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Abstract

Early forecasting of bird migration patterns has im-
portant application for example in reducing avian
biodiversity loss. An estimated 100 million to 1 bil-
lion birds are known to die yearly during migration
due to fatal collisions with human made infrastruc-
tures such as buildings, high tension lines, wind tur-
bines and aircrafts thus raising a huge concern for
conservationists. Building models that can forecast
accurate migration patterns is therefore important
to enable the optimal management of these critical
infrastructures with the sole aim of reducing bio-
diversity loss. While previous works have largely
focused on the task of forecasting migration inten-
sities and the onset of just one migration state, pre-
dicting several migration states at even finer gran-
ularity is more useful towards optimally managing
the infrastructures that causes these deaths. In this
work, we consider the task of forecasting migration
patterns of the popular Turkey Vulture (Cathartes
aura) collected with the aid of satellite telemetry for
multiple years at a resolution of one hour. We use
a deep Bidirectional recurrent neural network aug-
mented with an auxiliary task where the state infor-
mation of one layer is used to initialise the other.
Empirical results on a variety of experiments with
our approach show we can accurately forecast mi-
gration up to one week in advance performing bet-
ter than a variety of baselines.

1 Introduction
Reducing biodiversity loss is fundamental towards achiev-
ing the 2030 agenda of the United Nations sustainable de-
velopment goals [United Nations, 2015]. With 6% of
avian life functionally extinct and 21% currently threat-
ened [Şekercioğlu et al., 2004], biodiversity loss with re-
spect to global avifauna deserves serious attention [Rosen-
berg et al., 2019]. The importance of birds in nature’s
ecosystem cannot be overemphasized. Birds have impor-
tant and multiple roles to play in the ecosystem as they
serve as pollinators by processing and transporting plant seed
from one geographical area to another [Ford et al., 1979],

help control the population of insects [Railsback and John-
son, 2014] towards improving agricultural yield, play host
to many host-specific parasites such as lice [Rozsa, 1997] as
well as supply eggs as food to humans. However, an esti-
mated 100 million to 1 billion birds are known to die an-
nually during migration via collisions [Loss et al., 2014a;
Loss et al., 2014b] with human made critical infrastructures
such as wind turbines, buildings and high tension lines. These
collisions can sometimes be due to partial blindness caused
by excessive lights at night on several of these infrastruc-
tures or the inability to see these infrastructures when flying
at night leading to high impact collisions. Optimal manage-
ment of these infrastructures is therefore key towards reduc-
ing their negative impact on avian biodiversity loss across the
world. These optimal management scheme for example can
be an intelligent model that can switch off these infrastruc-
tures or reduce the intensity of light on buildings temporarily
in advance given the likelihood of some migration states.

While previous works [Van Doren and Horton,
2018] and [Van Belle et al., 2007] have focused on
forecasting the intensity of spring migration and autumn mi-
gration respectively, we state here that the onset and the end
of these migration states are of utmost importance towards
ensuring a concerted approach to reducing biodiversity loss
for example when animals migrate between continents. In
addition, we argue that forecasting the intensity of migration
cannot be guaranteed to be optimal for managing critical
infrastructures as different species of birds potentially have
different migration dates along different routes. Rather,
we argue for an independent model for each migrating
avian specie most importantly the threatened species to
handle the specific nuances associated with their migration
patterns. To this end, we consider a much more difficult
task of forecasting different avian migration states at a finer
granularity and to be specific on an hourly basis.

In this work, we consider the task of predicting the onset
and end of several migration states in birds. More specif-
ically, we use publicly available datasets of Turkey Vulture
(Cathartes aura) movement collected over multiple years at a
resolution of one hour. We train a deep learning network con-
sisting of Bidirectional-RNNs by casting the prediction prob-
lem as a supervised learning task with a cross entropy loss
where we aim to forecast the onset of four movement states
corresponding to breeding, fall migration, non-breeding and



spring migration. We augment the network by adding an
auxiliary task to help stabilize training and improve gener-
alization by forecasting the longitude. Experimental results
of forecasting at different temporal intervals in advance show
we can achieve significant accuracy even when forecasting
up to one week in advance. We compare our approach to a
variety of baselines and empirically show that our approach
outperforms them on a variety of experiments.

