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a b s t r a c t 

Accurate regional brain quantitative PET measurements, particularly when using partial volume correction, rely 

on robust image registration between PET and MR images. We argue here that the precision, and hence the 

uncertainty, of MR-PET image registration is mainly driven by the registration implementation and the quality of 

PET images due to their lower resolution and higher noise compared to the structural MR images. We propose a 

dedicated uncertainty analysis for quantifying the precision of MR-PET registration, centred around the bootstrap 

resampling of PET list-mode events to generate multiple PET image realisations with different noise (count) 

levels. The effects of PET image reconstruction parameters, such as the use of attenuation and scatter corrections 

and different number of iterations, on the precision and accuracy of MR-PET registration were investigated. In 

addition, the performance of four software packages with their default settings for rigid inter-modality image 

registration were considered: NiftyReg, Vinci, FSL and SPM. Four distinct PET image distributions made of two 

early time frames (similar to cortical FDG) and two late frames using two amyloid PET dynamic acquisitions of 

one amyloid positive and one amyloid negative participants were investigated. 

For the investigated four PET frames, the biggest impact on the uncertainty was observed between registration 

software packages (up to 10-fold difference in precision) followed by the reconstruction parameters. On average, 

the lowest uncertainty for different PET frames and brain regions was observed with SPM and two iterations of 

fully quantitative image reconstruction. The observed uncertainty for the varying PET count-level (from 5% to 

60%) was slightly lower than for the reconstruction parameters. We also observed that the registration uncertainty 

in quantitative PET analysis depends on amyloid status of the considered PET frames, with increased uncertainty 

(up to three times) when using post-reconstruction partial volume correction. This analysis is applicable for PET 

data obtained from either PET/MR or PET/CT scanners. 

h

R

A

1

∗ Corresponding author. 

E-mail address: p.markiewicz@ucl.ac.uk (P.J. Markiewicz). 

URL: http://www.nmi.cs.ucl.ac.uk (P.J. Markiewicz) 
1 joint senior authorship. 

1

 

p  

p  

H  

t  

ttps://doi.org/10.1016/j.neuroimage.2021.117821 

eceived 10 September 2020; Received in revised form 25 December 2020; Accepted

vailable online 12 February 2021 

053-8119/© 2021 The Author(s). Published by Elsevier Inc. This is an open access a
. Introduction 

In vivo quantification is one of the key features of imaging with

ositron emission tomography (PET), allowing accurate estimation of

arameters describing the function and physiology of different organs.

owever, the quality and robustness of the image derived parame-

ers is highly dependent on a number of factors including physics-,
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Fig. 1. Transaxial illustration of the misalignment imprecision caused by 

T1w rigid registration to two noisy PET realisations ( A and B ) of the same 

scan shown on the left. The segmented neocortex was propagated to the 

two PET images using two corresponding rigid-body transformations. The 

common area of the grey matter to both registrations is shown in blue; 

the voxel deviations from the common area (the sources of PET quantifi- 

cation error) are shown in white and red. Indicated brain regions: MCG : 

the middle cingulate gyrus; PCG : the posterior cingulate gyrus; PRC : the 

precuneus. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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atient-, and reconstruction-specific factors Frey et al. (2012) . Among

hese, the leading physical aspects limiting the precision of PET are

he radiotracer together with image noise and limited spatial resolution

also referred to as partial volume effects —PVEs) Barrett et al. (1994) ;

rlandsson et al. (2012) ; Hooker and Carson (2019) . Furthermore,

euro-PET imaging nearly always requires the use of precisely aligned

1 weighted (T1w) MR image data to provide the necessary soft

issue contrast for the analysis and interpretation of the PET data

chwarz et al. (2017) . However, the spatial distribution of various neuro

ET radiotracers —combined with the PET noise and limited resolu-

ion —can also negatively affect the precision of the MR-to-PET (MR-

ET) rigid-body registration and consequently further limit the preci-

ion of PET quantification 2 Therefore, it is important to determine the

ncertainty of MR-PET registration and how this propagates to the ac-

uracy and robustness of the quantitative parameters. 

The effect of MR-PET registration uncertainty is illustrated in Fig. 1 ,

here the same brain with two noisy PET image realisations is consid-

red, A and B . Two independent MR-PET registrations of the T1w image

o both PET images were performed, and the transformations were then

sed to propagate the T1w-based structural segmentations into the PET

mages. Despite the considerable overlap of the cortical regions shown in

lue, there is a significant number of voxels that do not overlap (shown

n white and red for realisations A and B , respectively). 

