered, satisfy the 

conditions required of such a model and this permits attention to be 

focussed on the attempt to find a potential whose parameters yield an 

accurate value for the compressibility. This potential is found to be 

the anisotropic Berne-Pechukas molecule-molecule 9-6 potential, 

combined with a molecular octupole of 12.633 Debye A .
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Chapter 9: Cyanogen Iodide

9.1: Introduction

In the previous chapters the molecular crystal of carbonyl sulphide 

has been considered and a number of empirical potentials have been 

proposed as suitable models. These potentials have been shown to have 

varying degrees of success but overall it has been shown that a large 

number of lattice properties can be reproduced by relatively 

simplistic potentials. The next test for this general model is to 

apply it to a different crystal, one which is similar to carbonyl 

sulphide to see if it is able to reproduce the crystal’s properties 

with an equal degree of success. The crystal chosen is cyanogen iodide 

(ICN) which has the same crystal structure as carbonyl sulphide.

9.2: Lattice Properties of Cyanogen Iodide

The lattice structure of cyanogen iodide has been determined by
[361Ketelaar and Zwartsenberg using X-ray diffraction and is
5rhombohedral, space group C3v (R3m) with one molecule per unit cell. 

The two unit cell parameters are the unit cell length, a = 4.44 A, 
slightly longer than for carbonyl sulphide and the unit cell angle,

Oa = 101.4 , also larger than for carbonyl sulphide and representing a

more ’’open" crystal structure. The bond lengths have not been
t 26 1determined directly but Deakin has provided suitable values of

r(C-N) = 1.18 A and r(C-I) = 2.03 A which are consistent with 

diffraction data. The sublimation energy has been determined by 

Ketelaar and Kruyert3?1 at -14.31 kcal mol \  No experimental estimate 

of the Debye temperature is available and so the lattice energy is 

assumed to be equal to the value above. The far-infrared and Raman 

spectra of cyanogen iodide have both been measured by Savoie and
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[38]Pezolet and yield a consistent value for the single fundamental

band in the lattice vibration region at 136 cm \  The Raman spectrum
[ 39 ]has been measured more recently by Sun and Anderson and it is

_ itheir value for this band, 127 cm which is used as the value for the

fundamental frequency used in the potential fitting calculations.

The molecular dipole moment of cyanogen iodide has been determined

using microwave spectroscopy by Townes and Schawlowt4°] at
[41]p = 3.71 Debye. Ewing, Tigelaar and Flygare have investigated the 

Zeeman effect in cyanogen iodide and have obtained a value of the 

molecular quadrupole moment, 0 = -7.33 Debye A. Both of these moments 

are significantly larger than the corresponding moments for carbonyl 

sulphide and they correspond to a molecule with a large degree of 

dipolar and quadrupolar character. No experimental value for the 

octupole moment is available but ab initio calculations suggest a 

value in the range 37-43 Debye A . This value is approximately four 

times higher than the octupole moment of carbonyl sulphide and is 

therefore consistent with the relative magnitudes of the dipole and 

quadrupole moments of cyanogen iodide and carbonyl sulphide.

As with carbonyl sulphide there are no available experimental values 

for the elastic constants of cyanogen iodide. Nor is any estimate of 

the compressibility available. However the elastic constants may still 

be usefully determined so that the conditions for elastic stability 

may be investigated. It will be shown that the lack of a value for the 

compressibility to act as a test for an empirical potential does not 

prove critical for the modelling of cyanogen iodide.
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9.3: Model Potentials for Cyanogen Iodide

With the known values for the lattice energy and the torsional 

frequency of vibration plus the two conditions for zero stress, the 

procedure used for fitting an empirical potential for carbonyl 

sulphide may be applied to cyanogen iodide in an identical manner.

The first model investigated is the atom-atom potential without any 

electrostatic component. This potential proves to be as unsatisfactory 

for modelling the lattice properties of cyanogen iodide as it did for 

carbonyl sulphide. The same flaws are found, the fitting procedure 

always yields at least one negative £ parameter and at least two 

imaginary dispersion curves are observed. The result is expected, it 

has been previously shown that carbonyl sulphide could not be 

successfully modelled without an electrostatic component in the hybrid 

potential and cyanogen iodide exhibits greater multipolar character 

than carbonyl sulphide.

It has been discussed that for carbonyl sulphide the effects of the 

molecular dipole and quadrupole moments were relatively insignificant 

and that the octupole moment was the first moment whose contributions 

to the specimen lattice properties was of significance. This does not 

apply to cyanogen iodide. The dipole and quadrupole moments are 

significantly higher than for carbonyl sulphide and calculation 

confirms that they cannot be neglected in an electrostatic model of 

cyanogen iodide. The simplest "successful'’ potential for carbonyl 

sulphide was found to be the atom-atom + molecular octupole potential. 