2 Related Work
The idea of forecasting animal migration has received rel-
atively little attention until recently. Due to the prolifera-
tion of low cost sensors and advancement in telemetry tech-
nology, useful datasets of animal migration are becoming
increasingly publicly available to enable animal behaviour
researchers use a data driven approach towards answering
important biological questions regarding animal migration.
In this section, we discuss previous attempts similar to this
work.

To mitigate the mortality of aquatic animals to be specific
European eels (Anguilla anguilla) due to their collision with
hydroelectric power plants, [Trancart et al., 2013] proposed a
seasonal autoregressive integrated moving average to forecast
their migration in advance using datasets of silver eel migra-
tion from two fishing sites in north-western France. The idea
in this work was to minimize mortality by shutting down tur-
bines. However, to minimize down time as much as possible
and by extension losses to hydropower producers, they ar-
gued it is imperative to be able to precisely forecast the peak
migration times of these animals. Our work differs in that
while their aim was to minimize mortality as much as possi-
ble by switching off turbines at peak migration times using
some threshold of the migration intensities, we are interested
in predicting the onset of different migration states that span
two continents. In addition, while it is not clear how environ-
mental factors affect the migration of aquatic animals, avian
migration states are known to be severely affected [Howard
et al., 2018] making our task even more difficult.

Recently, [Van Doren and Horton, 2018] built a predictive
model of spring migration intensity of birds in North Amer-
ica using radar and weather data with the aid of XGboost. In
a similar vein, [Van Belle et al., 2007] used radar measure-
ments of bird densities in the Netherlands to predict their mi-
gration intensities for applications in improved flight safety.
Compared to these two works which considered one migra-
tion state and formulated there prediction problem as a re-
gression task, we consider multiple fine grain migration states
across two continents and formulate our prediction problem
as a classification task which is more optimal for managing
critical infrastructures. We also investigate new environmen-
tal and weather variables to know which are most influential
with respect to the migration states using mutual information.

Even more recently, evidence for phenological shift due to
climate change was provided by [Horton et al., 2019] using
24 years of archived radar data in North America. Their re-
sults revealed advancement in peak spring migration by 0.6
days per decade with effect highly correlated with latitudes.
While it is unclear from their analyses where and when some

of these changes did occur as well as how it varies across
species, tracking bird movement at a finer scale as per the
data used in this work has the potential to shed more light
on some of these issues. Similarly, the relationships between
short term weather conditions to daily migration intensities of
different bird species was examined by [Richardson, 1978].
Their analysis revealed different populations and species re-
spond to weather conditions in varying ways while a maxi-
mum number migrate when the average weather condition is
fair.

Overall, previous works have largely focused on fore-
casting migration intensities across a huge taxa in most
cases birds due to their penchant for mobility during adverse
weather conditions. Analysing long-term migration patterns
at a more fine grain scale will be key towards shedding more
light on some of the problems associated with approaches dis-
cussed above. We focus only on the Turkey Vulture in this
work and give a brief overview of this bird in the next sec-
tion.

3 The Turkey Vulture
The Turkey Vulture (Cathartes aura) represents the most
widely distributed scavenger in the world with global pop-
ulation in excess of five million spread across the two Amer-
ica continents and the west indies [Dodge et al., 2014].
Gregarious in nature, it has been regarded as a partial mi-
grant [Berthold, 2001] as some population winter in North
America while others move as far as South America during
the winter months while returning to breed during spring. The
latter population is considered in this work. Breeding includ-
ing incubation responsibilities is usually carried out by both
parents spanning late spring to early winter months. They
are primarily scavengers with a good sense of smell to look
for carcasses. By eating carcasses, they help make the envi-
ronment cleaner and prevent the spread of diseases. Its main
predators are owls, hawks and eagles with its eggs serving
as food for raccoons and opossums. While the population
of these birds is stable and they are not endangered, the ap-
proach proposed in this work can be extended to the endan-
gered avian species given the relevant migration data.

