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Abstract

Screening programmes based on quantitative factors are designed to identify
individuals at high risk of disease. When these factors vary within individuals over
time, observations on repeat occasions should aid risk classification. However, there
have been few statistical developments for assessing accumulated evidence during
screening to determine whether intervention is indicated. This study addresses this

issue in the context of screening diastolic blood pressure for cardiovascular risk.

Data on a cohort of 11299 middle-aged men is used to develop models describing
variability during a period of four years. From annual diastolic pressure
measurements, a model based on normal variation about an underlying subject mean
level, with standard deviation dependent on level, fitted well. No evidence for a risk
relationship with trends or variability about the mean level was found: increased risk
appears to be established only through a raised underlying mean level. As this cannot
be measured directly, a survival model based on observed level is fitted and adjustment
for the effect of “regression dilution” made to determine the magnitude of this

association.

Two alternative statistical models for screening strategies are proposed. The first
emphasizes precision in determining an individual’s underlying level and hence also
their risk. Substantial numbers of measurements over several months may be required
particularly when the level is borderline for intervention. The second approach takes a
public health perspective and aims to identify that proportion of the population (of a
given size) in which expected risk is maximized subject also to a screening cost
constraint (the average number of visits per person). Using this rule, most gains in
identified risk can be achieved by averaging only a little more than one visit per person.
These rules should enhance the value of screening providing an informed assessment of

risk before commencing intervention.
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1. Introduction

Primary prevention of chronic diseases is now a major component of health care
policies in the developed world. In the United Kingdom, government policy has
emphasized this with the introduction of the new contractual arrangements for general
practitioners which promotes regular health checks (for a review, see Chisholm, 1990).
For men, both in the United Kingdom and more generally in western countries, this
will mainly concern the prevention of cardiovascular disease which is the dominant

cause of mortality.

Rose (1981) focuses on two strategies for prevention. The first concentrates on the>
identification of those at high-risk of developing the disease, with the aim of applying
intervention that will lower their risk. The second approach is a mass strategy where
the aim is to shift the whole risk profile of the population downwards by altering
lifestyles through heightening awareness of factors that increase risk. Although Rose
suggests that it is the latter strategy which will, in the long-term, produce the greatest
reduction in risk in the country as a whole, it is the former high-risk approach which is
generally adopted by the medical profession if only because of their fundamental
concern with the health of individual patients. This is the focus of screening policies

for this study.

Identification of high-risk individuals requires screening of risk factors. In many cases,
these factors are continuous variables which vary within individuals and so a single
measurement may be a poor reflection of an individual’s usual or average level. Thus
repeated measurements can be expected to improve the assessment of level and hence

the classification of risk and so determine the appropriateness of intervention. This
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study focuses on one such risk factor for cardiovascular disease, that of diastolic blood
pressure. However, the conceptual framework presented can be applied more generally

to other screening situations involving factors which vary within subjects.

Two “expert” groups have formulated guidelines defining screening strategies based
upon repeated diastolic blood pressure measurements (Participants of the
W.H.O./I.S.H. meeting, 1986; British Hypertension Society working party, 1989).
Both recommend levels for intervention based on averages of a series of measurements:
typically above 100mmHg for pharmacological intervention and between 95 and
100mmHg for behavioural intervention. However, there is little attention paid,
particularly in the latter report, to more formally defined rules that take account of the
increased precision obtained in estimating the underlying level as the number of
measurements is increased. In addition, both reports suggest no follow-up of patients
whose initial blood pressure measurements (one or two) are less than 90mmHg or
95mmHg, respectively. Thus patients with truly raised blood pressures may not be
screened further due to their initial measurements being, because of natural variation,
below their usual levels. It is the development of rules that address these issues that is

the focus of chapter 5 in this study.

The first type of rule considered concerns precision in estimating an individual’s
underlying blood pressure or risk level. This then enables statements about the extent
of elevated pressure or risk to be assessed either in absolute terms or in terms of
probabilities that it is above (or below) some defined threshold. These can then form
the basis of treatment decisions or of the desirability of further screening. An

alternative approach put forward takes a public health perspective where the emphasis
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is more on identifying a high risk group within the population and less on individual
risk classification. By taking screening and treatment costs as constraints, a screening
rule can be formulated which is optimal in the sense that it identifies that group of a

given size in which the greatest morbidity is expected.

In order to develop these approaches to screening, it is first necessary to obtain the
required building blocks. In general, these are models for describing variability in the
factor of interest within individuals over time and for describing risk relationships with
different characteristics of this variability, such as average level, trend and lability. In
order to fit these models for diastolic blood pressure, data from a major trial looking at
the primary prevention of cardiovascular disease using a cholesterol-lowering drug is
used. This trial provides repeated measurements of diastolic pressure over several
years and is used to give a study cohort of 11,299 middle-aged men from three
European cities. The derivation of this cohort is described in detail in chapter 2

together with discussion of the implications of using such trial data.

Chapter 3 is concerned with the development of models of within-person variability for
diastolic blood pressure. As the emphasis of the trial was cholesterol lowering, blood
pressures were not subjected to as much experimental rigour as they might. Although
this casual determination might parallel realistic general practice, it is useful to
consider the magnitude of the component of within-person variance attributable to
digit preferences, such as in recording blood pressures to the nearest five or ten mmHg.
This enables the importance of such measurement practices to be assessed in the
context of “total” within-person variability. It forms the first part of the chapter. The

second part is primarily descriptive, illustrating the relationships between average

15



levels, trends over time and the remaining residual variance both with each other and
with other factors such as age, within the three cities. Finally, based on these observed
relationships, formal statistical models are fitted describing diastolic blood pressure

changes within individuals during a period of three years.

Relating risk of cardiovascular mortality to characteristics of blood pressure variability
is considered in chapter 4 using the same data set. This proceeds in two stages. The
first is to develop survival models using the observed blood pressures. By considering
just a single measurement, the models derived can be compared with those presented in
the medical literature from other studies. These models are then developed further
using repeated blood pressure measurements so that the prognostic value of trends over
time and of lability can be assessed. Following this, a survival model is developed to
relate risk to an individual’s underlying pressure. This requires consideration of the
issue of “regression dilution” whereby the desired risk relationship is estimated from
the risk coefficients associated with observed blood pressures with adjustment to reflect
their variability about the underlying level. This problem, also known as the “errors in
variables” problem, is well-known in the usual linear regression modelling situation
where a relatively simple solution arises under certain conditions. The literature on the
problem in the context of survival models is more scarce. Thus part of chapter 4
considers methodological aspects of the magnitude of the adjustment required to allow
for regression dilution in the context of the proportional hazards model. In particular,
its dependence upon the underlying hazard function, the risk coefficient related to
underlying level and the degree of censorship are considered. These results are then
applied to the diastolic pressure/risk of cardiovascular disease setting of interest in the

screening application considered in this study.

16



As each chapter forms a distinct piece of work of interest in its own right, the relevant
literature is reviewed therein. In addition each chapter is concluded with a summary of
the main results presented with discussion of the issues raised. Finally in chapter 6,
the implications of the work are considered briefly particularly in the context of issues

that would be useful for further research.
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2. The study cohort

2.1 Introduction

In many clinical trials considerable amounts of follow-up data are accumulated on
parameters not directly related to the primary objectives of the trial. Often this is
necessary so that the safety of treatments under test can be monitored. This data can
be a valuable source of information for other observational studies provided that both
the selection of the trial population and any possible interaction of the treatments
studied with either the parameters or the outcomes of interest are not overlooked.
This study uses a cohort of men derived from the World Health Organization
cooperative trial on primary prevention of ischaemic heart disease with clofibrate
(henceforth, termed the clofibrate trial) (Heady, 1973; Committee of Principal
Investigators, 1978, 1980, 1984). The design of this trial incorporated a five year
treatment period during which regular medical examinations were undertaken, and also
had a long-term follow-up for mortality beyond this treatment period. Therefore it
offers substantial data on blood pressures and allows variability in pressure to be
related to survival. In this chapter, the key elements of the trial are described and

details of the derivation of this study’s cohort are given.

2.2 The clofibrate trial

Clofibrate is a cholesterol lowering drug. The primary objective of the trial was to
assess whether the incidence of ischaemic heart disease could be lowered in men with
raised serum cholesterol levels using clofibrate. Thus the trial aimed to identify 10000

men whose serum cholesterol levels were in the top third of the population distribution
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and to randomise half of these to receive clofibrate and half to receive a placebo. In
addition, a further 5000 men with cholesterol levels in the bottom third of the
population distribution were to be used as a second control group of men at low risk of

ischaemic heart disease.

Between 1964 and 1972 over 52000 male volunteers, aged 30 to 59, from three
European cities (Edinburgh, Budapest and Prague) were considered for entry into the
trial. Recruitment was from a variety of sources: in Edinburgh the majority were
volunteer blood donors although about a third were recruited through advertising,
through contact with general practitioners or by encouraging donors to approach
friends; in Budapest, about a third were blood donors and the remainder were recruited
using population tuberculosis screening registers; in Prague, all recruitment was based
on electoral rolls. Clearly then, the trial population is not based upon a random
sample of men from the population of the chosen age-group, though the sampling frame
used in the latter two towns might be expected to lead to reasonably representative
samples. On the other hand, the need to use volunteers in a primary prevention trial
might be expected to give more health conscious individuals and possibly subjects of a
higher social classification than in a random sample from the population. Thus,
particularly in Edinburgh, the trial population might have, on average, different

(possibly lower) blood pressures and risk profiles than such a random sample.

From each volunteer, a serum cholesterol level was obtained. In Edinburgh this was
from a single measurement; in Budapest and Prague two measurements were taken and
the mean of these considered. Using distribution curves of levels, by town, obtained

from a preliminary screening, it was determined whether a man fell into the top,
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middle or bottom third of the distribution within their respective town. Those in the
middle third were not considered further. Following a medical examination to confirm
trial exclusion criteria and after obtaining consent, men in the top third were randomly
allocated to receive either clofibrate (group I) or a placebo of olive oil (group II); also a
random sample of half of the men in the bottom third were allocated to receive the
same placebo (group III); the remainder were not considered further. Essentially, the
exclusion criteria removed men from being entered into the trial with pre-existing heart
disease:
(i)  history of treated myocardial infarction;
(ii) ECG evidence of heart disease;
(iii) clinical evidence of rheumatic heart disease;
(iv) congenital heart disease;
(v) pulmonary heart disease;
(vi) other heart disease associated with cardiomegaly or heart failure.
Also, men with diabetes mellitus requiring drug treatment or men with co-existing
disease with an unfavourable prognosis that reduced the likelihood of completing the
trial were excluded. In addition, there were hypertension criteria for exclusion:
(i) a diastolic pressure of 120mmHg or greater on any one occasion;
(ii) diastolic pressure of 110-119mmHg on any two occasions;
(i) a diastolic pressure of 110-119mmHg on any one occasion if
accompanied by ECG signs of left ventricular hypertrophy or strain;
(iv) diastolic pressure is within the accepted limits but only on
account of treatment with antihypertensive drugs and the ECG shows
signs of left ventricular hypertrophy or strain.

These are particularly relevant to this study as it implies that the distribution of blood
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pressures and hence of risk of cardiovascular disease in the trial population will be

under-representative of higher levels in the population.

In all, 15744 men were entered into the trial, approximately equally distributed both
between the three groups and between the three towns. Treatment within the trial
lasted for five years. During the first two years, the men were meant to be seen at six-
monthly intervals and, for the next three years at annual intervals. At these visits, a
medical examination was conducted including the measurement of blood pressure.
However, men could be withdrawn from the trial in which case no further examinations
were performed. Besides death, reasons for withdrawal were:

(i) myocardial infarction according to defined symptom state, ECG criteria

and serum enzyme levels;
(ii) heart disease not previously recognised: congenital or pulmonary or
other (associated with cardiomegaly or heart failure);

(iii) diabetes mellitus requiring drug treatment;

(iv) contra-indications for taking trial medication;

(v) hypertension as defined in the exclusion criteria above.
Note, however, that the hypertension criterion was not universally applied and, in 1973
(two years before trial treatment was phased out), was withdrawn. Men developing
hypertension were then allowed to remain in the trial with appropriate treatment, as
necessary. 220 men (1.4% of those entering the trial) were withdrawn due to the
hypertension criterion though 470 (3.0%) had, at some time during the trial, one blood
pressure measurement of 120mmHg or more, or two measurements between 110 and
119mmHg. These figures are not directly comparable as there is insufficient

information available to determine, retrospectively, which men satisfied other aspects of
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the hypertension exclusion criteria and when. However they give an approximate idea
of the extent to which men in the trial population developed hypertension (as defined)
and the extent to which men with these levels of blood pressure might be under-
represented in the cohort to be selected. During the treatment period, men were
followed up for both morbidity and all-cause mortality. Thereafter only mortality
follow-up was completed. This continued until the end of 1982 when an intensive check
to establish survival status for all trial participants was carried out; this was successful

in over 99% of cases.

In 1975, the trial was stopped and during the following year treatment was withdrawn
as the men attended for their next scheduled visit. The average treatment period was
5.3 years with a mean reduction in serum cholesterol levels of 9% observed in the
clofibrate-treated group compared with the high cholesterol control group. In
comparing groups I and II (clofibrate versus placebo in men with raised serum
cholesterol levels at screening), a 25% reduction in non-fatal ischaemic heart disease
was observed but with no reduction in fatal myocardial infarctions. However, there
was a significant 47% increase in all-cause mortality during the treatment period in
those treated with clofibrate (adjusted x"l’-statistic for the crude rates=7.33, p<0.01).
This effect did not seem to carry over into the post-treatment follow-up period where

the excess was 5%.

2.3 Derivation of the study cohort from the trial population

The essential and ideal feature of the cohort to be studied here is that it should have a

series of visits at fixed intervals at which blood pressure is measured. Using the data
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from the clofibrate study potentially gives six visits per subject spaced at annual
intervals. This would cover the full five-year period of treatment. In practice, visits
were not always timed as planned. Few visits were completed more than a couple of
weeks before the scheduled time, but many were weeks or months late. Thus, to avoid
an excessive loss of subjects from the cohort, only five visits, at approximately annual
intervals, per subject will be considered. In addition, it is desirable to pick only those
subjects that satisfy common criteria for adequate spacing of visits. This is achieved
by the following algorithm for each subject:
1. Select a reference visit, Vg, not previously considered: if no such
visit exists, subject not eligible for the cohort.
2. Can a visit, V_;, be found such that:
(i) V_;is before V,
and (ii) the interval between V_; and Vg is between 183 and 547
days (i.e. 6 months and 1.5 years)?
If not: return to step 1.
3. Can a visit, V_,, be found such that:
(i) V_, is before V,
and  (ii) the interval between V_, and V, is between 548 and 913
days (i.e. 1.5 to 2.5 years)?
If not: return to step 1.
4. Can a visit, V_z, be found such that:
(i) V_3is before V,
and  (ii) the interval between V_3 and V is between 914 and 1278
days (i.e. 2.5 to 3.5 years)?

If not: return to step 1.
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5. Can a visit, V_, be found such that:
(i) V_4 is before V
and  (ii) the interval between V_4 and V,, is between 1279 and 1643
days (i.e. 3.5 to 4.5 years)?
If not: return to step 1.
6. Add subject to cohort.
The labelling adopted for the visits reflects their use in later survival analyses where all
models developed describe survival from a time-origin at V. Note that if, at any step
2 through to 5, two or more visits could be found within the defined time window, then
the one closest to the midpoint of the window was selected. The outcome of this
algorithm is a cohort of subjects all with five visits V_4, V_3, V_5, V_; and V,, ordered
in time, about a year apart and spanning no more than 4.5 years. From this set are
further excluded subjects without a recorded diastolic blood pressure at each of the
visits. This gives 11299 subjects in total in the study cohort. Of the 4445 subjects in
the trial population not included, 2908 lapsed from the trial before accumulating
sufficient visits, 461 did not have a satisfactory pattern of visits with complete blood
pressure records and the remainder (1076) were withdrawals from the trial due to

death, heart disease or hypertension, or side effects.

Alternative cohorts for analysis could be derived from the trial population. In
particular, greater statistical precision might be obtained by including subjects with
fewer than five visits or with greater variability in the relative timing of visits.
However the approach adopted has two main advantages which aid in the
understanding of the results obtained. First, the cohort is well-defined being middle-

aged men free of major diagnosed cardiovascular disease before and during the period
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of blood pressure measurement. As one aim of this study is to consider methods for
blood pressure screening in the context of primary prevention of cardiovascular disease,
this definition is useful: diagnosis of cardiovascular disease during screening will
probably be the dominant determinant of any intervention strategy and so the value of
blood pressure screening will be different from that when no pre-existing disease has
been identified. Second, from a statistical perspective, analyses using repeated
measurements, and hence also their interpretation, are simplified when the data for
each subject has the same structure: that is the same number of visits at equally
spaced intervals with no missing values. Similarly, the comparison of models developed
for risk prediction employing different characteristics of a sequence of blood pressure
measurements (e.g. a single observation versus the mean of several) is not complicated

by varying cohort sizes.

Table 2.1 shows the timing of visits actually achieved for the cohort. For the majority
(93%) of subjects, V_, corresponds to the first visit of the trial. What is clear is the
skewness of the distribution of visit times particularly for the interval between V_, and
Vy. For visits V_3, V_, and V_;, the majority of subjects are within about one month
of the time point aimed for though there is slightly greater drift for V_,. However, to
select a cohort with time intervals closer to those aimed for would restrict considerably

the number of patients available for analysis.

Table 2.2 shows the breakdown of the cohort by treatment group and by town. Note,
particularly, that the distribution between treatment groups is reasonably equitable
both overall and within town suggesting no substantial differential losses from the trial

population due to treatment. Table 2.3 describes the basic characteristics of the
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Visit Interval interval achieved

aimed for minimum lower median upper maximum
(range) quartile quartile
V., 365 188 363 370 392 546

(183 to 547)

vV, 730 548 725 736 768 913
(548 to 913)

Vs 1096 914 1086 1104 1134 1276
(914 to 1278)

V, 1461 1279 1461 1481 1554 1643
(1279 to 1643)

Table 2.1: Time intervals between visits (days before visit V) in the study cohort.

cohort. These are presented for visit V, as this corresponds to the origin of time used
in developing survival models in chapter 4. The age structure in Edinburgh and
Budapest are similar with about three-quarters of the sample in each in their 40’s or
50’s, though on average a little older in Budapest. In Prague, the structure is more
peaked being centred upon the 50-54 age-band with only a handful of men more than
five years either side of this. In each town, the majority of men were current or ex-
smokers at visit Vg (ranging from 68% in Prague to 73% in Edinburgh) though the
proportion of current cigarette smokers varied more so between towns at that time
(from 34% in Edinburgh to 47% in Prague). There was little change in smoking status

during the time spanned by the visits. Cholesterol levels in the cohort are clearly not
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Town Treatment group

I: clofibrate II: placebo III:placebo All groups
high cholesterol high cholesterol low cholesterol

Edinburgh 1138 1141 1145 3424
(33.2%) (33.3%) (33.4%) (100%)

Budapest 1271 1311 1282 3864
(32.9%) (33.9%) (33.2%) (100%)

Prague 1399 1336 1276 4011
(34.9%) (33.3%) (31.8%) (100%)

Table 2.2: Numbers in study cohort by town and treatment group

representative of any general population: the strata determined at randomisation have
distinctly different levels at visit V, with the cholesterol-lowering effect of clofibrate
shown by the difference between groups I and II. This difference is established early in

the trial and is found at each of the visits V_3 to V.

2.4 Limitations of the cohort
The study cohort derived is not a random sample of a general male middle-aged
population. At its simplest, it is a cohort of men all of whom are in good health

throughout a period of about four years: free of diagnosed heart disease and other
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Edinburgh Budapest Prague

Age at Vg (years)

Mean (s.d.) 47 .4 (7.4) 50.1 (7.8) 51.6 (3.3)
no.(%)

<40 117 (16.8%) 445 (11.5%) 0 (0%)
40-44 702 (20.5%) 539 (13.9%) 10 (0.2%)
45-49 814 (23.8%) 828 (21.4%) 998 (24.9%)
50-54 704 (20.6%) 869 (22.5%) 2315 (57.7%)
55-59 408 (11.9%) 574 (14.9%) 674 (16.8%)
>60 220 (6.4%) 609 (15.8%) 13 (0.3%)
missing 0 0 1

Smoking status at Vg: no.(%)

Never smoked 915 (26.8%) 1145 (29.7%) 1260 (31.5%)
Never cig., ex-cigar/
tobacco 74 (2.2%) 3 (0.1%) 9 (0.2%)
Never cig., current
cigar/tobacco 232 (6.8%) 16 (0.4%) 40 (1.0%)
Ex-cig., not current
cigar/tobacco 849 (24.9%) 967 (25.0%) 786 (19.7%)
Ex-cig., current cigar/
tobacco 166 (4.9%) 31 (0.8%) 25 (0.6%)
Current cigarettes(per day)
1-10 342 (10.0%) 338 (8.8%) 490 (12.3%)
11-19 276 (8.1%) 305 (7.9%) 357 (8.9%)
20 327 (9.6%) 400 (10.4%) 562 (14.1%)
21-39 192 (5.6%) 533 (13.8%) 387 (9.7%)
40+ 42 (1.2%) 123 (3.2%) 80 (2.0%)
missing 9 3 15

Body mass index at trial entry (kg/m?)

mean (s.d.) 25.3 (83.0) 26.9 (3.4) 26.9 (3.2)
missing 34 8 5

Cholesterol at V (mg/dI)

mean (s.d.):

group 1 225 (36) 226 (37) 263 (36)
group II 252 (38) 246 (38) 280 (34)
group III 200 (31) 197 (30) 218 (28)
missing 252 25 6

Table 2.3: Characteristics of subjects included in the study cohort.



major disease. With respect to studying blood pressure, three further restrictions are
placed on it as a representative sample. Firstly, the sample is determined on the basis
of serum cholesterol levels observed at the beginning of the trial. In particular, half of
men with low observed cholesterol levels and all of those with medium levels are
excluded. This is a weak restriction as the correlation between blood pressure and
cholesterol is known to be sma.ll-: this will be considered in the next chapter. Secondly,
some potential trial participants were excluded due to hypertension. This will have
caused a truncation of the distribution of observed blood pressures found in the cohort.
In addition, some of the men in the cohort may have lowered blood pressures on
account of treatment for hypertension: it is not possible to quantify the extent of this
though the timing and setting of the trial should mean that this applies only to a tiny
proportion of the men involved. Thirdly, clofibrate is known to have a small anti-
hypertensive effect so that men in the cohort in that treatment group are likely to have

artificially slightly low blood pressures. This point is returned to in the next chapter.

Thus, these restrictions limit the immediate generalization of any results concerning
blood pressure variation between individuals. The effect should be less restrictive when
considering within-person variability and does not restrict investigation of its

relationship with other covariates measured on the individuals.
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3. Describing blood pressure variability

3.1 Introduction

The intrinsic variability of blood pressure has long been recognized. Despite this, there
have been few studies that have attempted to quantify this variability. However,
without such information, the statement that an individual has a diastolic blood
pressure of, say, 95mmHg has little direct interpretation. In particular, this is so if it is
to be compared with, for example, previous pressures on the same individual or the
pressures of people in a clinical trial found to benefit from anti-hypertensive treatment.
Of course, it is important to know what state the patient was in at the time(s) of
measurement but even if this is known, then whether this figure summarizes one or
more measurements on one or more occasions is important. It is this latter point with
which we are concerned: a doctor rightly places less emphasis on a single measurement
of 95mmHg than on a sequence obtained over several weeks which have an average of
95mmHg. Thus, whilst this doctor recognizes that there is variability in blood
pressure, he cannot be certain within what range his patient’s underlying level of blood

pressure lies unless this variability has been quantified.

This chapter uses the data of the clofibrate trial to quantify components of variability
of blood pressure, in particular those within the individual between visits. Following a
review of the results of studies that have considered variability over time (section 3.2),
the method of blood pressure determination used in the clofibrate trial is described
(section 3.3) and the issue of digit preferences in its reporting is addressed (section 3.4).
Sections 3.5 to 3.8 then describe characteristics of the sequences of observed diastolic

pressure and relate these to other covariates. Using these results, statistical models
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are developed in section 3.9. Finally, in section 3.10, the implications for practice of

the models derived are discussed.

3.2 Previous studies of blood pressure variability

3.2.1 Between individuals

The primary focus of blood pressure studies has been the description of the distribution
of blood pressures in the population and factors associated with variability between
individuals. The findings are well established and so less attention will be paid to them
in this chapter. However they are worth reviewing so that some comparison of this
study’s cohort can be made with other studies. Here we limit discussion to describing

diastolic blood pressure in adult men.

Very few studies have considered the exact shape of the diastolic blood pressure
distribution in the population. Any that do comment (for example: Armitage, Fox et
al; 1966, Shaper et al; 1988), describe it as approximately normal generally with a
small degree of skewness toward higher values. One notable study (Boe et al, 1957),
carried out in the adult population in Bergen, Norway in association with a compulsory
tuberculosis screening exercise, assessed the fit of a normal distribution within five-year
age bands. Using normal probability plots, an extremely good fit was found for
younger age bands (up to 35-39 years) with increasing departures thereafter with
increasing age. For example, fitting a normal distribution to the 50 to 60 year age
group gave a predicted 0.5% with blood pressures greater than 120mmHg compared
with 2 to 3% actually observed. A log normal distribution (found to fit systolic blood

pressure reasonably well) did not give an improved fit, causing skewness in the opposite
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direction.

Factors associated with between-person variability have been more thoroughly studied.
The dominant findings are the increases in blood pressure associated with age, body
mass and alcohol intake. Most studies have reported cross-sectional relationships. For
age, they suggest increases of about 1lmmHg in diastolic pressure for each five year
increase in age during middle age (for example: Kesteloot and van Houte, 1974; Gordon
and Shurtleff, 1973; Mann et al, 1988; Shaper et al, 1988). In elderly people the effect
of age is less clear with some studies reporting lower blood pressures though this may
reflect a “healthy survivor” effect whereby those studied are the survivors with lower
blood pressures. This can be confirmed by longitudinal studies. In particular the
Framingham Study (Gordon and Shurtleff, 1973) suggests, on the basis of 20 years of a
cohort follow-up, that diastolic pressure does rise with age at least until 50-54 though
the relationship is less clear at older ages. Some studies have also shown increasing
variability of blood pressures in the population with age (Boe et al, 1957; Master et al,
1950; Hypertension Detection and Follow-up Program Cooperative Group, 1978)
approximately in proportion to the rise in mean pressure. This finding is not universal:

for example it was not found in the Framingham Study (Gordon et al, 1976).

The relationship with weight is also widely reported (Boe et al, 1957; Kesteloot and
van Houte, 1974; Master et al, 1950; Shaper et al 1988). No simple summary of the
relationship is easy to make because of the different methods used to allow for the
confounding of height. However Master et al (1950) show that blood pressure rises by
weight within height categories and this is consistent with the findings of authors using

indices of build such as the body mass index (weight/square of height) as, for example,
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Shaper et al (1988). The only other factor that can be related to blood pressure in this
study is cigarette smoking. There is little difference between smokers and non-smokers
though the former seem to have slightly lower average levels (Friedman et al, 1982).
This is illustrated by the British Regional Heart Study data (Shaper et al, 1988) where
the difference found is between 1 and 2mmHg for diastolic blood pressure with no

apparent dose-response relationship with amount smoked.

3.2.2 Within individuals

Within-person variability is a complex phenomenon. If blood pressure showed no
trends with time or if all individuals in a population had underlying blood pressure
levels changing at the same rate, then the correlation of two measurements taken on
the same individual would be constant over time and would correspond to the ratio of
between-person variance to total variance (between- plus within-person variances) as
shown by Gardner and Heady (1973). This correlation has been termed the “tracking

correlation” by Rosner (1977).

With varying trends between individuals this is not true. In general this will mean
that an individual’s relative position in the population blood pressure distribution will
change with time. Thus the greater the time-interval between measurements, the
greater the change in relative position will be and consequently the correlation of blood
pressureé measured on the same individual will decrease with time. In addition, the act
of measuring blood pressure may affect the level of blood pressure, itself. This effect is
most marked as illustrated by the well-known “pressor” effect where stress associated

with measurement raises blood pressure which then falls as the subject becomes
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familiar with the procedure. This is most noticeable between measurements in the

same session but can also be seen between measurement sessions (Gordon et al, 1976).

Few studies have been designed to look at within-person variability, per se. One of the
earliest does show, however, the effects of the method of measurement used, or more
particularly the state of the patient. Using a graphical display, Kilpatrick (1948),
shows clearly that variability between measurements taken over a week can be
substantially reduced if a basal method (whereby an individual is settled into an
advanced state of rest prior to measurement) is used rather than a casual method.
Although, for all practical purposes, casual blood pressures will be used, it serves to
illustrate the component of variability attributable to measurement technique, be it
extremes of method as in this example or less dramatic sources such as those caused by
observer variation, rounding of measurements and 'digit preference, knowledge of

previous measurements, time of measurement, environment of measurement and so on.