Several methods for estimating PET image noise (and hence uncer-

ainty) have been proposed, such as the interval-based image recon-

truction Kucharczak et al. (2018) , Bayesian estimation Sitek (2012) ,

pproximate variance estimation of regularised reconstruction methods

essler (1996) ; Jinyi Qi and Leahy (2000) and variance estimation of

he expectation-maximisation (EM) algorithm used in PET image re-

onstruction Barrett et al. (1994) ; Wilson et al. (1994) . However, the

roblem with analytically derived approximations of the uncertainty

s that it is difficult to further propagate the uncertainty into post-

econstruction processes (e.g., partial volume correction), which gen-

rate the final image-based measurements of clinical significance. Nev-

rtheless, other proposed approaches that do not have this limitation

lso exist, which are based on bootstrap resampling of raw PET data

uvat (2002) ; Lartizien et al. (2010) ; Markiewicz et al. (2015) . The ad-

antage of resampling methods is that they can account for the whole

mage generation process, including all reconstruction algorithms with
2 Even when a PET-MR scanner is used where the data is acquired simulta- 

eously, spatial alignment of the data cannot be assumed due to the sequential 

ature of MR sequences and subject movement. 
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heir specific corrections for scatter and random events, and particu-

arly, can propagate the uncertainty through any additional processes

nd analyses. On the other hand, the disadvantage of resampling meth-

ds is their high computational cost, requiring longer times for the un-

ertainty estimation. 

The novelty of this work lies in the uncertainty analysis, which helps

dentify the image processing aspects that need optimisation for more

recise estimation of subtle changes in PET signal, e.g., in longitudinal

easurements of amyloid deposition in the brain. This analysis focuses

n comprehensive investigation of the impact of PET image parameters

n the precision of MR-PET image registration and its impact on the fi-

al PET image statistics. This analysis is enabled by new methodological

nd software aspects based on GPU rapid generation of bootstrap reali-

ations to determine the voxel-level PET noise Markiewicz et al. (2016) .

he uncertainty of MR-PET registration is assessed using four distinct

ET radio-distributions, while systematically varying (1) the image re-

onstruction parameters, such as the number of iterations and selec-

ion of attenuation and scatter corrections; (2) the resampled PET count

evel relative to the chosen gold standard and (3) registration software

ackages. Such an analysis will enable more informed choices of im-

ge processing for high precision quantitative PET analysis. Although

his work focuses on the most common PET reconstruction parameters,

he assessment of future and more advanced reconstruction methods to-

ether with other PET radiotracers will be added on a regular basis on

ur website https://niftypet.readthedocs.io . 

. Methods 

.1. PET/MR Data acquisition and processing 

The participants for this investigation came from the Insight’46 co-

ort study —a neuroscience sub-study of the UK’s Medical Research

ouncil National Survey of Health and Development Lane et al. (2017) .

he participants used in this study were two cognitively nor-

al females: one amyloid negative (69 years old at the time

f scan) and one amyloid positive (71 years old). All PET and

R data were obtained from a simultaneous PET/MR scanner —the

iemens Biograph mMR. Data processing, such as PET list-mode

esampling, quantitative corrections for photon attenuation, scatter

nd randoms, followed by image reconstruction and post-processing

ere performed using the high-throughput Python package NiftyPET

arkiewicz et al. (2018) ( https://niftypet.readthedocs.io ). 

The core of the uncertainty analysis was performed using four

istinct radio-distributions obtained from two dynamic amyloid PET

https://niftypet.readthedocs.io
https://niftypet.readthedocs.io
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Fig. 2. The selection of two time frames from the dynamic PET acquisition used 

for random resampling of the PET data for uncertainty analysis of MR-PET reg- 

istration due to different PET noise levels. Note the distinctly different patterns 

of white/grey matter distributions of the late 30-minute frames —greater uptake 

in the grey matter in the amyloid positive case with lost contrast between the 

grey and white matter. 

Fig. 3. Variable reconstruction parameters for the uncertainty analysis. Shown 

is the negative A 𝛽 late frame scan, reconstructed at full counts for the refer- 

ence, and at 30% count-level with 1, 2 and 3 OSEM iterations (ITR). The three 

reconstruction setups are: without attenuation correction (NAC), with attenua- 

tion correction (AC), and fully quantitative (QNT). 
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cans ([18F]florbetapir) acquired in list-mode for 60 minutes —one was

