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This paper presents a simple and easy-to-use method of creating a time-varying1

signal of the degree of nasalization in vowels, generated from acoustic features mea-2

sured in oral and nasalized vowel contexts. The method is presented for separate3

models constructed using two sets of acoustic features: (1) an uninformed set of4

13 Mel-frequency cepstral coefficients (MFCCs) and (2) a combination of the 135

MFCCs and a phonetically-informed set of 20 acoustic features of vowel nasality6

derived from previous research. Both models are compared against two traditional7

approaches to estimating vowel nasalization from acoustics: A1-P0 and A1-P1, as8

well as their formant-compensated counterparts. Data include productions from six9

speakers of different language backgrounds producing 11 different qualities within the10

vowel quadrilateral. The results generated from each of the methods are compared11

against nasometric measurements, representing an objective “ground truth” of the12

degree of nasalization. The results suggest that the proposed method is more robust13

than conventional acoustic approaches, generating signals which correlate strongly14

with nasometric measures across all vowel qualities and all speakers and which accu-15

rately approximate the time-varying change in the degree of nasalization. Finally, a16

experimental example is provided to help researchers implement the method in their17

own study designs.18
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I. INTRODUCTION19

During the production of vowel nasalization, the velum lowers to allow air to flow past the20

velopharyngeal (VP) port and through the nasal cavity, thereby acoustically coupling the21

oropharyngeal and nasal cavities. This coupling results in a wide range of modifications to22

the acoustic output of a VP-coupled vowel in comparison to its non-VP-coupled (i.e. oral)23

counterpart. These modifications include: reduction of formant amplitudes, widening of24

formant bandwidths, modulation of formant frequencies, shifting of spectral energy toward25

lower frequencies, and addition of poles (i.e. formants) and zeros (i.e. anti-formants) to26

the acoustic spectrum (Carignan, 2018; Chen, 1997; Feng and Castelli, 1996; Fujimura and27

Lindqvist, 1971; Maeda, 1993; Styler, 2017, inter alia). Due to the myriad acoustic effects28

of VP-coupling, many acoustic metrics have been proposed to capture and characterize the29

degree of nasalization in vowels. Some have focused on general spectral shape (Feng and30

Castelli, 1996; Pruthi and Espy-Wilson, 2004), others have focused on spectral modifications31

in specific regions (Carignan, 2018; Hawkins and Stevens, 1985; Stevens et al., 1987), and yet32

others have focused on identifying nasal poles in the spectrum (Chen, 1997; Maeda, 1993).33

Recently, Styler (2017) compared the efficacy of 22 acoustic features in distinguishing34

oral and nasal(ized) vowels in both English and French. Three features were found to be35

the most effective in capturing nasalization in the acoustic signal: A1-P0, F1 bandwidth,36

and spectral tilt. However, the author observed that even those features varied considerably37

across speakers and between the two languages, concluding that “the acoustic nature of vowel38

nasality is both language- and speaker-specific” (ibid., abstract). Of particular interest is39
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the observation that A1-P0 emerged as an effective acoustic correlate of nasalization, given40

that it is the most widely and frequently used acoustic metric in the literature on vowel41

nasality. A1-P0 has been used to make substantial advances in our understanding of how42

vowel nasality is implemented across languages (Garellek et al., 2016; Khattab et al., 2018),43

speakers (Kim and Kim, 2019) and listeners (Zellou, 2017), how it is affected both by prosodic44

factors (Cho et al., 2017; Jang et al., 2018; Zellou and Scarborough, 2012) and lexical factors45

(Scarborough, 2013; Scarborough and Zellou, 2013), and how it can serve as a catalyst for46

sound change (Beddor, 2009; Zellou and Tamminga, 2014).47

A. Exploring the poles: A1-P0 and A1-P148

Capitalizing on the introduction of (nasal) poles to the acoustic spectrum of VP-coupled49

vowels, Chen (1997) proposed two measures based on the relationship between the ampli-50

tudes of oral and nasal poles, as determined by spectral harmonics: A1-P0 and A1-P1. A151

refers to the amplitude of the highest harmonic within F1, whereas P0 and P1 refer to the52

respective amplitudes of harmonics associated with nasal poles. Chen (1997) proposed a53

range of 250-450 Hz for the location of P0 (250-400 Hz was proposed by Maeda, 1993 for54

males), and a range of 790-1100 Hz for the location of P1. As the degree of nasalization55

increases, the amplitudes of oral poles are expected to decrease while the amplitudes of nasal56

poles are expected to increase. Thus, the difference in these oral-nasal pole amplitudes is57

expected to exhibit an inverse relationship with the degree of nasalization. While A1-P0 (i.e.58

the difference between the amplitude of the most prominent F1 harmonic and the amplitude59

of the low-frequency nasal pole) was introduced as the more robust of the two measures60
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(and is indeed the most commonly used in the literature on vowel nasality), Chen (1997)61

noted that there are some cases where A1-P0 may fail—in particular, vowels with low F162

frequency, for which A1 and P0 may in fact be associated with the same harmonic. She63

thereby proposed A1-P1 as an appropriate substitute for high vowels. Correction functions64

were also given to rectify such problems by taking into account the relative position and65

bandwidths of nearby formants.66

Figure 1 shows overlaid spectra measured in 50 ms windows of oral /a/ (red, solid line)67

and nasalized /a/ (blue, dotted line), extracted from a token produced by speaker S1 of the68

current study. In this particular token, P0 is estimated at 230 Hz and A1 is estimated at69

800 Hz. In comparing the oral and nasalized spectra, the amplitude of P0 is similar, but the70

amplitude of A1 is reduced in the nasalized spectrum. Thus, A1-P0 is lower for nasalized71

/a/ than oral /a/, as expected.72

Figure 2 shows overlaid spectra measured within 50 ms windows of oral /i/ (red, solid73

line) and nasalized /i/ (blue, dotted line), also extracted from a token produced by speaker74

S1. In this particular token, P0 is estimated at 330 Hz; however, given the low F1 for /i/,75

A1 is also estimated at 330 Hz. This token therefore represents an example where the A1-P076

measure would fail, since the same harmonic is chosen for both P0 and A1. Thus, A1-P1 is77

a more appropriate measure in this case. However, determining which harmonic represents78