The analogue of this potential has been investigated for cyanogen 

iodide, with the multipolar component comprising the molecular dipole, 

quadrupole and octupole moments. The values for the dipole and 

quadrupole used are the experimental values, while the value for the 

octupole moment is taken to be 37.0 Debye A .
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The standard fitting procedure is adopted for this potential, 

calculating the contributions of the three multipole moments to the 

specimen lattice properties and fitting the four atom-atom potential 

parameters so that the correct values for the lattice properties are 

reproduced. The parameters obtained are presented in table 9.1.

Table 9.1: Atom-Atom Lennard-Jones 12-6 + Molecular Multipole 

Potential for ICN: Parameters

Atom Pair - 1£/kcal mol VA
like-like -0.46105 4.1

N-C 1.39700 4.3

N-I 0.21945 4.3

C-I 0.21945 4.4

fJ = 3.71 Debye, 0 = -7.33 Debye A, Q = 37.0 Debye A 2

The parameter £ll is seen to be negative and therefore physically 

unrealistic. This flaw, the presence of an unrealistic £ parameter, is 

found to occur for all variations of this potential. Variation of the 

repulsive or dispersive exponents in the atom-atom component does not 

yield a set of four physically realistic parameters. The fitting 

procedure for these variants may produce a positive value for £ll but 

one of the other £ parameters is then found to be negative. This 

result contrasts with carbonyl sulphide, for which this form of 

potential did yield satisfactory values for the atom-atom parameters. 

The dispersion curves for this potential have also been determined and 

these are presented in figures 9.1 and 9.2. Once again the results can 

be compared with those for carbonyl sulphide. The dispersion curves in 

the parallel direction are real and have the same basic 

characteristics as those of carbonyl sulphide, although the lower
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Figure 9.1: Atom-Atom Lennard-Jones 12-6 + Molecular Multipole

Potential for ICN: Dispersion Curves Parallel to C3
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Figure 9.2: Atom-Atom Lennard-Jones 12-6 + Molecular Multipole

Potential for ICN: Dispersion Curves Perpendicular to C3
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acoustic branch is significantly smaller in magnitude. In the 

perpendicular direction the same pattern is followed, except that the 

lower acoustic branch becomes imaginary at k = 0.16, this branch 

resembling the equivalent branch for the atom-atom 8-6 + molecular 

octupole potential for carbonyl sulphide. Variation of the exponents 

does not improve the dispersion curves either, all hybrid potentials 

yielding imaginary frequencies. Finally the elastic properties have 

also been determined and these are presented in table 9.2.

Table 9.2: Atom-Atom Lennard-Jones 12-6 + Molecular Multipole 

Potential for ICN: Elastic Properties

IIr*
o 18.365 GPa C 1 2 15.990 GPa

C 1 3 = -1.585 GPa C15 -1.094 GPa

C 33 80.491 GPa °55 2.736 GPa

IICO
CO 397.314 GPa^ S 4 = 0.591 GPa

X = 0 0.0736 GPa" 1

The results show that this potential does at least exhibit elastic 

stability (the requirement being that c , c , S and S are all
«3 J  O  D  O  ^

positive). As has been discussed there is no experimental value 

available for comparison with the calculated compressibility but it 

seems likely that at a third of the value for the compressibility of 

carbonyl sulphide this calculated value is also an underestimate.

Overall the results do not compare well with carbonyl sulphide. The 

hybrid potential obtained does not satisfy the conditions required, 

possessing an unrealistic £ parameter and imaginary frequencies. The 

atomic charge + molecular octupole, atomic quadrupole and atomic 

multipole models for the electrostatic interaction have also been 

investigated and as with carbonyl sulphide they offer no improvement
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on the molecular multipole potential, each exhibiting at least one 

unrealistic £ parameter and imaginary dispersion curves. The 

anisotropic Berne-Pechukas potential has also been investigated and 

exhibits similar failings, with an unrealistic value for the molecular 

octupole moment generated by the fitting procedure.

9.4: Discussion

It can be seen that the hybrid potentials utilised with great 

success for modelling the lattice properties of carbonyl sulphide are 

far less successful when applied to cyanogen iodide despite the 

apparent similarities in their crystal structures. It would seem that 

these two molecular crystals are not as alike as originally proposed 

and the main differences between them are probably due to their 

differing charge distributions. The experimentally determined dipole 

and quadrupole moments for carbonyl sulphide*are relatively small and 

the molecule is dominated by its large calculated octupole moment. 

Cyanogen iodide also has a large calculated octupole moment but the 

experimental values for the dipole and quadrupole moments are also 

high and cannot be discounted as they were for carbonyl sulphide.

In each case only the dipole and quadrupole moments have been

measured experimentally but values for the higher molecular moments

(up to twentieth order) as well as values for atomic moments,

calculated using the Stone partition method, have been determined from
[ 35 ]ab initio calculations using the CADPAC package, details of which 

are given in Appendix A. The values of the first six molecular 

multipole moments obtained by this method are presented in table 9.3. 