learly positive and the other clearly negative for amyloid. To limit the

onfounding effects of motion, both scans were chosen to have no, or

inimal, head motion. PET image reconstruction was performed us-

ng the ordered subsets expectation maximization (OSEM) algorithm

udson and Larkin (1994) with varying number of iterations and dif-

erent quantitative correction setups. The PET reconstruction for MR-

ET registration was considered as separate from the standard quanti-

ative PET reconstruction —for example, in case of correcting for mo-

ion, the PET may be reconstructed without attenuation correction in

rder to register the 𝜇-map to the PET image, after which a correct

ttenuation correction may be applied. Also, for some PET distribu-

ions, the non-attenuation corrected images yield better registrations

ostes et al. (2009) . Corrections for attenuation and scatter were by

efault performed using the attenuation maps based on ultrashort echo

ime (UTE) MRI sequences aligned to PET. However, since attenuation

orrection with PET/MR is still challenging, for comparison purposes

nd comparability with PET/CT, 𝜇-maps based on synthetic CT images

referred to as pseudo-CT, pCT) were generated and also used for at-

enuation correction Burgos et al. (2015) . The registrations of UTE and

1w MR images to PET for 𝜇-map alignment were performed indepen-

ently from the MR-PET registrations in the uncertainty analysis. Note,

hat the reconstruction for registration is performed separately from the

tandard PET reconstruction, focusing on their suitability for MR-PET

egistration rather than PET quantification. 

Structural parcellations of the brain based on the T1w image were

sed for regional quantitative PET analysis. The analysis was performed

n the native PET space to avoid any quantification errors due to PET im-

ge transformations and interpolation. The parcellations were obtained

sing the geodesic information flow (GIF) —a multi-atlas segmentation

ropagation strategy Cardoso et al. (2015) . The position of the T1w im-

ge and the corresponding parcellations were randomly perturbed (sim-

lating the random relative position of PET and MR image pairs) using

he NIfTI affine matrix of the T1w and parcellation images. After image

egistration, the parcellations were propagated to the native PET space

sing the rigid body transformation and nearest neighbour interpola-

ion. 

.2. Uncertainty analysis 

The following variables were investigated in the MR-PET registration

ncertainty analysis: 

A) Temporal radio-tracer distribution as in early and late dynamic

frames. 

B) PET reconstruction parameters, i.e., the number of iterations and

application of attenuation and scatter corrections (on/off). 

C) Frame count level at 5%, 15%, 30% and 60% relative to the full

count frame, using PET list-mode data resampling. 

) Rigid body image registration software packages. 

E) PET voxel size. 

F) Initial position of the MR image relative to the PET image. 

(A) Early and late PET radio-tracer distributions. Two distinct PET

racer distributions for both dynamic scans were considered: the early

nd late time frames as shown in Fig. 2 . The radio-distribution of the

rst time frame of 10 minutes has been shown to be very similar to

18F]fludeoxyglucose (FDG) and provides information about cerebral

lood flow Hsiao et al. (2012) . The late frame acquisitions for the amy-

oid tracer are markedly different from the early distributions and pro-

ide information about amyloid deposition in grey matter of the brain.

or good count statistics, the last 30 minutes of both PET list-mode ac-

uisitions were used for the late frames. 

(B) Variable PET reconstruction parameters. Three image reconstruc-

ion setups were investigated in the uncertainty analysis: (i) without

ttenuation correction (NAC), (ii) with attenuation correction (AC); and

iii) fully quantitative reconstruction (QNT), adding scatter correction
3 
o (ii). Corrections for random events, dead-time and detector normal-

sation were performed in all setups. In addition, one to three OSEM

terations with 14 subsets were used as early stopping of iteration as

eans of controlling the PET image noise Tong et al. (2010) . All images

ere generated by bootstrap resampling at 30% count-level relative to

he full-count reference image. Fig 3 shows the three reconstruction se-

ups and three iterations for the late frame of the amyloid negative scan.

he different reconstruction parameters were used only for the purpose

f MR-PET registration and not for PET quantification, which is based on

 separate PET reconstruction. The uncertainty analysis for the recon-

truction parameters was based on 600 independently resampled PET

ist-mode datasets (4 frames × 3 iterations × 50 bootstraps), which were

econstructed with three different numbers of OSEM iterations, resulting

n 1800 PET images. An additional 1200 PET reconstructions were per-

ormed for aligning the 𝜇-map for AC and QNT reconstruction modes,

aking up a total of 3000 PET images used in this analysis. 

(C) Variable count-level PET data resampling. 