Figure 1: The North America continent on the left and South Amer-
ica on the right as seen from Google Earth. A significant population
of the Turkey Vulture in North America are known to migrate (tra-
jectories in black) to the South on the flight for survival to escape
the unfavourable weather conditions as winter approaches.



4 Problem Formulation & Model
4.1 Problem
Given a time series {X≤t, ymt}Tt=n where X≤t ∈ Rd and
ymt is a multi-dimensional vector representing input features
(X≤t = Xt−d, ...., Xt, d is the duration of the temporal con-
text relevant for the prediction task) and discrete migration
states respectively at each time-step t where m ≥ 2, the goal
is to estimate {ym(t+k)}Tt=n given {X≤t}T−kt=n where k is the
temporal period in advance with respect to the migration state
we are interested in forecasting.

4.2 Model
Stacked Bidirectional GRU (Bi-GRU). The gated recur-
rent unit (GRU) [Cho et al., 2014] network is a variant of the
recurrent neural network (RNN) that learns to integrate tem-
poral information over sequential data using a combination of
gates. Its advantage over the conventional RNN is its ability
to overcome the vanishing gradient problem. However, the
GRU only integrate information from one end of the data to
another. To add better context to a RNN, the Bidirectional
RNN [Schuster and Paliwal, 1997] was proposed. The Bi-
GRU thus, is a version of the Bidirectional RNN using the
GRU and works by training two GRUs where one is trained
on the forward hidden input sequence

−→
h and the other on the

reversed copy of this sequence
←−
h using two hidden layers to

compute the output sequence yt. Given that the GRU equa-
tions in [Cho et al., 2014] can be implemented by the function
G, the Bi-GRU can then be implemented via:
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←−
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(1)

This approach has been demonstrated to yield better re-
sults. For example it was used previously to fill in missing
values [Cao et al., 2018] and hence our choice in this regards
given geolocation data almost always have this characteris-
tics. With stacked Bi-GRU, the expressiveness of the Bi-GRU
is improved. Given N layers of the Bi-GRU, the hidden and
output sequences are updated as follows:
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Auxiliary Tasks and Training Objectives. To help im-
prove training, ensure stable learning dynamics, as well as
learn robust representation that generalises to test data, auxil-
iary tasks have been used to provide even more denser train-
ing signals to support the main task. Given all the input fea-
tures are continuous, we therefore augment the network loss
with the mean square error (MSE) loss (single task) where
we aim to forecast the longitude coordinate which is the most
informative feature relevant to the main task (see section 7).
At training time, we seek the parameters θ1 and θ2 that mini-
mizes the cross entropy loss (first term of equation 3) for fore-
casting the migration state and the MSE loss (second term of
equation 3) for forecasting the longitude coordinates respec-
tively. The overall training objective therefore is given by:
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Figure 2: Architecture of the proposed framework.

(3)
argmin
θ1,θ2

E(θ1, θ2) =
1

N

N∑
i=1

L(ymi, f(Xi; θ1)) +

1

N

N∑
i=1

(f(Xi; θ2)− yli)2

WhereXi, ymi and yli represents the input features, migra-
tion states and longitude coordinates respectively.

5 Datasets
Turkey Vulture movement datasets [Grilli et al., 2017]
and [Bildstein et al., 2016] as part of an ongoing study were
collected with the aid of GPS satellite transmitters. A sig-
nificant portion of the data were collected at the resolution
of one hour each while others at three hours. We discard the
ones collected at three hours so as to be able to work at a more
fine grained resolution with more data-points.