For carbonyl sulphide TZPPP basis sets are used for all three atoms 

while for cyanogen iodide TZPP basis sets are used for carbon and 

nitrogen and an SV4PPP basis set used for iodine.
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Table 9.3: Molecular Multipole Moments for PCS and ICN obtained by

Ab Initio Calculation

Multipole Moment OCS ICN

H / Debye 0.846 3.707

0 / Debye A -1.713 -7.509

0 / Debye A2 13.534 41.609

$ / Debye A 2.435 -94.795

M5/ Debye A4 32.279 316.172

M6/ Debye A5 25.275 -976.563

Using these values for the higher moments (but retaining the 

experimental values for the dipole and quadrupole) the contributions 

of each term in the multipolar expansion, up to sixth order, to the 

lattice energy and the torsional frequency of vibration is given in 

table 9.4, along with the combined totals of the interactions up to 

third and sixth order. It must be noted that the molecular multipole 

expansion taken to higher terms does not give a good representation of 

the total interaction and any conclusions which are to be drawn from 

the calculations should be qualitative only.

The contributions for the various components to the lattice energy 

and torsional frequency for carbonyl sulphide are seen to have 

reasonable values and the octupole is seen to be an important feature 

of the multipolar expansion. This result is consistent with its 

domination of the electrostatic potentials discussed in the previous 

chapters, for which it should be recalled the primary requirement was 

that the molecular octupole should be reasonably modelled.

In contrast the values obtained for cyanogen iodide become rapidly 

unrealistic for the higher moments such that, for example, physically 

unreasonable high lattice energies are obtained.
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Table 9.4: Contributions of Molecular Multipole Terms to the Lattice

Energy and Torsional Frequency of Vibration for PCS and ICN

M( I) - M(J)
_ lLat.Energy/ kcal mol _ iTorsional Freq./ cm

Interaction OCS ICN OCS ICN

1 - 1 0.0721 1.9289 5.560i 20.5021

2 - 2 -0.0388 -1.7614 7.444 35.771

3 - 3 -1.4263 -14.3612 65.441 147.992

4 - 4 -0.0051 -5.4286 5.098 119.128

5 - 5 0.2808 2.2622 46.9931 95.0551

6 - 6 0.0743 30.7158 28.782i 417.1211

1 - 3 0.5922 6.7476 29.098i 70.0021

1 - 5 -0.1975 -5.8379 24.354 94.356

2 - 4 -0.0412 8.6456 11.116 114.8341

2 - 6 0.0136 -3.4595 8.368i 95.102

3 - 5 0.4399 12.7157 47.583i 182.3311

4 - 6 -0.0276 -3.4916 14.745 118.090

Total (3rd) -0.8008 -0.7476 58.825 133.641

Total (6th) -0.2636 28.6751 30.8301 406.8221

Considering the multipolar expansion further, it should be noted 

that the higher order multipole moments are dominated by parts of the 

electron distribution which are relatively far from the molecular 

centre. The apparent breakdown of the multipolar expansion suggested 

by the above calculation may then be due to significant overlap of the 

free molecule wavefunctions in the crystal. The potentials used within 

this thesis do not take account of overlap directly and the theories 

which underlie them apply to zero or small overlap of the 

wavefunctions.
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The geometry of the cyanogen iodide crystal would suggest that the

overlap would be greatest along the linear chains of molecules, namely

along the three-fold axis with the "short" atom-atom contact distance

previously mentioned. Although carbonyl sulphide has the same

structure as cyanogen iodide and both have this anomalous short

contact, its lattice energy is relatively low, being almost exactly

the same as that of carbon dioxide. The usual qualitative observation

is that an increase in mass of a molecule leads to an increase in the

lattice energy of the crystal, a trend not observed from carbon

dioxide to carbonyl sulphide. However the lattice energy of cyanogen

iodide is relatively high, being about the same as that of the heavier

iodine molecule. These two comparisons suggest that the carbonyl

sulphide molecules are more weakly bound within the crystal than

cyanogen iodide molecules.

An additional piece of evidence to support this view comes from the

Raman and infrared spectra of the two molecules. It has already been

mentioned that a single fundamental band is observed which is assigned

to a vibration in which all of the molecules tilt in phase away from

the crystal three-fold axis. The corresponding force constant k, which

is related to the frequency u and the molecular moment of inertia I, 
1/2by v - (k/I) /2ft, gives a measure of the strength of the interaction

between molecules in a linear chain. The moments of inertia of the two
x 2molecules have been calculated and are found to be 82.474 amu A for

x 2carbonyl sulphide and 162.378 amu A for cyanogen iodide. The
- 1 - 1fundamental frequencies are recalled as being 92 cm and 127 cm 

respectively. Using these values the force constants may be calculated 

and it is found that the ratio (k._„/krt__) has the value 3.75, furtherICN OCS
supporting' the view that the binding in cyanogen iodide is 

considerably stronger than in carbonyl sulphide.
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A final piece of indirect evidence comes from the dimer of carbonyl 

sulphide which has been recently investigated by Randall, Wilkie,
[42]Howard and Muenter . They have shown that it has a non-polar 

structure, being a planar complex with the two molecular axes parallel
oand making an angle close to 90 with the line joining the two centres

[43]of mass. Deakin and Walmsley have performed calculations on the

dimer using the same type of potentials employed within this thesis

and these agree with the observed structure but also indicate that

there is a strong secondary minimum for a parallel polar structure.