The noise level of the T1w images is usually significantly lower than

hat of PET images, which are based on limited count statistics in short

ime frames to capture the PET tracer kinetics and head motion, while

eeping the radiation dose as low as possible. Therefore, it is likely

hat the uncertainty of MR-PET registration is considerably affected by

he PET noise. Multiple variable count-level PET images were gener-

ted using the bootstrap, which simulates a new ‘measurement’ from

he probability distribution represented by the original measurement

erholz et al. (2014) ; Markiewicz et al. (2015, 2016) . The duration of
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Fig. 4. Variable count-level for the uncertainty analysis. In rows are shown 

negative and positive amyloid scans (2 iterations of AC OSEM), each with an 

early time frame (80–680 s) and a late time frame (1800–3600 s). The variable 

count level is shown in columns, varying from 60% to 5%, with the full count- 

level acting as a gold standard and reference (most left column). 
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Fig. 5. The reason for using the Dice coefficient as a direct overlap metric of the 

precision of MR-PET image registration. Metrics based on translations, and sim- 

ilarly rotations, are not accurate predictors of ROI sampling precision as shown 

for the hippocampus (represented by the white ROI in the background) and two 

equally misplaced ROIs (represented by the blue ROI in the foreground) along 

y and z axes by 1 mm each, respectively, producing significantly different sam- 

pling errors (23% vs. 12% error for 𝑦 -translation vs. 𝑧 -translation). (For inter- 

pretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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he PET frames were chosen to be long enough ( Fig. 2 ) to ensure good

tatistics of the reference PET image, resulting in a corresponding refer-

nce MR-PET registration (treated as the gold standard here), to which

egistrations based on lower count PET images are compared. 

The chosen count-levels were 60%, 30%, 15% and 5% of the full

rame. The variable count-level PET images for the amyloid positive

nd negative scans, as well as for the early and late frames, are shown

n Fig. 4 . The typical count-level of a clinical static amyloid scan is

round 30% of the 30 minute frame. For each count-level (4), 50 boot-

trap realisations of raw PET data were generated and independently

econstructed, which, together with the reference (full-count) PET im-

ge, were used for estimation of the distribution of the MR-PET registra-

ion imprecision. Thus, 800 independent bootstrap list-mode datasests

ere generated and reconstructed using AC OSEM, with another 800

econstructions used for aligning the UTE-based 𝜇-map for attenuation

orrection. In addition, two PET image voxel sizes (2.0 and 1.0 mm

sotropic) were investigated, both used in registration with and without

erturbations of the MR relative position. A total of 2400 PET images

ere generated for this. 

(D) Different software packages for MR-PET registration: For each

R-PET image registration, four different registration software pack-

ges were used to investigate uncertainties introduced by different

oftware implementations. The software packages were: ( i ) Statis-

ical parametric mapping (SPM) 12 with update revision number

487 (see www.fil.ion.ucl.ac.uk/spm/ ); ( ii ) NiftyReg (ver. 1.5.61) —a

lobal registration using a symmetric block-matching approach

odat et al. (2014) ( https://github.com/KCL-BMEIS/niftyreg/wiki );

 iii ) VINCI (Volume Imaging in Neurological Research, Co-Registration

nd ROIs included) version 4.95 ( http://vinci.sf.mpg.de/ ); ( iv ) the FM-

IB’s Linear Image Registration Tool (FLIRT) from FSL package version

.0 ( https://fsl.fmrib.ox.ac.uk/fsl ). However, since FSL has not been op-

imised to work with PET, the registrations were failing due to lack of

rain extraction, which is not trivial in PET, and on which FSL relies for

recise registration. For all the registrations, the cost function of nor-

alised mutual information was used, apart from NiftyReg which was

ased on a block-matching technique and least-trimmed square regres-

ion. The default (off-the-shelf) settings were used for all the packages.

ote also, this investigation is not aiming to compare the software pack-

ges, which can always be modified and improved for any given task,

ut rather to show how different software can impact PET analysis. 

(E) Image pre-processing. The T1w images with voxel size of 1.1 mm

sotropic have significantly higher resolution compared to the native
4 
ET with voxel size of 2.09 × 2.09 × 2.03 mm 

3 . Therefore, the PET

mages were upsampled by dividing each voxel into eight equal voxels

without interpolation), resulting in a 1.04 × 1.04 × 1.01 mm 

3 voxel

ize, and thus enabling the use of high resolution ROI definitions based

n the T1w images. All T1w MR images were corrected for geometric

istortions and the bias field. 

(F) Perturbation of the MR image position: Since the data under investi-

ation comes from a simultaneous PET/MR scanner, it is likely that the

1w image will be in close register with the PET image. This would be,

owever, unlikely to be the case when PET and MR scans are acquired

t different times. Therefore, for each PET bootstrap realisation, the po-

ition of the MR image was randomly perturbed by modifying the NIfTI

mage affine matrix, and thus resulting in unique spatial position of all

R-PET pairs to be registered. Similarly to Schwarz et al. (2017) , the

erturbations consisted of added random translations in each direction

 𝑥, 𝑦, 𝑧 ) of between -10 and 10 mm, as well as random rotations between

10 ◦ to +10 ◦ around each axis, leaving the voxel values intact. 

.3. Quantification of registration uncertainty. 