P1 is not entirely straightforward, since none of them is particularly prominent. The 7th
79

harmonic is at 760 Hz, the 8th at 870 Hz, the 9th at 980 Hz, and the 10th at 1090 Hz, with a80

monotonic decrease in amplitude across the four harmonics. Thus, each of these harmonics81
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FIG. 1. (color online) Overlaid spectra of oral (red, solid line) and nasalized (blue, dotted line)

/a/.

is arguably a potential candidate within the estimated range of 790-1100 Hz proposed for82

the location of P1 (Chen, 1997).83

It may be clear by this point that comparing amplitudes of A1, P0, and P1 can quickly84

become an exercise in counting harmonics, a task that is not always as straightforward85

as might be assumed. This task is further complicated by the dynamic nature of speech86

harmonics: as the fundamental frequency (F0) changes, the frequencies of the harmonics87

of F0 change as well. Thus, individual harmonics that are relatively prominent at one F088

may become less prominent at another, since the amplitude of each harmonic is dependent89
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FIG. 2. (color online) Overlaid spectra of oral (red, solid line) and nasalized (blue, dotted line)

/i/.

upon its frequency “location” within the acoustic transfer function. This issue is further90

exacerbated as F0 increases (e.g., relatively high F0 of female speakers or children), causing91

the harmonics to spread throughout the acoustic transfer function due to increased inter-92

harmonic spacing.93

Ultimately, focusing on a single acoustic metric is likely not the best approach to char-94

acterizing the degree of vowel nasalization in a way that is both accurate and robust across95

different vowel qualities, speakers, and languages. Instead of focusing on a single acoustic96

correlate of nasalization, the current study proposes a method of generating an estimate of97
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the degree of nasalization from speaker-specific models trained on a wide range of possible98

acoustic correlates. In this way, the fidelity of the resulting metric is not diminished by the99

fact that the accuracy of any given individual correlate may vary across different speakers100

and contexts. Throughout the paper, we will refer to the proposed method as the NAF101

method (Nasalization from Acoustic Features).102

II. METHODOLOGY103

The data and code used to generate the models and figures appearing in this article are104

available at https://github.com/ChristopherCarignan/NAF.105

A. Nasometry and nasalance106

Nasometry was used in order to obtain an objective measure of the degree of nasalization107

in a way that does not alter or impede upon speech acoustics (cf. aerodynamic measure-108

ments of nasal airflow which use a mask placed over the mouth and/or nose). The data109

used here come from nasometry recordings from Carignan (2018), collected using a Glot-110

tal Enterprises H-SEP-MU, which consists of two directional microphones located on either111

side of an acoustic baffle that surrounds the speaker’s upper lip. The microphone above112

the baffle thus captures the acoustic energy radiating from the nose, while the microphone113

below the baffle captures the acoustic energy radiating from the mouth. The two signals114

were combined in order to create a single, merged audio signal for acoustic analysis (Section115

II C). Separate amplitude (dB) tracks for the oral and nasal signals were created in Praat116

(Boersma and Weenink, 2017), and a measurement of the degree of nasalization (called117
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“nasalance”) was derived by calculating the proportional nasal amplitude, i.e. Anasal/(Aoral118

+ Anasal); see Dow (2020) for discussion of the Differential Energy Ratio, an alternative119

approach to quantifying nasometric data. Throughout this paper, this nasalance measure120

will be referred to as the “ground truth”, as it represents an objective (albeit indirect) mea-121

surement of the changing degree of nasalization. For each speaker, nasalance measures were122

z-score normalized for each vowel category (Section II B), in order to control for variation in123

intra-oral airflow impedance arising from differences in tongue position across vowels.124

B. Speakers and experimental task125

Native speakers of six different languages/dialects participated in the study (American126

English, Australian English, Mandarin, Cantonese, French, and Hungarian): four males127

and two females, with a mean age of 31.3 years (SD = 7.5). All speakers were either128

graduate students or professional academics in phonetics and/or phonology. The speakers129

were instructed to produce 20 sustained repetitions of each of the 11 vowels /i, I, e, E,130

æ, a, A, O, o, U, u/; the repetitions were carried out in individual blocks for each vowel,131

proceeding in the order indicated above. For each repetition, the speaker was instructed132

to sustain phonation of an oral quality of the vowel, then subsequently lower the velum133

during the sustained phonation while attempting to maintain tongue posture. During the134

productions, the experimenter monitored tongue posture on a GE LOGIQ e ultrasound135

system. If the experimenter judged the tongue posture to have changed substantially, the136

item was repeated; this process continued until 20 repetitions of each vowel were obtained137

that each displayed minimal change in tongue posture. Due to the relatively difficult nature138

9



of the experiment, speakers were sometimes unable to achieve the task for a particular vowel139

or were unable to obtain 20 repetitions; in these cases, the speaker was instructed to advance140

to the next target vowel in the set.141

C. Acoustic features142

A total of 33 acoustic features were obtained in Praat at 5 ms intervals within a 500 ms143

window centered on the point of maximum velocity in the nasalance signal of each token,144

i.e. the point of the most rapid change from oral to nasal. This point of maximum velocity145

will be referred to as the “onset of nasalization” for the sake of simplicity, even though it146

does not correspond to traditional estimates of gesture onset, e.g., 20% velocity thresholds147

(Kroos, 1996). Thus, the first 50 samples of each token (i.e. 0-250 ms) correspond to an oral148

portion of the vowel up to the onset of nasalization, and the last 50 samples (i.e. 250-500149

ms) correspond to a nasalized portion of the vowel beginning with the onset of nasalization.150

18 acoustic features of nasality were measured using the Nasality Automeasure Praat151

script1: the frequency, amplitude, and bandwidth of F1-F3; P0 and P1 amplitude; P0152

prominence; A1-P0 and A1-P1, as well as their formant-compensated analogs; A3-P0; and153

H1-H2. The script was run in “Full-Auto” mode with defaults for all parameters, with the154

exception of the formant estimation range, which was set at 5000 Hz for males and 5500155

Hz for females (default: 5300 Hz). Although A1-P0 and A1-P1 are expected to exhibit156

an inverse relationship with the degree of nasalization, the values were inverted for the157

purposes of this study—i.e. so that an increase corresponds to an increase in the degree158

of nasalizaiton, and vice versa—for easier comparison with both the nasalance signal and159
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the signal generated by the NAF method. Additionally, the center of gravity within the160

region of 0-5000 Hz (Styler, 2017) and a measure of nasal murmur—quantified as the ratio161

of low frequency (0-320 Hz) amplitude to high frequency (320-5360 Hz) amplitude (Pruthi162

and Espy-Wilson, 2004)—were made in order to capture broad spectral changes. In addition163

to these 20 phonetically-informed acoustic features, 13 Mel-frequency cepstral coefficients164