This suggestion of a not very strongly favoured dimer structure is

indirectly indicated by thermodynamic crystal properties detailed in
[44]the Handbook of Chemistry and Physics . At atmospheric pressure 

solid carbonyl sulphide melts at 135 K while the liquid boils at 

223 K. In contrast carbon dioxide sublimes at 195 K and has no liquid 

phase. This parallels with the previous remark about the relative 

magnitudes of their lattice energies, that of carbonyl sulphide being 

relatively low. Cyanogen iodide is more like carbon dioxide in this 

respect and sublimes at 318 K.

All of these arguments suggest that a successful model for cyanogen 

iodide should include the effect of overlap more directly, a 

requirement not necessary for carbonyl sulphide. As an intermediate 

step which can be undertaken with a simple extension of the methods 

developed for carbonyl sulphide the induction interaction, previously 

neglected, can be taken into account. This is considered in the next 

chapter.
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Chapter 10: Induction Energy

10.1: Introduction

In the previous chapter a number of reasons for the failure of the 

extension of the various hybrid potentials, developed for carbonyl 

sulphide, to the superficially similar cyanogen iodide crystal were 

discussed. It was concluded that for cyanogen iodide the effects of 

electron overlap were more significant than for carbonyl sulphide and 

that a relatively simple first step in considering the overlap would 

be to determine the induction energy. In chapter 4 the induction 

energy was introduced as being one of the second order terms in the 

perturbation series of the ground-state energy of a pair of molecules, 

a term which it was assumed could be neglected. In this chapter the 

induction energy of the two molecules concerned is determined and this 

assumption will be examined.

10.2: Theory of Induction Energy

Every molecule which has a permanent charge distribution will have 

an associated electric field and electric field gradients. Any other 

molecule which lies within this electric field will be subject to its 

effects and the interaction between the two will cause a shift in the 

energy of the molecule, referred to as the induction energy.

If a pair of molecules are considered in isolation the induction 

energy of molecule B due to the charge distribution inherent in 

molecule A is given by:

(B) 1 (B) (B) (B) 1 (B) _(B)_(B) 1 _(B ) (B)(B)
U ind 2 aaj5 a 3 a,p]f a 6 a)3j6 ap 76

(10.2.1)
( B ) ( B )where and F ^  are the electric field and electric field gradient
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at the origin in molecule B due to the permanent charge distribution

static quadrupole polarizability of molecule B. It should be noted 

that the convention has been used whereby repeated Greek subscripts 

represent summation over all cartesian axes.

The electric field and first electric field gradient at the centre 

of molecule B may be expressed in terms of the permanent multipole 

moments of all the other molecules within the crystal as follows:

centres of mass of molecules A and B. In terms of the external axis 

system this potential is given by:

Induction Energy for Rhombohedral Crystals

The expressions used for the determination of the induction energy 

may be considerably simplified for rhombohedral crystals such as 

carbonyl sulphide and cyanogen iodide. Firstly, in each case all of 

the multipole moments are polarized along the molecular (z) axis and

( B )of molecule A. If there are more than two molecules present then Fa
( B )and are the cumulative field and field gradients due to all of

is the static dipole polarizability, Athe other molecules, a

is the static dipole-quadrupole polarizability and C

Fa
(B) (1 0.2 .2 )

A a

2
(10.2.3)

where <f>(A) is the multipole potential and RAB the distance between the

(10.2.4)

where T g£(R ) are the tensors considered in previous chapters.
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ABso expression (10.2.4) may be differentiated with respect to and

R;B to give the electric field and the first electric field gradient:

F(B) = - q y ~ T  (RAB) + (i r T  (RAB) - ^ 0 y ~ T  (RAB) a__________[____ a z I__ «z 3 zz [__  azz
A A A

1 ^ 'v ^ . _ A B , 1 , \  ,„AB.+ —  Q ) T R ) - — —  $ ) T R + ..15 zzz I  azzz 105 zzzz (___ azzzz
A A

(10.2.5)

B ) \ m A B . \  m , A B 4 1 ~ m AB
a|3 " " q / ) + ^Z / «)3z } “ 3 ZZ / affzz( }

1 \ m A B 1 » \ AB,+ —  0 > T 0 (R ) ----- 0 > T 0 (R ) + . .15 ZZZ I  cx|3zzz 105 ZZZZ I  cxjSzzzz
A A

(1 0.2 .6 )

These expressions are further simplified by the symmetry of the

crystals concerned. With the crystals being assumed to be infinite the

reference molecule (B) may be considered as lying at the centre of the
A Bcrystal and this has two consequences. Tensors of the form ^ xzz (R )

and T (RAB) are essentially mathematically odd functions and asyzz..
such their summations over the infinite lattice are zero. Similarly