Quantification of variability was illustrated by Glock et al (1956) in a study of 21
subjects measured at the same time on working days for three weeks. Finding the
range from minimum to maximum measurement for each individual, they found that
the median value, across all individuals, of these ranges was 22mmHg (varying from 12
to 36mmHg). Also shown in this study was that the range of blood pressures between
days was greater than that within a measuring session. Despite the dependence of
these ranges on the number of measurements taken, these results are indicative of later

research.

Three studies during the 1960’s considered the tracking correlations of blood pressures
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separated by time intervals of several years. The first (Harlan et al, 1962) considered a
cohort of 1056 men selected in 1940 for Naval Flight Training. They were considered
normotensive, of optimal weight and were of 24 years average age. Correlation of
diastolic blood pressures between 1940 and 1952 was 0.13, between 1940 and 1958 was
0.16 and between 1952 and 1958, 0.36. The second study (McKeown et al, 1963) gave
correlations based on two population samples of men not on anti-hypertensive
treatment. In 833 Birmingham men in their 60’s at the first measurement, they found
a tracking correlation of 0.50 between measurements 3 years apart. In South Wales
(Rhondda Fach and the Vale of Glamorgan) the correlation was 0.63 in 500 men (aged
40+) with measurements four years or so apart. The latter group was broken down by
age and an increasing correlation with age was found: 0.57 for men in their 40’s at the
first visit, 0.61 for men in their 50’s and 0.72 for men in their 60’s or 70’s. However
this study’s data and further follow-up were later analysed by Rosner et al (1977),
including also the females studied, and they found no clear trend during middle and old
age. In the third study, 208 male college graduates were studied retrospectively and a
tracking correlation of 0.16 found for measurements taken when they were about 20

and 40 years old (Julius et al, 1964).

These studies suggest that the tracking correlation does, indeed, decay with time
between measurements. Typically correlations for measurements three or four years
apart are of the order of 0.6 reducing to about 0.1 to 0.2 for an interval of 20 years.
This summary though may be confounded by age as the longer interval studies are
based on young people in whom the rate of change of pressure might be expected to be
greatest and probably more variable thus reducing the correlation further: indeed, in

children, the correlations are markedly smaller even over intervals of a year or less
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(Szklo, 1979).

The most important and complete picture of the decay of the tracking correlation
comes from the Framingham Study (Gordon and Shurtleff, 1973). Correlations are
available between all pairs of blood pressures taken at ten biennial visits on a
population cohort of both sexes aged 30-62, when identified in 1948-1952. Casual blood
pressures rounded, in practice, to the nearest even digit give correlations of about 0.62
for measurements two years apart and 0.59, when four years apart. At eighteen years
apart this is reduced to 0.38. There is no clear effect on the correlations of the aging

cohort or of losses from it suggesting reasonable stability across the age range.

The tracking correlation is a transformation of the ratio of within- to between-person
variances and so its major drawback is in its dependence on the between-person
variance in the population sampled. Thus it can be more useful to consider the size of
the within-person variance, itself. Two studies set out to measure this, one in a highly
controlled situation and the other in a survey environment (Armitage and Rose, 1966;
Armitage, Fox et al, 1966). The first measured blood pressure on five men and five
women (mean ages 35 and 31 years respectively) taking two observations on each of 20
occasions over a six week period. In a relaxed environment, a single trained observer
using a random-zero sphygmanometer measured blood pressures. Mean diastolic
pressure (phase IV) was 65.4mmHg: low by population standards. Within-person
standard deviations of 6.2mmHg between-visits and 3.3mmHg within-visits were
estimated. In the survey 50 working men (mean age 48 years in the larger group from
which they were derived) had their blood pressures measured at two visits a year

apart. The within-person standard deviations were estimated as 7.2mmHg between-
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visits and 5.9mmHg within-visits. The difference between the two studies for the
within-visit standard deviation emphasizes the potential impact of a carefully controlled
measurement technique. Less can be said about the difference in between-visit

standard deviations because of the different time spans between measurements.

Since these two studies, several authors have produced estimates for these two
components of variance. Gordon et al (1976) obtained estimates from the Framingham
Study for the between-visit and within-visit standard deviations of 7.6 and 4.3mmHg,
respectively. Hebel et al (1980) measured blood pressures, at home, in a random
sample of black inner-city Baltimore residents and remeasured the pressures in those
found to be nomotensive at baseline about three years later. They obtained estimates
of 7.4 and 2.0mmHg, respectively (after ignoring the first of the three measurements at
each visit) based on samples of 100 people. Rosner and Polk (1983) used data from
both worksite and community blood pressure programs involving weekly measurements
over three/four weeks or daily measurements over one week, respectively. They
obtained estimates of 5.3 and 2.8mmHg for the between-visit and within-visit standard
deviations, respectively, in white men aged 30-49. They also found higher levels of
variability in black men and slightly lower levels at older ages. Finally Wilson and
Hebel (1988) obtained estimates of 7.3mmHg for the between-visit standard deviation
in a sample of black hypertensives, after correcting for the selection as hypertensive on
the basis of high blood pressures. Here visits were between 7 days and one year apart:
the serial correlation between measurements on the same individual having been found
to be negligible over such periods. They also found greater variability in older men

compared with younger men,
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Clearly these studies have produced varying estimates. It is useful to note, though,
that within-visit variability is small compared with that between- visits. This suggests
that repeat measures within a visit are of much less value compared with those
obtained from several visits for estimating an individual’s underlying blood pressure
level. Estimates of between-visit standard deviation are about 7.5mmHg for visits a
few months to a couple of years apart but may be smaller for shorter intervals.

Further comparison is complicated by the differing age, race and sex mixes reported.

Despite these studies to assess variability, none present anything more than summary
measures. In particular no attempt has been made to describe the observed
distribution of within-person variability and hence whether there is heterogeneity in the
underlying variance component or whether differences in observed values between
individuals can be explained just by sampling variation. In this context Kannel, Sorlie
and Gordon (1980) suggest, for systolic pressures, that there is not an identifiable
group in the population with unusually labile pressures when measured at hourly clinic
visits. In contrast, Hawthorn et al (1974) suggest that a normal model for differences
between visits might be appropriate but pursue it no further. An equally important
consideration is the possibility of increasing variability with level. This has been
suggested by both Miall and Lovell (1967) and Kannel, Dawber and McGee (1980). If
true, it would help explain the greater within-person variability with age, found in
some studies, given the increase in level with age. These particular points are

addressed in this chapter.
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3.3 Method of blood pressure determination in this study

Blood pressure was measured in the manner described in the World Health
Organization’s recommendations (World Health Organization, 1959 and 1962). These
are summarized as follows. Either a mercury manometer or an aneroid instrument can
be used with a blood-pressure cuff of width at least 14cm and long enough to
completely wrap around the arm. A casual blood pressure is measured by a physician
with the subject in the sitting position. The right arm is used. Phase IV diastolic
blood pressure was used in this study. To obtain this, the cuff is rapidly inflated to a
point 20-30mmHg above the pressure at which the radial pulse is obliterated. Allowing
the cuff pressure to fall at a rate of not more than 2-3 mmHg per pulse-beat, the
diastolic pressure is the point at which the pulse-beat sound becomes muffled. In
general, a single measurement was used. However, in Prague, at the first trial visit
(V_4 for most subjects in this study’s cohort) the mean of two measurements was

recorded.

3.4 Digit preference

The advantage, for our purposes, of the method of measurement used in the trial is its
closeness to the method that might be used in casual screening of any individual by a
general practitioner. Thus within-person variability studied using this data will also
include a component of variance associated with the degree of accuracy employed in
taking the measurements. This includes the well-known problem of digit preference,
reported many years ago by Janeway (1913), whereby some measurements are rounded
to a particular digit, for example to the nearest ten or five. To illustrate this practice

in the data being studied, the last digit of the recorded blood pressure for each of the
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Figure 3.1: Digit preferences by town
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five visits for each subject was found and the relative frequency distribution for digit

determined. This is shown in figure 3.1 by town.

As the distribution of blood pressures in a population is not uniform, the distribution of
last digit should not be expected to be perfectly uniform either. However the
preference for certain digits is notable as is the manner in which this preference varies
between town. In Edinburgh, a policy of rounding to an even digit is clear with less
than 1% of all measurements having an odd final digit. On top of this, there is some
additional preference for zero at the expense of most other even values. In Budapest,
there is a similar preference for zero though all digits were used. In distinct contrast,
in Prague there is a dramatic preference for zero at the expense of all other digits
though five finds some favour. It is worth noting that the patterns of digit preference
described did not vary systematically with calendar year of measurement though there

was some small variation in the emphasis on the various digits.

To assess the impact that digit preference might have on the distribution of observed
blood pressures, consider a simple situation where this distribution, if it could be
observed exactly, is normal with mean p and variance 02. Four different rounding
practices will be considered, where rounding is to the nearest whole multiple of

(i) one

(i) two

(iit) five

(iv) ten.
The normal distribution can be sliced up into mutually exclusive intervals such that

each interval is centred on a rounding unit. For example, when rounding is to the
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nearest ten, and the normal distribution has mean 83 and standard deviation 10, figure
3.2 shows the sliced normal distribution with each interval centred on a multiple of ten.
Any interval can be described in terms of its associated rounding unit (10n+m), where
n is any integer and m is any allowable digit for the relevant practice:

(i) m is any digit 0 through to 9

(ii) m is any even digit 0 through to 8

(iii) misOorb

(iv) misO.

Taking the width of the intervals as 27, then any blood pressure in the interval
(10n4+m—7, 10n+m+7) will be rounded to (10n+m) and hence the probability of
recording a blood pressure with last digit m will be the sum over n of probabilities

across all such intervals:

n=+4-00
- Z [¢[10n+rr;+r—p:| _ 0[10n+n;—r—p:|]
0

n=—

n=-+00

= z Pnm , 83y,

=—00

where @ is the standard normal cumulative distribution function.

For each rounding practice considered, these probabilities can be calculated for the set
of allowable final digits. The interesting question is then the extent to which the
normal distributional form assumed for blood pressures produces a departure from the
distribution of final digits in which all are equally favoured (that is, the py’s are all

equal). The greatest departures are found when the mean, p, is equal either to a
g P H
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digit, m

2r a0 p* 0 1 2 3 4 5 6 7 8
1 5 (i) 1014 1011 1004 996 989 986 989 996 1004 1011
(iil) 1013 1013 1008 1000 992 987 987 992 1000 1008
1 6 (i) 1002 1001 1001 1000 999 998 999 1000 1001 1001
(ii) 1002 1002 1001 1000 999 998 998 999 1000 1001
2 5 (i) 2027 - 2008 - 1978 - 1978 - 2008 -
(i) 2022 - 2022 - 1992 - 1973 - 1992 -
2 6 (i) 2003 - 2001 - 1998 - 1998 - 2001 -
(ii) 2002 - 2002 - 1999 - 1997 - 1999 -
5 5 (i) 5046 - - - - 4954 - - - -
(ii) 5000 - - - - 5000 - - - -
5 6 (i) 5005 - - - - 4995 - - - -
(i) 5000 - - - - 5000 - - - -

* (1) p equal to a rounding unit
(ii)  u equal to a boundary value of a rounding interval

Table 3.1:

Summary of extremes of variation in ppmy, (x104) when the standard

deviation of the assumed blood pressure distribution is 5 or 6.

rounding unit or to a boundary value of a rounding interval.

Thus, in table 3.1, the

extremes in variation in the values of pp, are shown for three rounding practices when

the standard deviation, o, is assumed to be 5 or 6. For example, if it is practice to

round to the nearest even digit and 0 =>5, then when p is equal to a rounding unit (that

is, some multiple of 2), 20.27% of final digits should be zeros, 20.08% should be twos,

and so on. These figures show only small departures from 20% whereby all allowable
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digits are equally favoured. Similar comments apply to the other rounding practices.
For larger values of o than 6, the values of p,, are always equal, at least to four
significant figures. If ¢ is smaller than 5, then the effect would be larger but this is not
of practical relevance in the blood pressure setting. Thus it can be concluded that
practices of rounding blood pressures should lead to distributions of final digits in
which each allowable digit is equally likely to be reported. Hence the patterns observed
in the three towns are not entirely consistent with any one formal rounding practice

but must reflect a mixture of different practices.

It is important also to assess how rounding practices affect estimates of the blood
pressure distribution parameters, y and 02. The expected value, KR, and the variance,

a%, of the recorded blood pressure distribution can be found:

n=-+00

Pr = E Z [(10n+m]Jpnm

n=—00 m

n=-+00 2
0'% = E [:10n+m]2 Pnm — KR
n=—o00m
These can be compared with the mean, g, and variance, 02, of the assumed

distribution of blood pressures.

Consider first the relationship between pug and u. In general, for each of the four
rounding practices and for most realistic values of the blood pressure standard
deviation (¢>5), there is no bias observable to four significant figures: that is ug and g
are equal to this degree of accuracy. The only exception occurs when rounding is to

the nearest ten and o is less than 7. Then, the departure of ug from u is, for example,
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maximally 0.0002 when =7, 0.0026 when ¢=6 and 0.0229 when o¢=>5: these values
occuring when u equals a rounding unit plus 7/2 (when pgr underestimates u) and
when p equals a rounding unit minus 7/2 (when pgp overestimates u). Even in these
circumstances this bias might be considered negligible when dealing with a blood

pressure distribution with a mean of about 80.

Given, in most cases, the uniformity of py, as m varies, it is not surprising that the
relationship between a% and o2 is generally simple. In effect, rounding error when o is
sufficiently large compared with 7 is akin to adding on to the normal distribution an
error term that is uniformly distributed on the interval (—7, +7). The variance of this

additional error is 1'2/3 and, to four decimal places, it can be shown, numerically, that

o0& =02 4+ r2/3

for o/r sufficiently large. Departures from this relationship can be found and, in
extreme and unrealistic cases, could produce values of a% close to zero (if 4 is on a
rounding unit) or tending to infinity (if g is on the boundary of a rounding interval).
For all practical values of ¢ and 7 studied, the only notable departures found are when
7=>5 (rounding to the nearest ten) and o was 8 or less. This situation is illustrated for
values of ¢ from 5 to 8 in table 3.2. Even then the departure from the variance
expected by assuming the addition of a uniformly distributed error term is under 2.5%
for =5 and almost negligible for larger values of ¢. Thus for all practical purposes,

the rounding error can be considered as a uniformly distributed error.
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o u* o? 0',2-\, 0?2 +12/3

5 (i) 25 32.5413 33.3333
(i) 25 34.1254 33.3333
6 (i) 36 44.2069 44.3333
(ii) 36 44.4597 44.3333
7 (@) 49 57.3203 57.3333
(ii) 49 57.3463 57.3333
8 (i) 64 72.3325 72.3333
(ii) 64 72.3342 72.3333

* @) 4 equal to a rounding unit
(i)  p equal to a boundary value of a rounding interval

Table 3.2: Extreme cases of rounding to the nearest ten (2r=10) when the
measured variance, a%, is not equal to (02+‘r )/3 (to four decimal
places).

Returning to the blood pressure data from the clofibrate trial, it is clear that the
varying preferences for different digits are not entirely consistent with any of the
rounding patterns studied. Note that the small degree of skewness suggested by some
authors for the distribution of diastolic blood pressure (for example, Armitage, Fox et
al, 1966) would not account for the departures from uniformity observed. In effect
what is practised can be considered as mixtures of the different rounding practices.
For example, in Edinburgh the underlying practice is rounding to the even digit but
with additional preference for 4, and more particularly, for 0 imposed on top. In effect
the preference for 4 might be because doctors are rounding to the nearest 5 or 0 and

are then being forced to round the 5’s to an alternative even digit. Clearly such a
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model is speculative and difficult to assess. However, the numerical results imply that
any mixture of the rounding practices studied should give approximately unbiassed
estimates of p and overestimates of 62 by an amount which is a weighted average of

the variances of the uniform distributions associated with each practice.

So far the parameters y and o have been considered primarily as characteristics of the
population blood pressure distribution. However, they can also be considered as
parameters defining variability of blood pressure within an individual. In this case,
greater attention must be placed upon smaller values of &, then the within-person
standard deviation for blood pressure. Even then, though, the studies described in
section 3.2 suggest values of 6 or TmmHg for & and so the expected value pg for
recorded blood pressures on a subject should be very close to u, their underlying mean
level, and a% will be approximately 0'2+r2/3. However, the component of variance
attributable to rounding, 7'2/3, is in relative terms more important particularly if

rounding is to the nearest ten as is predominantly the case in Prague.

3.5 Blood pressure levels by treatment group

In order to study within-person blood pressure variability using data from the
clofibrate trial, it is necessary to consider both the effect that the cholesterol criterion
for entry into the trial and the effect that treatment, itself, have on blood pressure
levels. Table 3.3 shows the means and standard deviations for blood pressures
measured at each visit by treatment group. As the majority of subjects have visit V_,
as the first visit in the trial completed before commencing treatment, comparison of the

parameters by group gives an indication of the association between cholesterol and
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Treatment Visit
group V_4 V_3 \' V. Vo

I: clofibrate 86.93 83.48 83.31 83.80 83.45
high cholesterol (10.15) (9.83) (9.97) (10.23) (10.27)
(n=3808)

I1: placebo 86.88 84.91 83.77 84.85 84.61
high cholesterol (10.04) (9.89) (10.00) (10.14) (10.18)
(n=3788)

III: placebo 85.04 83.15 82.38 82.66 82.62
low cholesterol (9.89) (9.77) (9.82) (10.06) (9.95)
(n=3703)

all groups 86.29 83.85 83.16 83.78  83.57
(n=11299) (10.07) (9.86) (9.95) (10.18) (10.17)

Table 3.3: Mean (s.d.) of diastolic blood pressures at each visit by
treatment group.

blood pressure levels in this population. It is clear that subjects with cholesterol levels
in the upper third of the cholesterol distribution (groups I and II) have blood pressures
raised on average by 1.87 mmHg above subjects in the lower third (group II) (95%
confidence interval 1.47 to 2.26 mmHg). However, the difference in levels relative to
variability in blood pressure suggests that the cholesterol selection criterion should not
produce a major change in the blood pressure distribution from that obtainable had the

whole population been sampled (that is, disregarding cholesterol levels).
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Moving across the rows in table 3.3, mean changes in blood pressure with time by
treatment group can be assessed. In both control groups (II and III), a fall of about
1.9 mmHg from visit V_4 to V_3 is seen. Similarly, there is a drop in group I, though a
larger one, of 3.5 mmHg. The difference between the changes in groups I and II is
significant (P<0.0001) and reflects an established effect of clofibrate in causing a slight
lowering of blood pressure. Although there are changes in level between visits V_3 and
Vo, there are no further differences in behaviour between treatment groups nor so
noticeable and consistent changes as seen between visits V_4 and V_3. This “placebo”
effect might be explained by the “pressor” effect as the subjects become used to having
their blood pressures measured. As such a measurement characteristic introduces a
further component of variability which confounds the analysis of trends and other more
natural residual variation, data from visit V_4 will not be considered further. Note
though that this means that the cohort being analysed is one in which subjects are
familiar with blood pressure measurement. However, the analysis will include all three
treatment groups. This makes the assumption that there is no impact of clofibrate on
blood pressure beyond its initial lowering effect. Again, this introduces an artificial
element of variability into the between-person blood pressure distribution making it a

little less representative of a true population sample.

3.6 Within-person variability

Because of the differing degrees of digit preference and as there is no reason to believe
that blood pressure behaviour will be the same in each town, analysis of trends and
variability will be described by town. Table 3.4 gives the means and standard

deviations by visit together with the tracking correlation structure. Clearly, the three
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V_; V., V., Vo all visits

Edinburgh (n=3424)

mean 82.53 81.80 82.53 82.82 82.42
s.d. 10.21 10.31 10.44 10.43
correlation V.; 1.000 0.596 0.560 0.538

V., 1.000 0.600 0.560

vV 1.000 0.623

Vo 1.000
Budapest (n=3864)
mean 84 .95 83.58 84.02 82.97 83.88
s.d. 10.02 10.18 10.03 10.01
correlation V.35  1.000 0.450 0.455 0.467

\ 1.000 0.478 0.488

A\’ 1.000 0.480

Vo 1.000
Prague (n=4011)
mean 83.92 83.92 84.61 84.78 84 .31
s.d. 9.26 9.27 9.75 9.98
correlation V_; 1.000 0.426 0.402 0.377

V., 1.000 0.449 0.398

V., 1.000 0.454

o 1.000

Table 3.4: Means, standard deviations and correlation structure
of diastolic blood pressure (mmHg) by town.
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towns exhibit small differences in mean level and in the degree of variability: these shall
be returned to later. Note the relative stability in the mean levels and, particularly, in
the variability between visits within towns. Also, although the correlations between
visits varies in size between towns, the nature of the correlation structure is similar.
The differences between towns can be attributed, in part, to different levels of within-
person variability caused by measurement digit preferences and also to the different age
distributions resulting in different levels of between-person variability. Correlations
between pairs of visits a year apart are reasonably constant though there is a
suggestion that this is slightly higher between later visits. This may reflect the fact
that the time interval between later visits is less variable than intervals between earlier
visits. A similar stability is obtained between pairs of visits two years apart. Note
that the correlations for Edinburgh are very close to those found in the Framingham
Study (Gordon and Shurtleff, 1973) where rounding to the nearest even digit was also
practised. Looking at the structure across rows or up columns, a decreasing correlation
is clear as the interval of time between pairs of visits increases. This suggests varying
trends in blood pressure within-subjects which would alter the relative positions of

individuals within the distribution of blood pressures in the population as time passes

by.

To study the existence and extent of such trends a simple linear regression can be
fitted, by the method of least squares, to each individual’s sequence of four blood
pressures from visit V_z through to visit Vy. Three parameters can then be used to
summarize blood pressure changes over this period of time for each individual: the
mean level, trend and the residual variance about the fitted regression line. These are

given in table 3.5 including a breakdown by treatment group. For this and all
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Treatment group

I II III all groups

Edinburgh
mean level (mmHg) 82.20 83.57 81.49 82.42
(8.36) (8.73) (8.48) (8.56)

trend (mmHg/year) 0.08 0.28 0.13 0.16
(3.18) (3.29) (3.18) (3.22)
residual variance 43.97 41.53 40.01 41.83
(mmHg?) (51.00) (43.71) (43.38) (46.17)
number 1138 1141 1145 3424
Budapest

mean level (mmHg) 84.58 84.68 82.37 83.88
(7.92) (7.85) (7.59) (7.86)

trend (mmHg/year) -0.61 -0.56 -0.48 -0.55
(3.22) (3.37) (3.19) (3.26)
residual variance 56.75 55.79 53.36 55.30
(mmHg?) (59.99) (59.14) (58.25) (59.13)
number 1271 1311 1282 3864
Prague

mean level (mmHg) 83.60 85.23 84.13 84.31
(7.31) (7.05) (7.07) (7.18)

trend (mmHg/year) 0.61 0.36 -0.02 0.33
(3.43) (3.46) (3.42) (3.44)
residual variance 50.89 49.58 50.69 50.39
(mmHg?) (51.48) (48.78) (53.99) (51.41)
number 1399 1336 1276 4011

Table 3.5: Mean (s.d.) of linear regression parameters fitted to each person’s sequence
of diastolic blood pressures from visits V_3 through to V.
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subsequent analyses the explanatory variable, time, took values —3/2, —1/2, +1/2
and +3/2 years at visits V_3 to V,, respectively. This greatly simplifies and aids
understanding of some of the later analyses looking at components of variance and is

maintained throughout for consistency.

Considering first the residual variance, it is clear that variability does not appear to be
related to treatment group: all three towns have mean residual variances that are very
similar between the three groups. The only oddity is the larger standard deviation of
the residual variance for the clofibrate group (I} in Edinburgh. Between the three
towns the variation in mean residual variance is larger than would be expected if it
were to be accounted for by rounding errors. Recall that rounding, in extreme, to the
nearest ten would impose an additional variance component of 8.33. As the rounding
practices are more complex, but less extreme, the expected differences between towns
would be less marked. Thus it might be reasonable to assume different levels of

natural within-subject variability between towns.

Grouping individuals into 5mmHg bands according to their mean blood pressure level
allows an assessment of the relationship between the observed residual standard
deviation, s, and mean level, x. Figure 3.3 illustrates this, suggesting increasing
variability with level. Also shown on each plot is the least squares regression of s on x
derived using the ungrouped data. The apparent departures of the observed data from
the fitted lines at the extremes is attributable to small numbers of subjects with such

mean pressure levels. The fitted lines are:
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Figure 3.3: Relationship between observed residual variance and mean level

55



2.6241 + 0.0365 x (Edinburgh)
s = 1.6634 4+ 0.0580 x (Budapest) (3.1)

3.1607 + 0.0367 x (Prague)

Thus the standard deviation increases by about 0.5 mmHg for each 10 mmHg rise in
mean pressure. As the distribution of observed residual standard deviations about the
least squares regressions are certainly non-normal, the usual significance tests for the
gradients are not appropriate: however, formal testing is considered later in section
3.9. In addition, the mean blood pressure refers to the mean over four observations
and this, itself, is measured with error so that, in general, increasing the number of
observations on which the mean is based might be expected to increase the associated

regression coefficient.

Although a formal model for blood pressure variability within an individual will be
fitted later (section 3.9), it is convenient to consider here whether the variability in
observed within-person variances, after allowing for blood pressure level, can be
explained by sampling variation. To achieve this, consider the simple model whereby
diastolic blood pressures within an individual, i, are normally distributed about some

underlying level, then

where iij is the predicted diastolic pressure at visit j (obtained from the within-person
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regression through the four observations) and ”i2 is the predicted within-person
variance for subject i which depends upon their underlying diastolic pressure level.
Given the large cohort size being studied, ”i2 could be replaced by the values predicted
from the models for s; described by (3.1). However, it is well known that the observed
standard deviation, s, is a biassed estimator of ¢ and that the bias when it is based
upon a small sample size is substantial: here, two degrees of freedom are available for
estimating o; and so s; needs to be increased by a factor of 1.1284 to give an unbiassed
estimate of o, (Pearson and Hartley, 1954). Applying this adjustment to the

coefficients in (3.1) gives

2.6241 + 0.0365 x (Edinburgh)
o = 1.6634 4 0.0580 x (Budapest) (3.2)
3.1607 + 0.0367 x (Prague)

where %X is the mean of four observations. Calculating the ratio 25i2 / aiz for each
individual, comparison of their distribution with a chi-squared distribution on two
degrees of freedom can be made using a Kolmogorov-Smirnov test. This gives test
statistics, D, of 0.021 (0.1>P>0.05), 0.012 (P>0.2) and 0.016 (P>0.2) for Edinburgh,
Budapest and Prague, respectively. This good fit suggests that a model with observed

diastolic pressures normally distributed about an underlying mean level is appropriate.

3.7 Within-person trends

Returning to table 3.5, it is clear that average trends do vary between the three towns.

Both Edinburgh and Prague show increasing trends whereas there is a mean decline of
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over 0.5mmHg per year in Budapest. This latter result is unusual in that diastolic
blood pressure generally rises slowly with age in developed countries (Gordon and
Shurtleff, 1973; Shaper et al, 1988). In both Edinburgh and Budapest, analysis of
variance shows that there is no significant variation between the mean trends by
treatment group (P=0.32 and P=0.60, respectively). In contrast the variation in
Prague is highly significant (P<0.0001): there being no apparent mean trend in group
III (low cholesterol, placebo), but increasing trends in both of the high cholesterol
groups particularly in the one receiving clofibrate (group I). Explaining this difference
between treatment groups is difficult particularly as the ordering between groups
differs from town to town and there is no apparent imbalance in other factors that
might explain it. Therefore it might be reasonable to assume that there is no inherent

variation in average trends between treatment groups.

The standard deviations of the observed trends shown in table 3.5 by treatment group
within-town are very similar in magnitude and also show little difference between
towns. It is useful, then, to assess whether this is attributable to sampling variation or
whether there is evidence of heterogeneity, between subjects, in underlying diastolic
pressure trends. First, though, consider the distributional form of the observed trends.
Figure 3.4 shows normal probability plots, by town, for the tr;nds (ignoring treatment
group). For clarity these are shown in a cumulative form stepping at intervals of
0.2mmHg/year on the trend scale. Thus there is a small exaggeration of departures
from the assumed normal model which is shown by the dashed line. Clear, though is
the closeness of the observed distribution to normality with a handful of subjects in

each town showing, in extreme, larger trends than expected if the normal distribution

is a correct description. Goodness of fit can be further assessed using Kolmogorov-
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Figure 3.4: Normal probability plots for the observed trends within-person
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Smirnov tests. These show mildly significant departures from normality (Edinburgh:
test-statistic, D=0.025, 0.05>P>0.01; Budapest: D=0.021, 0.1>P>0.05; Prague:
D=0.029, 0.01>P>0.005). Thus a model for normally distributed trends would seem a

reasonable approximation.

To assess the evidence for heterogeneity of trends, the sampling variation of the
observed trends needs to be considered. As the trends were calculated assuming visit
times of —3/2, —1/2, 1/2 and 3/2 years (for visits V_3 to V_, respectively), the

variance of the estimated trend, ﬁi, for individual i is

R o?
var(B;) = 75'— = o%()'(), say.