(MFCCs) were calculated in Praat, representing a set of phonetically-uninformed features.165

MFCCs are widely used as features in speech recognition, including automatic classification166

of vowel nasalization (Liu et al., 2019).167

D. Principal components transformation of features168

The basic principle of the NAF method is first to determine the speaker-specific mapping169

of acoustic features to the realization of nasality via statistical modeling of a training set170

of data, and then to use this speaker-specific model to predict the degree of nasalization171

in a testing set of data. Since most of the acoustic features used here were created with172

the express purpose of identifying and characterizing vowel nasalization, a high degree of173

multicollinearity in the feature set is expected. As such, the features cannot be used as-is as174

predictor variables in statistical modeling, since the collinearity would inflate the standard175

error of the individual dimensions in the training data, leading to instability of the partial176

regression coefficients and, subsequently, the inability to use the model to accurately predict177

the degree of nasalization in the testing data. Thus, for each speaker, principal components178

analysis (PCA) was carried out in order to de-correlate the acoustic features. The resulting179

(orthogonal) PC scores were then used as independent variables in linear regression,2 as180
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described in the following section (Section II E). Two PCA models were created for each181

speaker: one for the uninformed set of acoustic features (the 13 MFCCs) and one for a182

combination of the 13 MFCCs and the set of 20 acoustic features of vowel nasality described183

in Section II C. Throughout the paper, these feature sets and their corresponding results184

will be referred to as the “reduced NAF method” (13 features) and the “full NAF method”185

(33 features).186

E. Speaker-wise training of acoustic features187

For each speaker, the total number of tokens for each of the vowel qualities was split188

via random sampling into training and testing sets using a 75%-25% training-testing ratio.189

Nasalance data from the training tokens were separated into the lower quantile (i.e. bottom190

25% of nasalance values) and the upper quantile (i.e. top 25% of nasalance values) for each191

speaker; these observations were considered as “oral” data and “nasal” data, respectively,192

for the purposes of model training. This resulted in an average of 3154 data points in each193

of the oral and nasal categories for each speaker (SD = 833). Oral data were coded as ‘0’194

and nasal data were coded as ‘1’; this coding was used as a numeric dependent variable in195

a linear regression model, with a linear combination of the corresponding PC scores used196

as predictors. Although logistic (i.e. binomial) regression can be used in a similar manner197

(with 0 and 1 used as categorical contrast coding), logistic regression runs the risk of perfect198

separation of the training data due to the large number of acoustic features of nasalization.199

In other words, the problem of separating the oral and nasal tokens becomes too easy when200

fitting a binomial distribution to dimensions which do not have enough overlapping values for201
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the two categories. Thus, a linear model with 0 and 1 as numeric values instead of categorical202

factors was used here. This therefore assumes that the acoustic mapping between the (PCA-203

transformed) acoustic features and the degree of nasalization is linear: features with values204

that are half-way between those associated with oral (0) and nasal (1) correspond to a205

half-degree of nasalization (0.5), and so forth. Any non-linearity in the mapping between206

acoustic features and the degree of nasalization is thus expected to result in reduced model207

accuracy.3208

F. Generating a time-varying nasalization signal209

The regression models were then used to predict response scores for the testing set, using210

the PC scores of the test tokens as predictors (mean = 4183 data points, SD = 1044). The211

resulting predictions thus form a time-varying estimate of the degree of nasalization with212

a sampling rate of 200 Hz (i.e. the sampling rate of the original acoustic data). Tukey’s213

Running Median Smoothing, implemented using the smooth() function from the default214

stats package in R (R Core Team, 2020), was applied to the 100 samples of each token for215

six experimental metrics: the full NAF method, the reduced NAF method, A1-P0, formant-216

compensated A1-P0, A1-P1, and formant-compensated A1-P1. Finally, each of these six217

metrics, as well as the nasalance values, were z-scale normalized for each speaker in order to218

compare the relative magnitudes across the different signals.219

Examples of signals generated from the full NAF method (dashed line), the reduced220

NAF method (dotted line), and formant-compensated A1-P0 (dash-dotted line) are shown in221

Figure 3, with the nasalance signal (solid line) shown for reference. Example A shows a case222
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where each of the three experimental metrics matches the nasalance profile relatively well:223

each signal is low during the oral phase, high during the oral phase, and increases between224

the two phases at approximately the same time as the nasalance signal. However, whereas225

both reduced NAF and A1-P0 over- and/or under-estimate in the oral and nasal phases, the226

full NAF signal closely matches the nasalance profile throughout the entire token. Example227

B shows a case where all three methods match the oral phase well but fail to various extents228

in the nasal phase; however, the full NAF signal nevertheless approximates the nasalance229

signal more closely in the nasal phase than either A1-P0 or reduced NAF. Example C shows230

a case where both the reduced NAF signal and the A1-P0 signal fail in different ways: the231

reduced NAF signal severely under-estimates in the nasal portion and implies a fluctuation232

of nasalization that is not present in the nasalance signal, and the A1-P0 signal is an inverse233

of the nasalance ground truth (i.e. the A1-P0 signal is higher in the oral portion and lower234

in the nasal portion). However, the full NAF signal matches the nasalance signal relatively235

well throughout the entire token.236

G. Performance assessment237

The performance of the NAF method will be compared against the performance of A1-P0238

and A1-P1, as well as their formant-compensated counterparts. Performance will be assessed239

in a number of ways: the overall relationship between a given metric and the ground-truth240

nasalance, how well a given metric estimates the temporal onset of nasalization, and how241

well a given metric captures global change in nasalization over time. For the estimates of242

the temporal onset of nasalization, an “onset time-lag” measure was created, which is the243
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Example C: /o/ (speaker: S3)
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FIG. 3. (color online) Examples of nasalance values for individual tokens, along with corresponding

values generated from the full NAF method, the reduced NAF method, and formant-compensated

A1-P0.

difference (ms) between the point of maximum velocity in the nasalance signal and the point244

of maximum velocity in the signal generated by a given experimental method.245

1. Correlations with nasalance246

The first, basic test of the performance of the experimental methods in accurately char-247

acterizing the degree of nasalization is the strength of the correlations between the ground-248

truth nasalance signal and the estimate of the degree of nasalization generated by each of the249

methods. Two sets of Pearson’s product moment correlation tests were constructed for each250

method, one set that included a separate test for each vowel (averaging over speakers), and251

one set that included a separate test for each speaker (averaging over vowels). Additionally,252