ABthe odd-powered tensors of the form T (R ) are also odd functionsZZZ • •

and their summations disappear. With these simplifications the only 

non-zero component of the electric field is as follows:

f ‘B) = U Y ~T (RAB) + 77 0 T (RAB) + ... (10.2.7)Z z /___ ZZ 15 zzz (___ ZZZZ

Further relations simplify the electric field-gradient components.
A BTensors of the form T (R ) are also odd functions and theirxyzz..

summations disappear. Furthermore the cartesian fixed axis system may

be conveniently defined such that tensors of the form T (n) (RAB),xxzz..
„,(n) ,„AB. , _(n) /r.AB. , ( , ,, . . .T (R ) and T (R ) are related bv the relation:yyzz.. zzzz..
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Noting that the total molecular charge is zero the only non-zero 

components of the electric field-gradient are given by:

Using the two simplified relations for the non-zero components of the 

electric field and electric field-gradient (10.2.7) and (10.2.9), the 

required components of the electric field and the electric 

field-gradient may be calculated for each molecule and using (1 0.2 .1 ) 

the induction energies determined.

10.3: Calculation of Induction Energies

The electric fields and electric fiela-gradients for carbonyl 

sulphide and cyanogen iodide are calculated for molecular multipole 

moments up to fourth order. The contribution of higher order terms is 

relatively low for both molecules and as has been discussed in the 

previous chapter there is some degree of doubt concerning the 

magnitude of these higher moments, particularly for cyanogen iodide. 

Carbonyl Sulphide

The values for the molecular dipole and quadrupole moments of 

carbonyl sulphide are those determined experimentally and these are 

supplemented by the values for the octupole and hexadecapole moments 

quoted in the previous chapter and determined by ab initio 

calculation. The values for the various tensor summations and the 

contributions of each of the terms to the electric field and the

Fzz
(B)

3 ZZ
1 0 Z z TZZZZZZ

A A

F = FXX yy
1 v { B )- F2 ZZ (10.2.9)



electric field are detailed in tables 10.1 and 1 0.2 .

Table 10.1: Electric Field Components for OCS

n M (n)/ Debye A(n T (n+1)/ ^-(n+1) 
zz . . F*B)/ Debye A'3

1 0.71512 -1.9594xl0"2 -1.4012X10"2

2 -0.79 0 0

3 13.534 -3.4558X10"2 -3.1172X10"2

4 2.435 0 0

Total NA NA -4.5184X10"2

Table 10.2: Electric Field-Gradient Components for OCS

n ( n ) ✓ rx i i(n-l)M / Debye A T (n+2)/ ^-<n+l) 
z z . . F(BV Debye A 4z z

1 0.71512 0 0

2 -0.79 -3.4558X10-2 -9.1004X10"3

3 13.534 0 0

4 2.435 7.1346xl0‘2 -1.6547x10 3

Total NA NA -1.0755X10"2

To determine the induction energy, values for the various components 

of the polarizability tensors are also required. These have also been 

determined by ab initio calculation and the full tensors are quoted in 

Appendix A. However the symmetry of the polarizability tensors and 

various relations previously detailed permit the contributions of the 

polarizabilities detailed in equation (1 0.2 .1 ) to be simplified such 

that the total induction energy (up to the quadrupole-quadrupole 

polarizability term) is given by:
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(B) 1 (B)(B)(B) 1 (B) ^(B)̂ (B) 3 (B) (B)(B)u. J = - — cx F F - — A F F - — C F Find 2 zz Z Z 2 Z,ZZ Z ZZ 8 ZZ,ZZ ZZ ZZ

(10.3.1)

The contributions of each term to the induction energy may now be

determined and these are presented in table 10.3.

Table 10.3: Induction Energy for OCS

Component Polarizability <B) / 1 1 T " 1u. J / kcal moli nd
a 7.0277 A3 -0.10328z z

A -0.8324 A4 0.00291z , zz

c 7.0264 A5 -0.00439z z , z z

Total NA -0.10476

The induction energy for carbonyl sulphide is clearly seen to be 

dominated by the dipole-dipole polarizability term. More importantly 

it should be noted that at -0.10 kcal mol 1 the induction energy as 

calculated here is only 1.6% of the total lattice energy for carbonyl 

sulphide (-6.72 kcal mol 1), a small contribution which suggests that 

its earlier neglect is justifiable.