The key element of the uncertainty analysis is the quantification of

he MR-PET registration precision. This was performed by using two

etrics: (1) the standardised uptake value ratio (SUVr) —a ratio be-

ween target and reference regions; (2) the Dice coefficient of the reg-

stration transformations relative to the gold standard transformation

ased on high statistic PET. The first metric is used on a single, typical

linical quantitative PET scan, which was acquired for 10 minutes (50

inutes post injection–the last 10 minutes of the list mode data), and

as sampled using ROIs of variable position subject to the MR-PET reg-

stration imprecision as estimated by the resampled PET images used

n the uncertainty analysis above. Thus the observed uncertainty came

rom registration imprecision only, while the effects of noise of the tar-

et quantitative PET itself were not considered. In addition, the effect of

artial volume correction (PVC) was also investigated, by using the iter-

tive Yang algorithm on the target quantitative PET with varying defini-

ions of the ROIs for each bootstrap realisation Erlandsson et al. (2012) ;

arkiewicz et al. (2018) . The PVC correction was performed post im-

http://www.fil.ion.ucl.ac.uk/spm/
https://github.com/KCL-BMEIS/niftyreg/wiki
http://vinci.sf.mpg.de/
https://fsl.fmrib.ox.ac.uk/fsl
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Fig. 6. Matrices of standard deviations (SD) of the Dice coefficient as a measure of MR-PET registration uncertainty across 9 grey-matter-only ROIs shown in 9 block 

rows, which are: the anterior, middle and posterior cingulate gyri (ACG, MCG and PCG, respectively), the hippocampus (HPC), precuneus (PRC), parietal (PRT) 

and temporal (TMP) lobes, and the cerebellar grey (CRB GM) and white (CRB WM) matter. Investigated are early and late frames of amyloid negative (A 𝛽− ) and 

positive (A 𝛽+ ) PET scans shown in the four groups from left to right. The uncertainties for reconstruction parameters are shown as 3 × 3 pixel matrices composed 

of one to three OSEM iterations (columns) and three quantification corrections modes (rows): with no attenuation correction (NAC), with attenuation correction 

(AC), and fully quantitative (QNT). PET count-level was at 30% compared to the reference 100% for each Dice coefficient measurement. The white dot indicates 

lowest recorded uncertainty. The SDs marked with the red box are shown as boxplots in Fig. 11 in the supplementary material. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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ge reconstruction and required already aligned brain parcellations as

nput. 

In addition, we investigated the rigid-body transformations them-

elves, with suitable metrics being the Dice coefficient and Jaccard index

aha and Hanbury (2015) , both of which require the T1w parcellations

ropagated to the corresponding PET spaces. Although both metrics are

losely related, the more frequently used Dice coefficient was selected

ice (1945) . The Dice coefficient for a single pair of the reference and

ootstrap parcellation images,  𝑟 and  𝑏 , respectively, is defined as: 

𝐼𝐶𝐸 = 

2 || 𝑟 ∩  𝑏 
|
|

|
| 𝑟 

|
| + 

|
| 𝑏 

|
|

. (1)

he registration uncertainty for any given ROI is estimated by forming

 distribution of the Dice coefficients of all 50 bootstrap realisations

elative to the single reference parcellation. The advantage of the Dice

oefficient is that it quantifies effects of misalignments in rotations and

ranslations more accurately than quantifying the rotations or transla-

ions separately as is illustrated in Fig. 5 where two 1-mm translations

roduce different ROI sampling errors. 
5 
. Results 

A total of 5400 PET images were generated, for which MR-PET regis-

rations were performed using four different software implementations,

esulting in 16,800 registrations (for the count-level analysis the reg-

stration was performed with and without MR position perturbation).

he MR-PET registration uncertainty is presented across nine ROIs in

ig. 6 , using the metric of standard deviation (SD) of the distributions

f the Dice coefficient for all reconstruction setups, the four registration

oftware packages and the four PET frames. Each SD pixel in Fig. 6 is

erived from 50 reference-bootstrap Dice coefficients. The most precise

egistrations were obtained using SPM for the cerebellum grey matter,

part from the late frame of amyloid negative scan, for which it was

btained for the hippocampus. The observed difference in precision be-

ween software implementations was up to 10-fold, which was observed

or the temporal lobe of the early frame of negative amyloid scan re-

onstructed with QNT OSEM and two iterations. For the AC OSEM re-

onstruction, the observed difference in precision was 9-fold obtained

or the hippocampus and the negative amyloid late frame reconstructed

ith three OSEM iterations. The boxplots of the distributions marked

y the red box are shown in the supplementary material such that the

recision (shown in the width of the boxplots) can be compared to the
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Fig. 7. Matrices of average standard deviations (SD) of the Dice coefficient 

across 9 different brain regions of interest (ROI) —a reduced version of Fig. 6 —as 

a measure of average MR-PET registration performance for different PET distri- 

butions (early and late frames and amyloid positive and negative scans), PET 

reconstruction types, and image registration software packages. Count level was 

at 30%. The white solid dot indicates lowest recorded uncertainty for each frame 

while the asterisks indicates uncertainties which are statistically indifferent to 

this uncertainty. 
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btained accuracy (closeness to the value of 1) for the different regis-

ration software packages (Fig. 11 in the suplementary). 