R2 was used as an estimate of the variance explained in the correlation tests.253
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2. Bayesian regression models254

In order to test for differences between the six experimental methods, Bayesian generalized255

mixed regression models (BRMs) were constructed using the brms package (Bürkner, 2020;256

Stan Development Team, 2017) in R. Two models were constructed: one for R2 of the257

correlation between a given method and the ground-truth nasalance and one for the onset258

time-lag for a given method. Random intercepts for both speaker and vowel were included,259

together with random slopes for method over both speaker and word. The models were run260

with four Markov chain Monte Carlo (MCMC) chains, 2000 iterations, and 1000 warm-up261

samples. Model convergence was reached in all model parameters (R̂ = 1) and no divergences262

in the MCMC chains were observed. For each model, marginal posterior distributions were263

calculated for each of the six experimental methods, and both 95% and 66% credible intervals264

were generated from these posteriors. A credible interval (differently from a frequentist265

confidence interval) can be interpreted as the percentage probability that a parameter lies266

within that interval range; in the current study, this corresponds to an interval of possible267

values for the parameter µ.268

The BRM for R2 values was built using a Gaussian distribution and weakly informative269

priors corresponding to the belief that the mean R2 for the intercept (the full NAF method)270

lies somewhere between 0 and 1 and that this value changes between −1 and +1 for any271

of the other experimental methods, at 95% confidence. In other words, since R2 values can272

only be between 0 and 1, these priors allow for any possible range of values for each of the273

six experimental metrics. A HalfCauchy(0, 0.01) distribution was used for the model and274
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random intercept standard deviations, which corresponds to a 95% HDI = [0, 0.25] R2. An275

LKJ(2) distribution was used for the correlation between random effects, as recommended276

by Vasishth et al. (2018).277

The BRM for the onset time-lag values was built using a Gaussian distribution and weakly278

informative priors corresponding to the belief that the mean time-lag for the intercept (the279

full NAF method) lies somewhere between −200 ms and +200 ms of the “true” onset of280

nasalization (in the ground-truth nasalance signal) and that the time-lag for each of the281

other experimental methods is somewhere between −100 ms and +100 ms of the time-lag282

of the full NAF method, at 95% confidence. A HalfCauchy(0, 2) distribution was used for283

the model and random intercept standard deviations, which corresponds to a 95% HDI =284

[0, 51] ms. An LKJ(2) distribution was used for the correlation between random effects.285

3. Generalized additive mixed models286

Generalized additive mixed models (GAMMs) were constructed in R using the bam()287

function of the mgcv package (Wood, 2019). Like any time-series data, it is expected that288

individual samples in a token will correlate with each other for the time-varying metrics289

examined here, resulting in correlation of the model residuals and therefore violating the290

model assumption of independent errors. The bam() function includes an optional feature291

intended to reduce autocorrelation using a ρ parameter, which was set to the value of the292

autocorrelation function (ACF) at lag = 1, i.e. ACF[2]. The first sample of each token was293

used as the ‘AR.start’ commencement point.294
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Random factor smooths were included for both speaker and word over time, as a function295

of the method used, thereby corresponding to the random effect structure used in the BRMs296

(Section II G 2). The model fit was assessed using the gam.check() function of the mgcv297

package: the k-index for all terms was ≥ 1 with a large p-value, indicating that the default298

number of basis functions was appropriate for these data. The parameter m was set to299

1, resulting in penalization of the first derivative of the smooth (velocity) rather than the300

default second derivative of the smooth (acceleration), effectively acting as shrinkage of the301

random effects in the time-varying magnitude data used here (Wieling, 2018).302

III. RESULTS303

A. Global correlation with nasalance304

1. Inter-vowel accuracy305

Table I displays coefficients for linear correlations between each of the six experimental306

methods and the ground-truth nasalance signal, separated by vowel quality. These num-307

bers thus represent the correlations for each vowel, averaged across the six speakers. The308

correlation strength is displayed both in text and color saturation in the top half of each309

cell (0: white, 1: red), and standard deviation is displayed in the bottom half. In order to310

enhance legibility, text appearing in more saturated cells (stronger correlations) is colored311

white, while text appearing in less saturated cells (weaker correlations) is colored black; the312

cutoff for this text color choice is 0.7—i.e. correlations ≥ 0.7 appear in white text while313

correlations < 0.7 appear in black text—which helps to determine at a glance which corre-314
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lations meet the threshold that is conventionally used to denote a “strong” correlation. The315

right-most column displays values that are averaged across the 11 vowel-specific columns.316

Method /i/ /I/ /e/ /E/ /æ/ /a/ /A/ /O/ /o/ /U/ /u/ Avg.

A1-P0

0.62 0.57 0.52 0.66 0.78 0.76 0.72 0.89 0.70 0.74 0.28 0.66

(0.19) (0.33) (0.71) (0.54) (0.22) (0.30) (0.41) (0.11) (0.21) (0.20) (0.67) 0.35

A1-P0 0.72 0.73 0.53 0.66 0.78 0.76 0.72 0.88 0.70 0.73 0.32 0.68

(comp.) (0.14) (0.20) (0.71) (0.54) (0.22) (0.29) (0.41) (0.11) (0.23) (0.20) (0.69) 0.34

A1-P1

0.83 0.68 0.66 0.71 0.37 0.05 0.29 0.25 0.13 0.27 -0.13 0.37

(0.12) (0.21) (0.25) (0.40) (0.66) (0.43) (0.34) (0.47) (0.51) (0.51) (0.63) 0.41

A1-P1 0.83 0.67 0.66 0.71 0.40 0.16 0.14 0.10 0.36 0.33 0.07 0.40

(comp.) (0.12) (0.22) (0.24) (0.40) (0.65) (0.40) (0.56) (0.48) (0.27) (0.42) (0.63) 0.40

NAF 0.87 0.88 0.85 0.83 0.73 0.86 0.85 0.88 0.89 0.85 0.81 0.85

(red.) (0.11) (0.07) (0.11) (0.13) (0.12) (0.08) (0.04) (0.06) (0.05) (0.11) (0.05) 0.09

NAF 0.88 0.95 0.92 0.91 0.89 0.92 0.93 0.93 0.94 0.91 0.90 0.92

(full) (0.12) (0.02) (0.05) (0.08) (0.08) (0.04) (0.02) (0.03) (0.03) (0.08) (0.05) 0.05

TABLE I. Vowel-specific correlations with nasalance.