5.1 Migration States
There are four movement states in the datasets, see [Bild-
stein et al., 2016] for more information. In this work, we
seek the onset of these states which are described in detail
below. Here, onset is regarded as the first recorded instance
of a migration or movement state. (1) End of spring mi-
gration / Onset of breeding. Period after spring migration
when breeding starts. During breeding, birds mate, give birth
and raise fledglings in preparation for fall migration. This
is usually between March and April every year. (2) End of
breeding / Onset of fall migration. Start of migration to
the wintering ground usually in South America. This is usu-
ally between September and October every year. (3) End of
fall migration / Onset of wintering. Arrival to the winter-
ing ground in South America which heralds the start of the
wintering season. This is usually around October each year.
(4) End of wintering / Onset of spring migration. Start
of migration back to North America when the weather must
have improved enough for breeding to start. This is usually
between March and April every year.



5.2 Environmental & Weather Data
The movement tracks were annotated with environmental
data with the aid of the Env-DATA Track Annotation Service
[Dodge et al., 2013]. Twenty-six features were collected and
include population density, atmospheric water, downward ul-
traviolet radiation at the surface, plant canopy surface wa-
ter at surface, incident solar radiation, elevation, dew point
temperature, snow evaporation, water vapour concentration,
snow albedo, temperature parameter in canopy conductance
at surface, surface solar radiation downwards, albedo, soil
temperature, surface solar radiation, maximum temperature,
evaporation, ice temperature, land surface temperature night,
land surface temperature day, snow temperature, surface ther-
mal radiation, ten metre wind gust, sunshine duration, surface
thermal radiation downwards and soil water content.

5.3 Data Preprocessing
We obtain the trajectories of three birds out of all the birds
in the datasets corresponding to the ones with fewest missing
data (Mac, Rosalie & Morongo) to determine the most rele-
vant features to the migration states. We use the biggest of
these three (Rosalie) for the actual forecasting experiments.
All missing data in the environmental & weather data were
replaced with the last observed points in the sequence. The
bird used for the forecasting experiments has four years of
movement trajectories collected with size 28613. We divide
this trajectory into 75% (3 years) for training and the rest (1
year) for testing.

6 Experiments & Procedures
We use 3 layers of Bi-GRU as described in section 4.2 with a
dropout layer for the main task. Given the size of the dataset,
we train the network over 20 epochs three times with early
stopping after two epochs without improvement in the loss.
The epoch with the least loss across the three iterations is
used. We evaluate all models using accuracy and F1 scores.

6.1 Thresholding
Predictions of machine learning models can only be reli-
able when the accuracy is perfect. Given the nature of real
world data, it is unlikely any model would work perfectly
thus rendering these models unusable for real world appli-
cations. Calibration methods such as platt scaling and iso-
tonic regression are useful in reducing this problem. How-
ever, in this case they are ineffective for two reasons. First,
[Tomašev et al., 2019] argued that deep learning models with
softmax output trained with cross-entropy loss are prone to
errors. Second, the distribution of the training data is hardly
the same as test data due to several factors affecting the mi-
gration states. While the obvious approach after calibrating is

Data Breeding Fall M. Wintering Spring M.
Training 0.5046 0.0495 0.3795 0.0664

Test 0.5123 0.0625 0.3639 0.0614

Table 1: Distribution of classes with respect to breeding, fall migra-
tion (fall m.), wintering and spring migration (spring m.) for both
training and test data.

Algorithm 1 Calibration approach

1: Input: Training dataset (X≤t, ymt)
2: Output: thr
3: Pr(ymt|X≤t)← equation 3
4: thl←Sequence of threshold th of length l (first instance)
5: for each unique m in ymt:
6: for each year in (ymt):
7: thr{m} ← thr{m} + (tonset of m(ground tr.) − tthl

)
8: end
9: thr{m} ← thr{m} / No of years in (X≤t, ymt)

10: end
11: return thr

to select a threshold of the class probability scores given the
ROC curve, the prediction around the boundary surrounding
the transition from one state to another can be problematic.
To get around this problem, we instead propose an algorithm
that is model dependent and leverages a sequence of thresh-
olds to predict the migration states. The intuition behind the
algorithm is that we decide migration has started or ended
if there is a continuous sequence of a threshold value of the
probability scores given the migration state of interest. The
temporal difference between the end of the first instance of
this sequence and the ground truth averaged over the number
of years for each migration state in the training data is then
used in the test data probability distribution to predict the mi-
gration states. We use a probability threshold score th = 0.71
and sequence length l of 24 in this work.