The average performance across the nine ROIs is shown in Fig. 7 . The

est average registration performance was obtained with SPM registra-

ion, the quantitative PET reconstruction, two OSEM iterations, apart

rom the late frame of amyloid negative scan, for which the best results

ere obtained using AC reconstruction with three iterations. The param-

ters yielding best precision were marked with solid dot, while the pa-

ameters yielding statistically indistinguishable precision as tested with

he Brown-Forsythe test for equal variances were marked with the aster-

sk. The bright-yellow SD values correspond to distributions in which at

east one registration failed, thus significantly increasing the SD values.

The PET reconstruction parameters can also have a significant effect,

or example, the highest observed average range of SD values due to

econstruction parameters across all nine ROIs using SPM was 0.016 (4-

old change) for the early frame of negative amyloid scan (minimum

D = 0.0043 for QNT reconstruction with two iterations of OSEM and

aximum SD = 0.02 for AC reconstruction with one iteration). 

The precision of MR-PET registration for four count-levels, four PET

istributions and the nine ROIs using SPM12 for registration is shown

n Fig. 8 using standard deviation (SD) and boxplots. Fig. 8 A shows the

D of the Dice coefficient distribution across all ROIs for PET images

econstructed with UTE 𝜇-map. Fig. 8 B shows the pooled Dice coefficient

istributions across the ROIs and PET images reconstructed with the

TE and pCT 𝜇-maps. The marked red box for the precuneus ROI of

he early frame of the A 𝛽+ scan exhibits one of the highest uncertainty

anges across the count-levels and is further investigated together with

he simulation of random relative position of PET and MR images (see

he supplementary material). 

The uncertainty of the PET imaging endpoint SUVr due to the MR-

ET registration imprecision is shown in Fig. 9 for the two late PET

rames with and without partial volume correction (PVC) and for the

hree registration software packages. The precuneus was considered as

he target region and cerebellum grey matter as the reference region.

he uncertainty is reported as the coefficient of variation (CoV) and

epresents only the loss of precision due to the MR-PET registration and
6 
ot the variability of the PET signal (which is yet another source of vari-

bility). Note that for the Vinci software at 15% count level the point

s not included as for one noise PET realisation the registration failed,

ignificantly increasing the variation beyond the scale. The boxplots rep-

esenting the distrubiton of Dice coefficient for SPM have been added

n the supplementary material. 

. Discussion 

The uncertainty of MR-PET registration was quantified and evalu-

ted using high-throughput dedicated imaging pipelines for resampled

atasets. The effects of PET distribution, count-level and image recon-

truction parameters on MR-PET registration were assessed using four

ifferent registration software packages. 

The choice of registration software had the biggest impact on the reg-

stration uncertainty with SPM12 achieving highest precision and accu-

acy. Note that the range of the standard deviation of the Dice coeffi-

ient observed for the different registration packages in Fig. 6 and 7 is

round 5 times bigger than that of the count-level as shown in Fig. 8 .

ote that the investigation of different registration parameters for each

oftware package was beyond this work. Instead, we focused on the de-

ault, off-the-shelf parameters as they are commonly used. Therefore,

hese results cannot be used to unequivocally indicate which software is

ore precise, but merely to quantify the impact of using different soft-

are packages. Since SPM12 with the default settings achieved highest

recision, it was used for the uncertainty analysis using variable PET

ount-levels as shown in Fig. 8 . Although this work has been limited to

he few registration software packages, it will be gradually expanded

ncluding other registration packages (such as FreeSurfer, ANTs, DIPY)

nd published online on our website https://niftypet.readthedocs.io/ . 

The average registration performance across ROIs may be useful to

now when performing multi-regional brain analyses. The optimal reg-

stration was achieved with two iterations of OSEM and full quantitative

ET reconstruction, with the exception of late frame of A 𝛽(−) , for which

hree OSEM iterations with attenuation correction only was slightly bet-

er ( Fig. 7 ). Hence, this AC reconstruction with two iterations may be

urther investigated across multiple subjects for detection of subtle and

arly changes of amyloid deposition as it also allows faster processing

ithout performing scatter correction. 