With regard to A1-P0, the average correlation strength is 0.66 with an average standard317

deviation of 0.35. This corresponds to a moderate-to-strong correlation between A1-P0 and318

the ground-truth nasalance measurement. There is significant variability in the correlation319

strength across the different vowel qualities, with the strongest correlations occurring for320
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low vowels and mid-back vowels (strongest: 0.89 for /O/) and the weakest correlations oc-321

curring for high vowels and mid-front vowels (weakest: 0.28 for /u/). These results are as322

expected, given the difficulties in distinguishing A1 and P0 for high vowels (Section I A).323

Thus, we should expect increased accuracy for high vowels using the formant-compensated324

A1-P0 measurement. Indeed, in comparison with the base A1-P0 signal, the correlation325

coefficients for the formant-compensated A1-P0 signal are higher for /i, I, u/ and remain326

largely unchanged for the other eight vowels, resulting in a minor increase in the average327

overall correlation from 0.66 to 0.68.328

With regard to A1-P1, the average correlation strength is 0.37 with an average standard329

deviation of 0.41. This corresponds to a weak correlation between A1-P1 and the ground-330

truth nasalance measurement. It is evident from Table I that the poor overall performance331

of this metric is due to the large discrepancy between the moderate-to-strong correlations332

for /i, I, e, E/ and the no-to-weak correlations for the other seven vowel qualities. Again,333

these results are as expected, given the fact that A1-P1 is a metric that is used specifically334

for high vowels, where A1-P0 is difficult to measure (Section I A). In comparison with the335

base A1-P1 signal, the formant compensated A1-P1 signal results in a minor increase in the336

average overall correlation from 0.37 to 0.40.337

With regard to the NAF method, the average correlation strength for the reduced acoustic338

feature set is 0.85 with an average standard deviation of 0.09. This corresponds to a strong339

correlation between the (reduced) NAF signal and the ground-truth nasalance measurement.340

Unlike A1-P0 and A1-P1, there are strong correlations for each of the 11 vowel qualities,341

with the weakest correlation (0.73) occurring for /æ/. However, when using the full acoustic342

20



feature set (i.e. the full NAF method), the correlation coefficients increase for all vowels,343

resulting in very strong correlations for each of the 11 vowel qualities, ranging from 0.88344

(for /i/) to 0.95 (for /I/). The average correlation strength for the full NAF method is 0.92345

with an average standard deviation of 0.05, corresponding to a very strong and consistent346

correlation between the (full) NAF signal and the ground-truth nasalance measurement.347

In summary, the NAF method produces values that correlate strongly with the ground-348

truth nasalance values, for both the reduced features set of 13 MFCCs and the full feature349

set that includes phonetically-informed acoustic measures of nasality. Both feature sets well350

outperform A1-P0 and A1-P1 in that the NAF method results in high accuracy for all vowel351

qualities, whereas A1-P0 is more accurate for low vowels and mid-back vowels and A1-P1352

is more accurate for high- and mid-front vowels. Indeed, the NAF method is even highly353

accurate for /u/ (R = 0.90), a vowel that posed obvious difficulties for both A1-P0 (R =354

0.32) and A1-P1 (R = 0.07).355

2. Inter-speaker accuracy356

Table II displays coefficients for linear correlations between each of the six experimental357

methods and the ground-truth nasalance signal, separated by speaker. These numbers thus358

represent the correlations for each speaker, averaged across the 11 vowel qualities. The359

formatting of the table, including the representation of correlation strengths via both text360

and color saturation, is the same as for Table I. The right-most column displays values that361

are averaged across the six speaker-specific columns. The average correlations and standard362

deviations for the six methods are largely the same as for Table I, with only minor deviations363
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arising from the averages being calculated across vowels rather than across speakers. Thus,364

as observed in the previous section, A1-P1 yields weak correlations with nasalance, A1-P0365

yields moderate-to-strong correlations, and NAF yields very strong correlations.366

Method S1 S2 S3 S4 S5 S6 Avg.

A1-P0

0.64 0.36 0.71 0.62 0.85 0.81 0.67

(0.52) (0.57) (0.20) (0.33) (0.18) (0.18) 0.33

A1-P0 0.66 0.42 0.75 0.63 0.85 0.84 0.69

(comp.) (0.52) (0.57) (0.19) (0.33) (0.18) (0.13) 0.32

A1-P1

0.48 0.08 0.10 0.48 0.47 0.55 0.36

(0.55) (0.53) (0.49) (0.57) (0.41) (0.29) 0.47

A1-P1 0.47 0.06 0.15 0.64 0.53 0.46 0.38

(comp.) (0.53) (0.53) (0.48) (0.35) (0.32) (0.48) 0.45

NAF 0.88 0.82 0.75 0.87 0.89 0.84 0.84

(red.) (0.07) (0.09) (0.10) (0.06) (0.10) (0.10) 0.09

NAF 0.94 0.89 0.86 0.92 0.94 0.94 0.92

(full) (0.03) (0.06) (0.11) (0.05) (0.03) (0.03) 0.05

TABLE II. Speaker-specific correlations with nasalance.

With regard to inter-speaker variation, there are substantial differences in accuracy for367

A1-P0 and A1-P1, while the NAF method produces high accuracy for each of the six speak-368

ers. As expected, the formant-compensated measures for A1-P0 and A1-P1 yield similar or369
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increased correlations compared to their respective base metrics. Nonetheless, even these370

formant-compensated metrics yield poor cross-speaker performance: formant-compensated371

A1-P0 ranges from weak correlation (R = 0.42 for S2) to strong correlation (R = 0.85 for S5)372

and formant-compensated A1-P1 ranges from no correlation (R = 0.06 for S2) to moderate373

correlation (R = 0.64 for S4), whereas the full NAF method results in strong correlations374

for all speakers (range: 0.86–0.94). Indeed, the NAF method is even highly accurate for S2375

(R = 0.89), a speaker who posed obvious difficulties for both A1-P0 (R = 0.42) and A1-P1376

(R = 0.06).377

B. BRM results378

1. R2 of correlation with nasalance379

Figure 4 shows the marginal posteriors of the mean values of R2 for the six methods.380

For this figure (as well as Figure 5, below), separate density distributions are shown for the381

posterior values of the six methods. Beneath each distribution, the 95% credible interval382

(CI) is denoted by the thin horizontal line, the 66% CI is denoted by the thick horizontal383

line, and the median is denoted by the dot. The results for each method are given in the384

text with respect to the full NAF method as the model intercept. Ranges for the estimates385

of the means are given for the 95% CIs of the marginal posterior distributions.386

With respect to correlation with the ground-truth nasalance signal, the NAF method387

produces an average of 0.75-0.92 R2 using the full acoustic feature set (θ̂ = 0.83, SD =388

0.04) and is changed between −0.07 and +0.08 R2 using the reduced acoustic feature set389
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FIG. 4. Posteriors of R2 means. The [0, 1] limits of possible R2 values are denoted by the dashed

lines.