But cri2 has already been seen to depend on the mean level of blood pressure for the
individual concerned. Therefore the sampling distribution for the estimated trends, B,
over all individuals assuming no heterogeneity can be described in terms of the

hierarchical model:

B-N[B o3(®)]=1(81%)

where % is the observed mean level. Thus the sampling distribution for 3 is

R _ 3 _ 3\2
f(8) = I (2r) /2 o exp[-(—f;%(%} f (x) dx.

If the dependence of o4 on % is not too strong, as can be seen from (3.2), then a first
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order approximation gives f(fi) as a normal distribution which would agree with that

observed. In addition

E(f) = j B j £(3 | %) £(x) dx dj
,B X

which, on reversing the order of integration, gives E(ﬁ) = f; that is, 3 is unbiassed. In

a similar manner, it follows that
var(B) = EI:U%()'():I

which can be approximated, given the large sample size, by the mean residual variance
divided by 5. This gives theoretical sampling variances for the observed trends as 8.37,

11.06 and 10.08 for Edinburgh, Budapest and Prague, respectively.

Using the assumption of normality, under the hypothesis that the observed distribution

is attributable to sampling error in estimating the trends, alone:

(n—1) x observed variance of trends o

var(f) ~ X{n-1) ® Nl(n—1), 2(n-1)]

where n is the number of individuals in the town and is sufficiently large to justify the
normal approximation. For each town, this ratio can be obtained and hence a normal
deviate to test the hypothesis. These are 9.86, —1.67 and 7.93 for Edinburgh,
Budapest and Prague, respectively. As the alternative hypothesis being considered is
of heterogeneity in the trends, a one-tailed test is appropriate. Thus it is clear that

there is highly significant overdispersion in both Edinburgh and Prague (P<0.0001) but
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not in Budapest.

In the two towns with apparently real variation in trends, it is useful to attempt to
quantify the level of variation. Taking the differences between the variance of the
observed trends and the variance attributable to sampling, and square-rooting, gives
estimated standard deviations of 1.41lmmHg/year and 1.34mmHg/year for Edinburgh
and Prague respectively. Thus the variability in the real underlying trends is much
smaller than the variability in observed trends given in table 3.5. From a practical
point of view this clearly implies that large observed trends based on a limited number
of observations need to be interpreted with considerable care particularly when they

may affect treatment decisions.

As with residual variance, a check of the relationship between mean levels and size of
trend can be made. Figure 3.5 shows plots of the average observed trends against
mean level grouped by 5mmHg bands. Also shown is the least squares regression.
Clear from the latter is that there is a very weak positive correlation between trend
and mean level. In the three towns, Edinburgh, Budapest and Prague, trends increase
by 0.12 (P=0.045), 0.08 (P=0.179) and 0.40mmHg/year (P<0.001) for each 10mmHg
change in mean level. Given that the standard deviation of mean levels is about
8mmHg in the three towns, the magnitude of increase in trends across the range of
blood pressures observed is small, and possibly negligible, compared with the observed

mean trends in the cohort.

As trends are so small, it is useful to consider the merit in ignoring them altogether.

For the purposes of screening and monitoring patients where the timescale considered
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63



will generally be short, the impact of any real trend will be more or less negligible.
From a statistical point of view, it also enables an extra degree of freedom in the
estimation of the within-person residual variance. Repeating the analysis leading to the
relationship (3.2) gives the following relationship between residual variance (ignoring

trends) and observed mean pressure (from 4 measurements):

3.0314+0.0434% (Edinburgh)
ow(kX) = 1.6318+0.0681% (Budapest)
2.3677+0.0580% (Prague)

Comparing this with (3.2) shows that there is a small increase in the standard
deviation and, particularly in Prague, its rate of rise with level which is attributable to
trends. For comparison with the models derived in section (3.9), it is useful to rewrite
this as a relationship between the variance 0%(%) and the departure of an individual’s

mean, X, from the population mean:

2
45.1940 [ 1+0.0066(% — 82.4198) | (Edinburgh)
2
oa(%X) =  55.1040 [1+0.0093(x — 83.8780) ] (Budapest) (3.3)
2
53.5391 [ 1+0.0080(x — 84.3081) | (Prague)

3.8 Blood pressure variability dependence on age, body mass index and smoking

The purpose of this section is to describe the relationships observed between the blood
pressure variability parameters (mean level, trend and residual variance) and the three

available descriptive variables: age, body mass index and smoking. Without the benefit
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of a general population sample, it is not possible to draw definitive conclusions about
these relationships, though it would be reasonable to expect the nature of any
association found, if not its magnitude, to be generalizable to other cohorts of middle-

aged and apparently healthy men.

3.8.1 Age

Table 3.6 shows the means and standard deviations for the variability parameters by
the age-groups previously used. Recall that age refers to visit Vg, the last of the four
visits. Looking at the mean levels, each town shows the rising pattern of blood
pressure with age that is well established. Edinburgh and Budapest suggest blood
pressures higher in older age groups by about 1lmmHg or just under for each additional
five years. In Prague the effect is similar if the two outer age-groups, which have very
small numbers of individuals, are ignored. Note that in both Edinburgh and Prague,
the oldest age group (>60 years) have lower mean blood pressures than the groups in
their 50’s. This is most likely a consequence of the exclusion criteria requiring good
health for entry to and continuance in the trial so that more elderly men with raised
blood pressures are more likely to have diagnosed major disease, and so be excluded
from the trial, than younger men with similar levels. Also of interest and more
apparent in Edinburgh and Prague is the increasing variance between subjects as age

increases.

The picture for trends is interesting in that it does not correspond well with what
might be expected from considering the mean levels. Both Budapest and Prague show

mean within-person trends declining in value with increasing age though in Budapest
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Age at visit V

<39 40-44 45-49 50-54 55-59 260 all ages
Edinburgh
mean level (mmHg) 80.7 81.8 82.8 83.1 84.1 82.5 82.4
(7.9) (8.3) (8.4) (9.0) (8.8) (9.2) (8.6)
trend (mmHg/year) 0.00 0.16 0.28 0.06 0.47 -0.13 0.16
(3.29) (3.19) (3.24) (3.19) (3.08) (3.34) (3.22)
residual variance 38.7 41.7 43.3 41.6 44.0 42.1 41.8
(mmHg?) (46.1) (44.8) (45.8) (47.0) (45.7) (50.4) (46.2)
number 576 702 814 704 408 220 3424
Budapest _
mean level (mmHg) 81.3 82.6 &83.6 85.0 84.5 85.1 83.9
(r.7) (7.4) (7.7) (7.9) (8.0) (7.8) (7.9
trend (mmHg/year)-0.10 -0.36 -0.37 -0.76 -0.62 -0.92 -0.55
(3.22) (3.15) (3.31) (3.30) (3.27) (3.20) (8.26)
residual variance 52.8 53.3 51.0 56.4 59.6 59.1 55.3
(mmHg?) (52.9) (55.8) (52.8) (61.8) (62.1) (66.9) (59.1)
number 445 539 828 869 574 609 3864
Prague
mean level (mmHg) - 84.4 83.1 84.6 85.3 &81.3 84.3
- (7.2) (6.8) (7.1) (7.7) (3.5) (7.2
trend (mmHg/year) - 1.65 0.53 0.27 0.21 0.08 0.33
- (2.24) (3.36) (3.50) (3.36) (3.54) (3.44)
residual variance - 40.6 48.2 51.3 50.9 37.1 50.4
(mmHg2) - (33.8) (50.1) (52.2) (51.0) (55.3) (51.4)
number 0 10 998 2315 674 13 4011
Table 3.6: Mean (s.d.) of linear regression parameters fitted to each person’s sequence of

diastolic blood pressure from visits V_3 through to Vg, by age group.
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the mean trends are all negative whereas in Prague they are all positive. This suggests
that the observed rises in mean levels of blood pressure with age are either a cohort
effect, or the pattern of trends is particularly marred by the healthy “in-trial”
individual effect mentioned above, so that individuals with increasing trends
particularly at older ages are excluded. In Edinburgh, there is no such clear pattern of
trends though the negative mean trend for those aged 60 or over ties up with the lower
mean levels in that group. In all three towns the standard deviations of the observed
trends do not vary notably between age groups. However, this is not surprising given

that the variability is dominated by sampling error.

Residual variation appears to increase in varying degrees with age in all three towns.
Most of this rise can be accounted for by the corresponding rise in mean level with age.
From (3.2), this is between 0.5 and 1.0mmHg? for a unit increase in blood pressure at
the levels observed. The only anomally is in Budapest where the two older age groups

are a little higher than might be expected.

3.8.2 Smoking status

As there are so few smokers of tobacco and/or cigars as distinct from cigarettes in
Budapest and Prague, this analysis excludes those subjects who currently smoke or
previously have smoked only tobacco and/or cigars. This enables a ready comparison
between towns with easily recognizable categories of smoking status. Table 3.7 shows
the means and standard deviations for each of the blood pressure variability
parameters, by smoking status. Looking at both the trends and residual variance,

there is no clear pattern of change between smoking status or by dose. With respect to
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Smoking category at Vg,

Never* Ex- Current cigarette smokers
cigarette™

1-10 11-19 20 21-39 >40

Edinburgh
mean level (mmHg)82.0 83.3 82.1 81.6 81.5 82.1 83.8
(8.4) (8.7) (9.0) (8.3) (7.9 (7.8) (7.7

trend (mmHg/year) 0.18 0.19 0.11 0.12 0.07 0.11 -0.55
(3.14) (3.39) (3.13) (3.22) (2.86) (3.25) (3.33)

residual variance 41.9 42.5 45.2 37.8 37.4 42.8 52.6
(mmHg?) (48.6) (45.4) (50.0) (41.4) (45.7) (48.3) (51.3)

number 915 849 342 276 327 192 42

Budapest
mean level (mmHg)84 .6 84.7 83.9 82.2 83.1 82.8 82.7
(8.0) (7.8) (8.0) (7.8) (7.8) (7.5) (7.7)

trend (mmHg/year)-0.54 -0.56 -0.22 -0.66 -0.69 -0.51 -0.61
(3.27) (3.43) (3.21) (3.12) (2.98) (3.26) (3.14)

residual variance 58.6 57.5 53.2 53.9 49.8 50.9 50.7
(mmHg?) (61.6) (62.4) (63.6) (57.2) (54.2) (51.7) (47.7)

number 1145 967 338 305 400 533 123

Prague
mean level (mmHg)85.3 84.7 83.4 83.9 83.2 83.2 84.5
(7.2) (7.3) (6.8) (7.4) (7.1) (6.6) (7.4)

trend (mmHg/year) 0.34¢ 0.17 0.34 0.35 0.50 0.27 0.05
(3.51) (3.54) (3.35) (3.39) (3.26) (3.52) (3.39)

residual variance 49.8 50.8 52.0 51.0 48 .9 50.3 51.8
(mmHg?) (51.7) (51.2) (55.4) (51.5) (47.9) (48.9) (61.1)

number 1260 786 490 357 562 387 80

Table 3.7:  Mean (s.d.) of linear regression parameters fitted to each person’s sequence
of diastolic blood pressures from visits V_; through to V,, by smoking status.

* excludes subjects currently or previously only cigar/tobacco smokers.
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mean levels there appears, in Budapest and Prague, a small lowering of blood pressure
(of between 1 and 2mmHg) in current smokers compared with both ex-smokers and
those who have never smoked; the latter two groups being very similar. In Edinburgh,
there is no apparent difference between smokers and the group who have never
smoked. However the ex-smokers have a mean level slightly raised above that of those
that have never smoked. In none of the towns is there any evidence of a relationship of
blood pressure level with dose. Thus apart from a possible, and mild, reduction in
blood pressure in those who smoke compared with those who don’t, smoking has no
other clear and consistent effect on blood pressure. This is compatible with the

previous studies of smoking and blood pressure mentioned earlier.

3.8.3 Body mass index

Body mass index is only available at entry to the trial and so changes during the
period in which the blood pressures were measured cannot be assessed. However, it
might be expected to be reasonably constant over a three year period. In table 3.8,
means and standard deviations for each of the blood pressure regression parameters by
body mass index are given. The clearest relationship, visible in each of the three
towns, is the increasing level of mean blood pressure with body mass index. Regressing
mean level on the index using the method of least squares, the rate of increase is found
to be 0.77, 0.83 and 0.50mmHg in Edinburgh, Budapest and Prague, respectively, for a
unit increase in the index. This is of a similar order of increase to that described by
Shaper et al (1988) in the British Regional Heart Study. Such an increasiné level also

explains the increasing residual variance with body mass index.
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Body mass index at entry to trial (kg/m?)

<21 >21 >23 >25 >27 >29 >31 all
<23 <25 <27 <29 <31 values

Edinburgh
mean level (mmHg)77.5 80.2 81.2 83.3 84.5 86.0 87.3 82.4
(7.5) (7.6) (8.4) (8.4) (8.4) (9.1) (7.3) (8.6)

trend (mmHg/year) 0.13 0.14 0.17 0.16 0.15 0.41 -0.23 0.16
(3.12)(3.03)(3.13)(3.15)(3.47)(3.43)(3.71)(3.22)

residual variance 39.3 39.5 41.0 41.6 44.9 43.1 50.6 41.8
(mmng) (44.4)(47.6)(42.1)(43.3)(50.4)(51.8)(59.4)(46.2)

number 204 567 870 905 501 206 137 3424

Budapest
mean level (mmHg)77.9 79.5 81.5 83.3 84.9 86.5 88.8 83.9
(6.2) (7.4) (7.2) (7.3) (7.5) (7.2) (7.9) (7.9

trend (mmHg/year)-0.17 -0.24 -0.45 -0.47 -0.64 -0.71 -0.89 -0.55
(2.82)(2.98)(3.15)(3.17)(3.35)(3.37)(3.59)(3.26)

residual variance 59.9 44.7 49.6 54.2 59.3 b58.6 62.2 55.3
(mmng) (73.5)(43.4)(53.9)(57.6)(63.7)(63.8)(59.9)(59.1)

number 112 324 735 850 847 568 420 3864

Prague
mean level (mmHg)81.6 81.4 83.0 83.7 84.9 86.2 87.2 84.3
(7.4) (6.5) (6.9) (7.0) (7.0) (7.4) (7.0) (7.2)

trend (mmHg/year) 0.68 0.32 0.30 0.46 0.27 0.12 0.39 0.33
(3.57)(3.24)(3.32)(3.49)(3.41)(3.52)(3.65)(3.44)

residual variance 43.6 50.6 48.7 48.9 53.2 47.8 56.0 50.4
(mmng) (37.4)(52.3)(50.5)(47.6)(55.0)(47.0)(60.7)(51.4)

number 75 288 772 1033 915 539 384 4011

Table 3.8 Mean (s.d.) of linear regression parameters fitted to each person’s
sequence of diastolic blood pressures from visits V_; through to Vg, by
body mass index.
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The picture for trends is less clear. In Edinburgh, mean trends are remarkably stable
for all but the highest two body mass index groups. However these do not show any
consistent pattern. In Budapest, trends become increasingly negative with body mass
index and also more variable. In Prague, there is again no clear relationship. This
emphasizes further the unexpected pattern of declining trends in Budapest with the
greatest declines in those who might be expected to be at highest risk of cardiovascular
disease: that is the older, smokers and the overweight. There is no apparent reason for

this finding.

3.9 Modelling blood pressure variability

The previous sections have described some of the features of blood pressure variability.
The purpose of this section is to derive a simple model for variability. As it is difficult
to assess how far the study cohort departs, in character, from a genuine population
sample, the emphasis will be on modelling within-person variability and treating

between-person variability of secondary interest.

From the observed blood pressure data, several important features of within-person
variability have been determined. These can be summarized as follows:
(i) there is no heterogeneity in within-person variability except that it increases
approximately linearly with blood pressure level;
(ii)  trends are small relative to residual variability, approximately normally
distributed in the population, and approximately independent of level;

(iii) neither residual variability nor trend appears to depend on other factors.
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Mathematically, then, an observed blood pressure, x at time t, might be modelled in

the following form:

x - N[& , ot(€)], with ow(&) = ow[1+c(&,—n)]

£ =+t

g ~N[o, %] (3.4)
£~ 1(p,¢)

where f is the distribution of underlying levels between individuals in the samples and is
dependent on parameters u (=E(£)) and ¢ (such as age etc.), and where the values of
any of the model parameters may vary between towns. Using maximum likelihood
methods to estimate the parameters in this random effects model is complicated by the
dependence of the within-person variability on £ and 8. Thus the marginal distribution

of the observed blood pressures, x, cannot be analytically derived.

To simplify the estimation, the inclusion in the model of a distribution for trends can
be removed with the knowledge that these have been shown to be small. Note that the
effect of this assumption is to inflate the apparent within-person variability, aa,, by a
small amount: from the observed data, ignoring the possibility of trends produces an
increase in residual variance of, at most, 10% in the three towns. In addition, the
distribution f might be assumed to be the normal probability density function as
suggested by Boe et al (1957). However, it is worth noting that the dependence of
the within-person variance on £ induces a degree of skewness into the distribution of
observed blood pressures which, therefore, confounds direct inferences about the exact

form of the distribution of underlying mean blood pressure levels from that observed.
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Making these assumptions, a simple but reasonable model is then:

x - N[€, 0%(6)], with ow(€) = ow[L+c(€—p)] (3.5)
& ~ N[u . 0'2].

Estimates of the model parameters (0%, c, 4 and o2) have been obtained by maximum

likelihood methods. Given four observations x; for person i, the likelihood for that

person is:

(2075254 e s lexo| -1 4 |:xij_€i]2 (&—n)?
L = @n) 2ot [L+e(g—m] "o lexp J—EN%[HC(&—#)]? + =

Here the ¢;’s are of little interest and so the marginal likelihood, l:n, can be defined:
= [ 166 ag;

Then the logged marginal likelihood across all individuals is:

Z n(l

and its maximum can be determined with appropriate numerical integration. In
practice convergence using a quasi-Newton algorithm was fast taking fewer than ten
iterations despite the use of finite difference methods to obtain derivative estimates.
Only limited accuracy can be obtained by this method because of the need to sum
numerically determined integrals, though the parameter estimates presented here are

accurate to four significant figures.
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" o2 o3 c (x103) In(likelihood)

Edinburgh 82.41 60.44 45.24 10.43 -48680.9
(0.1) (1.4) (0.7) (1.5)

Budapest 83.87 46.58 55.00 12.67 -55732.7
(0.1) (1.5) (0.8) (1.3)

Prague  84.31 36.66 53.59 13.88 -57326.9
(0.1) (1.1) (0.7) (1.7)

Table 3.9 Parameter estimates (approximate standard errors) for the
diastolic pressure model:

X ~ Nl:é ’ Uev(l‘*‘c(f—l‘))?:l,
¢-Nu, o?]

In table 3.9, the estimated parameter values for the model are given for each town. In
each case, the within-person variance, 02 at the mean blood pressure level, u, is about
the same as the mean observed residual variance, ignoring trends. However, the
gradient of increase in residual variation is substantially bigger when related to true
underlying pressures rather than the observed mean of four measurements. Here the
within-person standard deviation of diastolic blood pressure increases by about 1% or

so for each unit increase in level of underlying pressure.

By fitting the models with the parameter ¢ assumed equal to zero, the statistical

significance of the increasing within-person variance with level can be assessed using a
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likelihood ratio test. This gives chi-squared test statistics (on one degree of freedom) of
107, 161 and 144 for Edinburgh, Budapest and Prague, respectively, which are all very

highly significant.

Exact standard errors for the parameters estimated are difficult to obtain because of
computational limitations in deriving the necessary matrix of second derivatives of the
likelihood function. Therefore, also given in table 3.9 are approximate “standard
errors” for each of the parameters estimated obtained by drawing on the parallel
between confidence intervals and significance tests. For example, an approximate
standard error for i is obtained by finding those two values of 4 (g, and p,) such that
the hypothesis that p=gp; (i=1, 2) is rejected in two-sided likelihood ratio test (for u
with the other parameters constrained to their values at the maximum) at exactly the
5% level of significance. Then, the standard error can be obtained by using the result
that the likelihood is approximately normally distributed in large samples about the
maximum so that the interval (u;, g,) has width two times 1.96 times the standard
error of . This derivation, though somewhat heuristic, does enable an assessment of
whether there is significant difference between the three towns in the parameter c
which, due to computational limitations cannot be assessed more directly by fitting a
model with a common value in the three towns. A pooled estimate, cp, can be

obtained:

where ¢, is the parameter estimate from town k and w, is a weight equal to the

precision of its estimation (that is, the inverse of the square of its standard error).
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This gives a value of 12.25x10°2 with standard error 0.8x10°3. A test of homogeneity

of the parameter c across the three towns is then obtained using the test-statistic:

2
X3= %:wk(ck —cp)

which is distributed as a chi-squared on two degrees of freedom (DerSimonian and
Laird, 1986). This gives X%=2.50 which is not statistically significant at any
conventional level. Thus the hypothesis that the rate of increase in within-person

standard deviation is the same in the three towns cannot be rejected.

In contrast, there is no reason to expect the parameter 0"%, to be constant between the
three towns because this parameter includes a component of variance attributable to
the digit preferences operating. However, in section 3.4, this component of variance
was found to equal 1’2/3 where 27 is equal to the width of a rounding interval. In
Budapest, where digit preferences are least pronounced, this component is unlikely to
be more than 1mmHg2 and even in Edinburgh, with rounding to even digits and some
additional preference for zero, it is unlikely to be greater than 2mmHg2. Thus a
difference of nearly 10mmHg? between the values of o2 for Edinburgh and Budapest
cannot be explained by digit preferences nor, by considering the standard errors, by
sampling variation. In Prague, the large digit preference shown in figure 3.1 for the
digit zero would imply a component of variance attributable to this rounding practice
of the order of 5mmHg2. However, this still means that the Prague estimate for o2 is
quite distinct in magnitude from the values in either of Edinburgh and Budapest.

Thus it seems reasonable to conclude that there may be real differences, not explained

by digit preferences, in the average levels of within-person variability between the three
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towns. However, these differences need not necessarily represent purely physiological
differences between the populations of the three towns. They could be attributable to
other differences in measurement technique in the three centres possibly related to
environmental factors in the clinics or to the state of rest of the subjects at the time of

measurement.

It is also worth noting that the model does give a good representation of the observed
correlation structure presented in table 3.4. To see this, the variance/covariance
structure for observed blood pressures needs to be obtained. Using the model, the
variance of the observed blood pressures is (U2+O'$V+C2620’%) where the last term is,
here, negligible. In addition the covariance for repeat measures on the same individual

2

is < so that the correlation is

-1 -1
o (e?+og+c?o?oy)  m (L+oi/0?)

Evaluating this using the estimates obtained gives values of 0.57, 0.46 and 0.41 for

Edinburgh, Budapest and Prague, respectively.

To assess the more general fit of the model, the predicted number of individuals with
given blood pressures can be compared with that observed. However, to reduce the
sensitivity of this comparison to digit preference, it is better to compare the
distribution of observed mean blood pressures with that predicted. For illustration,
figure 3.6 shows the fit, by town, with the mean levels rounded to integer values.
Clear in each case is the small degree of skewness not picked up by the model. These

departures are all significant (P <0.001, Kolmogorov-Smirnov test). This suggests an
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Figure 3.6: Observed and predicted distributions of blood pressure
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element of skewness in the distribution of underlying mean blood pressures not

incorporated in the model here.

It is difficult when using trial-based data to justify an alternative model as the cohorts
studied are specially selected: in particular further skewness might be expected if the
hypertensives excluded from the trial were to be included. However, one potential
source of variation, that due to age, does deserve some attention. Even if blood
pressures are normally distributed in the population for any given age, then a skew
distribution of ages in the study cohort may introduce skewness into the distribution of
blood pressures. To assess the impact of this possibility upon the estimated
parameters, 02 and c, the model (3.5) can be fitted with the between-person
parameters estimated within age-group: here, in five-year intervals. The results of this
analysis can be found in table 3.10; for Prague, the lower age-group (<49) includes the
eleven men aged 44 or under. The improvement in fit of the model can be assessed by
comparing the logged likelihoods achieved with those in table 3.9 using a likelihood
ratio test. For each town, this is statistically significant (P <0.0001 in each town).
Note that both the mean level, u and, particularly, the variability between individuals
increase with age. Despite this, the goodness of fit, in practical terms, is not noticeably
improved and there is only negligible change in the within-person variability

parameters o2 and c.

In table 3.11, this stream of analysis is taken one step further by stratifying aa, and c
by age as well. However, this does not give a statistically significant improvement in
fit on the model with these parameters fixed across age-groups (P>0.1, likelihood ratio

test, in each town). In addition, there is no distinct pattern of change in either 02 orc
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Age group I o2 oa c (x103) In(likelihood)
Edinburgh

<39 (n=576) 80.71 49.66

40-44(n=702) 81.80 55.74

45-49(n=814) 82.71  57.40

50-54(n=704) &83.09 68.37 45.24 10.45 —48649.5
55-59(n=408) 84.03 61.71

>60 (n=220) 82.53  71.89

Budapest

<39 (n=445) &81.40 43.08

40-44(n=539) 82.65 40.41

45-49(n=828) 83.69 44 .37

50-54(n=869) 84.88 46.62 55.02 12.69 -55684.5
55-59 (n=574) 84.44  47.81

>60 (n=609) &85.03 46.50

Prague

<49 (n=1009) 83.16 32.35

50-54(n=2315) 84.52 35.37 53.58 13.82 —-57301.0
>55 (n=687) 84.26 44 .54

Table 3.10: Parameter estimates for the diastolic blood pressure model:

x - N[€, o2(1+c(—p))?],

E.,N[y,,az]

with p and o estimated within age-group.
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Age group [ o2 o3 ¢ (x103)  In(likelihood)

Edinburgh
<39 (n=576) 80.67 50.01 43.83 10.38 —8115.4
40-44(n=702) 81.81 56.37 44 .84 7.34 —-9952.4
45-49(n=814) 82.77 57.13 46 .47 10.27 —11588.6
50-54(n=704) 83.06 68.28 44 .51 11.77 —10025.1
55-59(n=408) &84.10 62.30 45.93 7.89 —-5817.9
>60 (n=220) 82.53 68.94 46 .56 21.84 —3143.4
—48642.8
Budapest
<39 (n=445) 81.33 43.79 52.39 12.44 —-6373.2
40-44(n=539) 82.58 41.24 52.10 11.60 —-7704.0
45-49(n=828) 83.60 44 .39 52.45 15.39 —-11861.7
50-54(n=869) &84.95 46 .66 56.69 10.28 —12579.2
55-59(n=574) 84.54 46.62 58.34 14.44 —8332.9
>60 (n=609) 85.11 45.90 57.61 12.62 —8826.4
—=55677.5
Prague
<49 (n=1009) 83.11 32.77 51.49 14.19 —14314.4
50-54(n=2315) 84.55 34.98 54 .80 14.52 —-33132.2
>55 (n=687) 84.25 45.14 52.59 11.70 —9851.8
=57208.4

Table 3.11: Parameter estimates for the diastolic blood pressure model:
x - N[€, o(1+c(6—p)?],
¢~ Ny, o?

with all parameters estimated within age-group.
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with age in the three towns. Therefore it is reasonable to assume that within-person
variability is constant with age after adjusting for changes in the underlying level with

age.

Finally, and briefly, it is useful to consider the model (3.4) including allowance for
trends, but without the age stratification for the parameters g and ¢2. Fitting this
gives the parameter estimates in table 3.12. The inclusion of the trend parameters
produces a highly significant improvement in fit (P<0.0001 in each town using a
likelihood ratio test). The estimated mean trends given by # are essentially the same
as the mean observed trends. The variability of the trends, as found earlier, is
estimated as zero in Budapest and so suggests a fixed and statistically significant
downward trend in all individuals. This is a surprising result and is difficult to explain.
In Edinburgh and Prague trends are variable between individuals and o4 is estimated
as 1.36 and 1.22mmHg/year, respectively, so that in these towns about 99% of the
population would have underlying trends within the range £3mmHg/year. By finding
the difference in the estimates for o3 from this model and the model presented in table
3.9, the effect on the within-person variance of omitting the trends from the model can
be assessed. This difference varies from 0.52mmHg? in Budapest to 2.70mmHg? in
Prague and 3.17mmHg? in Edinburgh. Thus it is very small in each town and is
comparable to the component of variance that arises from a practice of rounding blood

pressures to the nearest 5SmmHg.
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I o2 6 a% o3 ¢ (x10%) In(likelihood)

Edinburgh 82.40 61.27 0.15 1.86 42.07 10.62 -48652.5
Budapest 83.85 46.71 -0.56 O 54.48 12.81 -55676.5

Prague 84.31 37.42 0.33 1.51 50.89 13.33 -57326.9

Table 3.12: Parameter estimates for the diastolic blood pressure model with trends:
x - N[€+8t , o%(1+c(6—m)2],
8 ~ N[o, 03],
¢ - N[p, o?]