6.2 Baselines
We compare our approach to several baselines including deep
and non deep learning methods.
Logistic regression (LR), Adaboost (AB) & Support Vec-
tor Machine (SVM). We use a multinomial variant with a
lbfgs solver for logistic regression and one versus one strat-
egy for SVM.
Deep Neural Network (DNN). With two layers and 256 neu-
rons each, dropout = 0.2, softmax layer and adam opimizer.
Recurrent Neural Network (GRU). A GRU network with
1 layer, 50 cells, dropout = 0.2, softmax layer and adam op-
timizer. We train the neural networks given the procedures
described for our approach above.

6.3 Experiments
We design several experiments described in detail below to
answer several important questions bordering on migration
with respect to this avian specie given the dataset we possess.
Q1. What environmental and movement factors are most in-
dicative of migration patterns? To answer this, we quantify
the mutual information between the continuous environmen-
tal and movement features and discrete migration states using
the approach proposed in [Gao et al., 2017].
Q2. Can we forecast migration in advance at different tempo-
ral intervals and how does our approach compare to a variety
of baselines? Also, to what extent does our prediction devi-
ate from the ground truth with respect to the migration states
described in section 5.1? To answer Q2, we design series
of experiments where we aim to forecast the migration states



Figure 3: Time series plot of the top six (for brevity) most informative features aside the movement coordinates across both the training and
test datasets.

one day, three and seven days in advance given our approach.
Q3. How is the forecasting accuracy affected when there is a
significant difference in the migration dates encountered in
the training set compared to the test set? To answer this,
we query the date of the onset of all the migration states de-
scribed in section 5 in the training and test dataset.
Q4. Finally we aim to ask, is migration restricted to specific
period of the day? To answer this, we query the time of all
the migration states described above in the test and training
datasets.

7 Results & Discussion
We discuss the results and answer to several questions asked
in section 6.3 in the order listed here.

A1. We plot the results of the experiment described in
Q1 in Figures 3 & 4. The top six most relevant features
shows that apart from the movement coordinates, population
density, albedo, elevation, temperature and soil water con-
tent represents the greatest indicators of different migration
states in this bird. This is a result consistent with previous
study [Van Doren and Horton, 2018]. We also observe from
the time-series plots that the onset of fall and spring migra-
tion is preceded by a continuous drop in temperature and soil
water content in both continents. Furthermore, we notice the
bird winter and breed away from areas where human popula-
tion density is high. This has huge implications, as previous
wintering and breeding grounds are lost to human develop-
ment activities, the start of the corresponding migration states
can be affected as the birds seek new grounds for these activ-
ities. In addition, the elevation of flight can be seen to be
low during breeding as the birds focus on production of off-
spring with abundant resources, and high during wintering as
they move from one place to another in search of carrions and

warmer climes. Also worthy of mentioning is the albedo, a
measure of light reflected from the surface of the earth. It de-
creases and then increases prior to autumn migration and vice
versa prior to spring migration. This is a pattern in alignment
with change in activities by human as well as all fauna and
flora. There is high albedo for example when temperature
drops due to inactivity and low albedo as the temperature im-
proves.
A2. Results in Table 2 show our approach can be seen to
outperform a variety of baselines demonstrating its effective-
ness in adding more context via the backward and forward
integration of information. Our approach also outperform the
baselines on the prediction of the underrepresented states. In
addition, results in Table 4 also show we can forecast with de-
cent precision at different intervals of one day, three days and
seven days in advance. Furthermore, ablation studies show
that adding several layers of the Bi-GRU in addition to the
auxiliary task helps improve result.
A3. Results in Tables 2,3,4 show our approach perform well
even when the difference is large, see for example when the
onset of breeding was delayed significantly in the test data.
A4. Results in Table 3 show that migration can start or end
between very late in the day till very early in the morn-
ing. While some literatures have argued this is a strategy
by birds to avoid predators, it is not clear whether this ap-
plies to Turkey Vulture whose predator include owls that are
mainly nocturnal. Practical interventions can therefore be im-
plemented around this period to ensure minimal infrastructure
downtime.