Cyanogen Iodide

The same procedure is adopted for the determination of the induction 

energy of cyanogen iodide. As with carbonyl sulphide the dipole and 

quadrupole moments used are those determined experimentally and the 

octupole and hexadecapole moments used are those provided by ab initio 

calculation. The values for the various tensor summations and the 

contributions of each of the terms to the electric field and the 

electric field are detailed in tables 10.4 and 10.5.
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Table 10.4: Electric Field Components for ICN

n M / Debye A T (n+1)/ A"(n+1)
Z Z . . F(BV  Debye A 3Z

1 3.71 -1.9475x10"2 -7.2254xl0“2

2 -7.33 0 0

3 41.609 -1.8227X10"2 -5.0560xl0'2

4 -94.795 0 0

Total NA NA -1.2281X10"1

Table 10.5: Electric Field-Gradient Components for ICN

n _-(n ) , ^ , .(n-1)M / Debye A T (n+2)/ A _(n+1)z z . . F(BV  Debye A 4z z

1 3.71 0 0

2 -7.33 -1.8227X10"2 -4.4535X10"2

3 41.609 0 0

4 -94.795 4.1493x10"2 3.7462xl0“2

Total NA NA -7.0724X10"3

The components of the polarizability tensors have also been determined 

by ab initio calculation, using the TZPP/SV4PPP basis set and the full 

tensors are quoted in Appendix A. The contributions of each term to 

the induction energy are presented in table 1 0.6 .

Table 10.6: Induction Energy for ICN

Component Polarizability u|B  ̂ / kcal mol 1i nd
a 9.2277 A3 -1.00187z z

A -15.3934 A4 0.09625z , zz

c 21.9485 A5 -0.00593zz,zz

Total NA -0.91155
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As with carbonyl sulphide the induction energy is dominated by the 

dipole-dipole term but for cyanogen iodide it is much higher. For 

cyanogen iodide the induction energy is approximately nine times 

higher than for carbonyl sulphide, despite the lattice energy of 

cyanogen iodide being approximately only twice as high. The value for 

the induction energy is 6.4% of the lattice energy for cyanogen 

iodide, a relatively significant contribution.

10.4: Discussion

The induction energies calculated here should only be considered as 

a first attempt at investigating the contribution of overlap to the 

lattice properties of carbonyl sulphide and cyanogen iodide. Only the 

zeroth order term in the potential expansion, the energy, itself has 

been considered. These calculations do support the conclusions of the 

previous chapter. For carbonyl sulphide the induction energy is small 

whereas for cyanogen iodide it is significantly higher. It should also 

be noted that the main contribution to the induction energy in each 

case comes from the dipole-dipole polarizability interacting with the 

electric field. For carbonyl sulphide the greatest contributor to the 

field is the molecular octupole, the dipolar contribution being less 

than half as significant. Conversely for cyanogen iodide the most 

important contribution comes from the molecular dipole moment.

These results support the view that for carbonyl sulphide to be 

successfully modelled the induction energy may be neglected but that 

this simplification cannot be applied to cyanogen iodide. Although 

initially the two molecular crystals appear to be similar there are 

significant differences in the charge distributions of the two and the 

potentials which were found to be successful for modelling carbonyl 

sulphide are inadequate for simple extension to cyanogen iodide.
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Appendix A: Ab Initio Calculations

A.l: Introduction

One of the main problems which has been discussed in this thesis for

both carbonyl sulphide and cyanogen iodide is the lack of experimental

data available for the electrostatic properties of the two molecules.

To overcome this, the experimental values have been supplemented by

results obtained from ab initio calculations. This follows the work of 
[26]Deakin who has discussed a number of ab initio basis sets. The

primary objective of these calculations is to obtain representative

values for higher molecular moments (for both molecules only the

dipole and quadrupole moments are available from experimental

measurements), distributed multipole analyses133' 34 1 and components of

various molecular polarizability tensors.

All of the calculations discussed here have been performed using

CADPAC, the Cambridge Analytic Derivatives Package developed by Amos 
[ 35 ]et al . CADPAC consists of a suite of computer programs which 

perform Hartree-Fock self-consistent-field linear-combination-of- 

atomic-orbitals molecular-orbital (HF-SCF-LCAO-MO) ab initio 

calculations. Default settings are provided which are appropriate for 

calculations on a wide range of molecules and the package may be used 

without specialist knowledge of the techniques used.

The basis sets used are composed of contracted Gaussian-type 

orbitals (CGTO’s) which represent each Slater type orbital (STO). Each 

Hartree-Fock atomic orbital (AO) is represented by a given number of 

STO’s. The CGTO basis sets are normally described in terms of the 

number of STO’s which are used to represent each AO. A basis set in 

which the AO is represented by a single STO is described as being a 

minimal (M) or single-zeta (SZ) basis set. An AO represented by two
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STO’s is described as double-zeta (DZ) and by three STO’s as triple-

zeta (TZ). These sets may also be combined and often a basis set is

used in which the core AO ’s are represented by a single (minimal) STO

and the valence AO’s by two (double-zeta) STO’s; such a basis set is

known as a split-valence (SV) basis set. A basis set can be further

improved by the addition of one or more polarization functions and the

inclusion of each of these is indicated by the addition of the letter

P to the above nomenclature. A generalised CGTO basis set is described

in the form (Is, mp, nd...) where the letters 1 , m, n... represent the

number of s, p, d... type CGTO’s.