3.10 Summary of main results with discussion

This chapter has described within-person diastolic pressure variability in a cohort of
middle-aged men who are essentially healthy in that they are free of diagnosed major
disease during a period of four to five years. Blood pressure measurement in the trial
from which the cohort is taken was casual and would reflect well measurement methods
used by general practitioners in screening. Thus valuable information can be drawn
from this study that can be used to aid the interpretation of diastolic blood pressure

monitoring during screening.

The main result of the chapter is that observed diastolic pressures within an individual
can be considered as normally distributed about some underlying average level, and
that the standard deviation of this distribution is, conditional on the level, apparently

constant across individuals. For an individual with an underlying level of 80mmHg,
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this standard deviation is similar in the three towns studied being 6.5mmHg in
Edinburgh, 6.9mmHg in Prague and 7.1lmmHg in Budapest. These figures are similar
to the findings of other studies. The differences between the three towns are not solely
attributable to the different rounding practices observed but are probably small enough
to be related to other facets of blood pressure determination: for example, the physical
environment, the observer characteristics or the state of rest of the subject at
examination. There was no evidence that the rate of increase in variability was
different in the three towns giving within-person standard deviations of about 5mmHg
at an underlying level of 60mmHg and rising to about 8.5mmHg at a level .of
100mmHg. The dependence of the variability on age found by Wilson and Hebel
(1988) was also observed in this study but can be explained by allowing for increasing

diastolic pressure levels with age.

Although the blood pressure measurements used in this study were taken at
approximately annual intervals, the model derived is likely to be applicable for
measurements separated by other intervals of time. For long time periods, underlying
trends found in this study are small (within £+3mmHg/year for nearly all individuals)
and failure to recognize them in a model produces only a comparatively small change in
the within-person variance. At the other extreme, the result of Wilson and Hebel
(1988) that measurements seven days apart show negligible autocorrelation suggests
that the model would be appropriate for weekly or monthly measurements. Thus,
where screening is opportunistic (for example, whenever a subject visits his general
practitioner), the combination of blood pressure measurements from visits separated by
as little as a week or as much as three or four years should enable a reliable assessment

of underlying pressure during that time using the model developed.
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Important practical issues arise from this model. First, consider the distribution of
diastolic blood pressures within an individual, f(x|€). If the underlying level, £, is high,
say 90mmHg, and so of particular interest because of its association with increased risk
of cardiovascular morbidity, then the standard deviation of this distribution is about
7.5mmHg. Thus a single observed diastolic pressure will be a very poor measure of an
individual’s underlying level: with £ =90mmHg, 95% of observations would be expected
between 75 and 105mmHg. Large changes between measurements over time should
therefore be expected being attributable just to random variation. Even with ten
measurements the standard error of their mean is 2.4mmHg and so a 95% confidence
interval for an individual’s underlying level will span a range of 10mmHg. Often, this
would be large enough to hamper treatment decisions. Of course, in practice, the true
underlying level is never known and so the exact standard deviation of the measured
pressures is never known. However, it is clear that substantial numbers of
measurements are required to give precise estimates of underlying level and, therefore,
that there is advantage in accumulating this information whenever a subject visits his

general practitioner.

A second important issue concerns the monitoring of diastolic pressure for change.
Underlying trends are small and so will require extensive numbers of measurements to
establish their existence given the large natural variability of diastolic pressure. In
contrast, a strategy for checking the success of intervention to lower blood pressure
would require accurate determination of level prior to treatment and then again when
the effect is expected to be established. This may require substantial numbers of
measurements at each time (possibly greater than ten) particularly when relatively

small reductions of the order of 10mmHg or so are expected. Such a number of tests
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would seem justified given the undesirability of long-term intervention which is costly

and carries the possibility of adverse effects.

A third issue that arises from the model for blood pressure variability concerns what is
meant by “hypertension”. Traditionally, this is defined in terms of ranges for diastolic
pressures though it is not always clear what is meant by a blood pressure: a single
observation, the mean of several observations or the long-term underlying level. For
instance, guidelines proposed by the Participants of the W.H.O./I.S.H. meeting (1986)
for the treatment of mild hypertension used a definition of a long-term average between
90 and 104mmHg whereas the Medical Research Council’s Mild Hypertension Trial
(Medical Research Council Working Party on Mild to Moderate Hypertension, 1985)
use a screening criteria based upon the mean of four measurements taken during two
visits being between 90 and 110mmHg to determine entry into the trial. Clearly the
variability of diastolic pressure means that the two definitions do not describe the same
set of individuals within the population. For instance, the model given in table 3.9 for
Edinburgh implies that 23% of the population would have a single observed diastolic
pressure above 90mmHg but only 16% have an underlying pressure above 90mmHg.
Such a difference in percentages has a clear implication for planning and costing public

health strategies.

This definitional issue is also important in determining blood pressure levels at which
intervention, particularly pharmacological, is appropriate: that is, when the benefits in
terms of risk reduction are likely to outweigh the possible adverse effects of treatment.
Clinical trials of antihypertensive treatments should aim to describe the patients

randomized in terms of their underlying blood pressure levels as definitions in terms of
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observed blood pressures will be affected by the source of the trial population. For
instance, the distribution of underlying blood pressures in a trial population selected
from a general population because their observed pressures fulfill some defined criteria
will be quite different from a population selected from patients attending a
hypertensive clinic on the basis of the same criteria. In order to achieve this definition,
trial investigators need to know the distribution of underlying levels in the population
sampled and then apply the results for within-person variability obtained in this study.
Alternatively, more precise determination of the distribution of underlying levels of the
subjects entered into the trial must be undertaken by repeated measurement after the
decision to randomize but prior to commencing treatment. Although this will increase
the cost of trials, it would aid the doctor who, faced with a patient’s blood pressure
measurements, is trying to relate these to complex trial entry criteria and so make the

decision whether to treat that patient or not.
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4. Blood pressure and risk of cardiovascular mortality

4.1 Introduction

The relationship between blood pressure level and risk of dying from cardiovascular
causes has been well established by many observational studies. However there is
presently interest in establishing more precisely the magnitude of this relationship.
Simple though this may seem, it is in fact complicated by the variability within
individuals in blood pressure. The strength of the relationship appears weaker if
related to a single measurement on each member of a cohort than if related to their
underlying pressure (that is, the long-term mean level). This reflects the “regression to
the mean” phenomenom and its effect on estimates of the risk association has been

termed “regression dilution” by MacMahon et al (1990).

In this chapter, the proportional hazards model (Cox, 1972) is used to quantify the
relationship between risk of cardiovascular mortality and blood pressure. In the next
section, risk is related to observed blood pressure and the miodel assumptions are
assessed. Also considered are the effects of trends in blood pressure and the lability of
blood pressure in improving predictive power. Then in section 4.3, the regression
dilution effect is considered. First the methodological aspects of regression dilution are
considered in the context of survival models. Then the magnitude of the actual risk

relationship with underlying pressure is estimated.

Before proceeding to the next section and the development of survival models, it is
useful to summarize the extent of mortality data available for the study cohort taken

from the clofibrate trial. Throughout the chapter, deaths from cardiovascular causes
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Edinburgh Budapest Prague All towns

No. in study cohort 3424 3864 4011 11299

No. dying from
cardiovascular causes 152 159 197 508

% dying from
cardiovascular causes 4.44 4.11 4.91 4.50

Follow-up in individuals not dying from cardiovascular causes (years)

maximum 13.92 11.58 11.22 13.92
upper quartile 12.16 9.62 9.76 10.25
median 10.51 8.73 9.30 9.30
lower quartile 9.14 7.96 8.80 8.63
minimum 0.42 0.08 0.13 0.08

Follow-up in individuals dying from cardiovascular causes (years)

maximum 11.99 10.20 10.97 11.99
upper quartile 9.24 7.75 8.15 8.18
median 6.90 6.15 6.68 6.59
lower quartile 4.25 3.52 4.35 3.99
minimum 0.37 0.25 0.32 0.25

Table 4.1: Cardiovascular mortality and length of follow-up by town and
across all towns

will be modelled with deaths from other causes being considered as observations
censored at the time of death. Cardiovascular causes can be summarized as ischaemic
heart disease, stroke and other circulatory diseases (Committee of Principal
Investigators, 1978 and 1980). Follow-up is defined as the time from visit Vg (the
fourth visit in the sequence for which blood pressures are available) until death, or until

censoring at the final follow-up for the trial. Table 4.1 summarizes the mortality and
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follow-up figures both by town and overall. Cardiovascular mortality rates are similar

in the three towns, averaging 4.5% during a median follow-up of 9.3 years from visit

Vo

Throughout this chapter, all survival models developed have other risk and
confounding factors included (age, cholesterol level and smoking status at visit Vg,
together with clofibrate/placebo treatment group and town). However, as these are of
secondary interest and their estimates vary little between models, the effects associated
with these variables will only be reported for a “final” model presented at the end of
the section 4.2. Because some individuals have missing data on some of these
variables, the development excludes 311 individuals including 16 that died, giving a
mortality rate in this group (5.1%) slightly higher than that in the cohort as a whole;
any bias arising from this missing data is likely to be small. Note also that cholesterol,
in particular, and smoking status are also variables measured “with error” and so could

be subjected to a similar form of analysis as here for blood pressure.

4.2 Observed blood pressure level and risk

4.2.1 Model definition and assessment of assumptions

Denoting by h(t|x,z), the hazard function for cardiovascular mortality at time t given
an observed blood pressure x at time 0 and other covariates z, then the proportional

hazards model is defined by

h(t]x,z) = h(t|x=0, z=0) exp(fx+71'z) (4.1)
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Thus exp(f) is the relative increase in the hazard (or instantaneous risk) of dying from
cardiovascular causes associated with a unit increase in observed blood pressure. There
are two fundamental assumptions underlying this model: first, that of a log-linear
relationship between each covariate and risk; second, that of proportionality of
hazards throughout time: that is, for given values of the covariates (x;,z;) and (x5,25),

then

h(talx;,2;) — h(ty,]%4,29)
h(ta]x,2p) — h(ty[x2.25)

for any points in time t, and t,.

The log-linear relationship between risk and level of blood pressure has been studied by
MacMahon et al (1990) in their overview of nine major observational studies including
420,000 individuals of whom nearly 5,000 suffered fatal cardiovascular events. They
showed strong evidence for linearity in the relationship between the logarithm of risk of
coronary heart disease and blood pressure level and also suggested that linearity in the
relationship between the logarithm of risk of stroke and blood pressure was a good
approximation. Given that deaths from coronary heart disease dominate stroke deaths
by a factor of 3:1 in the clofibrate trial, the assumption of log-linearity between risk of
cardiovascular death, overall, and blood pressure seems justified. The shape of this
relationship can also be assessed in the cohort from the clofibrate trial being studied
here. Dividing the cohort into quartiles within each town based on each individual’s
mean diastolic blood pressures across the four visits V_3 to Vj, then figure 4.1 shows
crude mortality rates during the follow-up period by the average pressure in each

quartile. Though based upon comparatively small numbers of events, this provides
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Figure 4.1: Crude cardiovascular mortality rates by quartile of diastolic pressure
(mean of four measurements) within town (bars are +one standard
error)
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further evidence for the log-linear trend associating risk and blood pressure level. In
addition, this was confirmed by including quadratic terms in diastolic pressure in the

survival models: none reached any conventional level of statistical significance.

For assessing the assumption of proportional hazards the cohort can be subdivided into
six groups on the basis of their mean diastolic blood pressure (over four visits). If the
assumption is valid, then the hazards h(t) within each group should be proportional to
one another. Equivalently, the logarithm of the cumulative hazards in each group
should differ by a constant amount throughout time. This leads to the so-called
log(—log) plots (Kalbfleisch and Prentice, 1980; chapter 4) where the survival function
S(t) is estimated using Kaplan-Meier methods within each group, so that
log(—log[S(t)]) is the logarithm of the cumulative hazard. Figure 4.2 shows the plot of
—log(—log[S(t)]) for the grouped diastolic pressures. For convenience, the plots are
smoothed between the points marking the times of deaths: strictly, the estimated
curves should be step functions showing decreases only at the times of these deaths.

There are no clear departures from parallelism of the curves.

An alternative approach for assessing the assumption of proportional hazards is to use
a statistical test suggested by Harrell (1986). This is based upon the evaluation of
“partial residuals” (Schoenfeld, 1982) at each time at which a death occurred. Each
residual is simply the difference between the observed diastolic pressure of the
individual dying and the expected value of the pressure estimated from data on the set
of individuals still being followed-up at that time point. Schoenfeld shows that these
residuals are, under the assumption of proportional hazards, uncorrelated, but are

correlated if this assumption fails. Harrell uses this fact to give a test of the hypothesis
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Figure 4.2: —log[—logS(t)] plots by mean (of four observations) diastolic pressure
group (points marked correspond to the times of deaths observed)
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of zero correlation which is then a test of proportional hazards. Considering the mean
of four diastolic pressures as the covariate of interest, using this test gives no

significant evidence for departures from proportional hazards (P=0.73).

Overall the goodness of fit of a model can be assessed using generalized residual plots
(Kalbfleisch and Prentice, 1980; chapter 4). The philosophy behind these is that the
estimated survival probabilities at the time of observed death or censorship for each
individual based on their observed covariate values form a (censored) sample from a
uniform distribution. Equivalently, the corresponding generalized residuals for each
individual, the estimated cumulative hazard based on their covariate values at the time
of censorship or death from cardiovascular causes, form a (censored) sample from an
exponential distribution with unit mean. Thus —log(proportion of residuals > r),
where r is any real positive number, plotted against r should follow a line of unit
gradient. Figure 4.3 shows the plot obtained for the model including the mean
diastolic pressure: the fit is apparently good. Similar plots can be obtained for an
analysis stratified by blood pressure group (figure 4.4). This permits assessment of the
particular fit of blood pressure. Again the fit is good, the departures for larger values
of r, which appear visually large, being less important statistically because they are

based upon long follow-up times when few within the respective group are at risk.

Similar checks of the assumptions and goodness of fit were made for the other
covariates in the model. For both age and cholesterol, the log-linear model seems
reasonable. More generally, there was no evidence of departures from proportional

hazards and the residual plots suggested a good fit.
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Figure 4.3: Residual plot for the proportional hazards model including mean

diastolic pressure and other covariates
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Figure 4.4: Residual plot for the proportional hazards model, stratified by mean
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Diastolic b.p Risk coefficient, Standard -2 log likelihood

from visit J¢] error of B at maximum
Vo 0.0335 0.0041 8549.53
V., 0.0330 0.0043 8553.76
V., 0.0320 0.0044 8559.90
Vs 0.0325 0.0044 8559.99

Table 4.2: Risk coefficients for diastolic blood pressure measured at a
single visit when included separately in a model also with age,
cholesterol, smoking status, town and treatment group.

4.2.2 Estimates of risk association: diastolic blood pressure

The simplest model for predicting survival based on diastolic blood pressure level is to
use just a single observed measurement at visit V,. Including this in a proportional
hazards model indicates an increased risk of 3.40% associated with a 1lmmHg difference
in observed diastolic pressure (approximate 95% confidence interval: 2.57% to 4.25%).
Thus a difference of 10mmHg in observed diastolic pressure measured at a single visit
(a difference corresponding to approximately one standard deviation in the population

sample studied), gives a 40% increase in relative risk.

Of course, the survival model could also be based on the single measurement recorded
at visit V_3, or at visit V_,, or at visit V_;. The estimated risk coefficients, 8, and
their standard errors are given in table 4.2 for models using, in turn, each of these

measurements. Very clear is the stability of the coefficients which for all practical

98



purposes are the same. Also shown is —2 times the log likelihood at the maximum.
Although the models are not nested and so formal statistical comparison using a
likelihood ratio test is not appropriate, these values do allow informal comparison
suggesting that using the most recent measurement explains a little more variation

than using earlier measurements.

The estimates obtained are remarkably similar to the logistic regression coefficients
obtained for coronary heart disease mortality in white men aged 40-54 with no pre-
existing heart disease reported by Kannel et al (1986) in their summary of results from
several epidemiological studies. In particular they report coefficients for diastolic
pressure measured at one visit of 0.0331 (standard error 0.0023) in the largest study,
the Multiple Risk Factor Intervention Trial screening cohort of 221076 men, and of

0.0342 (standard error 0.0099) in the longer term but smaller Framingham study.

The likelihood values can be compared with the value from the saturated survival
model where diastolic pressures from each of the four visits are included
simultaneously. The estimates from this model are given in table 4.3. There is a
highly significant improvement in statistical significance in moving from one to four
diastolic pressures (P<0.0001, likelihood ratio test). There are no statistically
significant differences between the risk coefficients. Thus, although the coefficients
vary considerably in relative terms (the estimate for visit Vg is over 50% higher than
that for visit V_,), lack of power limits an ability to claim that the level of diastolic
pressure closer to Vg, the time origin used for predicting survival from, is more

important for predicting future risk.
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Diastolic b.p. Risk coefficient, Standard -2 log likelihood

from visit B error of at maximum
Vo 0.0161 0.0053 8521.25
\ 0.0135 0.0055

V., 0.0102 0.0056

V_3 0.0122 0.0055

Table 4.3: Risk coefficients for observed diastolic blood pressures when
included simultaneously in a model also with age, cholesterol,
smoking status, town and treatment group.

A further model can be developed by constraining the risk coefficients for diastolic
pressures at visits V_3 to V, to be equal. This is equivalent to entering into the model
just the mean of the four pressures as a predictor variable. In this case, the risk
coefficient is 0.0522 with standard error 0.0054. This gives an increase in risk of 5.36%
associated with a 1mmHg increase in the observed mean of four diastolic pressures
measured approximately one year apart (95% confidence interval: 4.26% to 6.48%).
More important, though, is the small change in the maximum value of the likelihood
from the previous model (—2 log likelihood = 8521.77, an increase of 0.52) which is not
statistically significant. Thus all the information from such a sequence of four diastolic

pressures would appear to be contained within their mean.

The important consequence of this result is that there is insufficient power obtainable
in this dataset to determine whether any other function of the four observed blood
pressures has greater predictive power than their mean. Also, no function will

significantly improve the predictive power of a survival model including the mean.
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This implies that neither trend nor lability (measured here by the residual variation
about the fitted trend through the four measurements) improve predictive power. For
completeness and to emphasize this point, in figures 4.5 and 4.6 are shown the crude
mortality rates by quartile of observed trend (within individual) and observed residual
standard deviation about the fitted trend, respectively, within each town: the lack of
any relationships is clear. The result for the lack of predictive power of trends agrees
well with findings from the Framingham study (Hofman et al, 1983). Considering
trends over a longer period (12 years) with prediction over the following 14 years, they
concluded that the trend did not add anything to prediction after the level at the end
of the 12-year period was considered. In addition they assessed the predictive value of
residual variability about the trend during the 12 year period and, as here, found no
effect. Note that the lack of predictive power of residual variation might be expected
given that a model describing within-person variability as homogeneous in the
population (after allowing for level) was found, in the previous chapter, to fit well.
Thus variation in this characteristic is, apart from sampling variation, just describing

differences in underlying mean diastolic pressure.

Kannel, Sorlie and Gordon (1980) also considered as possible predictors of risk, the
maximum, minimum and mean observed pressures within a visit. They found that
they were each equally good predictors of risk and also that within-visit variability had
no predictive power. Although this study has no similar within-visit information, it is
useful to consider whether either the maximum or the minimum diastolic pressure
across the four annual visits performs as well as the mean of the four. Table 4.4 shows
the estimates of the risk coefficients obtained together with their standard errors and

the model likelihood values. An informal comparison of the likelihood values for each
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Figure 4.6: Crude cardiovascular mortality rates by quartile of residual standard

deviation of diastolic pressure (after fitting mean and trend to a
sequence of four annual observations), within town (bars are *+ one
standard error)
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Function of diastolic Risk coefficient, Standard -2 log likelihood

Function of diastolic Risk coefficient, error of f at maximum
pressures at visits 8

mean 0.0522 0.0054 8521.77
maximum 0.0408 0.0046 8536.99
minimum 0.0434 0.0052 8544 .82

Table 4.4: Risk coefficients for functions of the four observed diastolic
blood pressures when included separately in a model also with
age, cholesterol, smoking status, town and treatment group.

model suggests that the mean is a better explanatory variable than either the minimum
or the maximum. Of course, both the maximum and minimum reflect information
contained in four pressure measurements. Therefore, just as the risk coefficient
associated with the mean of four measurements is larger than the coefficient associated
with a single measurement due to its improved prgcision in estimating underlying level,
so are the coefficients associated with the maximum and minimum. Similarly, that
their coefficients are smaller than that associated with the observed mean is a reflection

of their comparatively lower precision in estimating the underlying level.

Before presenting the full models developed, two further issues are worth considering.
First, as the study cohort is taken from three towns, there is the opportunity to
consider whether the association between diastolic pressure level and risk varies

between towns. Fitting a model with separate terms for diastolic pressure within each

104



Town Risk coefficient, B, Standard -2 log likelihood

for mean of 4 dbp’s error of ,fi at maximum
Edinburgh 0.0504 0.0090 8516.62
Budapest 0.0373 0.0098
Prague 0.0670 0.0089

Table 4.5: Risk coefficients for the mean of four observed diastolic blood
pressures, by town, when included simultaneously in a model also
with age, cholesterol, smoking status, town and treatment group.

of the three towns gives the results presented in table 4.5. The estimated effect for
Prague is about twice that for Budapest, with Edinburgh intermediate. The difference
in —2 times the log likelihood between this model and the model with a common risk
coefficient for the observed mean diastolic pressure is 5.15 which is of marginal
statistical significance (P=0.08). This result contrasts with the overview of MacMahon
et al (1990) which found no evidence of heterogeneity between effects observed in
several epidemiological studies carried out in different geographical locations. Thus
caution should be used before interpreting this finding as evidence for between-town
variability in the risk relationship. In addition, it is possible for the association of risk
with underlying mean pressure to be the same in each town, but for the relationship
with observed pressure to be different between towns because of regression dilution: the
extent of induced differences is dependent on the relative magnitudes of within- and
between-person variance components which the models developed in chapter 3 suggest
do vary markedly between towns. This issue is returned to later when the effects of

regression dilution are considered more fully. Despite this, if the variability in effects
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between towns is real, then applying these coefficients to differences in the mean of four
observed pressures in each town of one standard deviation in the respective town’s
population (given in table 3.5) produces very varied and practically important
differences in the associated risks: 54%, 34% and 62% increase in risk per standard
deviation in Edinburgh, Budapest and Prague, respectively. Note also that for
predicting risk in an individual from observed diastolic pressures, as distinct from
understanding risk relationships, these differences imply that the appropriate town’s

model should be used.

The second issue is one of potential confounding that might arise from the use of trial
data. Earlier, the influence of clofibrate in producing a step decline in blood pressure
level from visit V_, to visit V_3 was noted. Therefore it is relevant to assess whether
the lower blood pressures found in the clofibrate group produce a different risk
relationship from that found for similar levels in the placebo groups. This can be
assessed by including an interaction term of diastolic pressure and treatment with
clofibrate. For the interaction of treatment with the mean of the four observed
pressures, the test does not achieve conventional statistical significance (P=0.38).
Thus, it seems that the lower blood pressures achieved in the clofibrate group lead to
the same risk relationship with cardiovascular mortality as similar pressures would in
individuals not taking clofibrate, though it is important to recognize the limited power

of this study to detect an interaction.

Thus this section has established that given the sequence of observed diastolic blood
pressure measurements, after the mean level has been included in a survival model for

predicting risk of dying from cardiovascular causes, no other characteristic of the
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sequence significantly improves prediction. If the mean diastolic pressure is based upon
fewer than four observations, then the estimated risk coefficients for diastolic pressure
can be replaced by values of 0.0335 (giving an increase in risk of 3.40% per mmHg) if
based on one diastolic pressure measurement, 0.0436 (4.46% per mmHg) if based on
two, or 0.0485 (4.97% per mmHg) if based on three. This shows very clearly the
importance of knowing how many pressure measurements the mean is based upon when
using a survival model for future predictions. Note though that this is a result of
reducing the within-person component of variance as the number of measurements on
which the mean is based is increased. This illustrates well the issue of regression
dilution: the risk coefficients are smaller the less precisely the observed pressures
reflect the underlying level. Section 4.3 takes up this issue and relates risk to an
individual’s underlying average diastolic pressure rather than to an observed diastolic

pressure.

4.2.3: Estimates of risk association: other factors

Coefficients relating to other variables included in the model with the mean of four
diastolic blood pressures are presented in table 4.6. Requiring particularly careful
interpretation are the associations between risk of cardiovascular mortality and both
cholesterol and treatment group. The cholesterol distribution of subjects entering the
trial is very peculiar including all subjects with a single measurement in the upper third
of their town’s distribution (groups I and II) and half of those in the lower third (group
IIT). Cholesterol, like blood pressure, varies considerably within an individual, so
treatment group as well as cholesterol level at visit V, are both markers of an

individual’s underlying average level. This is reflected by the non-zero risk coefficient
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Variable Risk X Standard Increase in
coefficient, § error of 3 risk*
Mean dbp from visits
V_3 to Vo (mmHg) 0.0525 0.0054 5.39% per mmHg
Cholesterol observed
at Vg (mg/dl) 0.0041 0.0012 0.4137% per mg/dl
Age at Vj (years) 0.1006 0.0082 10.6% per year
Smoking status:
never smoked - - 0%
ex or current cigar/
tobacco only 0.2672 0.2579 30.6%
ex cigarette smoker 0.0443 0.1418 4.5%
1-19 cigs/day 0.5926 0.1389 80.9%
20 cigs/day 0.7795 0.1506 118.0%
>20 cigs/day 0.8625 0.1511 136.9%
Town:Edinburgh - - 0%
Budapest —0.1385 0.1269 —-12.9%
Prague -0.1424 0.1245 —-13.3%
Treatment group:
I: high chol./
clofibrate 0.2459 0.1030 +27.9%
II: high chol./
placebo - - 0%
II1: low chol./
placebo —-0.3233 0.1459 —27.6%

for continuous variables increase in risk per unit on the scale given;

for binary variables (ie smoking categories, town and treatment,

increase in risk relative to that in the base group specified).

Table 4.6:

Risk coefficient and the associated estimates of relative risk

for all variables included in the model with mean diastolic blood
pressure over the four visits, V_3 to V.
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for group III subjects (low cholesterol at entry) compared with group II subjects (high
cholesterol at entry) despite the term for cholesterol level already included in the model
and the fact that both groups received the placebo. Thus it is not possible to
generalize the risk coefficient found for cholesterol in this study to other populations

nor is it appropriate to compare it with the findings of other observational studies.

Recall also that the drug clofibrate is used to lower cholesterol and that the cholesterol
levels at visit V, for subjects in group I reflect about four years of treatment with it.
Thus the risk coefficients for cholesterol and treatment group should be considered as a
pair and their interpretation limited to describing outcome for what is a very specific
cohort: selected on the basis of their cholesterol level at one visit, treated with either
clofibrate or placebo for four or more years and then having a cholesterol measurement
at visit V. For instance, consider two hypothetical subjects from Edinburgh, one from
each of treatment groups I and II and having observed cholesterol levels at visit Vj
equal to the average in their group: that is (from table 2.3) 225mg/dl for the subject
in group I taking clofibrate and 252mg/dl for the subject in group II taking the
placebo. Then the treatment group/cholesterol component of their risk scores are
1.1684 (that is, 225x0.0041+0.2459) and 1.0332 (that is, 252x0.0041+0), respectively.
Thus the subject in the clofibrate-treated group has a risk increased by a factor of
exp(1.1684—1.0332)=1.14 compared with the subject in group II who received the
placebo. Given that the difference in their cholesterol levels at visit V might be
attributed to clofibrate treatment (because the two groups are derived from the same
population using random allocation), then this increased risk might also be attributed
to clofibrate. This is a little higher than the crude relative risk in this study’s cohort

(group I: 217/3808 (5.70%) died; group II: 198/3788 (5.22%) died; relative risk=1.09)
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and that reported for all randomised patients (group I: 404/5331 (7.58%) died; group
II: 374/5296 (7.06%) died; relative risk=1.07; Committee of Principal Investigators,

1978 and 1984).