(θ̂ = 0.00, SD = 0.04); in other words, the model suggests that there is no difference in390

R2 between the two implementations of the NAF method. In comparison to the full NAF391

method, A1-P0 produces an average reduction of 0.16-0.33 R2 (θ̂ = −0.24, SD = 0.04),392

formant-compensated A1-P0 produces an average reduction of 0.14-0.30 R2 (θ̂ = −0.22,393

SD = 0.04), A1-P1 produces an average reduction of 0.33-0.56 R2 (θ̂ = −0.45, SD = 0.06),394

and formant-compensated A1-P1 produces an average reduction of 0.33-0.57 R2 (θ̂ = −0.45,395

SD = 0.06). Thus, with respect to correlation with the ground-truth nasalance signal,396

although A1-P0 performs better than A1-P1, both of these conventional acoustic metrics397
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of vowel nasalization account for significantly less variance when compared to the NAF398

method.399

2. Estimations of the temporal onset of nasalization400

Figure 5 shows the marginal posteriors of the average time-lag of the estimated onset401

of nasalization for the six metrics—in other words, the error of the estimated onset with402

respect to the “true” onset determined from the nasalance data. With reference to the true403

onset of nasalization, the full NAF method estimates a time point that is between 6.91 ms404

early and 27.29 ms late (θ̂ = 10.51, SD = 8.70). In comparison to the full NAF method, the405

reduced NAF method yields an estimate of the onset of nasalization that is 3.33-45.58 ms406

earlier (θ̂ = −24.44, SD = 10.77), A1-P0 yields an estimate that is between 0.52 ms earlier407

and 38.08 ms later (θ̂ = 18.10, SD = 9.83), formant-compensated A1-P0 yields an estimate408

that is between 6.10 ms earlier and 33.20 ms later (θ̂ = 13.80, SD = 9.75), A1-P1 yields an409

estimate that is between 17.55 ms earlier and 22.59 ms later (θ̂ = 2.68, SD = 10.21), and410

formant-compensated A1-P1 yields an estimate that is between 5.10 ms earlier and 32.50411

ms later (θ̂ = 13.69, SD = 9.77).412

In summary, with respect to the true onset of nasalization, the full NAF method estimates413

a point that is on average 10.51 ms late (2.10 data samples), the reduced NAF method414

estimates a point that is 13.93 ms early (2.79 samples), A1-P0 estimates a point that is415

29.21 ms late (5.84 samples), formant-compensated A1-P0 estimates a point that is 24.31416

ms late (4.86 samples), A1-P1 estimates a point that is 13.19 ms late (2.64 samples), and417

formant-compensated A1-P1 estimates a point that is 24.2 ms late (4.84 samples). Thus,418
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FIG. 5. Posteriors of onset time-lag means. The time point of maximum nasalance velocity is

denoted by the dashed line.

each of the methods produced estimates that are, on average, within 6 samples away from419

the true onset at the 200 Hz sampling rate used here. However, the NAF method produces420

estimates with overall smaller average error (≈ 2-3 samples; 10-15 ms) compared to A1-P0421

(≈ 4-6 samples; 20-30 ms) and A1-P1 (≈ 3-5 samples; 15-25 ms).422

C. GAMM results423

Figure 6 displays the category fits for the GAMM constructed to examine differences424

between ground-truth nasalance, the full NAF method, the reduced NAF method, and425
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formant-compensated A1-P0, with regard to the magnitude and timing of the degree of426

nasalization over the entire token interval. For the sake of legibility, only the ribbons corre-427

sponding to the standard error (SE) of the mean are shown (i.e. the means are not displayed428

here). Areas where two SE ribbons do not overlap along the y-axis are interpreted as regions429

of significant difference between the respective methods.430
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FIG. 6. (color online) GAMM fits for the entire 500 ms interval data.

Before turning to the results for the individual methods, a global observation can be made431

that each of the three experimental methods produces signals that approximate the nasalance432

profile in relative terms: the signals are all relatively low in the oral phase, relatively high in433

the nasal phase, and reach the point of maximum velocity near the 0 point along the x-axis434

(i.e. the point of maximum velocity in the nasalance signal). When using the full acoustic435
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feature set, there are no significant differences between the NAF method and ground-truth436

nasalance: the SE ribbon for nasalance (red, solid lines) and the SE ribbon for the full NAF437

method (green, dashed lines) overlap throughout the entire token interval. When using the438

reduced acoustic feature set, there are no significant differences between the NAF method439

(blue, dotted lines) and the ground-truth nasalance, with the exception of two areas of very440

small difference in the regions immediately preceding the onset of nasalization (between441

∼ −90 ms and −50 ms) and immediately following the onset of nasalization (between ∼442

+25 ms and +55 ms). With regard to formant-compensated A1-P0 (purple, dash-dotted443

lines), there are significant differences throughout the entire oral phase and the entire nasal444

phase: with the exception of the region surrounding the point of maximum velocity where445

the respective SE bands cross (between ∼ −20 ms and +10 ms), there is no overlap between446

the SE bands for nasalance and formant-compensated A1-P0.447

An indication of inter-vowel and inter-speaker variation can be obtained from the model448

results for the random factor smooths, in which the magnitude of the F-statistic can be449

interpreted as the degree of variation (i.e. how important the variation is to the model);450

plots of the random smooths are also available in the supplementary Github material. With451

regard to nasalance, there is essentially no variation across vowels (F (3, 98) = 0.56, p =452

0.111), indicating that the (vowel-scaled) nasalance profiles are similar across all 11 vowel453

qualities. There is a small amount of variation across vowels for the full NAF (F (3, 98) =454

1.12, p < 0.001) and for the reduced NAF (F (3, 98) = 1.53, p < 0.001), and considerably455

more variation across vowels for formant-compensated A1-P0 (F (3, 98) = 5.41, p < 0.001).456