The basis sets used have been obtained from the compilation by
[ 45 ]Poirier, Kari and Csizmadia . This provides suitable basis sets for

oxygen, carbon, sulphur, nitrogen and iodine although polarization

functions have not been included. Suitable values for these have been

obtained by Ahlrichs and TaylorC46] yielding the single polarization

(P) functions with exponent n for first and second row atoms. The use
[47 48]of the "even-scaling” rule ' enables the single polarization

function to be replaced by two polarization functions (PP) with

exponents 1/277 and 2r) or by three polarization functions (PPP) with

exponents l/4r?, 77 and 477. These values are given in table A.I.

Table A.l; Values for the Exponentials for the Ab Initio Single.

Double and Triple Polarization Functions for C. N. 0 and S

atom n l/2r] 277 1/477 77 477

C 0.72 0.6944 1.44 0.3472 0.72 2.88

N 0.98 0.5102 1.96 0.2551 0.98 3.92

0 1.28 0.3906 2.56 0.1953 1.28 5.12

S 0.542 0.9225 1.084 0.4613 0.542 2.178
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A. 2: Ab Initio Calculations for Carbonyl Sulphide

For carbonyl sulphide two types of basis sets have been used. Split-
[ 49 ]valence basis sets reported by Dunning and Hay provide sets of

(3s2p) CGTO’s for carbon and oxygen and a (6s4p) CGTO set for sulphur.

Dunning[5°] has published more sophisticated triple-zeta basis sets
[51]for carbon and oxygen using (5s3p) CGTO’s. McLean and Chandler 

have published a (6s5p) triple-zeta basis set for sulphur. The bond 

lengths used are the equilibrium values determined by Amos and 

Battagliaf52^; r(C-O) = 1.165 A and r(C-S) = 1.558 A.

Ab initio calculations using these basis sets lead to values for the 

dipole and quadrupole moments for carbonyl sulphide, both of which are 

experimentally determined quantities. Comparison with the dipole 

moment is generally good but the calculated values for the quadrupole 

moment are generally too high, the closest value being that obtained 

from the TZPPP basis sets. It is generally found that the triple-zeta 

(TZ) basis sets yield better results than the split-valence (SV) basis 

sets and that the more sophisticated polarization functions also yield 

better values for the dipole and quadrupole moments.

The total ground-state energies also follow this trend, their values 

being lower for more sophisticated basis sets. The calculated values 

for the higher multipole moments are dependent upon the basis set but 

the variation is relatively small. The components of the 

polarizability tensors follow the same pattern but the distributed 

multipole analyses are very sensitive to variation of the basis set. 

Representative values for these calculated properties are given below, 

table A. 2 gives the calculated molecular multipole moments for the 

TZPPP basis set (used in Chapter 9), table A. 3 gives the 

polarizability tensors for the TZPPP basis set (used in Chapter 10 for 

the calculation of the induction energy) and table A. 4 gives the
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results of the distributed multipole analysis for the TZP basis set 

(used in Chapter 7 for the atomic multipole model). Discussion of 

these values may be found in the appropriate chapters.

Table A.2: Molecular Multipole Moments for OCS - Ab Initio 

Calculations using TZPPP Basis Sets

V = 8.4620x10"1 Debye 0 = -1.7128x10° Debye A

Q = 1.3534X101
2

Debye A $ 2.4351x10° Debye A3

M5 = 3.2278X101 i 4Debye A M6 = 2.5274X101 Debye A5

M7 = 4.5397X101 Debye A M8 = 1.0233xl02 Debye A7

M9 = -2.7821X101
Q

Debye A M 10 = 4.0450X102 Debye A9

M 11 = -5.3584xl02 ^ , .10 Debye A M 12 = 1.6180xl02 Debye A11

Table A.3: Molecular Polarizabilities for OCS - Ab Initio

X y z
X ' 2.8300 0.0000 0.0000 '

% 3 ; y 0.0000 2.8300 0.0000 A3
-» z . 0.0000 0.0000 7.0277 ,

XX yy zz xy xz yz
X ' 0.0000 0.0000 0.0000 0.0000 0.7049 0.0000

Aa,0y’ y 0.0000 0.0000 0.0000 0.0000 0.0000 0.7049
z . 0.4162 0.4162 -0.8324 0.0000 0.0000 0.0000

XX yy zz xy xz yz
XX ' 2.4574 1.0558 -3.5132 0.0000 0.0000 0.0000
yy 1.0558 2.4574 -3.5132 0.0000 0.0000 0.0000
zz -3.5132 -3.5132 7.0264 0.0000 0.0000 0.0000

Ca/3,yS’ xy 0.0000 0.0000 0.0000 0.7008 0.0000 0.0000
xz 0.0000 0.0000 0.0000 0.0000 3.7998 0.0000
yz  ̂ 0.0000 0.0000 0.0000 0.0000 0.0000 3.7998
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Table A.4: Distributed Multipole Analysis for OCS - Ab Initio

Calculations using TZP Basis Sets

atom type q(e) p(Debye) @(Debye A)

0 -0.4736 -0.1621 -0.0228

C 0.6189 -0.9654 -0.2888

S -0.1453 0.3930 1.9108

A.3: Ab Initio Calculations for Cyanogen Iodide

For cyanogen iodide two separate types of basis sets are required.