Some comment is also useful on other covariates included in the model. The increase
in risk with age is, of course, not surprising and its magnitude represents a doubling of
risk about every seven years. This is very comparable to the findings of other studies:
risk coefficients for coronary heart disease from logistic regression models of 0.1174
(standard error 0.0298) for middle-aged Framingham men and 0.1091 (standard error
0.0038) for MRFIT white screenees are reported by Kannel et al (1986), and for more
elderly European subjects in the EWPHE trial, a coefficient of 0.1017 for
cardiovascular mortality from a proportional hazards model (Amery et al, 1986). For
smoking status, the well-known increase in risk for current smokers compared with
subjects who have never smoked is apparent. Again the risk relationship compares well
with the findings for MRFIT screenees and Framingham men: estimated coefficients of
0.87 and 0.92, respectively, for men smoking about 20 cigarettes per day. The ex-
cigarette smokers have negligible increase in risk compared with those who have never
smoked though many of the ex-smokers in the trial had been non-smokers for a
substantial number of years. For cigar/tobacco smokers, the observed risk is elevated
though the small number of subjects in this category means that it is not statistically
significant in comparison with those who have never smoked and, as found in the
British Regional Heart Study (Cook et al, 1986), is well below the increase in risk
associated with cigarette smoking. Finally, the two East-European towns, Budapest
and Prague show very similar but lower observed risks than Edinburgh (though not

significantly so).
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4.3 Underlying blood pressure level and risk: correcting for regression dilution

4.3.1 Background to regression dilution

The problem of regression dilution has been understood for many years though not by
that name: it is more often termed the problem of “errors in variables”. Standard
text books (for example: Snecdor and Cochran, 1980, p171; Draper and Smith, 1980,
pl122) consider the problem in the context of simple linear regression when the
predictor variable is measured with error. In this case a correction factor to the
estimated regression coefficient is obtainable which, under certain conditions, removes
the bias induced by the variable measured with error. It is useful to restate the
problem as it forms the basis for deriving estimates of the magnitude of risk associated

with underlying blood pressure in the context of survival models.

Consider the simple linear regression situation with dependent variable Y and predictor

variable, £, where

Y=o+ 8% +¢

with E(e)=0 and V(E):a% in the population sampled. In practice, { cannot be

measured directly and instead X is obtained where
X=¢+6
with E(6)=0 and V(&):ag. Then the regression model that should be fitted is

Y = o+ % + €*
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where €*=¢— %6 and so the error term also depends on #*. However, if the random
variables, § and ¢, are uncorrelated and normally distributed, and are also uncorrelated
with &, then the usual least squares estimator, 3, based upon observed values of Y and

X is biassed but is directly related to g*:
: * 2/.2 -1
E(B) =5 [1 + 05/05] (4.2)

Thus, under these assumptions, the estimated regression coefficient, ﬁ, based on the
observed values needs to be increased by a factor of (1+a§ / a%) in order to provide an

unbiassed estimate of g*.

In moving away from simple linear regression, Carroll (1989) notes that such simple
correction factors are generally not obtainable and the problem becomes dependent on
the true regression coefficients. In the next section, the dependence of the correction
factor on the true coefficient is considered further in the context of the proportional

hazards model for survival data.

4.3.2 Regression dilution in the proportional hazards model: background

Prentice and co-workers have studied the problem of covariate measurement error in
the context of proportional hazards models (Prentice, 1982; Pepe et al, 1989). Their
approach has been to assume the proportional hazards model for the underlying
covariate, £, and then to determine the form of the induced hazard model for the
covariate, X, which represents £ measured with error. They show that the induced

hazard function cannot be written in the form of (4.1), that is a base hazard function
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dependent on time multiplied by a risk function dependent on the covariate but not on
time. Thus, the usual estimation methods cannot be applied. However, they do obtain
some general results for the form of the induced hazard ratio h(t|x)/hg(t), where
hy(t)=h(t|x=0) at any time t, from which some conclusions can be drawn. In
particular, these include that the risk coefficient estimated using the covariate x, B, is
related to the coefficient associated with the underlying covariate, 8*, by the same
relationship, approximately, as derived for simple linear regression (given by equation
(4.2)) when either the event rate is low or the distribution of £ conditional on x is
“concentrated”. However, the sensitivity of these results to departures from “low”
rates or less “concentrated” distributions was not examined. This is investigated in the
next sub-sections using an alternative approach: the expected value of the coefficient B
is found by solving the usual equations for maximum likelihood based, incorrectly, on
the observed covariate, x and relating this to the risk coefficient, 8*, associated with
the underlying covariate, £. In section 4.3.3, the situation when there is no censorship
is considered and then the results are extended, in section 4.3.4, to assess also the

impact of censorship.

4.3.3 Regression dilution in the proportional hazards model with no censorship

Standard texts on survival analysis (for example: Cox and Oakes, 1984, chapter 7;
Kalbfleisch and Prentice, 1980, chapter 4) show that the maximum likelihood estimate,
B, for the risk coefficient associated with the covariate x in the proportional hazards

model given by (4.1) is the solution to the equation:

keED xkexp(ﬁxk)
X; — ——1 . =0 (4.3)
ifz]:) ' k§>i exp(8x,)
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where the set D (indexed by i) is the set of patients with known times of death (that
is, uncensored observations), and the set D; (indexed by k) is the set of patients still
being followed up at the time immediately prior to the time of death of patient i.
Interest here is in finding the expected value of 3 when the covariate, x, corresponds to
a predictor variable, £, measured with error. To study this, a similar situation to that
described in section 4.3.1 for simple linear regression is considered where, for

convenience, the scale of measurement is transformed:

s
I
=

Ua,%

so that y~N(0, 1), and hence x~N(¥, a’%/a%). The variance ratio, a%/a%, will be

denoted by A.

The following analysis is asymptotic: the situation considered is where the sample size
is very large so that the estimate, B, arising from (4.3) equals its expected value which
will be denoted by B, and the summations in (4.3) can be replaced by appropriate

expectations. With no censoring, so that all subjects are followed to death, this gives

E  xexp(8x)
x| T>t

E ex X
n. p(6x)

E(x) - E = 0. (4.4)

To evaluate this, note first that E(x)=0 since E(y)=0 so that the left hand
expectation disappears. To evaluate the expectations within the bracket requires the

probability density function for the covariate, x, conditional upon a survival time
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greater than t. Using the notation f(r) to denote the density function for any random

variable, R, then
f(x|T>t) = J f(x, 7|T>t) d7.
=00

Now, if S(t) is the usual survivor function (giving the probability that a subject’s

survival time is greater than t), then

f(x, 7|T>t) = S(”x’s'r()t)f(x, 20)

_ S(il7) f(x, 7)
S(t)

if the assumption is made that survival is determined only by the underlying covariate,

v, and hence that knowledge of x adds no information about survival when v is known.

Therefore
f(x, 2| Tt) = S Tl 1)
] S(tlv) f(v) dv
and so

| st texi ) a9

f(x|T>t) = (4.5)

| sm 0 av

Using this density function, then

J_ J exp(Bx) S(t|7) f(x|y) {(y) dy dx
thztexp(ﬁx) =

| sm n ax

Carrying out the integration with respect to x in the numerator gives
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[oe]

exp(By+3582)) S(tly) f(7) dy

E_exp(fx) = (4.6)
T2t | stim 1) a9
Similarly,
| e exp(ar+3820 st 1) 9
E x exp(fx) = 1= - (4.7)
T2t | scm 1) a9
Substituting (4.6) and (4.7) into (4.4) gives
| remm exp(av+3070) 8G317) 1) 9
E | 1z __ =0
' j exp(B7+162X) S(t]7) 1(7) dvy
and so
| exe(87) stt1) 1() a9
E ~%9 + 82| =0. (4.8)

| exp(sm) stei) () ¢

To evaluate this requires the probability density function for t. This is the marginal

density function:

) =| ft7d

[ el 1) 2.

But  f(thy) = ~§ S(tl7)

where for the log-linear proportional hazards model
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t
S(tly) = exp[—exp(ﬂ*v) Joho(U) dU} (4.9)

Therefore

f(t|y) = ho(t) exp(B8*y) S(tlv)

and hence

() =] ho(t) exp(#*n) S(tI) 1) d. (4.10)
=00
Using (4.10), the expectation in (4.8) can be evaluated giving

o0

o || 7 emam st 1) dx [ ho(e) exp@*n) (eI 1) a

,

= dt + X = 0.
| exe(am) sceim) 1) av

(4.11)
An important result can be obtained by making the change of variables:

t
v = Hy(t) = Jo hg(u) du

so that dv=hgy(t)dt, with v=0 when t=0 and, if the reasonable assumption is made
that S(t)—0 as t—oo (that is, everyone dies eventually), v—oo as t—oco. Then with

expansion of S(t|y) using (4.9), equation (4.11) becomes

o o]

o ro vexp(B7)exp[-v exp(8*7)}f(v)dy I exp(8*v)exp|-v exp(8*7)lf(y)dy

- -00 dV
JO J __exp(By) expl-v exp (B*1)] (1) dv

+ X =0. (4.12)
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Thus the relationship between B and B* does not depend upon the form of the
underlying hazard function. This result requires no assumptions about the
distributional forms for 4y and &, beyond their mutual independence. In general, this
equation requires a numerical rather than an analytical solution to determine the
relationship between 3, the expected risk coefficient obtained using the observed

covariate values and 3%, the risk coefficient related to the underlying covariate, .

Taking f(y) as the normal density function with mean zero and variance one, then
given B*, equation (4.12) can be solved numerically for § for different values of A: here
values between 0 and 2.5 in steps of 0.1 are considered. Figure 4.7 shows the
relationship between the correction factor g* /B and X for a variety of values of g*
from 0 to 2 (corresponding to a wide range of risk increases from 0 to 639% for a
standard deviation change in the underlying covariate value in the population). Also
shown is the correction factor found for simple linear regression: #*/8=1+\. Very
clear is the dependence of the correction factor on the underlying risk coefficient, 8*.
For small values of #* the correction needed is close to 1+ for all values of A. This
agrees with the conclusion of Prentice (1982) that this is an appropriate factor to use if
the event rate is low. However, as B8* increases the correction required also increases
markedly. Even for values of A and #* which might be more relevant in practice (say
B* up to 1 and A up to 1), the correction factor needed to estimate the underlying risk
coefficient can be substantially more than 1+\. For example, with #*=1 and A=1,

1+ A=2 whereas the required factor is 2.644.

Another feature shown in figure 4.7 is the approximate linear relationship between the

correction factor, #* /3, and the variance ratio, A\. This is particularly good for smaller
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Figure 4.7: Regression dilution: the relationship between 8* /8 and the variance

ratio, A, for the proportional hazards model when the covariate is
measured with a normally distributed error and there is no censorship
(dashed line is where f*/f=1+2)
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values of 8* (say, up to 1) having also the convenient intercept of 8*/8=1 for A=0.
Thus if the gradient of this relationship can be described in terms of a simple
dependence on #*, if only approximately, then a usable relationship between 8* and 8

might be obtained.

Of course, the lack of knowledge about the underlying risk coefficient, 8*, makes the
direct application of figure 4.7 difficult. Therefore it is also useful to consider a more
direct form of the relationship between the correction factor, 8*/3 and f: then given
B, this would allow some inference concerning the value of 8*. Figure 4.8 shows this
for several different values of the variance ratio, A. Note that in the case of simple
linear regression, #*/B=(1+X) and so the correction factor is independent of § and
would appear as a horizantal line on the figure with intercept (1+1). This figure
shows very clearly the departures of the correction factor from (1+X) as 8 increases;
this is particularly marked the larger A is. Thus, unless 3 is close to zero, correction
for regression dilution using the factor (14+)) would give an underestimate of g*

possibly by a considerable amount.

Recall that B is the expected value of B, the risk coefficient obtained by solving
equation (4.3) based on the observed covariate values. In practice, B will not equal g8
but if the sample size is sufficiently large then the difference between the two will be
small and so figure 4.8, together with knowledge of A, can be used to give a guide as to
the likely magnitude of the underlying risk coefficient, #*. In small samples, it would
be advantageous to reduce A by taking several measurements on each individual and to
find 3 using the mean of these instead of a single value as then the correction factor

necessary is not so sensitive to the departure of # from S.
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Figure 4.8: Regression dilution: relationship between the correction factor §* /3

and the expected risk coefficient relating to the observed covariate, 3,
in the proportional hazards model with no censorship present and
normally distributed measurement errors
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4.3.4 Regression dilution in the proportional hazards model with censorship present

In practice, censoring mechanisms are often difficult to describe well, so only one simple
form will be considered explicitly here. This is where all subjects are followed to death
or some maximum time, ty say, whichever is the shorter time. This type of mechanism
might arise in practice, for example, in a clinical trial where a fixed length of follow-up
is prescribed for each patient randomized. The effect of this censorship in equation
(4.4) is to truncate the distribution of survival times, t, used in determining the right

hand term and to produce a non-zero expectation for the left-hand term:
E (x).

Proceeding in a similar manner as when no censorship was present, consider first the

probability density function of survival times that are observable. This is simply the

density function (4.10) truncated at the time ty giving

Jw ho(t) exp(8*7) S(t|7) f(7) dv
f(t) = =™

0<t<tg,

[e5]
| st a4
-o0
and being zero if t>ty. Thus, as in obtaining equation (4.12),

E xex X
x|T>t p(Bx)

E_ exp(fx)

x|T>

tIT<tq

o

to] | 7exp(@m) S(tm) 1 | ho(t) exp(8*9) S(t)

=J° -

| exe(am) sttln) tn) dv | [1-Stolm J1() av

dt + B
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J rofte «[ ] vexp(# 7)exP[‘Vexp(ﬁ*7)]f(“/)d7J exp(8*v)exp|-vexp(8*y)lf(y)dy
0 J_ eXP(ﬂ‘)‘)exp[-vexp(ﬂ*‘)’)]f(‘Y)d‘yJ_ |:1-exp|:—Ho(to)eXP(ﬂ*7):|]f(7)d7

+ B (4.13)

To determine the expectation of x conditional upon T<t, requires the probability
density function of x given a survival time less than t;. Akin to obtaining f(x|T>t)

given by (4.5),

J w [1~S(tol7)] f(x|7) £(7) dv

f(x|T<ty) = =

J_ [1-S(tolm)] f(7) dv

Thus,

J'°° J°° x [1-S(tol7)] f(xly) f(7) dx dy
(x) = il

ATt r’ [1-S(tol)] () d

o0

J_ y [1-S(toln)] f(7) dv
J°° [1-S(tol7)] f(7) dv

~[ 7 Sl 1) d
= -1 since E(v)=0. (4.14)

1-[ Sttol 1) 4

Using (4.13) and (4.14), equation (4.4) gives, in the presence of censorship at time tg,
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| v sttoln) 1) a7 + 62 [1—[_ S(tol) 1) d'y}

JHo(to) Jm 'rexp(ﬂ'r)exp[-vexp(ﬁ"*‘r)]f(‘r)d‘rjoo exp(B*y)exp[-vexp(8*y)H(v)dv S
+ -0 -0 v

0 fo exp(B7) exp[-vexp(8*7))f(v)dy

=0 (4.15)

where S(tg|y) = exp [—-Ho(to)exp(ﬂ*'f)].

This is dependent on the underlying hazard function only through Hg(ty), the
cumulative base hazard function evaluated at ty, or equivalently through Sy(tg), the
base survivor function evaluated at time tg;. Although there is a one-to-one
relationship between this and the proportion in the population that would be censored,
this depends on the distribution of the underlying covariate, ¥, in the population as
well as B* and, in general, can only be obtained by solving this relationship

numerically.

Keeping y~N(0,1), figures 4.9 and 4.10 show the relationship between the correction
factor #*/f and the variance ratio, A, obtained by solving (4.15) for varying levels of
censorship when A*=0.5 and 1.0, respectively. Also shown on both figures is the
dashed line 8*/8=1+). Clear from these figures is that increasing levels of censorship
reduces the correction factor needed towards 14+A though the magnitude of this

reduction is dependent upon the value of g*.

For other forms of censoring mechanism, both survival times and the values of the
covariate x amongst patients observed to die are likely to be more varied than those

arising from the censoring mechanism considered here. Hence, the impact of censorship
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Regression dilution in the proportional hazards model with censorship
present: relationship between 8*/8 and A when $*=0.5 for different
levels of censorship (dashed line is where 8*/8=1+2)
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Regression dilution in the proportional hazards model with censorship
present: relationship between 8*/8 and A when §*=1.0 for different
levels of censorship (dashed line is where 8*/8=1+2)
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is likely to be less marked with the relationship between the correction factor, §*/8,
and the variance ratio, A, closer to that found with no censorship than the linear

relationship with g*/8=1+\.

4.3.5 Blood pressure and risk: adjusting for regression dilution

This section describes how an adjustment to the risk coefficients obtained in section
4.2.2 for relating risk of cardiovascular mortality to observed blood pressure can be
made to give an estimate of the risk coefficient relating to underlying diastolic blood
pressure. Key to this derivation is the result from the previous chapter that the high
level of censorship in this study’s cohort (just over 95% in each of the three towns)
implies that applying a factor of 1+ will give an estimate that is almost unbiassed
particularly as the risk coefficient B8* is comparatively small (by considering the
coefficient related to the mean of four measurements it will be of the order of 0.5 for a
standard deviation change in underlying blood pressure level). As mentioned earlier,
Prentice (1982) also suggests the use of this correction factor if the distribution of £
given x is “concentrated”. This might be interpreted as meaning that the variance
ratio, A is small. This can be better achieved by applying the correction to the risk
coefficient gained for the mean of four observations as then the value of A is reduced by
a factor of four compared with when using the risk coefficient is based on a single

observation.

The difficulty with applying the adjustment to the risk coefficient associated with
observed blood pressures given at the end of section 4.2.2 is in defining the ratio, A,

when it is known that the data is derived from three distinct towns and that the
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variance components differ between towns. Thus the approach adopted is to fit the
full model within each town and then apply the adjustment factor to each town’s risk
coefficient based upon the variance components derived for the respective town in
chapter 3. The model formulated for these components related an observed blood

pressure, X, to the underlying pressure, &, in the following manner:
x ~ N[& ofy[1+c(6—n)]?]
§ ~ N(p, 02)'

This model allows the within-person variance to change with the level, £. This is an
additional complexity not considered in the previous section. It imposes a correlation
structure between £ (and hence v) and § which will have an effect on the correction
factor needed. However this correlation is very weak and so, drawing on a parallel in
simple linear regression (Draper and Smith, 1980, p123), its impact on the correction
factor would be small. Thus, in obtaining the variance ratio, A, the average within-

person variance will be used for the term, 0%:
o% = E 0'\2N[1+c(§-—p):|2:|
= 0'\2N|:1 +c20'2:|.

As the model where the observed pressure is in fact the mean of four measurements is
being used, this average variance needs to be divided by four to give the appropriate

value of a% and so
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\ 0_% _ a\z,v[1+c202]
a% - 402 '

The parameter estimates for c, asv and o2 (obtained in chapter 3) are presented again
in table 4.7 for each town together with the consequent correction factors 1+A. Also
given in table 4.7 are the risk coefficients associated with the observed mean of four
diastolic pressures to which the correction factors are applied to give the risk
coefficients shown in the same table for the underlying diastolic pressure. Standard
errors are also presented; the adjusted errors being obtained from the model estimates
with the same correction, 1+, applied. This ignores the error in estimating A but,

given the large sample size, this will be negligible.

The risk coefficients show quite marked variability between one another particularly
between that for Prague and those for Edinburgh and Budapest. A pooled estimate,
Bp, for the risk coefficient, ¥, can be obtained by finding the weighted average of the
individual estimates where the weight for the ith estimate, w;, equals the inverse of the
variance of the associated adjusted estimate (that is, the square of its adjusted

standard error):

3
zwiﬂ? 3
ﬂ;:mg— with standard error [Zwi]
i=1

i=1

NI

where ,3;" denotes the adjusted risk coefficient for the ith town. This gives an estimate
of 0.0672 with standard error 0.0069. Thus the pooled estimate indicates an increase in
risk of 6.95% for a unit increase in underlying diastolic pressure (95% confidence

interval: 5.51% to 8.41%). An approximate test of homogeneity can be framed, as in
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Edinburgh Budapest Prague
Observed mean of
four diastolic pressures
Risk coefficient 0.0509 0.0381 0.0673
Standard error 0.0091 0.0100 0.0090
Variance components
o2 60.44 46.58 36.66
o2y 45.24 55.00 53.59
c (x10%) 10.43 12.67 13.88
Correction factor™ 1.1884 1.2974 1.3680
Underlying mean
diastolic pressure
Risk coefficient 0.0605 0.0494 0.0921
Standard error 0.0108 0.0129 0.0123

-« 0\2N(1 +c20?)

Correction factor = 1 +

Table 4.7: Derivation of coefficients for associating underlying diastolic

blood pressure with risk of dying from cardiovascular causes by

town.

overviews, to assess the evidence for heterogeneity in the risk coefficients between

towns (DerSimonian and Laird, 1986). The test statistic is

3 wiBF -85,

Under the null hypothesis of homogeneity of coefficients between towns, this is
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distributed as chi-square on two degrees of freedom. Evaluating the statistic’s value
gives 6.37 (0.025<P<0.05). Thus there is some evidence of heterogeneity in underlying

risk coefficients between towns.

MacMahon et al (1990) have also studied the problem of regression dilution to obtain
an estimate of the relationship between underlying diastolic pressure and risk of
cardiovascular events. Their correction factor was obtained graphically using repeated
blood pressure measurements made in the Frémingham Study. Essentially, they
grouped subjects into five diastolic pressure bands on the basis of pressure
measurements at one, “baseline”, visit. By relating the mean diastolic pressure within
each group found at a visit four years after baseline, to the group means at baseline,
they found that the difference between the means of the lowest and highest groups was
reduced by about 60% between baseline and the later visit. This is the effect of
regression to the mean and consequently they increase the risk coefficients based on

observed diastolic measurements by 60% to correct for regression dilution.

This is lower than the correction factors for adjusting risk coefficients relating to a
single diastolic measurement obtained in this study: increases of 75%, 119% and 147%
for Edinburgh, Budapest and Prague, respectively. Notably, their correction factor is
closest to that of Edinburgh where a similar policy of rounding to the even digit was
practised as in the Framingham Study. However, it does illustrate the possibility, as
they recognize, that a larger correction factor may be necessary than they used. It also
shows the posssibility for error if a factor obtained from one study’s repeat
measurements is applied to the estimated risk coefficient from another study carried

out in a population where the within- and between-person variance components are
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different to those in the first study.

Because their study does not have correction factors from each study, they are unable
to investigate the possibility of heterogeneity between studies in the risk relationship
with underlying diastolic pressure level. Thus there is no evidence to confirm or refute
the possible heterogeneity found between the three towns in this study. Thus direct
comparison can only be made between their estimate of the magnitude of the
relationship and the pooled estimate obtained here: the reduction in risk associated
with a reduction in underlying pressure of 7.5mmHg (as they used) from their overview
was 46% for stroke and 29% for coronary heart disease compared with 40% for
cardiovascular mortality in this study (36%, 31% and 50% for Edinburgh, Budapest
and Prague, respectively). Thus their estimate for coronary heart disease and stroke
combined (about 30% or so) would be lower than the pooled estimate obtained here
though this might just reflect their use of a lower correction factor rather than real

differences in risk relationships.

4.4 Summary of main results with discussion

The results of this chapter can be divided into two types. The first are those with
practical implications for assessing the components of risk of cardiovascular mortality
associated with different characteristics of blood pressure variability over time. The
second are those concerning methodological aspects of regression dilution in
proportional hazards models, that is the effect on risk assessment of a covariate that is

measured with error.
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Consider first risk prediction. A sequence of four measurements taken at
approximately annual intervals was used to assess the value of repeated measurements.
The primary result found was that mean pressure level is the dominant determinant of
risk and that other characteristics such as trend and residual variability (about the
trend) carry little, if any, predictive value after allowing for mean level. The result for
residual variability is not surprising given that homogeneity of within-person variance
across individuals was established, after allowing for level, for diastolic pressure in
chapter 3, and so differences between individuals in this parameter can be attributed to
sampling variation. Trends during the three-year period have been established to be
small so that this study lacks power to demonstrate any predictive ability that might
exist, unless risk changes dramatically with changes in trend. Therefore it was not
surprising that trends were not found to be important. This supports the finding of
Hofman et al (1983) who studied the predictive power of longer-term trends using data

from the Framingham Study.

When considering diastolic pressure level as a predictor of risk, it is important to
distinguish between models developed for predicting risk in a new individual on the
basis of their observed blood pressure and models aimed at understanding the aetiology
of the disease. For the first, risk coefficients relating to the mean of a given number of
observed blood pressure measurements are required. For the second, it is more useful
to consider the risk coefficient related to underlying pressure as this enables direct
comparison with other populations and other risk factors. Table 4.8 summarizes the
changes in risk derived in this study for unit changes in mean of between one and four
diastolic pressure measurements and also for the underlying level (equivalent to the

mean of an infinite number of measurements). Clear from this table is the importance
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No. of measurements on Increase in risk for 95% confidence interval
which mean diastolic unit change in mean for increase in risk
pressure based

1 3.40% 2.57%, 4.25%
2 4.46% 3.49%, 5.447%
3 4.97% 3.92%, 6.03%
4 5.36% 4.26%, 6.487%
oo (=underlying level*) 6.95% 5.51%, 8.41%

* based on pooled estimate of effects adjusted for regression dilution
within each of the three towns studied

Table 4.8: Estimated risk gradients associated with the means of different
numbers of diastolic blood pressure measurements

of applying the appropriate risk gradient, based on the number of measurements taken,
to give predictions. However, it is equally important to understand why the
coefficients change: increasing the number of measurements increases the precision
with which each individual’s level is assessed so that the distribution of observed means
in the population becomes less variable. This is the “regression to mean” phenomenon
and is the reason why “regression dilution” is such an appropriate term for the effect.
An important consequence of this is that the risk coefficients that are obtained in any
study for observed mean pressures depend on the relative sizes of the within- and
between-person variances for diastolic pressure and so are not readily applicable to
other populations unless the variance components are the same in each population.
This latter requirement is unlikely to be fulfilled if only because population
distributions of pressure are partly determined by age profiles which can vary
considerably between populations. This is why the determination of the risk gradient

with underlying level is so important as it does not depend on these population traits.
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This requires the adjustment for the effect of regression dilution of the risk coefficients

relating to observed pressures.

The problem of regression dilution in the log-linear proportional hazards model was
examined by relating the risk coefficient, 3*, associated with the underlying covariate,
£, to the expected value, (3, of the risk coefficient, B, which is the solution to the
maximum likelihood equations with the covariate x (which is equal to £ measured with
error) replacing £. With a proportional hazards model assumed for £, the proportional
hazards model does not apply for x. Even so, 8* was found to be related to 4 in a way
which does not depend upon the base hazard function. However it does depend upon

the value of #* and on the proportion of observations that are censored.

When the measurement error follows a normal distribution with zero mean, figure 4.7
shows the relationship between 8*/3 and ), the ratio of the within- to between-subject
variance components, for the case when there are no censored observations. An
important result here is that B*/8—1+) as |3*|—0, which is similar to the
relationship found for the errors in variable problem in simple linear regression where
B*/B=1+X for all values of #*. Thus applying the correction (1+1) to the risk
coefficient obtained using the observed covariate values, x, will give a lower bound for
the estimate of 8*. This will be a good approximation to an unbiassed estimate in

many practical applications where the risk gradient is relatively small.

For larger values of 8%, the dependence of the ratio #*/8 on ) is approximately linear
except for very small values of A. Further work would be useful to determine whether

a simple analytical form for this relationship can be found. Without this, figure 4.8 can

135



be used to give a guide for relating a risk coefficient, 3, estimated using observed
pressures to the underlying risk gradient, 8*. However, this figure demonstrates the
sensitivity of the value of * found to the precision to which the risk coefficient for
observed pressure is determined. Hence its value will particularly lie in those situations

where large sample sizes are available.

One specific type of censoring was considered: when all subjects are observed to some
maximal time unless death occurs before this. In this setting, the extent of the
adjustment needed depends on the proportion of the population who are censored. No
simple result follows directly from this because this proportion also depends upon the
underlying risk gradient, 3*. However, one important result found is, again, that the
ratio %/B—14X if there is a high level of censorship. This would apply for many
population studies of chronic diseases where only a small proportion of subjects
followed-up are observed to death. This agrees with a conclusion of Prentice (1982)
that when the probability of survival during the follow-up period is close to unity, a
proportional hazards model for the covariate x is a good approximation, and that then
the ratio of the risk gradients associated with £ and x is approximately 1+A. This
limit also imposes a lower bound on the value of 8* which can be used in conjunction
with an upper bound obtained from either figure 4.7 or 4.8. Again, further work is
suggested to see whether an analytical approximation that describes the relationship
between 3*/f3 and A with the level of censorship through its dependence on B* can be

found.

Some further comment is also useful on the issue of comparing risk gradients found in

different populations. As has been seen, the magnitude of risk coefficients relating to
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observed blood pressures depends both on the underlying risk gradient, 8*, and also on
the value of the variance ratio, A. Thus with covariates measured with error,
differences in the associated risk coefficients between studies might be attributable
either to differences in the underlying risk gradients or to differences in the confounding
parameter, A, or to both. Thus, in conducting an overview of studies, the ideal would
be to obtain estimates of A* which reflect adjustment for regression dilution. This
requires information about A (and hence also, implicitly, about the number of
measurements on which an observed mean pressure is based). Then an analysis of
these can be carried out to assess the evidence for heterogeneity and, if appropriate,
pooled estimates obtained. If the required information is available, this would be
relatively straightforward in a simple linear regression context. @ However, the
dependence, in survival models, of the adjustment on the unknown magnitude of g*

makes this difficult unless the studies are all large or the level of censorship in each is

high.