With regard to the by-speaker random smooth, there is a small amount of variation across457
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speakers for each of the four metrics, with the largest amount of variation observed for458

formant-compensated A1-P0: nasalance (F (3, 53) = 1.44, p < 0.001), full NAF (F (3, 53) =459

1.82, p < 0.001), reduced NAF (F (3, 53) = 2, 21, p < 0.001), and formant-compensated460

A1-P0 (F (3, 53) = 3.01, p < 0.001).461

In summary, the GAMM results suggest that both implementations of the NAF method462

produce signals that accurately approximate the time-course of the changing degree of nasal-463

ization throughout the entire interval from 250 ms before to 250 ms after the onset of nasal-464

ization, although the full NAF method produces slightly more accurate results compared465

to the reduced NAF method. Conversely, formant-compensated A1-P0 does not approx-466

imate the time-course of nasalization as well as the NAF method: the signals generated467

from formant-compensated A1-P0 over-estimate the degree of nasalization when the velum468

is closed and under-estimate the degree of nasalization when the velum is open. Moreover,469

there is considerably more between-vowel variation in the formant-compensated A1-P0 sig-470

nals in comparison with the NAF signals, suggesting yet again that this acoustic metric is471

not a reliable correlate of the degree of vowel nasalization for all vowel qualities.472

IV. DISCUSSION473

A. Comparing NAF to conventional acoustic methods474

In this paper, the NAF method has been shown to approximate the ground-truth de-475

gree of nasalization (as determined using proportional nasal energy derived from nasometric476

recordings) more closely than A1-P0 or A1-P1. In correlations between each of the exper-477
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imental methods and the ground truth, the average correlation for formant-compensated478

A1-P1 was 0.39, the average correlation for formant-compensated A1-P0 was 0.69, and the479

average correlation for the full NAF method was 0.92. This corresponds to a 33% increase480

in accuracy over A1-P0 and a 136% increase in accuracy over A1-P1. Moreover, according481

to the intercepts of the Bayesian regression model created to test for differences in the pro-482

portion of variance explained in these correlations, the average R2 for formant-compensated483

A1-P1 was 0.38, the average R2 for formant-compensated A1-P0 was 0.61, and the average484

R2 for the full NAF method was 0.83. This corresponds to 36% increase in accuracy over485

A1-P0 and a 118% increase in accuracy over A1-P1.486

The NAF method has been shown to be more robust across vowel qualities than A1-P0 or487

A1-P1. The range of correlation coefficients across the 11 vowels was between 0.88 and 0.95488

for the full NAF method, indicating that even the “weakest” correlation with the ground-489

truth degree of nasalization is still very strong. In comparison, the range of correlation490

coefficients was between 0.32 and 0.88 for formant-compensated A1-P0 and between 0.07491

and 0.83 for formant-compensated A1-P1. These results indicate that the NAF method492

is not only more accurate than these conventional methods in an overall sense (e.g., the493

strongest correlation for formant-compensated A1-P0 is equal to the weakest correlation for494

the full NAF method) but also more consistently accurate across different vowel qualities,495

even those that yielded poor performance for both A1-P0 and A1-P1 (e.g., /u/).496

The NAF method has been shown to be more robust across speakers than A1-P0 or A1-P1.497

The range of correlation coefficients across the six speakers was between 0.86 and 0.94, indi-498

cating again that even the weakest correlation with the ground-truth degree of nasalization499
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is still very strong. In comparison, the range of correlation coefficients was between 0.42 and500

0.85 for formant-compensated A1-P0 and between 0.06 and 0.64 for formant-compensated501

A1-P1. These results indicate again that the NAF method is not only more accurate than502

these conventional methods in an overall sense but also more consistently accurate across503

different speakers, even those that yielded poor performance for both A1-P0 and A1-P1504

(e.g., speaker S2).505

The NAF method has been shown to capture the temporally changing profile of the de-506

gree of nasalization more accurately than A1-P0 or A1-P1. According to the intercepts of507

the Bayesian regression model created to test for differences in the time-lag between the508

point of maximum velocity in the ground-truth nasalance signal and the point of maximum509

velocity in the experimental methods, the average time-lag was +10.5 ms for the full NAF510

method, and the 95% CI included 0 (the “true” onset of nasalization). In comparison, the511

average time-lag was +24.3 ms for formant-compensated A1-P0 and +24.2 ms for formant-512

compensated A1-P1, and the respective 95% CIs did not include 0. Moreover, according to513

the generalized additive mixed model created to test for differences in the temporal profile514

of the ground-truth degree of nasalization, the NAF method, and A1-P0, there were no sig-515

nificant differences between the ground-truth and the full NAF method at any point in the516

temporal interval between 250 ms before and 250 ms after the temporal onset of nasaliza-517

tion. In comparison, formant-compensated A1-P0 over-estimated the degree of nasalization518

throughout the oral portion of the signal, but under-estimated the degree of nasalization519

throughout the nasal portion of the signal.520
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B. Methodological considerations for implementing NAF521

Although the methodology involved in assessing the NAF method may have been some-522

what complicated up to this point in the paper, the methodology involved in implementing523

the NAF method in a research project is considerably more simple: all that is needed is a524

setup for audio recording, a carefully constructed experimental corpus, and PCA regression525

of acoustic features.526

All of the data used in this paper come from oral and nasalized productions of vowels.527

As such, there are no nasalance values (or corresponding acoustic measurements) for nasal528

consonants in either the training or testing items. The observed results are therefore repre-529

sentative of productions that are expected for vowels produced with a wide range of velum530

height, but no oral blockage, such as those found in naturalistic productions of oral vowels,531

nasalized vowels, and nasal vowels. Additionally, the range of nasalance values used here for532

the oral tokens (i.e. the lower 25% of nasalance values) and the range of nasalance values533

used here for the nasalized tokens (i.e. the upper 25% of nasalance values) are reasonable534

approximations of the ranges that may be encountered in naturalistic speech data for tokens535

produced with a raised velum and a lowered velum, respectively. Nevertheless, the data that536

have been used here to validate the NAF method come from a task that is physiological and537

arguably a-linguistic in nature, yet the objective of this paper is to present a methodologi-538

cal tool as a research technique to use in an actual linguistic context. The method should539

therefore be able to scale beyond contrived tasks such as controlled velum lowering.540
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I propose that the NAF method can be implemented into any experimental design simply541

by including NVN and CVC words as filler items in the study corpus. The velum is expected542

to be low during the V of NVN words due to nasal coarticulation, whereas the velum is543

expected to be high during the V of CVC words, especially if the surrounding Cs are both544

voiceless obstruents. These filler items can subsequently be used for speaker-specific model545

training, and they should therefore be balanced for vowel quality to match the experimental546

items the researcher would like to use for model testing.547

An example of a (small) complete item list for implementing the NAF method is shown548

in Table III. In this example, the hypothetical researcher is interested in examining possible549

differences in the degree of anticipatory vowel nasalization in /Vnt/ vs. /Vnd/ sequences550

of American English, since it has been argued that vowel nasality has become phonologized551

to some extent in the former but not the latter context (Beddor, 2009; Mielke et al., 2017;552