The (3s2p) split-valence and (5s3p) triple-zeta basis sets used for

carbonyl sulphide may be used for carbon and nitrogen atoms in

cyanogen iodide but a different set of CGTO’s are required for the
[ 53 ]much larger iodine atom. Andzelm, Klobukowski and Radzio-Andzelm 

have provided suitable basis sets for the halogens and recommend two 

particular types, a minimal basis set consisting of (5s4p2d) CGTO’s 

known as an M4 basis set and a split-valence basis set consisting of 

(6s5p2d) CGTO’s known as an SV4 basis set. The bond lengths used have 

been determined using microwave spectroscopy by Cazzoli, Degli Esposti 

and Faverat541 at r(C-N) = 1.16044 A and r(C-I) = 1.99209 A. As with 

the split-valence basis sets used for carbon, oxygen, nitrogen and 

sulphur, polarization functions are available which permit further

improvement of the SV4 basis set. With the use of these relatively 

simple polarization functions values for the molecular dipole and 

quadrupole moments may be obtained which are in excellent agreement 

with the experimental values. Representative values for the ground-

state energy of the molecule plus the first three molecular multipole 

moments are given in table A. 5, where the basis sets for carbon and 

nitrogen are given first followed by the iodine basis set.
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Table A.5: Molecular Properties for ICN - Ab Initio Calculations

Basis sets E/hartrees p/Debye 0/DebyeA Q/DebyeA2

SVP / SV4PPP -7005.2900 3.3242 -5.9489 37.9571

TZP / SV4PPP -7005.4009 3.6911 -7.6024 42.6599

TZPP/ SV4PPP -7005.4048 3.7068 -7.5096 41.6081

The calculated values for the dipole moment and quadrupole moment 

compare well with experimental values, 3.71 Debye and -7.33 Debye A 

respectively and the difference in the quality of the split-valence 

(SV) and triple-zeta (TZ) basis sets for C and N is clear. Further 

improvement of the triple-zeta basis sets for C and N by using a 

double polarization function leads to further improvement in the 

results. It should also be noted that the improvement of the quality 

of the basis set for I, using a triple-polarization function (again 

using the "even-scaling" rule to generate three values for the 

exponents of the polarization functions, namely 4n> H and l/4r/) also 

further improves the results and it is concluded that the use of these 

more complex basis sets, whilst significantly more costly in terms of 

computation time, is worthwhile for the excellent results obtained.

As with carbonyl sulphide the calculations have been performed to 

obtain values for a number of properties which have not been measured 

experimentally. Representative values for these properties are given 

below, in each case using the TZPP/SV4PPP basis set. Table A. 6 gives 

the calculated molecular multipole moments, table A.7 gives the 

polarizability tensors and table A.8 gives the results of the 

distributed multipole analysis.
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Table A.6: Molecular Multipole Moments for ICN - Ab Initio

Calculations using TZPP/SV4PPP Basis Sets

= 3.7067x10° Debye 0 -7.5091x10° Debye A
0 = 4.1608X101 Debye A2 0 -9.4792X101 Debye A3
M5 = 3.1616xl02 Debye A4 M6 = -9.7653X102 Debye A5
M? = 3.1604X103 Debye A6 M8 not available

M9 not available M 10 = -1.0848X105 Debye A9
M ” = 3.4881xl05 Debye A 10 M 12 = -1.1112xl06 Debye A ”

Table A.7: Molecular Polarizabilities for ICN - Ab Initio 

Calculations using TZPP/SV4PPP Basis Sets

aexp’

x
4.0243
0.0000
0.0000

y
0.0000
4.0243
0.0000

z
0.0000
0.0000
9.2277

XX yy zz xy xz yz
X ' 0.0000 0.0000 0.0000 0.0000 -2.4086 0.0000 '
y 0.0000 0.0000 0.0000 0.0000 0.0000 -2.4086
z , 7.6967 7.6967 -15.3934 0.0000 0.0000 0.0000 ,

XX yy zz xy xz yz
XX ' 6.7296 4.2447 -10.9743 0.0000 0.0000 0.0000 '
yy 4.2447 6.7296 -10.9743 0.0000 0.0000 0.0000
zz -10.9743 -10.9743 21.9485 0.0000 0.0000 0.0000
xy 0.0000 0.0000 0.0000 1.2425 0.0000 0.0000
xz 0.0000 0.0000 0.0000 0.0000 7.6745 0.0000
yz 0.0000 0.0000 0.0000 0.0000 0.0000 7.6745 ,

A 4

175



Table A.8: Distributed Multipole Analysis for ICN - Ab Initio

Calculations using TZPP/SV4PPP Basis Sets

atom type q(e) p(Debye) ©(Debye A)

I 0.2292 -0.3515 -0.1840

C 0.0508 0.1851 -0.6194

N -0.2800 0.1207 3.8856
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