If these conditions are not satisfied, then some consideration of heterogeneity might be
possible if it can be established that the values of A are similar across studies. Then
evidence for heterogeneity in the risk coefficients related to observed blood pressures
can be assessed and a pooled estimate obtained for which, because it will be based on a
larger sample size, the appropriate factor for adjusting for regression dilution might be
determined. Of course, this demonstrates the importance of obtaining information
about the within- and between-subject variance components in any study or,
alternatively, removing the need for marked corrections to risk coefficients by
determining precisely each individual’s underlying pressure level through repeated

measurements of blood pressure on several occasions.
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5. Screening blood pressure

5.1 Introduction

On what basis should a doctor decide that intervention is desirable to try to lower an
individual’s blood pressure? Whilst this is ultimately a question requiring a clinical
decision, there is an important role for statistical methodology in formulating aids for
the decision-making process. In particular, this contribution needs to assess what
evidence there is that an individual’s underlying mean blood pressure is unduly
elevated, and to what extent, given a sequence of blood pressure measurements. More
generally, the problem concerns the use, for screening, of repeated measures taken on a
continuous variable that varies about some unknown level and where risk of disease
varies, also continuously, with that level. Thus the classical diagnostic tests associating
a positive or negative result, from a single test, with a binary disease state are not of a
clear direct use. Whilst this chapter focuses on screening blood pressure because of its
association with risk of cardiovascular disease, the concepts put forward are

generalizable to other situations with continuous risk factors measured “with error”.

There is certainly an awareness amongst some doctors of the problem that the
variability of blood pressure causes in reaching a decision about the need for
intervention. This has been formalized by the publication of guidelines for treating
mild hypertension by the World Health Organization (Participants of the
W.H.O./I.S.H. meeting, 1986). Formulated by an expert committee on the basis of a
review of the scientific evidence, these guidelines (shown, diagramatically in figure 5.1)
illustrate the framework for a screening programme. On the basis of the accumulated

information from a set of repeat blood pressure measurements (generally their mean), a
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Stop no Diastolic BP measured twice on 2
different occasions: mean>*90mmHg?

[ ——

screening

yes

Repeat measurements on at least two
further days over a period of 4 weeks:
mean>=100mmHg?

lno

Behavioural intervention;
no drug treatment.
Further observation over 3 months:

mean>=95mmHg?
lno

Behavioural intervention;

yes

yes

Commence drug
treatment

Consider drug
treatment

yes

no drug treatment.
Further observation over 3 months:

mean>=95mmHg?
1no

Continue behavioural intervention.
Blood pressure measurement
every 6 months.

Consider drug
treatment

Figure 5.1: Approach to screening for elevated diastolic blood pressure (phase V)
suggested by the World Health Organization guidelines
(from: Participants of W.H.O./I.S.H. meeting, 1986)
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decision is made either to consider pharmacological intervention or to continue
screening (whilst encouraging behavioural change such as stopping smoking, and
altering diet to lower blood pressure, to lower serum cholesterol and to control
diabetes), or to stop screening. Note, though, that these guidelines only allow this last
option after the first two measurements have been taken and not later. In contrast,
the British Hypertension Society working party on the treatment of mild hypertension
(1989) only specify a mean diastolic blood pressure in excess of 100mmHg over three to
four months as an indication for drug treatment but do not specify how many
measurements should be taken. This fails to reflect fully the fact that, for example, for
any individual a mean of two measurements is more likely to exceed this level than a
mean of four because of the reduced variance of the sample mean obtained by

increasing the number of measurements on which it is based.

The screening programme studied in this chapter is a generalization of that proposed in
the World Health Organization guidelines. Essentially, after the ith measurement, a

decision is made as follows:

() if X; > U;, then consider intervention
(ii) if x; < L;, then stop screening
(iii) else if L; < %x; < U;, then continue screening to visit (i41),

where %; is the mean of measurements taken up to and including the ith visit. Here the
L and U are critical values to be determined, for which the methods for doing so form
the basis of this chapter. Two approaches are put forward. The first emphasizes the

assessment of evidence for blood pressure raised above some defined level such as that
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level at which intervention is justifiable (section 5.3): this develops previous work in
this field. Section 5.4 extends this to consider the evidence for a raised risk in the
individual patient. In particular this section develops quantification of the extent of
risk elevation as the focus of screening. It then considers the role of other risk factors
in screening for risk of cardiovascular disease which requires assessment of absolute risk

and not just relative risk.

The second approach takes a public health perspective with an emphasis on identifying
that section of the population, of a defined size, for intervention with the greatest
expected event rate subject to constraints such as those imposed by intervention and
screening costs (section 5.5). First, though, in the next section we briefly review the

previous statistical work on screening blood pressures.

5.2 Review of statistical developments for screening blood pressure

Rosner (1977) explored the parallel between classical diagnostic tests and hypothesis
testing to generate a screening rule for blood pressure based not on the existence of
disease, per se, but on the availability of a treatment for use in individuals with raised
underlying levels. This then forms the dichotomy used in these tests and so reduces
the problem to one of relating the information from the repeat measurements to the
underlying level, {. He formulated a rule to test the alternative hypothesis that £>£+
against the null hypothesis that {<{+ where £+ is some threshold for the underlying
mean blood pressure level, above which treatment for high blood pressure is indicated.
The problem of choosing £+ is considered in the discussion. By deriving a t-statistic,

Rosner suggests labelling an individual as “hypertensive” if, after a pre-defined number
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of blood pressure measurements, the null hypothesis can be rejected at some chosen
level; otherwise he is labelled “normotensive”. The choice of the number of
measurements is determined by the rate of type II error: that is, being labelled
normotensive when truly hypertensive. Of necessity, two visits are required to obtain
an estimate of within-person variability and Rosner suggests four visits so as to reduce
the type Il error rate sufficiently; indeed Liu et al (1978) suggest, in a letter
commenting on Rosner’s approach, that a larger number than this is necessary to give
adequate power. If all individuals have such a number of measurements then this is a
considerable practical constraint both in terms of screening workload and maintaining
the cooperation of the screenees. Thus, the dependence of this frequentist approach on
information from screening the individual concerned, alone, and on an error rate for the
individual’s underlying mean level being equal to {4 might explain why this approach

has not been pursued further.

There is an overlap in methodology between screening the individual for potentially
high blood pressure and screening the individual for entry into a clinical trial of
hypertensive treatments. For the latter, the aim is to identify individuals with
underlying mean blood pressures within a certain range. Goldman (1976) considered
the latter problem and formulated a rule whereby an individual was entered into a trial
if at each visit i, the observed blood pressure (not the mean of the accumulated
observations) was between limits L; and U; (which may vary between visits). Using
this definition, the probability of an individual, with given underlying mean blood
pressure and within-person variability, entering the trial could be derived. Also, if
population distributions for the underlying means and variabilities can be defined, then

the distribution of underlying means for those entered into the trial could be derived
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(using Bayes theorem) as well as the screening costs per trial entrant of different
screening policies (i.e. different choices of L; and U;). Two difficulties arise from this
work: first, the population distributions used were empirical distributions of observed
blood pressures without attempting to relate this to the underlying parameters and so
incorporated a component of variance reflecting sampling variation; second, the only
information used at any visit is the observed blood pressure at that visit rather than

some summary of that and previous pressures measured.

These limitations have been considered by Rosner and Polk (1983) in their
development of the “predictive value screening rule”. Using normal models to describe
the within-person variability about the individual’s underlying mean and the
distribution of underlying levels in the population, they obtained estimates for the
parameters of the underlying distributions for various age/sex/race groups, using data
from both a community blood pressure study and the Hypertension Detection and
Follow-up Program. Their predictive value for an individual is then the probability
that £€>¢1 conditional upon the mean of the blood pressures so far observed in the
screening process for that individual. Essentially the same approach was used by
Wilson and Hebel (1988) in their development that uses information from both
diastolic and systolic blood pressures to make inferences about an individual’s

underlying diastolic pressure level.

In the next section, the results of chapter 3 are used to derive a screening model for
individual assessment similar to that put forward by Rosner and Polk. The effect of
allowing for increasing within-person variability with level is considered for this model

and the consequences for prediction of differing parameter values between towns
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assessed. Following this, the model is extended so that the association between risk of
death from cardiovascular disease and elevated blood pressure contributes to the

screening process (section 5.4).

5.3 Screening the individual for treatment

5.3.1 The general model

The relationship between a sequence of observed blood pressures, X, and an

individual’s underlying mean level, £, in a population can be described as

x ~f(xl¢0)

vaNg(f,Q)

where @ is a vector of other parameters that are not associated with risk which may
vary between individuals (for example, within-person variability). This assumes that
the level £ is the important factor to control because of its association with risk but the
concepts are extendable if other factors are also relevant. In screening the individual,
inference can then be based upon the individual’s underlying level, £, given one or more

observed blood pressures, x. This is achieved employing Bayes Theorem to give

h(els) = k| fGxle, 0) (¢, 0) 4

where k is a normalization constant. The difficulty, already mentioned, is how to turn
this conditional distribution of belief about £ into a rule to guide decision-making as

whether to intervene to lower blood pressure or not.
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Following Rosner and Polk (1983), assume that there is a level of underlying blood
pressure, {1, above which intervention is indicated. The probability that £>£{+ given

the observed blood pressures is then

oo

p(e>erho) = [ el de
€t

[e =]

=« [ tcsle 0 66 0 an ¢
Iy

The decision to intervene is then taken if p(é>&+|x) > py for some value py;.

In practice, it is highly desirable for any screening rule to be applied sequentially so
that intervention begins as soon as there is good evidence of a sufficiently elevated
underlying level. Conversely, it is difficult to justify repeated screening if this blood
pressure level is adequately low, both on cost grounds and in the interest of cooperation
from the individual being screened. To achieve this, the following screening rule can be

defined after i screening visits have been completed:

(i) if p(§>£clx;) > py then consider intervention
(ii) if p(£>£c|§i) < p_ then stop screening
(iii) else if p_ < p(§>&clx;) < py then continue screening to visit (i+1).

where x; denotes the vector of measurements up to visit i. There is no necessity for p;
and py, to be constant from visit to visit, though such a constraint does imply that the
same level of evidence is required at any visit before a decision is reached. In contrast,

though, it might be reasonable for p and p_; to vary from individual to individual if
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different individuals have different perceptions of the balance of benefits to disbenefits
of treatment or if there are other aspects of their clinical state that might influence the
decision to intervene. In particular, the age of the patient might be an important
determinant of p, and py: given the potential for side-effects of pharmacological
treatment, a greater degree of certainty might be required for raised blood pressure
before a younger subject is recommended for treatment in comparison with an older
subject. In contrast, if a population perspective is taken for screening, then it may be
desirable to use higher values of p; and lower values of p; at earlier visits to reduce
the extent of misclassification that might be expected at the earlier visits when less

information is available. This issue is returned to in section 5.5.

5.3.2 The normal model for screening the individual for treatment

To put the general model into practice, distributional forms for f and g must be
assumed. Rosner and Polk (1983) used a simple model with normal distributions for

both:

x ~ N(¢, 03)

£~ N(/‘7 0'2) (51)

2

where p, 0“ and 0',2( were assumed constant within given age/sex/race groups. In this

case, a standard application of Bayes Theorem after i visits gives:
1% . -1 . -1
h(élx.) = N _'+£L+L L_*_L 5.2
(El_l) l:l:a)% 0_2 0’3 02 ’ 0_3 0_2 ( )
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where X is the mean of the blood pressures observed from visits 1 to i. Thus
. 1/2  [ix . -1/2
> x)=1—~& L.}.L __'+ﬁL+L 5.3
P(£>&r1%;) |:5T[03 2 222t 2 (5.3)
where ® is the standard normal cumulative distribution function.

However, in chapter 3, the following distributional form for diastolic pressure was

found to fit the data well:

X ~ N[E, 0\2N[1+C(E—.u)]2]

£~ N(/-‘a 02) (54)

This introduces into 03 a dependence on £ and produces a problem which requires a

numerical solution:

o0 o 2 5
(e>exlx)=| v(i/2m)o oy [1+c(6—p)] exp| -2 i(%—¢) 4 &= e
p T JET WI: c l‘] p 2 0'\2/\/[1+c(f—ll):|2 o2

(5.5)

This is the model that we pursue further comparing it with the model ignoring the
dependence of ox on £ given by (5.1). First, however, it is worth noting two other
complexities that might also be introduced as parameters in §. First, the time interval
between screening visits needs to be sufficiently long so that serial correlation between
measurements within an individual is not a problem: for blood pressure, Wilson et al

(1981) show that for measurements seven or more days apart, the first-order
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autocorrelation is negligible. Similarly, screening visits should not be too widely spaced
as then long-term trends in underlying level are also relevant. From the results of
chapter 3, the additional component of variance from ignoring trends over three years
can be considered small compared with the within-person residual variance. Thus for
blood pressure screening, a programme over a period of up to two or three years and
with visits at least a week apart would seem reasonable. Second, within-person
variance is assumed to be a constant between individuals (except for its dependence on
level). Goldman (1976) allowed this to vary using an empirical distribution obtained
from the work of Armitage and Rose (1966). However this overlooked sampling
variability in the estimate of the variance which would be particularly marked given
the small number of observations. Chapter 3 suggested that there was no noticeable
heterogeneity (apart from that explained by its dependence on underlying level) and so,
for diastolic pressure, constant within-person variance would seem reasonable.
However, this may not be so in other screening applications and it may be important

to recognize its contribution.

In constructing a sequential screening programme, an appropriate choice for the
distribution g(£) needs to be made. This should describe the distribution of £ in
subjects being screened. If there is no selection of subjects, this can be taken as the
distribution of underlying diastolic pressures in the general population. However, if it
can be sensitised to the individual being considered, then this will aid precision and so
reduce the screening required. Simple ways to achieve this are to employ distributional

forms appropriate to the individual’s sex and age.

To illustrate the development of a screening programme, consider a programme
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directed at middle-aged men in Edinburgh. If the men in this study’s cohort are
representative of the wider population, then appropriate estimates of ¢ and o2 (within
age-groups), a\zN and c are given in table 3.10. These estimates of within-person
variability will overestimate the true variability if the programme for any individual is
over a short time period but this will only have a minor effect given the small
difference between these values and those obtained after adjusting for trends. If { is
taken as 95mmHg and intervention is to be considered if p(§>£+[%;)>0.9=py,, say, at

any visit i, then critical values, U;, can be found by solving equation (5.5) such that

it
greater values imply intervention. Similarly if p(§>§+|%;)<0.1=p,, say, then critical
values, L;, can be found so that smaller values of %X; imply no further screening visits.
Individuals with L;<%;<U; at a visit i would then be asked to attend for a further
measurement at visit (i+1). Table 5.1 shows the screening programme obtained for up
to six visits. Also shown in this table are the critical values obtained when g(§) is not
chosen to reflect an individual’s age-group. Each critical value is given to an accuracy
of one decimal place despite the fact that rounding to the nearest even digit was
practised. However, the component of variance attributable to this rounding practice
is negligible (shown in chapter 3 to be less than lmmHg2 when the total within-person
variance averages about 45mmHg2), so that these figures would be applicable when

greater measurement accuracy is obtained possibly even by using automatic measuring

machines.

To illustrate the use of this programme, consider three individuals from Edinburgh in

the age group 50-54. Their blood pressures at the four visits considered were:
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Screening visit

Age-group 1 2 3 4 5 6

<39 U 121.9 110.8 106.6 104.4 102.9 101.9
<39 L 96.6 94.3 93.7 93.5 93.4 93.3
40~-44 U 119.5 109.4 105.6 103.6 102.3 101.4
40-44 L 94.4 93.1 92.9 92.8 92.9 92.9
45-49 U 118.4 108.8 105.2 103.3 102.0 101.2
45-49 L 93.3 92.6 92.5 92.5 92.6 92.7
50-54 U 116.2 107.6 104.4 102.6 101.5 100.8
50-54 L 91.6 91.7 91.9 92.1 92.2 92.4
55-59 U 116.6 107.8 104.5 102.7 101.6 100.8
55-59 L 91.6 91.6 91.9 92.1 92.2 92.4
60+ U 116.1 107.5 104.3 102.6 101.5 100.8
60+ L 91.7 91.7 91.9 92.1 92.2 92.4

103.2 102. 101.

All ages U 118.3 108.7 105.2 o 2
L 1 92.5 92.4 92.5 92.6 92.6

93.

Table 5.1: Screening the individual for treatment in Edinburgh: critical values

for L; and U; for visit i by age-group when {4+ =95mmHg, p;=0.9

and p, =0.1
individual 1: 110 104 112 100
individual 2: 90 82 88 80
individual 3: 106 90 98 104.

For the first individual, blood pressure at visit 1 lies between the critical values and so

screening continues.  After two visits, the mean is 107 and is between the critical
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values for visit 2. After three visits, the mean is 108.67 and is now greater than U,
and so screening would stop here and intervention to lower blood pressure would be
considered because there is reasonable certainty that £>95 mmHg for that individual.
For the second individual, the first blood pressure is below L; (=91.6) and so screening
would stop concluding that £ is indeed below 95 mmHg, with reasonable certainty, for
that individual. However for the third individual, the mean blood pressures after one,
two, three and four measurements are 106, 98, 98 and 99.5 mmHg, respectively. These
are all between the appropriate critical values and so screening would continue as the
evidence is not sufficiently conclusive about that individual’s need for intervention.
Note, though, how this ignores how high or low £ may be when making any decision
about stopping or continuing screening, or about considering intervention; this issue is

returned to in section 5.4.

Comparing the screening programmes in table 5.1 between age-groups, it is clear that
after three or four visits, the difference between corresponding critical values is, for
practical purposes, small relative to the accuracy with which the mean is determined
(for example, 0.5mmHg for a mean of four measurements). Similar practical
considerations apply at earlier visits except, perhaps, for the youngest age-group where
the critical values are more diécrepant. Thus, for simplicity, it might be reasonable to
use the common programme for all ages (also given in table 5.1). From a statistical
point of view, this similarity of critical values reflects the constancy of the within-
person variance, 0,2(, across the age-groups and the fact that the dependence of the
distribution h(§|%;) on the age-related parameters pu and o2 is considerable reduced as
the number of visits increases. This is readily seen by considering equation (5.2)

without the dependence of 0'3 on £ when rewritten as
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quickly as the number of visits, i, increases since the ratio of within- to between-person

variance has order of magnitude, unity.

There is no particular reason for taking p_ as 0.1 and p, as 0.9. Indeed, any pair of
values might be chosen. In table 5.2, the critical values for various choices of
p(£>95]x%,;) are given for all age-groups combined for Edinburgh, Budapest and Prague.
Even here, where the ratio 0\2N/<72 varies two-fold from 0.75 in Edinburgh to 1.18 in
Budapest and to 1.46 in Prague, there are only small differences between the
corresponding critical values between towns particularly after the second or third visit.
Given that some of the difference between towns in the within-person variability can be
attributed to the digit preferences operating, it might be reasonable to employ a single
screening programme in all three towns particularly if blood pressure reading is
standardized and, as with the World Health Organization guidelines, two or three

measurements are required of any individual before any decision is made.

Worth noting is the similarity of the values corresponding to a probability of 0.1 in
Edinburgh and Budapest, and to 0.05 in Prague. Although the lines will increase
toward £+ (=95mmHg in this example) for larger numbers of visits than shown, these
would provide useful rules in deciding that no further screening is justified simply by
using a fixed cut-off level regardless of the visit number. For example an observed

mean diastolic blood pressure below 92mmHg at any visit might be appropriate in
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Screening visit

p(§>érIx) 1 2 3 4 5 6
Edinburgh

0.99 128.1 115.3 110.3 107.6 105.9 104.7
0.95 121.7 111.0 106.9 104.8 103.4 102.4
0.9 118.3 108.7 105.2 103.2 102.0 101.2
0.8 114.1 106.0 103.0 101.4 100.4 99.7
0.7 111.0 104.0 101.4 100.1 99.2 98.7
0.5 105.9 100.6 08.8 97.9 97.3 96.9
0.3 100.7 97.3 96.2 95.7 95.4 95.2
0.2 97.6 95.3 94.6 94.3 94.2 94.1
0.1 93.1 92.5 92.4 92.5 92.6 92.6
0.05 89.4 90.1 90.6 90.9 91.2 91.4
0.01 82.3 85.7 87.2 88.1 88.7 89.2
Budapest

0.99 135.4 119.8 113.6 110.3 108.1 106.6
0.95 128.1 114.9 109.8 107.0 105.2 104.0
0.9 124.1 112.2 107.7 105.2 103.7 102.6
0.8 119.3 109.0 105.2 103.1 101.8 100.9
0.7 115.7 106.7 103.3 101.6 100.5 99.7
0.5 109.7 102.8 100.3 99.0 98.2 97.7
0.3 103.6 98.9 97.3 96.5 96.0 95.7
0.2 99.9 96.5 95.4 94.9 94.6 94.5
0.1 94.5 93.1 92.8 92.7 92.8 92.8
0.05 89.9 90.3 90.7 91.0 91.2 91.4
0.01 80.9 85.0 86.6 87.6 88.3 88.8
Prague

0.99 138.0 121.5 114.8 111.2 108.8 107.2
0.95 130.7 116.5 110.9 107.9 105.9 104.6
0.9 126.7 113.8 108.8 106.1 104.4 103.2
0.8 121.8 110.6 106.3 103.9 102.5 101.5
0.7 118.2 108.2 104.4 102.4 101.1 100.3
0.5 112.2 104.2 101.3 99.8 98.9 98.2
0.3 105.9 100.2 98.2 97.2 96.6 96.2
0.2 102.1 97.8 96.3 95.6 95.2 95.0
0.1 96.6 94.3 93.7 93.4 93.3 93.3
0.05 91.8 91.4 91.5 91.6 91.7 91.8
0.01 82.4 85.9 87.3 88.2 88.7 89.2

Table 5.2: Screening the individual for treatment: critical values for

L; and U, for visit i for all ages by town when {=95mmHg
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Screening visit

p(€>&1]x) 1 2 3 4 5 6

0.99 125.1 112.7 108.2 105.9 104.4 103.4
0.95 119.1 108.9 105.3 103.4 102.2 101.4
0.9 115.8 106.9 103.7 102.1 101.0 100.3
0.8 111.9 104.4 101.8 100.4 99.6 99.0
0.7 109.1 102.6 100.4 99.3 98.6 98.1
0.5 104.4 99.7 98.1 97.4 96.9 96.6
0.3 99.8 96.8 95.9 95.4 95.2 95.0
0.2 96.9 95.0 94.5 94.3 94.2 94.1
0.1 93.0 92.6 92.6 92.7 92.8 92.8
0.05 89.8 90.5 91.0 91.3 91.6 91.8
0.01 83.7 86.7 88.0 88.8 89.4 89.8

Table 5.3: Screening the individual for treatment when within-person
variability is assumed not to depend on &: critical values for

L; and U; for visit i for all ages in Edinburgh when {+=95mmHg

giving reasonable evidence against the need for treatment. In practice, given the

accuracy of blood pressure measurement, this may be sufficient.

Rosner and Polk (1983) assumed that o2 is not dependent on the underlying level, .
It is useful to consider what differences such an assumption produces compared with
the results so far presented where the dependence is acknowledged. Table 5.3 is
comparable to the Edinburgh section of table 5.2 but with the dependence of the
within-person variance on the level, £, removed (that is, the parameter ¢ in the model
for blood pressure variability in (5.4) is taken as zero). The width of the interval
U;—L; at any visit i is less wide when ¢=0. This reflects less strict criteria both for

considering intervention and for stopping screening caused by the underestimation of
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the within-person variance by ignoring its dependence on ¢ at higher underlying
pressures. Similar orders of difference between the programmes with ¢ equal or not
equal to zero were found for other values of {1. Thus decisions will be reached sooner
than is appropriate if the dependence is not taken account of. Inevitably, this will
result in some additional misclassification of individuals to intervention when it is not

warranted.

In putting this form of screening programme into practice, a graphical display as shown
in figure 5.2 for Edinburgh men (without g(¢) determined by age-group) is useful. This
allows an individual’s observed mean blood pressure from measurements up to any visit
to be easily related to the probability of having an underlying diastolic blood pressure
that is sufficiently high to warrant intervention. Thus the decision can be tailored
more closely to the needs of the individual concerned: a greater certainty about the
need for or value of intervention may be required if, for example, the subject is younger

or has a low cholesterol level.

The figure shows clearly the funnel shape obtained for the programme with the curves
having as an asymptote X;={i as i increases. However, note that although the
critical values tend, in general, monotonically toward {4, there are values of the
probability p({>¢+|%;) for which this does not apply. For example, for
P(§>E&11%;)=0.2 the critical value for %X, is greater than 95, but for the other values of
i shown, X; moves progressively below 95 though, for larger i, it does turn back up
toward 95. This behaviour is a consequence of the relative strengths of the between-
person variance 02 and the within-person variance cr,%, and the consequent movement

of the conditional distribution for £, h(£|%;), away from the population distribution,
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Figure 5.2: Screening the individual for treatment: critical values by visit giving
defined probabilities p(£>£-j-= 95|x) for all ages in Edinburgh.
Points A, B and C show the W.H.O. guideline: screening stops if x2 is
below A, or drug treatment starts if x4is above B or is considered if x6
is above C.
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g(€), to reflect an individual’s own underlying level. This is clear, analytically, in the
case with 0',2( not dependent on £ as given by (5.2). Despite the mathematical validity
of this behaviour, in practice it would be less appealing to the doctor dealing with the
individual patient: for Edinburgh, if p__ is taken as 0.2, then an individual with a blood
pressure of 95mmHg at the first screening visit would be followed no further but an
individual with a mean pressure of 95mmHg by any subsequent visit would be advised

to return for further follow-up.

It is useful to consider how the World Health Organization guidelines relate to this
type of screening programme. It is not a strict comparison as the data considered here
are phase IV diastolic pressures whereas the guidelines are based on the lower phase V
pressure. On figure 5.2 are marked three points (A, B and C), one each at the second,
fourth and sixth visits. According to the guidelines, individuals with a mean at their
second visit below 95mmHg (point A) would not undergo further screening. This is
quite a stringent limit as p(§>&+|%x,=90)~0.05. However, the decisions for those that
continue screening and for whom pharmacological intervention might be considered
(%4>100 or xg>95; above points B and C, respectively) have probabilities
P(€>£&11%4=100)~0.7 and p({>E&1|%g=95)~0.3. Even allowing for the fact that
phase V diastolic pressures will be lower than phase IV ones, the evidence for elevated

blood pressure required before intervention is considered is quite weak.

Of course, this presupposes that the expert committee considered that an individual
with an underlying level of greater than 95mmHg would benefit from treatment. This
seems likely given that they use 95mmHg as the level for considering drug treatment

for individuals undergoing repeated follow-up over a long period. However, they also
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suggest that “mild hypertension in adults is defined as a diastolic pressure persistently
between 90 and 104mmHg” and that intervention is justified in such individuals.
Thus, it is worth also considering a critical level, {1, of 90mmHg and looking at the
guidelines in this context. Figure 5.3 shows the screening programme for this situation

with the three points A, B and C also marked.

In comparing this figure with figure 5.2, the effect of the change in & is clear and
substantial. At the first visit, taking {&+ as 90mmHg produces a shift of corresponding
points for observed blood pressures down by about 10mmHg compared with when £+ is
95mmHg. As visits accumulate, the difference between the two figures reduces and
tends to a shift in corresponding points of about 5mmHg. Point A shows that the
evidence required to stop screening at the second visit is comparatively weak
Ep(§>£1-|)'(2=90)z0.3:|. In contrast, the evidence required for pharmacological
intervention (points B and C) is strong. This would certainly be better criteria for a
screening programme in terms of the level of evidence required than that shown in
figure 5.2. However, if the distribution of underlying phase V diastolic blood pressures
in a population is considered as a translation downwards from the phase IV pressures,
then the distance of g from & in phase V terms is more akin to that used in
constructing figure 5.2 for phase IV pressures. Thus the logical basis for the World

Health Organization guidelines might be questioned.