Solé, 2007; Zellou, 2017). For each of the vowel qualities to be tested in the /Vnd/-/Vnt/553

pairs, a matching oral-nasal pair of filler items is included. In order to implement the NAF554

method, the acoustic features measured in all vowels in the data set (i.e. both training and555

testing items) are first submitted to a single PCA model for each speaker. Subsequently, the556

PC scores for the training items are used as the independent variables in a linear regression557

model with a vector of numeric values corresponding to 0 (for the oral items) and 1 (for the558

nasal items) as the dependent variable. It should be reiterated that the model family/fit559

should be linear, not binomial; as such, the coding of 0 and 1 should be implemented as560

a numeric variable rather than a categorical factor. This speaker-specific linear model can561
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then be used to predict values for given time points of interest in the testing items, using562

the PC scores associated with those time points as predictor variables.563

Vowel

Training Testing

Oral Nasal /Vnd/ /Vnt/

/i/ peep meme fiend *feent

/I/ pit min wind hint

/æ/ pat man band pant

/A/ pop mom pond font

/u/ toot noon wound *woont

TABLE III. An example of an item list used for implementation of the NAF method in research

on the degree of anticipatory vowel nasalization in American English.

In order to test the validity of this proposed implementation of the NAF method, the564

word list in Table III was produced by the author while collecting nasometry data. Words565

appeared in the carrier phrase “Say X again”, where X is the target word. 10 randomized566

blocks of the word list were produced, resulting in a total of 100 training items (50 oral,567

50 nasal) and 100 testing items (50 /Vnd/, 50 /Vnt/). Vowel intervals were segmented568

manually in Praat using the broadband spectrogram of the combined nasalance audio data.569

Acoustic and nasalance measurements were made at 10 equidistant time points in each570

vowel, from 0% to 100% of the vowel interval. The accuracy of the full NAF method and571

formant-compensated A1-P0 was assessed by constructing a GAMM with six factor levels:572

a separate level for each combination of method (nasalance, NAF, A1-P0) and phonetic573
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context (/Vnd/, /Vnt/). Random factor smooths were included for both vowel and item574

repetition over time, as a function of the method used. The model fit was assessed using575

the gam.check() function, and the k-index for all terms was ≥ 1 with a large p-value.576

Figure 7 displays the SE ribbons of the category fits for the GAMM. For the sake of577

legibility, the category fits are separated into three plots corresponding to nasalance (left),578

the full NAF method (center), and formant-compensated A1-P0 (right). Inter-method com-579

parisons can be made by examining whether, at any given point in the vowel interval, the580

SE ribbons for any two methods overlap along their respective y-axes. With regard to581

nasalance, the degree of nasalization begins rising from the very start of the vowel, reaching582

a plateau at ≈ 40% of the vowel interval, and it exhibits an increase at the end of the vowel583

(i.e. near the nasal consonant). There are no significant differences between the /Vnd/ and584

/Vnt/ contexts. The signal generated by the full NAF method exhibits this same general585

profile except for the increase at the end of the vowel, which is not observed. However, in586

contrasting the SE bands between the two plots, there are no areas of significant difference587

between the nasalance profile and the NAF profile. In comparison, the signal generated by588

formant-compensated A1-P0 yields poor correspondence with the ground-truth nasalance,589

failing to capture the changing degree of nasalization at any point in the vowel.590

C. Interpreting the NAF approach591

The NAF method is a “brute force” or “shotgun” approach to estimating the degree of592

nasalization through speaker-specific machine learning of many different acoustic metrics,593

some of which may not independently correlate with nasality at all. This has two impor-594
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FIG. 7. (color online) GAMM fits for an example of an experimental implementation of the NAF

method.

tant implications for interpretation of both the method and the NAF signal itself. The first595

implication is that the PCA transformation results in linear combinations of the acoustic fea-596

tures that are expressed as orthogonal dimensions; some of these dimensions will contribute597

strongly to generating the NAF signal while others will not. Dimensions that contribute598

strongly are interpreted as effectively capturing some aspect of vowel nasality; these com-599

ponents will yield large estimates in the regression model and will thus be important in600

generating the NAF signal. Conversely, acoustic features that do not correlate with nasality601

will be relegated to components that yield small estimates in the regression model, and they602

will therefore have little effect on the NAF signal. This means that any set of acoustic603

features can potentially be used in the NAF approach: the more acoustic features that are604

used, the better the chance of capturing underlying components that correlate with nasality.605

The second implication is that the PCA transformation of a large acoustic feature set means606

that the resulting NAF signal cannot be interpreted in any phonetically meaningful way607

other than as being a useful correlate of the degree of vowel nasalization. The goal of the608

NAF method is therefore not to contribute to our understanding of nasal acoustics but to609
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provide researchers with a methodological tool to estimate the degree of vowel nasalization610

without the use of special instrumentation.611

V. CONCLUSION612

The NAF (Nasalization from Acoustic Features) method is a simple and easy-to-use613

approach to creating a time-varying signal of the degree of vowel nasalization in cases where614

articulatory measurements of nasalization (e.g., nasometry or nasal airflow) are not available615

to the researcher. The NAF method produces results that are significantly more accurate616

than A1-P0 and A1-P1, metrics that are widely used as acoustic correlates of nasalization. In617

comparison to these conventional metrics, the NAF method produces more reliable estimates618

of both the magnitude and the time-course of nasalization, and it produces estimates of619

nasalization that are far more robust across different vowel qualities and across different620

speakers. I therefore propose NAF as a methodological substitute for these traditional621

metrics in estimating the degree of vowel nasalization from acoustics alone, estimates which622

are accurate in magnitude and over the time-course of changing nasalization, and which are623

robust across different vowels, speakers, and languages.624
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