The reconstruction parameters , such as the number of OSEM iterations

nd the quantification corrections, had the second highest impact on

recision (when statistically significant, see Fig. 7 ). For example, one

SEM iteration may not be enough for the PET images to produce the

ighest precision in many SPM registrations (Fig 6 ), particularly when

sing AC reconstruction. On the other hand, for NiftyReg, the best aver-

ge performance was observed with one OSEM iteration in most cases,

hich would suggest that NiftyReg favours smoother PET images, which

an be obtained with fewer number of OSEM iteration. The cerebellum,

hich often acts as a reference region, was observed to exhibit one of

he most precise MR-PET registrations across the considered PET frames.

ince the number of OSEM iterations depends on the implementation of

he reconstruction and the scanner itself, such an uncertainty analysis

hould ideally be run on a pilot study to discover the optimal image

rocessing parameters for large studies. 

Note, that due to the frequent mismatch between attenuation and

mission data caused by motion, registration to PET images without at-

enuation and scatter corrections may be more accurate, which can be

ollowed by another registration using AC or QNT PET images based on

he aligned 𝜇-map for better precision. Furthermore, the optimal reg-

stration will depend on the radiotracer distribution and the applica-

ion —e.g., for some neuroreceptor studies the NAC reconstruction were

eported to be optimal Costes et al. (2009) ; Reilhac et al. (2018) . The

urrent scope of this work has been limited to default and easily avail-

ble reconstruction methods. However, more advanced reconstruction

nd processing methods will be added to our regularly updated website.

he additional investigation will include resolution modelling, PVC with

https://niftypet.readthedocs.io/
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Fig. 8. The SPM12 registration uncertainties for different PET count levels and PET distributions. A: The uncertainties are presented as standard deviation for 

multiple regions of interest (ROI) of early and late frames of amyloid positive (A 𝛽+ ) and negative (A 𝛽− ) PET scans. The red box marks the largest peak-to-peak 

uncertainty between the count-levels (cf. Fig. 12 in the suplementary). B: The average performance across all ROIs is shown as boxplots using two iterations of AC 

OSEM with UTE (grey) and pCT (black) 𝜇-maps. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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he scanner specific PSF, and dedicated reconstruction with priors which

ay also help further reduce the uncertainty of MR-PET registration. 

PET count-level had the third highest impact on the precision of

R-PET registration within the range of count-levels considered, i.e.,

rom 5% to 60% with 30% closely corresponding to the typical 10

inute static acquisition for SUVr quantification. In particular, the re-

ults shown in Fig. 8 provide evidence that the PET count-level is

trongly and positively associated with the precision, i.e., the higher the

ount-level the higher the registration precision across all four frames.

mportantly, the choice of 𝜇-map (UTE or pCT) overall did not make

 statistical difference for the uncertainties using the Brown-Forsythe

est (apart from two exceptions marked with asterisks in the boxplots

n Fig. 8 B , 𝑝 < . 05 ). However, for the late frames, the pCT 𝜇-map pro-

uced more accurate (less biased) registrations relative to the reference

egistrations based on 100% PET count level. 

The randomisation of the relative position of MR to PET was applied to

ll the analyses, however, although observing similar registration un-

ertainties to Schwarz et al. (2017) , we found that the random initial

osition of PET images relative to MR had little effect on the uncer-

ainty compared to the PET count-level (see the supplementary for more

etails). 

The accuracy of MR-PET registrations was estimated by comparing

he lower-count PET registrations to the full-count PET registration.

igh precision registration is indicated by the narrow boxplot Dice dis-

ributions, and high accuracy is indicated by the distributions being
7 
lose to the value of 1 (compare Fig. 8 B as well as Figs. 11 and 12

n the supplementary material). The estimated accuracy (bias) is only

pproximate as the high-count PET registration is unlikely to be fully

epresentative of the exact and perfect registration which can only be

nown with infinite PET counts. Nevertheless, all the high precision reg-

strations consistently achieve higher accuracy than the rest. 

The effects of registration uncertainty on PET image analysis can be

articularly seen in quantitative analysis of a single PET image while

sing variable ROIs definitions due to MR-PET registration imprecision

 Fig. 9 , see Fig. in the supplementary material for the absolute SUVr val-

es). The presented results are in agreement with Brendel et al. (2015) ;

onzalez-Escamilla et al. (2017) ; Rullmann et al. (2016) where the PVC

ncreased the SUVr value contrast between the positive and negative

myloid cases. This is caused by the SUVr value decrease in the amyloid

egative case and SUVr value increase in the amyloid positive case (Fig.