Another possible difficulty with screening programmes of this type is the potential for a
large number of screening visits to be required to obtain sufficient evidence of an
individual’s underlying blood pressure in order to stop screening or to recommend

intervention.  This is particularly relevant to those individuals with borderline
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Figure 5.3: Screening the individual for treatment: critical values by visit giving
defined probabilities p(£>£T=90|x) for all ages in Edinburgh.
Points A, B and C show the W.H.O. guideline: screening stops if x2
below A, or drug treatment starts if x4is above B or is considered if x6
is above C.
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£<95 (n=94683) £€>95 (n=5317) all £ (n=100 000)

stop intervention stop intervention stop intervention
Visit screening considered screening considered screening considered
1 83628 4 1461 49 85089 53
(88.3%) (0.0%) (27.5%) (0.9%) (85.1%) (0.1%)
2 4764 11 253 231 5017 242
(4.9%) (0.0%) (4.8%) (4.3%) (5.0%) (0.2%)
3 1789 21 102 265 - 1891 286
(1.9%) (0.0%) (1.9%) (5.0%) (1.9%) (0.3%)
4 903 19 57 275 960 294
(1.0%) (0.0%) (1.1%) (5.2%) (1.0%) (0.3%)
>4 3544 2624 6168
(3.7%) (49.4%) (6.2%)

Table 5.4: Simulation of 100 000 Edinburgh men being screened for treatment using
§+=95mmHg, p;=0.9 and p_ =0.1 according to whether their underlying
level £ is greater or less then 95mmHg. (numbers in brackets are

percantages of column totals, n)

underlying levels (that is, close to {1). For example, if p, is taken as 0.9 and p, as
0.1, then table 5.4 shows the percentages of the population, in Edinburgh, who would
require a measurement at each successive screening visit. These are obtained from a
simulation of 100,000 individuals from the distributional form described for Edinburgh
in table 3.11 and assume that a blood pressure observed at any screening visit is
measured precisely. The most striking feature is the percentage of individuals (6.2% of

the population) for whom no decision is reached on completing the fourth visit. For
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this group of individuals many further repeat measurements would be required (for just
over three-quarters of them, no decision would have been reached on completing the
sixth visit). However, the distribution of underlying levels, £, in this group is
approximately normal with mean 94.3mmHg and standard deviation 3.8mmHg. Thus,
the substantial majority will have underlying diastolic pressures in the range 90mmHg
to 100mmHg and so a relaxation of the strength of evidence before considering
intervention may be acceptable. For instance, individuals for whom p(§>95|%4)>0.5
might be considered for intervention. Alternatively, the whole group might, as
suggested in the World Health Organization guidelines, be encouraged to modify their

lifestyle whilst undergoing long-term but much less frequent screening.

If screening is stopped at the fourth visit, then the cost of the screening programme in
terms of the average number of screening visits required per person in the population
can be evaluated. For this example, this gives 1.32 visits per person. Similarly, with
some decision-making criteria at the fourth visit, the cost of intervention in terms of
the percentage of the population considered for intervention can be evaluated. For the
simulation shown, this could range from 0.9% if none of those with
p(£>95]%,4)<0.9=p, are considered, to 7.1% if all of those with p(£>95|%4)>0.1=p
are considered. Clearly, then, the criteria for considering intervention at the fourth

visit has considerable intervention cost implications.

Also shown in table 5.4 is a description of what happens, in this simulation, to those
individuals targetted for intervention (that is those with £>95mmHg) and those not
(that is those with £<95mmHg). Clear is that very few individuals with {<95mmHg

are considered for intervention. In contrast, a substantial percentage of those with

161



£>95mmHg are not considered and this is particularly attribﬁtable to those for whom
screening stops at the first visit (for over one quarter of individuals with £>95mmHg).
The sensitivity of the screening programme might be defined as the percentage of those
with ¢>95mmHg who are considered for intervention. This can be as low as 15.4% if
none of those with p(¢>95|%,)<0.9 are considered or as high as 64.8% if all of those
with p(§>95|%4)>0.1 are considered. Clearly then, sensitivity is very dependent on the
action taken for those individuals with p_ <p({>95|x,)<py, but is never high at least
when p, =0.1. In contrast, defining specificity as the percentage of those with
£<95mmHg who are not considered for intervention, this will be between 96.2% and
99.9% depending, again, on the action taken at the fourth visit. Note that the
sensitivity and specificity are very little changed if the observed pressure at each
screening visit is rounded to the nearest even digit as was the practice for the
Edinburgh data. Of course, other choices of p; and p_ can make substantial changes
to the sensitivity and specificity. Also, as mentioned earlier, different values of p, and
py might be used at different visits: in particular, decreasing p at the earlier visits
would increase the sensitivity markedly. This issue is not pursued further here but is
discussed, briefly, in the context of the population screening method described in

section 5.5.

5.4 Screening the individual for expected risk

In the previous section, the decision to consider intervention or to cease screening was
based upon an assessment that an individual’s underlying blood pressure level is above
or below some critical value. Thus, it ignores the extent by which it is above or below

this value. Extent can be measured on various scales: notably those of underlying
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pressure, of risk of cardiovascular disease and of reduction in risk of cardiovascular
disease due to intervention. Clearly, these possibilities represent an increasing
progression in the evidence and assumptions needed for models. Conversely, they also
represent an increasing association with the long-term aim of a screening programme:
to identify high-risk individuals and consequently to attempt to reduce their risk. As
the risk scale parallels that of risk reduction if the reduction achieved is proportional to
risk, an assumption that might be justified in our context on the basis of evidence from
trials of anti-hypertensive treatments (Collins et al, 1990), the use of a risk scale will be

pursued further here.

Approaching the problem generally, assume that there is a function R(§) relating risk

of disease to the underlying level, §. Then given observations up to the ith visit, x

i’ the

expected risk for an individual is

B(Ris)= k|R(6) fs€) 8(6) dé (5.6)

where

k= Jf(xilﬁ) g(€) dé

is a normalization constant. By taking

R(§)=1if £>¢&+
=0if {<ér

a useful link with the “screening for treatment” approach can be made. In this case
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B(RIs)=k| 1(516) e(¢) d¢
£t

= p(£>&11x)-

Thus the “screening for treatment” approach is equivalent to defining a step risk
function that switches from 0 to 1 at £+, and then considering intervention if E(ngi)

is sufficiently close to 1 and ceasing screening if it is sufficiently close to 0.
A parallel for any risk function R(£) can be drawn:

(i)  if E(R|x;)>Ry, then consider intervention
(ii)) if E(R|x;)<R,_ then stop screening

(iii)) else if R| <E(R|x;) <Ry continue screening to visit (i+1).

This has turned the decision making process away from statements concerning the
probability that risk is above some cut-off point (which is equivalent to the “screening
for treatment” approach for any R monotonic in ), to an assessment based on the
expected risk. The logic for this might be that R, is the level above which the
potential risk reduction due to intervention definitely outweighs the potential side-
effects of intervention. Conversely, below R, the potential for side-effects is considered
to outweigh the possibility for risk-reduction. The window R, to Ry then reflects
uncertainty about the relative balance of risk reduction to side-effects. This contrasts
with the “screening for treatment approach” which assumes a defined cut-point, -, at
which the potential for risk reduction and for side-effects is considered to be in balance.

However it still ignores the issue of how high, or low, risk might plausibly be.
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For the purposes of presenting such a screening programme, two approaches might be
adopted. The first is to show expected risk as a ratio to some base risk. The choice of
base risk is a practical and not a mathematical decision as different values will only
affect all ratios by a constant factor. This base risk could be the threshold risk at
which treatment begins to be beneficial (the value {1 as used previously) or the
expected risk in the population, ignoring blood pressure level. The second is to show
risk in absolute terms such as the expected annual (cause-specific) death rate or cause-
specific incidence rate. Of course, the second is just a relabelling of the risk scale for
the first though not a linear transformation of it. However, where there are multiple
risk factors for a disease, absolute risk needs to be quantified taking account of all
factors for the individual concerned even though the reduction in risk due to treatment

will relate to a single factor.

To illustrate these concepts further, consider again Edinburgh middle-aged men as in
this study’s cohort. Using the log-linear relationship between risk of cardiovascular

mortality and underlying blood pressure described in the previous chapter, then
B(RIx) =k exp(8¢) 1(x,1¢) 8(€)d¢

where X%; is, as before, the mean of blood pressures observed up to and including visit i,
and 3 represents the gradient of risk on a log scale associated with the underlying

pressure, £&. Also the expected risk in the population is

B(R) = [exp(56) g(€)de

=expﬂ(u+%ﬂ0'2) when £~N(p,02).
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Thus by setting the risk ratio E(R|%;)/E(R) equal to given values and solving for %;,
screening programmes can be defined. Note that the use of this ratio avoids the need
to consider other (independent) risk factors as their effect cancels out. Figure 5.4
shows the curves obtained for various values of the risk ratio from 1 to 2.5, taking g as
0.0605 as derived for Edinburgh in the previous chapter. Again, a decision rule for
screening can be determined by choosing two curves; considering intervention if an
individual’s mean observed blood pressure lies above the upper curve, stopping
screening if it lies below the lower, otherwise continuing further observation. For
example, if R;=2.25 and R =1.5 and taking the three individuals described in section
5.3.2, then the first individual whose pressure at the first visit was 110mmHg would be
recommended for intervention at that visit because of a sufficiently high expected risk,
whilst the second would cease screening after the first visit because his measurement of
90mmHg indicates a sufficiently low expected risk. However, the third individual with
mean pressures of 106, 98, 98 and 99.5mmHg has intermediate expected risks at the

first, second, third and fourth visits, respectively and so screening would continue.

There is a fundamental difference between these curves and those of the “screening for
treatment” approach: these do not have a single value () as their asymptote; instead

the asymptotes are, for a risk ratio RR,
# Y In(RR)+(Bu+16%02)] asi—oo.

This is a consequence of using a risk function, R, that is continuous in £ rather than a
step-function. It also explains why the curves are flatter than those for “screening for

treatment” and are monotonic for all ratios of practical interest. However, this
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Figure 5.4: Screening the individual for risk: critical values by visit giving defined
ratios of individual risk to the average in the population, E (R |x)/E (R),
for all ages in Edinburgh.
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approach does not solve the practical problem of the substantial numbers for whom no
decision to consider intervention or cease screening has been reached after several

visits.

Although the results of the previous chapter were by no means conclusive about the
evidence for different risk relationships between cardiovascular mortality and
underlying pressure, €, it is useful to consider how sensitive such a screening
programme is to variation in the risk coefficient, 3. To illustrate this, the estimated
coefficients determined in the previous chapter for each of the three towns (3=0.0605,
0.0494 and 0.0921 for Edinburgh, Budapest and Prague, respectively) together with the
respective within-town estimates for the blood pressure distribution parameters can be
used. Values of the mean X; giving risk ratios of between 1 and 2.5 (as used in
formulating figure 5.4) are given in table 5.5. Immediately clear is the effect of
increasing the risk gradient associated with a change in underlying diastolic pressure.
For example, comparing the values for Budapest (smaller ) and Prague (larger ), the
smaller the risk gradient is, the higher are the mean observed pressures giving a defined
risk ratio: after four visits, for an expected risk ratio of 2, the mean pressure in
Budapest must be 104.4mmHg compared with 96.7mmHg in Prague. The distinction
between Edinburgh and Prague is not so clear because of the larger difference in the
relative sizes of the within- and between-person variances in these two towns. Thus
the development of a common screening programme of this sort for use in different
locations is difficult unless there is strong evidence for a common risk coefficient, 3, as

well as simliar values of the variances, ¢2 and o3.

Despite this, the “screening for risk” approach may be useful to the doctor faced with
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Screening visit

E(R|)'(l)/E(R) 1 2 3 4 5 6
Edinburgh

2.5 113.1 106.5 104.2 103.0 102.3 101.8
2.25 109.5 103.8 101.8 100.7 100.1 99.7
2 105.6 100.7 99.1 98.2 97.7 97.4
1.75 101.2 97.4 96.1 95.4 95.0 94.8
1.5 96.3 93.6 92.7 92.2 92.0 91.8
1.25 90.6 89.2 88.7 88.5 88.4 88.3
1 83.9 84.0 84.0 84.1 84.1 84.1
Budapest

2.5 130.2 118.2 113.7 111.3 109.8 108.8
2.25 124.5 114.0 110.1 108.0 106.7 105.9
2 118.3 109.4 106.1 104.4 103.4 102.7
1.75 111.5 104.3 101.7 100.4 99.6 99.1
1.5 103.8 98.7 96.9 95.9 95.4 95.0
1.25 95.0 92.2 91.3 90.8 90.6 90.4
1 84.8 84.7 84.8 84.8 84.8 84.8
Prague

2.5 112.2 104.6 101.8 100.4 99.5 98.9
2.25 109.0 102.3 99.9 98.6 97.9 97.4
2 105.5 99.8 97.7 96.7 96.0 95.6
1.75 101.6 97.0 95.3 94.5 94.0 93.7
1.5 97.2 93.8 92.6 92.0 91.7 91.5
1.25 92.0 90.1 89.5 89.2 89.0 88.9
1 85.8 85.7 85.8 85.8 85.8 85.8

Table 5.5: Screening the individual for expected risk:

for visit i for all ages by town
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the individual patient. The decision to intervene and attempt to lower blood pressure
concerns the balance of potential side effects, inconvenience etc. with the expected
reduction in absolute risk for that patient. For instance a patient in Edinburgh with a
mean blood pressure, after four visits, of 95mmHg has a relative risk of just under 1.75
compared with the average population risk. If treatment might be expected to reduce
risk by 10 or 20% then relative risk on treatment would be between about 1.4 and 1.6.
In absolute terms this change might not be sufficient to outweigh the possible side
effects of treatment if the individual is younger, non-smoking and with a low
cholesterol level. However for the older individual with a high cholesterol it may be a
significant personal risk reduction. Thus relating the observed mean blood pressure to
risk without making any formal decision rule for screening might be an adequate aid for
the doctor and patient jointly to reach a decision about starting intervention or
stopping screening. Of course, this does not negate the possibility for showing on the
risk chart, the risk curve below which it is generally accepted that the risk reduction
from treatment does not outweigh the side effects for most individuals or does not

justify the cost of intervention.

This concept of providing the doctor with risk information without formally declaring a
decision rule can be taken a step further. Using the survival model developed in the
previous chapter and estimating the base survivor function (that is, the survival curve
for a hypothetical individual with covariate values of zero) nonparametrically
(Kalbfleish and Prentice, 1980, chapter 4), values of £ can be transformed to
probabilities of dying from cardiovascular causes within, say, 5 years whilst also taking
account of an individual’s levels of other risk factors including age. In figure 5.5, the

conditional distribution p(£|k,) is shown for the third individual described in section
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low risk: % dying within 5 years
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high risk: % dying within 5 years

70 80 90 100 110 120
underlying diastolic blood pressure

Figure 5.5: Conditional distribution for underlying diastolic pressure, £, for an
Edinburgh man after four pressure measurements of 106, 90, 98 and
104mmHg, showing also the associated absolute risk scales if the man
has other risk factors as low risk (age 40, never smoked, low cholesterol
200mg/dl) or high risk (age 60, >20 cigs/day and high cholesterol
350md/dl)
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5.3.2 (with blood pressures at the four visits of 106, 90, 98 and 104mmHg,
respectively). Above the scale for £ are two risk scales showing the estimated risk of
dying of cardiovascular causes within 5 years: the first where the individual is 40 years
of age, a non-smoker with a low observed cholesterol (200mg/dl at one visit) and the
second where he is 60, a heavy smoker (>20 cigarettes per day) with a high observed
cholesterol (350mg/dl). Very clear from these plots is the substantial difference in
absolute risk depending on the levels of factors other than blood pressure: the expected
absolute risks are 0.43% and 23% chances of dying within five years for such low and
high risk men, respectively. The shaded tail areas shown each cover a probability of
5% so that the interval in between covers probability 90%. This interval can be used
to determine whether there is a significant possibility that risk is sufficiently raised to
warrant intervention. If not, then there would be no justification for further screening.
Conversely, if the interval contains risk levels which are either sufficiently raised, or
sufficiently low, then further screening would be justified to reduce the standard
deviation of the distribution and so help to confirm or refute either of these

possibilities.

5.5 Screening a population

In the previous sections the screening rules developed have had two characteristics.
First they have been open-ended in that some individuals will be recalled repeatedly
without a decision being reached. This is clearly undesirable because of the
implications for screening costs and the need to maintain the cooperation of the
subjects concerned. Second, because the same expected risk or probability of pressure

being elevated above the critical level, {1, is used at all visits, a constraint on the
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critical values, I; and U;, is imposed. This produces a problem of misclassification
notably of subjects for whom intervention is recommended or screening is stopped after
one or two screening visits. This can be expressed in terms of patient numbers being
considered for intervention when their underlying level do not justify it, or vice versa.
Alternatively, a more useful way of expressing it is to quantify the proportion of those
events that might be preventable by intervention but are not prevented because of
misclassification: this then also involves the extent of misclassified risk. The approach
considered in this section addresses both of these issues: constraints are defined by
limits on the proportion of the population that can be considered for intervention and
by the effort (or cost) of the screening programme itself. Subject to such constraints it
is then desirable to choose the L; and U; so that the proportion of the population
selected for intervention is that proportion that is most likely to benefit. Thus the
problem is one of constrained optimization. In the next section this screening model is
defined more fully in terms of objective and constraint functions that reflect the risk
function, R({), and the variability of diastolic pressures both within and between
individuals. Then we illustrate its use by considering the screening of an Edinburgh

male population similar to that found in the clofibrate trial.

5.5.1 Constrained optimization model for population screening

As before, we consider a screening programme defined by critical values L; and U; for
visit i at which the following decisions, determined by the mean of the accumulated
observations ¥;, are made:

(i) if %x; > U, then consider intervention

(ii)) if x; < L; then stop screening
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(iii) else if L; < X; < U; then continue screening to visit (i+1).

Note that the programme can be limited to a maximum number of visits by choosing

L, =T, at the final allowable visit.

We shall restrict our attention to risk-related objective functions though the method
follows through in the same manner if functions quantifying the reduction in risk due
to intervention are used. Labelling by I the set of observed measurements in

individuals considered for intervention, so that
I={x|% > U;and L; < %; < U; for i>1 and for all j<i},

then the problem is to maximize the expected risk for individuals considered for

intervention= E(R|x€I) subject to constraints on the L; and U;.

The constraints considered here are those of “cost” and can be defined in terms of the
expected number of visits required per individual entering the screening programme
(the screening “costs”) and the proportion of those screened that are considered for
intervention (the intervention “costs”). Taking the screening cost constraint first, this

gives

00
1+ Z p(L<x;<U; | L;<x;<U;j for all j<i) < M, say,

i=1

where M is a constant to be given. In this expression the one reflects all individuals

having at least one measurement and each term in the summation reflects the
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proportion going forward from visit i to visit (i4+1). Next, the intervention cost
constraint is

o0
) p(%;>U; and L;<x;<U; for all j<i) < P, say,

i=1

where P is a second constant to be given. Here each term in the summation reflects
the proportion of the population who are considered for intervention as a result of
observations up to visit i. Writing the objective function in a similar manner, the

problem is to maximize
E R(f)liie.tjl{ii|5fi>Ui and L;<x;<U;j for all j<i}]
i=

subject to these constraints. In practice, it may also be useful to limit the number of
screening visits that can be completed by any individual, say to a maximum of N. This
necessitates the additional constraint that Ly = Uy, so that a decision is reached for

all individuals.

To evaluate the expectation in the objective function, the probability density function

for £ conditional on x€I is needed. This function is

J p(x, £) dx
x€l

J J. p(x, §) dx d¢§
Exel

where p is the joint density function for x and £&. Given that observations at successive
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visits may be considered independent (if the intervening time interval is sufficiently

long) then

p(x, €) = &(&) [] f(x;l¢)-
=1

Thus the required density function is

g(»s)I'[1 f(x,J€) dx;
J=

i i (5.7)
g(O]I 1(x;1€) dx;d¢
=1

where I; is the set considered for intervention at the ith visit (i>1):

Note that the denominator of (5.7) is exactly the proportion considered for intervention
and so is the constant, P. Thus in determining the maximum of the objective function,

the denominator in (5.7) can be ignored.

By defining the set proceeding from visit i to visit (i+1) for further screening by §;

where

S.

i = {x; | Lj<x;<U; for all j<i},

then the problem can be written as
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N i
maximize (with respect to L and U): Z I R(f)g(f)H f(x;]€) dx;d¢
¢ x€l, =

subject to: (i) Ly=1Uy
N-1 i
@ 1+3 | [ e©II fxle) axde =
i=1 € Kiesi =1
N i
i) 3 J J g(O]] fx)lé) dxde = P (5.8)
i=1 ¢ l(.ieli =1

where N is the maximum number of screening visits allowed (N>1), M is the average
number of screening visits per person and P is the proportion of the population to be

considered for intervention.

The difficulty in solving this problem is that integrals of dimension (N+1) need to be
evaluated and these will not, in general, be amenable to analytic simplification. In
addition, the dimension (2N—1) of the parameter space makes this a substantial
computational problem when requiring a numerical solution. Hence it is only likely to
be soluble for small values of N. It is important also to note that the integral in the
objective function may not be bounded and so the problem is not always soluble. In
particular, if R is exponential in £, as is often assumed, and if g(¢) is markedly skew,
then convergence of the integral to a finite value will not be obtained. This would be
so if also £ is log normally distributed. Thus in modelling the distribution of
underlying covariate values, g(£), and the risk function, R(£), particular care is needed
in assessing their fit to the data. Where uncertainty persists it may be useful to use an

empirical distribution function for g rather than a poor mathematical approximation.
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5.5.2 Maximizing expected risk: population screening of blood pressures in Edinburgh

Here interest is restricted to screening an Edinburgh population of men of ages similar
to that entered into the clofibrate trial. The results of chapters 3 and 4 (tables 3.9 and
4.7) are used to provide the necessary parameter estimates for functions required by

the optimization problem:

f(x,1€) = N[ .03 [1+c(e—n)]’]
g(§) = N(p,0?)

R(§) = exp (8¢)

The example considered takes as fixed the intervention cost constraint such that

o0

P=| g
=95
Thus if the underlying diastolic pressure, £, could be determined, then the intervention
group would include all individuals with levels above 95mmHg so that P=5.27%. Note
that this choice is an arbitrary one made for illustration. If the volume of risk in a
cohort is defined as its average risk times the cohort size, then the volume of risk in the
intervention group as a proportion of the volume of risk in the whole population, Rp, is
a useful summary measure of the risk that will be intervened upon. If the underlying
blood pressures were known, a useful upper bound on the volume of risk in the

intervention group is

[oe]

J R(&)g(€)dé = 0.1253Rp.
=95
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Hence, maximally, 12.53% of future cardiovascular deaths could be expected in a
cohort of 5.27% of this Edinburgh population. Therefore any optimal screening
programme developed for a given screening cost, M, might be related to this maximum.
Note that a lower bound can also be defined by considering the expected risk in the
intervention group formed by taking a random sample of size, P, from the population.
This, for the Edinburgh situation, would include 5.27% of future cardiovascular deaths
and represents 5.27/12.53=42% of the maximum that any screening programme with
an intervention group of this size could achieve. Other screening programmes simple in
concept can also be formulated for comparison. In particular, programmes in which
every member of the population has a fixed number of blood pressure measurements
are useful in showing how much very intensive screening effort can achieve. These are
equivalent to the general screening programme with the the critical values L; set to
—oo and U; set to +oco for i<N and with Ly=Uy such that the intervention group is

of the chosen size.

Returning to the optimization problem, the example considered allows a maximum of
four screening visits and considers three values of the screening cost parameter:
M=1.1, 1.25 and 1.5 visits per person. A quadratic programming method using
analytically derived derivatives was used to solve the problem. However, the objective
function changes very slowly near its maximum as the parameters L, and U are altered
within the constraints and so the optimal solution found by the optimization routine
can be mildly sensitive to the numerical integration procedure used, though the value
of the objective function at the maximum is well determined. We return to the

accuracy of the critical values below.
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Table 5.6 shows a comparison of the optimal programmes with the other screening
programmes outlined above. The two measures for comparing the payoff from
different programmes are given: first, the volume of risk in the intervention group as a
percentage of the total population risk (equivalently, the percentage of cardiovascular
deaths that might be expected in the group) and, second, the volume of risk in the
intervention group as a percentage of the volume achievable in the intervention group
if the underlying pressure, £, were known. Clear from these measures is that taking a
single blood pressure measurement for all individuals in the population and selecting
those individuals with the highest values for intervention produces close to a doubling
of the identified risk compared with taking a random sample from the population of the
desired size. Thus the main gain is obtained by having some minimal knowledge of
individuals’ blood pressure. Further increasing the number of observations per person
produces much smaller gains: going from one to four measurements for each person
screened increases the volume of risk in the intervention group from 81.5% to 92.7% of
the maximum possible. Similar orders of change are also found for other sizes of the
intervention group, P. If P=16.4% (corresponding to the percentage with
£>90mmHg) then the expected risk rises from 86.8% to 95.1% in moving from one to
four measurements for each person, and taking P=1.2% (corresponding to

£>100mmHg) gives a change from 76.1% to 89.9%.

Similar sized gains can be made by considering the optimal sequential rules: returning
to table 5.6, averaging 1.5 observations per person with a maximum of four
observations gives a marginally lower payoff of 91.9% compared with the rule where
everyone has four measurements. Note that increasing the maximum number of visits

allowed whilst holding the average number per person constant would produce further,
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Risk in intervention group as % of

total risk in risk in
population intervention group
Programme Critical values if £ known
Random sample None 5.27 42.1
All individuals have
M measurements
M=1 U,=99.5* 10.21 81.5
M=2 U,=97.5* 11.00 87.8
M=3 U;=96.7* 11.38 90.9
M=4 U,=96.3* 11.61 92.7
Optimal sequential
rules (max 4 visits)
M=1.1 U=(102.4, 99.0, 96.4, 94.4) 10.88 86.8
L=(95.5, 95.1, 94.7)
M=1.25 U=(106.5, 101.6, 98.1, 95.1) 11.28 90.0
L=(92.5, 93.3, 94.2)
M=1.5 U=(111.3, 105.2, 100.1, 95.8) 11.52 91.9
L=(88.1, 90.7, 93.3)
£ known intervention if £>95 12.53 100
* For j<i, values of L;=—o00c and U;=00 are used where i is the total number of

measurements allowed in the programme.

Table 5.6: Comparison of screening rules applied to a population of

Edinburgh men (similar to that used in the clofibrate trial)

when the intervention group has a fixed size=5.27% of the

population=p(£>95)
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but small, gains in payoff. Thus considerable savings in screening costs can be made
by using such sequential rules. Despite this, the gain in payoff in terms of volume of
risk identified for intervention is small and, if intervention costs (either financial or
related to the side-effects of treatment) are low, then there are likely to be greater
gains in payoff for fixed total screening plus intervention costs by accepting a larger
intervention group on the basis of a single measurement per person than a smaller

intervention group found by repeat screening of some of the population.

Also shown in table 5.6 are the critical values, L and U, found for the sequential
screening rules. For each value of M, these are one set of values (correct to one
decimal place) which give the maximal risk identified as a percentage of the volume of
risk in the whole population (correct to two decimal places). Other sets of values (with
critical values varying from those shown by 0.1 or 0.2mmHg) satisfying these criteria
for accuracy may be found. This reflects the flatness of the objective function close to
its maximum. However the considerable computational problems that need to be
overcome in order to increase accuracy and hence find a solution closer to optimal is
not warranted when the accuracy to which blood pressure is measured in practice can
lead to more significant departures from the optimal payoff. This is illustrated by the

following simulation.

Consider a sample of 100 000 Edinburgh men with underlying pressure and within-
person variability as described in table 3.9. The men are entered into a screening
programme with critical values for considering intervention or the cessation of
screening as given for the sequential rules in table 5.6. Table 5.7 shows the results

from two situations: first, when measurements are taken exactly and, second, when
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Measured exactly Measured to nearest even digit

-

M P(%) R/Rp(%) M P(%) R/Rp(%)
M=1.1 1.101 5.34 10.89 1.115 5.22 10.76
M=1.25 1.250 5.30 11.27 1.235 5.15 11.01
M=1.5 1.502 5.34 11.59 1.474 5.37 11.63

~

Column definitions: M =average number of visits per person in simulation
P =percentage of men considered for intervention (the
programmes were designed with P=5.27%)
R/ Rp =volume of risk in the intervention group as a percentage
of volume of risk in the whole population (optimal values
found were 10.88%, 11.28% and 11.52% for M=1.1, 1.25
and 1.5, respectively)

Table 5.7: Results of a simulation of 100 000 Edinburgh men entering screening
programmes with the sequential rules given in table 5.6, when their
blood pressures are measured exactly or are rounded to the
nearest even digit

they are rounded to the nearest even digit as occurred, approximately, in practice in
Edinburgh in the clofibrate trial. For each of these situations, the average number of
visits per person (M), the size of the intervention group (P) and the volume of risk in
the intervention group as a percentage of the volume of risk in the whole population,

(R /Rp)%, were evaluated.

Considering first, the situation with blood pressure measured exactly, the values of M

are within one standard error of that aimed for (the standard error varies from 0.001
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when M=1.1 to 0.003 when M=1.5). Similarly, the values of P are within one
standard error of the 5.27% used in defining these rules (the standard error is 0.07%).
Note however that the rounding of the critical values to one decimal point can affect
the value of P by a small amount. For example, when M=1.5, if U, is changed to 95.9
from 95.8, then P drops to 5.23% from 5.34% without altering M. Secondly, when the
measurements are rounded to the nearest even digit, simulation of the same cohort
passing through the screening programme tends to give larger departures from the
values expected for each of the screening cost, intervention cost and payoff parameters.
Thus, in practice, the accuracy of blood pressure measurement is likely to be a greater
determinant of the actual costs and payoff for a particular screening programme than
the departures caused by computational limitations in seeking the optimal payoff for
constrained costs. Of course, the ideal would be to undertake the optimization
allowing also for the accuracy of measurement used but this imposes an additional

degree of computational complexity.