8 Conclusion
We have proposed a deep Bi-RNN network augmented with
an auxiliary task towards forecasting migration patterns in



No of days
in advance

Performance
Metric Models

LR AB SVM DNN GRU
(1-L)

Bi-GRU
(1-L)

Bi-GRU
(3-L)

Bi-GRU
(3-L, A. task)

Acc.(%) 74.83 93.01 51.14 45.14 82.73 87.01 93.45 94.75
1 F1 scores (0,0.25) (0.04,0.65) (0,0) (0,0) (0,0) (0.12,0.13) (0.77,0.63) (0.87,0.62)

Acc.(%) 74.32 55.39 51.18 47.11 82 87.52 93.79 94.88
3 F1 scores (0,0.24) (0.03,0.16) (0,0) (0,0) (0,0) (0.01,0.61) (0.77,0.58) (0.9,0.61)

Acc.(%) 68.46 59.73 51.38 50.61 82.73 86.28 93.69 94.26
7 F1 scores (0,0.09) (0.36,0.19) (0,0) (0,0) (0.16,0.1) (0.08,0.20) (0.85,0.61) (0.84,0.67)

Table 2: Performance comparison. Our approach can be seen to outperform all baselines across the three experiments. We report only the F1
scores for the onset of fall and spring migration in that order for brevity as the two classes are underrepresented. L represents layer(s) & A
auxiliary.

Year Onset of Breeding Onset of Fall migration Onset of Wintering Onset of Spring migration
2006/2007 11/04, 03:00 28/09, 21:00 15/10, 04:00 30/03, 20:00

Train 2007/2008 12/04, 02:00 01/10, 01:00 18/10, 20:00 26/03, 16:00
2008/2009 12/04, 21:00 08/10, 19:00 26/10, 00:00 06/03, 02:00

Test 2009/2010 30/03, 02:00 03/10, 18:00 25/10, 00:00 11/03, 18:00

Table 3: Date (dd/mm) and time of all migration states across three years in the training and test data. It can be seen that migration started
and ended between very late during the day and early hours of the morning.

Figure 4: Mutual Information between the top ten most informative
input features and the migration states. It can be seen that outside
of movement coordinate features, human population density, albedo
and elevation are great indicators of migration states. PD: Popula-
tion Density, LSTN: Land Surface Temperature Night, LSTD: Land
Surface Temperature Day, SWC: Soil Water Content, SD: Sunshine
Duration.

Turkey Vulture. Our approach yields result better than a va-
riety of baselines. The implication of this work transcend
reducing avian biodiversity loss. As the largest number of
bird strikes occur during spring and fall migration, optimally
scheduling flights during this period is a benefit our work of-
fers which can help prevent accident. While the prediction of
fine grain avian migration patterns is a challenging task due to

Onset of
Breeding Fall M. Wintering Spring M.

1 day
in advance A,24 L,20 A,24 L,7

3 days
in advance A,46 L,20 A,12 L,35

7 days
in advance A,40 A,82 L,12 L,101

Table 4: Difference between ground truth and our model prediction
with respect to the onset of breeding, Fall Migration (Fall M.), win-
tering and Spring Migration (Spring M.) forecasted one day, three
days and seven days in advance. All figures are in hours with A & L
representing ahead and late respectively.

variability in environmental factors as a result of habitat loss,
lack of access to endogenous factors coupled with the lim-
ited size of dataset that we have used, our approach may be
useful towards reducing avian biodiversity loss by optimally
managing the infrastructures leading to these deaths within
a reasonable time window. Investigating in more detail in
the future the contribution of each environmental factor and
additional ones will be key towards accounting for the uncer-
tainty produced by climate change and human development.
Our thresholding algorithm though model specific, can ben-
efit from more fine-tuning and we leave that as future work.
We also aim to investigate other methods useful for conser-
vation purpose [Owoeye and Hailes, 2018] in the context of
predicting their behaviour in advance.
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