3 in the sumplementary). However, the studies did not investigate the

VC precision. In Frouin et al. (2002) , it was shown that the MR-PET

egistration is a major source of error, decreasing the precision of the

VC. In our study we were able to quantify the loss of precision using

eal brain scans. 

The uncertainty of the SUVr depends on the target ROI and the refer-

nce ROI by which the target ROI is normalised. The choice of the reg-

stration software had the biggest impact on the precision of the SUVr

more than four times), followed by the partial volume correction, which

ccounts for the loss of precision of up to 2.5 times in the low-count-
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Fig. 9. The effects of MR-PET registration uncertainties on the precision of the SUVr of the precuneus ROI, reported as the coefficient of variation for four different 

count-levels of negative (left) and positive (right) amyloid PET scans. The cerebellum grey matter was used as the reference ROI. Standard and partial volume 

corrected (PVC) PET images were considered for the calculation of the SUVr metric.. 
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ased registrations. Also, the effect of PET count-level was greater in the

myloid negative than in the amyloid positive case. Doubling the count-

evel can reduce the uncertainty by half or more (as measured by the

oefficient of variation, CoV). The greater uncertainty in the amyloid

egative case is likely due to the greater contrast between cerebral grey

nd white matter compared to the amyloid positive scan, for which the

ontrast is lost. However, due to more motion being expected in amy-

oid positive subjects, the overall precision across these subjects can be

ower. 

Although the application of PVC to PET can introduce addi-

ional uncertainty due to its dependence on the ROI definitions and

ther factors, the signal increase due to PVC can be greater, as

hown by Brendel et al. (2015) ; Gonzalez-Escamilla et al. (2017) ;

ullmann et al. (2016) . Hence, the ratio of signal to noise may prove

o be greater, making the PVC worthwhile. However, it is surmised that

he gain in signal can be lower for smaller and narrower ROIs, for which

he PET noise and registration uncertainty are greater and therefore care

hould be taken when applying PVC to PET images Thomas et al. (2011) .

his additional uncertainty observed with PVC would probably also be

bserved for any other PVC method, as the source of the uncertainty is

he ROI mispositioning caused by MR-PET registration imprecision, re-

ardless of the bias introduced by any PVC method Frouin et al. (2002) ;

onzalez-Escamilla et al. (2021) ; Minhas et al. (2018) . Such an insight

nto the uncertainty of the final image statistic is particularly important

or longitudinal imaging, for which the scope of the uncertainty will de-

ne the accuracy and speed of early detection of amyloid accumulation

r the response to a new therapy. Note, that the choice of the reference

egion can impact the SUVr precision, as it has been shown with the

roded white matter ROI to increase precision. However, this region in

ot suitable for dynamic studies and it is unstable across a wider age

pectrum Lowe et al. (2018) . 

Recommendations for higher precision PET analysis: In order to ensure

he highest possible precision of PET analysis supported by MR-based

OI definitions, we recommend performing uncertainty analysis for any

pplication-specific PET study —the software used in this analysis will

e publicly available as open source at https://niftypet.readthedocs.io .

uch an analysis may help to choose the optimal registration software

nd construct PET frames with better noise properties (e.g., by sum-

ing or widening the frames when possible). Performing a separate

ost-processing or PET reconstruction for registration purposes should

e considered when the target PET images are too noisy, e.g., in the

arly dynamic frames, for which longer frames can be considered; or in

ase of motion correction for which frames are selected in accordance

ith the occurred motion, more accurately separating different motion

S  

8 
ones in the PET acquisition. Choosing custom reconstruction param-

ters (e.g., greater smoothness obtained with fewer OSEM iterations)

ay improve the registration. Although, PVC increases the imprecision

f the final image statistic (e.g., SUVr) it may still be worthwhile as the

ains in PET signal can be greater than the loss of precision. 

. Conclusions 

Based on the presented uncertainty analysis, we found that the pre-

ision of MR-PET image registration depends most strongly on the regis-

ration software used and the quality of the PET image as influenced by

ifferent reconstruction parameters and the count level. Negative amy-

oid scans are subject to greater ROI sampling uncertainty due to the

igher grey/white matter contrast as opposed to the amyloid positive

cans, and hence greater care should be taken when imaging partici-

ants at the early stages of amyloid accumulation. Performing PET par-

ial volume correction can introduce additional noise, especially when

he MR-PET registration is based on lower quality PET images. This un-

ertainty analysis opens a way for a development of optimal image re-

onstruction algorithms with the main emphasis of reducing the image

oise while maintaining good contrast for high precision registration.

herefore, it may be beneficial to run a separate PET reconstruction,

ifferent from the target PET quantification but dedicated to and opti-

ised for high precision MR-PET registration, which would then facili-

ating higher precision quantitative PET. 
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