Figure 5.6 illustrates diagramatically the critical values (bold lines) for the optimal
screening rules given in table 5.6. This shows clearly the effect of increasing the
screening costs allowed by the programme: a wider aperture of the funnel shape for
higher costs. These rules have been overlaid onto the expected risk ratio curves formed
for the “screening for risk” approach for individuals (dashed lines) identical to those
given in figure 5.4. This shows, as should be expected, that U,, U,, U3 and U, form a
decreasing sequence in terms of the expected ratio and L, L,, L3 and L4 an increasing
sequence, reflecting the use of this expected risk ratio in the objective function of the
optimization problem. Particularly noticeable from the overlaid plots is the way in

which the optimal rules make cessation of screening difficult at the first and second

184



mean observed dbp

M-1.25
105

100 Mal

95

90

85

80
Pisit, |

Figure 5.6: Optimal screening rules for an average of M visits per person with 5.27% of
the population considered for intervention and a maximum of 4 visits (bold
lines). Dashed line show the expected risk as a ratio to the average risk in
the population.
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visits. As has been discussed earlier in the context of the “screening for treatment”
rules, this is where the greatest scope for misclassification arose in the rules presented
in sections 5.3 and 5.4; this demonstrates how the optimal rules make their gains in

risk classification.

Also shown in figure 5.6 is a screening rule labelled “M=1”. This rule represents the
limit as the number of visits per person tends to unity. It is formed by considering the
critical value for intervention when each individual has a single diastolic pressure
measurement (equal to 99.5mmHg, from table 5.6). Individuals with such a pressure
have an expected risk ratio of 1.66 times the average population risk. Thus any
optimal rule allowing an average number of visits per person slightly bigger than one
must produce a funnel shape that departs slightly from the line shown linking the
points with an expected risk ratio of 1.66 at each visit. Thus for any rule allowing a
maximum of four measurements, this gives a lower bound for U, of 94.3mmHg. An
upper bound for U, is given by the critical value for considering intervention when
each individual in the population has the maximal four screening visits: equal to
96.3mmHg (from table 5.6). Thus for a fixed value of P, U, varies very little with the

value of M (a useful aid in choosing a starting point for the optimization routine).

We have already seen the relatively small impact that these sequential rules have on
the magnitude of identified risk in the intervention group. Thus the gains in
population (public health) terms are small by using repeat measurements and so the
criteria for choosing the three constraining parameters (N, P and M) might be chosen
on the basis of ethical obligations toward the individual subject to any limitation on

financial cost. As it would not be desirable to have individuals selected for intervention
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for whom the expected risk reduction does not exceed the expected risk of side-effects,
then P might be defined in terms of the minimum expected risk for an individual
selected into the intervention group. Since the sequence of the U;’s is decreasing as the
visit number, i, increases, this imposes a minimum on the value of Uy. Given that Uy
varies very little as M changes (for fixed P), then to a reasonable approximation

E(R/Rp|xy=Uy) defines P.

The maximum number of visits, N, can be determined by the range of underlying risk
ratios (or equivalently of underlying blood pressures) which are consistent, with
reasonable certainty, with an observed mean blood pressure at the final visit equal to
Uy- For example, the probability density function f({|x,=U,) when Uy=95.1mmHg
(corresponding to the optimal sequential rule in table 5.6 with M=1.25) is shown in
figure 5.7. The shaded tails each represent a probability of 0.05 and so we can be 90%
certain that an individual with such an observed mean blood pressure has a risk ratio
lying between 1.26 and 2.41 (or, equivalently, that their underlying blood pressure lies
between 88.0 and 98.8). If this is a satisfactory range for intervention then four visits
would be an appropriate value for N. However, if it were felt unethical to treat
someone with a risk ratio as low as 1.26, then a higher maximum number of visits
would be needed. Of course, if the range is felt to be too narrow then a lower number

of visits might be appropriate.

The same concept is useful in choosing the effort put into screening, that is the average
number of visits per person, M. For example, figure 5.8 shows the 90% probability
interval for £ given observed mean blood pressures equal to the critical values L, and U

given in table 5.6 for the case when M=1.25 visits per person. If the intervals
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Figure 5.7: Conditional probability density function for £ and the associated risk
relative to the average in the population given an observed mean diastolic
pressure of 95.1mmHg after 4 visits (corresponding to the critical value
for intervention in the optimal rule with a maximum of 4 visits with
M= 1.25 and P=5.27%).
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Figure 5.8: Conditional probability density functions for £ given observed mean
diastolic pressures equal to the critical values for considering
intervention (U) or stopping screening (L) for the optimal rule with
a maxaimum of 4 visits and with M=1.25 and P=5.27%.
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conditional on X;=U;, for some visit i, include values that are considered unethical for
intervention, or else those intervals conditional on %;=L;, for some visit i, include
values that should indicate intervention, then increasing M would be necessary so that
the relevant intervals do not show such characteristics. Alternatively, it may be
possible to decrease M, so saving screening costs, whilst maintaining adequate evidence
of elevated risk before intervention or of low risk before stopping screening. The major
difficulty with this approach is that the desire to answer to individual ethics may
produce a rule with an excessive financial cost and/or excessive inconvenience for the
individual of repeat screening. In this case, a reasonable balance needs to be reached.
In practice, this is likely to require, in particular, a decrease in the proportion of the
population considered for intervention so that the funnel pattern for the critical values

is shifted upward to higher mean observed blood pressures.

5.6 Summary of main results with discussion

In screening for cardiovascular disease, we are dealing with a risk relationship that is
multifactorial. However, interventions (particularly pharmacological ones) are
generally concerned with producing a change in a single risk factor (though, for
instance, dietary change might affect both cholesterol and blood pressure levels). This
makes the development of a screening programme for selective intervention (i.e. not for
the whole population) difficult because the decision to treat should be based upon the
balance between the expected benefits in terms of the reduction in absolute risk and
the expected disbenefits such as cost and side-effects. The approaches presented have
concentrated on identifying individuals with elevated underlying blood pressure or,

similarly, elevated risk of dying from cardiovascular causes attributable to raised blood
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pressure. Formal rules can be defined by choosing critical levels for the mean diastolic
pressure over measurements taken at several screening visits so that a subject with a
mean above the upper limit would be recommended for intervention, a subject with a
mean below the lower limit would cease screening and a subject with an intermediate

mean would be encouraged to return for further screening.

Two approaches to screening individual subjects that would be particularly suitable for
more ad hoc screening situations such as with casual screening by general practitioners
have been considered. The first, the “screening for treatment” approach, considers a
threshold for underlying pressure, £+, above which it is felt that intervention is
desirable and below which it is felt to be undesirable. Intervention is then
recommended when it can be established that, given a sequence of repeat
measurements, a subject’s underlying pressure, £, is greater than {4 with some high
probability. Conversely, screening ceases when £ is shown to be below £+ with a high
probability. The determination of critical values for the mean pressure over a series of
visits that satisfy these criteria was described, using Bayes Theorem, in section 5.3.
The main drawbacks of this approach are twofold. First, it fails to quantify how high
or low the underlying pressure, and hence the risk of cardiovascular mortality, is and,

second, it assumes that a level {1 can be determined well.

In contrast, the second approach, “screening for risk”, determines, on the basis of the
measurements obtained, the expected risk for a subject. This is then compared with
two risk levels: an upper one above which intervention is considered advantageous
because the potential benefits in terms of risk reduction would outweigh the potential

side-effects, and a lower one below which the reverse is felt to apply when screening
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would be stopped. This approach allows uncertainty in the knowledge about the level
of risk required before treatment is considered but does not consider the degree of

uncertainty about how high, or low, an individual’s risk might plausibly be.

In effect what is required is a mixture of these two approaches. Without formalizing
rules, a graphical display which portrays the required information was suggested at the
end of section 5.4 (and illustrated in figure 5.5). This enables a doctor to see visually
the expected risk together with a distribution showing the range of risk and underlying
diastolic pressure that the subject concerned might plausibly have. The balance of
expected risk reduction and potential side-effects can then be made together with an
assessment as to whether the decision to intervene, or not, should be influenced by the
uncertainty in the risk determination. If the latter is so, then further screening would
be warranted to improve the precision of risk estimation. The other distinct advantage
of this graphical display is that it can be designed to show absolute risk reflecting also
levels of other risk factors which are clearly important in deciding whether intervention

1s warranted.

For both of these “individual” approaches to screening, the scope for misclassification
occurred mainly through the termination of screening at the earlier visits (notably at
either of the first two) with the conclusion that risk was adequately low not to warrant
intervention. This is addressed in the “population” approach which is concerned with
identifying that group in the population of a defined size with the greatest expected
event rate for whom intervention would be recommended, subject to a constraint on
the amount of screening (expressed in terms of the average number of screening visits

per person allowed). This approach also had the desirable feature, not catered for in
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the individual approaches, of limiting the maximum number of screening visits. From
such a public health perspective, the value of repeated measurement of diastolic blood
pressure for cardiovascular disease might be questioned. After a single measurement,
further measurements add little in identifying a higher-risk group for intervention. For |
illustration, in a cohort of middle-aged men similar to that studied from Edinburgh, an
example considered for a group size representing 5.27% of the population and chosen
on the basis of having the highest diastolic pressures at a single screening visit would
be expected to have, in number, 81.5% of the events that would be expected had a
group been chosen on the basis of the highest underlying pressures. Increases in the
volume of screening then produce only small increases in the expected event rate above
this level. This primarily reflects the relatively low rate of change in risk with
underlying level and so, in population risk terms, the relatively small penalty paid for
misclassification.  Nevertheless, the optimal rules presented illustrate how careful
selection of individuals for further screening can achieve similar gains in terms of
identified risk to that from mass screening where all individuals have repeated

measurements.

A particular advantage of considering this approach should be in its use to define
screening rules that have desirable properties in the public health context (that is
closed screening rules which are close to optimal in terms of population risk
identification within given cost constraints) but which also give satisfactory risk
assessment for individual patients so that they are not subjected to unnecessary, costly
and potentially harmful treatment. This can be achieved by using the somewhat
heuristic approach suggested for developing a screening plan which employs the

conceptual framework of the population approach (and so is optimal in that context)
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but where the constraints are determined by the precision of risk assessment required
for individual patients before intervention is considered or screening is stopped. This

should give a good balance of public health considerations and individual ethics.

In deciding whether intervention is or is not appropriate, some quantification of the
level at which adverse effects or cost outweigh the benefits needs to be made. When
there is a single (or dominant) risk factor this is simplified as it can be interpreted as
the underlying level, {1, already mentioned above which intervention is indicated
because, on balance, it is considered beneficial or cost-effective, and below which it is
not. In this chapter, values of 95mmHg and 90mmHg have been used for illustration
purposes. However, determining the appropriate value of {4 for use in practice is not
simple. Although the efficacy of interventions may be established in clinical trials, it is
not always clear from the entry criteria at what level efficacy outweighs adverse effects
particularly as the criteria are generally defined in terms of observed risk factor levels
and not underlying levels. For instance the overview of trials of anti-hypertensive
treatments (Collins et al, 1990) showed significant risk reductions in stroke and
coronary heart disease in trials with an entry (observed) diastolic pressure in the range
of about 90 to 110mmHg. However, without knowledge of the distribution of blood
pressures from which the trial entrants were drawn, it is difficult to derive the mean
underlying diastolic level for the entrants to the trials and so to use any efficacy result
found to make a statement about the level {;. Thus, it would be advantageous for
clinical trials to include information about the underlying mean blood pressures of
individuals randomized. Perhaps the easiest way to do this would be to randomize
patients and then to have a short period (say, a month or so) prior to treatment

during which several repeat measurements are made. Then the mean of the
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measurements for each individual would be a precise estimate of their underlying level.

In moving from a disease with a single risk factor to one with several, the population
approach can still be applied directly to risks and interventions associated with a single
factor provided that levels of each factor are (approximately) uncorrelated and the
effect of intervention on one factor does not affect the levels of other factors. However
in screening the individual, multiplicative risk factors means that total absolute risk
needs to be determined so that the balance of risk reduction and cost or adverse effects
can be properly assessed. The “screening for treatment” approach is then less
applicable as it is more difficult to define the value, {1, as this should depend on the
levels of other risk factors in the individual being screened: for example, a high
cholesterol level in an older person might suggest a lower critical value for intervention
on blood pressure than for a younger person with a low cholesterol level. In contrast,
the “screening for risk” approach can be easily extended and the package of
interventions chosen that produces the greatest benefit for least risk of adverse effects
or lowest cost. To facilitate this, the effect of any intervention needs to be understood
for all levels of the risk factor that it affects. In particular, it would be useful to know
whether intervention does produce a proportionate reduction in risk regardless of the
level of the risk factor or whether the reduction is attenuated at lower levels. Also
relevant in this context is whether there is advantage in lowering risk factor levels in
younger subjects to reduce long-term risk despite the risk of morbidity in the short-
term being small. However, long-term clinical trials that answer this question are
rarely undertaken and so the issue can only be addressed by extrapolating results from
shorter-term trials and considering the mechanisms that relate the risk factor to

morbidity.
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An important consideration in applying any of the screening methods in practice is
their robustness to the parameter estimates adopted for the risk profiles and risk factor
distributions both within- and between-persons. In this respect the population
approach is likely to be particularly sensitive: small errors in their estimation could lead
to suboptimal solutions and to marked departures from the costs expected. The
approach is also sensitive to the functional forms chosen, particularly to the
relationship between the shape of the risk function with the underlying level, £, and the
distribution of £ in the population. For example, there may be little difference in the
departures from normality of the distribution for £ or for logé, but if the risk function
is log-linear and a normal distribution is chosen for £ then the problem is soluble, but if
a normal distribution is chosen for logf, then it is not soluble because the volume of
risk (that is, number at risk times level of risk) is an unbounded function as ¢

increases.

For the individual approaches, the importance of the accuracy of estimates for the
parameters defining the population distribution for £ reduces very quickly as the
number of repeat measurements accumulates. This is appealing particularly as long-
term intervention is unlikely, in practice, to be recommended without a few repeat
measurements. Thus the problem of uncertainty about population parameters really
concerns those who stop screening after one or two measurements; for these situations
it might be appropriate to be more cautious before stopping screening (as is suggested
by the population approach). Thus a lower level than a mean of 90mmHg after two
visits, as suggested by the W.H.O. guidelines for hypertension screening (Participants

of the W.H.O./I.S.H. meeting, 1986) would be useful. Similarly, in casual screening
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situations without formal decision rules, doctors should be encouraged to look at the
mean of a set of measurements even if taken over several years rather than considering
a single low measurement at a current visit as indicative of no requirement for
intervention. In practice, with both the development of an emphasis on screening for
prevention and with increases in computing facilities in general practice, it would be
relatively simple for software to be developed that provides both individual risk profiles
updated at each visit whilst also including individual information in a database that is
able to update population parameters tailored to local areas. In addition the
development of multi-factorial risk scores with screening based on these rather than
single factors would reduce the need to measure repeatedly those factors, such as blood
pressure and cholesterol, that have substantial components of within-person variability
because the risk score will readily give an adequate assessment of the range within

which an individual’s risk is likely to be.
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6. Further perspectives

In this chapter the developments of this study are summarized in the context both of
other published work and also of further research that would be useful in ‘developing a
statistical framework for screening. The problem considered essentially concerns risk
factors that are continuous variables measured “with error” and the consequent
decision process that leads to an individual being classified as at “high-risk” of
developing a disease and so being considered for intervention to lower that risk. Four
particular issues can be identified that contribute to the screening and intervention
process. The first concerns the assessment of risk in any individual. The second
considers the information that needs to come from clinical trials to aid the decision
about when a treatment is likely to be effective. The third is the method by which
screening leads to a decision as to whether risk is, or is not, sufficiently elevated to
warrant intervention. The fourth concerns the role of monitoring response, particularly
in the short-term, following the start of intervention to assess its effectiveness. These
issues are considered in turn in the next four sections with a specific emphasis on the
context considered in this study, screening diastolic pressure to assess risk of mortality

from cardiovascular disease, and also on the role of multiple risk factors in this setting.

6.1 Risk assessment

The risk of cardiovascular disease appears to rise continuously with diastolic blood
pressure level (MacMahon et al, 1990) and so lowering pressure in any individual is
likely to reduce their risk. However, when interventions used to achieve this can be

potentially harmful (as with drugs), costly and/or inconvenient, then these
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“disbenefits” need to be balanced against the benefits, that is the expected reduction in
risk of developing the disease, in considering the value of intervention. This is
necessarily somewhat subjective but does require a reliable assessment of absolute risk

for an individual.

Risk scoring schemes to identify high-risk individuals have been developed for
cardiovascular disease (for example, Shaper et al, 1986). These can be used as a basis
for determining absolute risk. Typically, however, they only require information on
risk factors at one screening visit and therefore assume that there is no dependence of
risk on past levels of these factors. In chapter 4, this assumption was investigated for
the association between risk and changes in observed diastolic pressure in a sequence of
four annual measurements. No evidence was found that trends or variability about the
observed trend gave additional predictive power when added to a model including mean
level. This confirms the findings of Hofman et al (1980) for trends and variability over
a longer period. Thus it would be reasonable to conclude that current underlying level
of diastolic pressure is the important determinant of risk in middle-aged men at least in

the medium term (say, for predictions for up to about 10 years).

Underlying level cannot be measured directly. In chapter 3, a model for variability was
established describing annual measurements as being normally distributed about
underlying level with standard deviation which increases with level. This model might
be expected to apply also to measurements closer together in time, even when
separated by as little as a week as then serial correlation is negligible (Wilson and
Hebel, 1988). The size of the within-person variability is of a similar order to that

between-person, and so the consequent lack of precision in predicting individual risk
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needs to be recognized: a risk assessment based on one measurement is substantially
less precise than one based on, say, four measurements at separate visits because the
latter is a more accurate measure of underlying level. Note that this cannot be
achieved by repeated measurements at a single visit since the within-visit variance is
much smaller than the between-visit variance (Armitage, Fox et al, 1966). In addition,
the component of variance attributable to rounding practices is only a small component
of the within-person variance so that improvements in measuring practice, though

worthwhile, will only have a small impact on precision of estimation.

Any application of a risk score using information from several visits needs to reflect the
problem of regression dilution: the risk gradient associated with a single measurement
is smaller than the risk gradient associated with the mean of two (or more)
measurements. This is illustrated well by table 4.8: a 10mmHg difference in single
diastolic pressure measurements is associated with a 40% increase in risk, whereas a
10mmHg difference in the mean of measurements from four visits is associated with a
much larger, 69%, increase in risk. Thus applying a risk score derived on a sample
using single pressure measurements to a screening situation where multiple
measurements are available will lead to an underestimation of an individual’s true risk

and hence to an over-emphasis on other risk factors.

An approach which avoids this problem and also indicates the precision of the risk
assessment is obtained by using the observed pressures to derive a probability
distribution for the underlying level using Bayes Theorem, and then to use a risk score
defined in terms of underlying level rather than observed level. Obtaining the risk

gradient with underlying level can be achieved by determining the relationship with
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measured values (done naively using the likelihood equations for the proportional
hazards model even though this model is only valid for the underlying risk factor and
not for the observed factor levels), and then applying an adjustment for regression
dilution arising from the within-person variability about underlying level. For log-
linear proportional hazards models, the size of the adjustment needed to give an
unbiassed estimator in larger samples was investigated in chapter 4. When within- and
between-subject variation are both normally distributed with variances a% and a%,
respectively, and if there is a high degree of censorship in the cohort being studied,
then adjustment by a factor of (1+a§/a%) is appropriate (as used in simple linear
regression). Prentice (1982) also suggested this approximation when the mortality rate
is low (that is, close to 0). This will be so in many epidemiological studies of chronic
diseases in the general population, as found in this study. When this is not the case,
the adjustment needed may be substantially larger: its size increases as the underlying
risk gradient increases and as the level of censorship decreases. However, an important
result established analytically in chapter 4 shows that the size of the adjustment
needed does not depend on the underlying hazard function. This is a particularly
useful result as one of the dominant advantages of these models is that the hazard

function does not need to be specified in order to derive estimates of relative risk.

On a practical front, wider recognition of the effect of regression dilution on estimates
coming from epidemiological studies is needed. In particular, comparison of effects
found in different studies can be confounded by differential effects of regression dilution
attributable to varied within- and between-person variances across studies. Thus it
would be useful for studies to obtain repeat measurements on risk factors that vary

with time on part or all of their cohort so that relationships between underlying levels
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and risk can be assessed.

In moving to multiple risk factors, the effect of variability in one or more factors on the
estimates for risk associations has not been considered. In the context of
cardiovascular risk, this is a pertinent question as both cholesterol and systolic pressure
contribute to improved risk assessment and both vary within-individuals over time.
Armstrong et al (1989) consider this issue for logistic regression models. The
adjustment obtained depends on the within-person covariance matrix for the set of risk
factors considered. Given the similarity of results obtained from logistic regression and
proportional hazards models when the mortality rate is low, then similar results might
be expected for the adjustment needed when using the latter model in this setting.
Thus the adjustment for diastolic pressure might not be expected to depend much on
the variability of cholesterol within-individuals (because their correlation is low) but
the adjustments for diastolic and systolic pressures, when fitted in the same model,
would have a mutual dependence because of their more marked correlation. In settings
where the degree of censorship is not high, further work would be desirable to assess
the dependence in proportional hazards models of the magnitude of the factors for

adjusting for regression dilution in the presence of correlated covariates.

6.2 When is treatment effective?

As has been mentioned, when considering the individual patient, the effect of treatment
in terms of reducing absolute risk needs to be known. However, this is determined by
the levels of a set of risk factors whereas clinical trials tend to describe treatment

effects in terms of relative risk reductions (though adverse effects are more often
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quantified in absolute terms).

A shift of emphasis to show trial results also in terms of absolute risk would be useful.
Ideally, for trials of anti-hypertensive treatments, this might show the absolute risk
reduction in a two-way classification: by baseline underlying diastolic pressure and by
absolute risk of mortality (or morbidity) within a defined period from baseline. This
would then enable the balance of risk reduction and side effects to be assessed more
readily. Of course, this table might be summarized more readily in terms of a model
for relative risk particularly if the effect of treatment is independent, on this scale,
either of levels of diastolic pressure or of levels of other risk factors, or if any
dependence can be conveniently summarized. Such a model would then be useful in
deriving absolute risks if, for instance, they are calculated within computer software
developed for general practice screening. On a practical front, however, few trials will
have sufficient power to determine such a dependence of treatment effect on baseline

risk factor levels and so it would be a useful issue to pursue more fully in overviews.

The other important consideration for clinical trials is the need to relate risk reduction
to underlying level and not to observed level so that predictions of the expected risk
can be made for any individual. Two methods of achieving this are possible. The first
is to measure pressure, in each subject entered into the trial, repeatedly over several
weeks (after randomization but before treatment), so that the mean pressure obtained
is a precise estimate of underlying level. This has the advantage of allowing the effect
of treatment to be assessed in subgroups defined by underlying level but also has the
disadvantage of involving considerable screening effort. The alternative approach is to

derive the distribution of underlying pressures from the observed pressures using a
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model that relates observed and underlying pressures. Such a model should be specific
to the population sampled for the trial but this would require repeat measurements on
a large cohort in order to estimate its parameters. A good approximation might be
obtained by conditioning on results describing within-person variability obtained in
other studies, such as obtained here in chapter 3, where the measurement error caused
by rounding is similar. Then the parameters for the distribution of underlying levels in
the population sampled can be estimated by likelihood methods using data from all
subjects who are screened once for entry into the trial. This would require no
additional screening effort than that usually undertaken for a trial though it does not
give a precise determination of individual underlying levels, only of average levels in the

cohort entered into the trial.

6.3 Screening rules

Each of the approaches to screening considered in chapter 5 has focussed on identifying
individuals with high components of risk attributable to elevated diastolic pressure. At
any of a sequence of screening visits, the decision processes used give critical levels of
mean observed diastolic pressure up to that visit (or equivalently, expected risk of
cardiovascular mortality attributable to elevated diastolic pressure) that lead to
screening being stopped either with or without the recommendation to consider
intervention. This dependence on a single risk factor is not desirable when there are
multiple risk factors as the decision should be based on total absolute risk. In
particular, the “screening for treatment” rule which developed work by Rosner and
Polk (1983) presumes that there is a level of underlying diastolic pressure above which

intervention is indicated and below which it is not. This is not the case when absolute
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risk at that critical level may be large or small depending on the levels of other risk
factors. Despite this, the concept of requiring convincing evidence that a subject has
elevated pressure before considering intervention can be usefully carried over to
decisions based on absolute risk. It would also be relevant if it were established that

intervention was not at all effective below a particular level of diastolic pressure.

The “population approach” to screening focussed on identifying a group within the
population of a given size with the greatest expected event rate attributable to elevated
diastolic pressure, subject to a constraint on screening costs defined as the average
number of repeat measurements allowed per person. If the primary “disbenefits” are
not side-effects to individual patients but are, for example, financial costs to the health
service (as for professional guidance on behavioural interventions), then individual
misclassification is less important. In this case, if the correlation between diastolic
pressure and other risk factors is small and intervening on diastolic pressure has little
impact on other factors, then considering just diastolic pressure in defining a screening

rule is appropriate using the methods put forward.

The philosophy of the approach also extends easily to scores incorporating multiple risk
factors, though the concept of screening costs becomes more complex. For screening
for risk of cardiovascular disease, repeat screening is essentially concerned with blood
pressure and cholesterol measurements and so relative costs of obtaining these need to
be considered. Fullest flexibility would then be obtained by choosing, for each
individual, that combination of blood pressure and/or cholesterol measurements which

would most aid risk classification in the population.
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This is a very dynamic problem and so simplification would be useful. This can be
achieved by ignoring the cost of the first screening visit (where information on all risk
factors would be collected) because all individuals attend then, and then considering
each successive visit as forming a screening package. This would consist of diastolic
and systolic measurements, together with a cholesterol measurement either on a clinic
machine giving an instant result or the result obtained from a sample taken at a
previous visit but sent to a laboratory for assessment. In this way, costs do not vary
from visit to visit (after the first) and so the method of analysis presented in section
5.5 follows through straightforwardly. It also provides maximal information for
comparing the benefits of intervention on either blood pressure or cholesterol or both.
However, it does presume that a single elevated risk factor is not important when the
absolute risk is sufficiently low. Also, it may be possible to have an elevated absolute
risk but without any one risk factor being markedly raised or having a level at which
the benefits of treatment have not been well established in clinical trials. Such issues
may make the application of optimal screening rules in their purest sense difficult but
the methods will still be useful in formulating guidelines (as distinct from rules) for
screening. In particular such guidelines could be used in the “screening for risk”
approach where a distribution of belief is obtained for an individual’s absolute risk
which can also be related to scales showing the associated uncertainty in estimating the

underlying level of each risk factor.

6.4 Monitoring the effects of intervention

Although this issue has not been specifically addressed in this study, it does have some

relevance to the information collected during screening and so deserves brief discussion
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in the context of results from this study. Once intervention is commenced there is an
ethical obligation to assess its performance: if there is a possibility of treatment side-
effects or an intervention is costly, then it is inappropriate to maintain a patient on a

treatment which is not giving the desired effect.

In chapter 3, trends in underlying diastolic pressure were found to be sufficiently small
in magnitude so that any treatment effect should show as a reduction in underlying
diastolic pressure within a reasonable time of its commencement. However, the large
within-person variability (a standard deviation of the order of 10mmHg at diastolic
pressure levels likely to be treated) means that substantial trends may be observed
even if treatment has no effect. Thus, in monitoring a treatment’s effect, it is
important to establish a reference level prior to the start of treatment with which later

measurements can be compared.

Given the desirability of multiple pre-treatment measurements, screening rules might
be formulated that recognize this. Effectively, this leads to one-sided rules where the
decision after any screening visit concerns only the possibility of stopping with the
conclusion that risk is sufficiently low not to warrant intervention. For other subjects
screening would continue until some pre-defined maximum number of visits by which
time good precision in risk assessment would be obtained to decide the appropriateness
of commencing intervention at all. Although in the population context, this will
increase screening costs, the impact will be relatively small because the intervention

group size generally considered is likely to be small compared with the population size.
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6.6 Conclusion

This study has developed a statistical framework for screening rules when a risk factor
varies in time about some underlying or “usual” level. Essentially the rules are applied
sequentially setting out criteria, as each repeat measurement of the risk factor is
completed, as to whether adequate precision has been achieved to make a
recommendation to start intervention because risk is high or to stop screening because
risk is adequately low. Their development requires statistical models both for risk
factor variability and for the relationship between underlying level and risk. The latter
can be derived from the relationship between observed level and risk by adjusting for
regression dilution. From consideration of these rules, guidelines for use in practice can
be developed which would give both good risk classification for individual patients in
reaching decisions but which also display desirable characteristics in a public health
context in terms of identifying a high risk group for intervention subject to constraints
on screening costs. These would represent an advance on the guidelines currently
employed, for example for diastolic pressure, which have little statistical basis. The
extension of the screening models to multifactorial risk scores is both desirable and
conceptually simple. To achieve this some further work is indicated particularly, on
the statistical front, in the handling of regression dilution for correlated risk factors in
survival models and, in clinical trials, in relating treatment effects to underlying risk

factor levels.
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