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ABSTRACT Many studies on deep learning-based speech enhancement (SE) utilizing the computational
auditory scene analysis method typically employs the ideal binary mask or the ideal ratio mask to
reconstruct the enhanced speech signal. However, many SE applications in real scenarios demand a desirable
balance between denoising capability and computational cost. In this study, first, an improvement over
the ideal ratio mask to attain more superior SE performance is proposed through introducing an efficient
adaptive correlation-based factor for adjusting the ratio mask. The proposed method exploits the correlation
coefficients among the noisy speech, noise and clean speech to effectively re-distribute the power ratio
of the speech and noise during the ratio mask construction phase. Second, to make the supervised SE
system more computationally-efficient, quantization techniques are considered to reduce the number of
bits needed to represent floating numbers, leading to a more compact SE model. The proposed quantized
correlation mask is utilized in conjunction with a 4-layer deep neural network (DNN-QCM) comprising
dropout regulation, pre-training and noise-aware training to derive a robust and high-order mapping in
enhancement, and to improve generalization capability in unseen conditions. Results show that the quantized
correlation mask outperforms the conventional ratio mask representation and the other SE algorithms used
for comparison. When compared to a DNN with ideal ratio mask as its learning targets, the DNN-QCM
provided an improvement of approximately 6.5% in the short-time objective intelligibility score and 11.0%
in the perceptual evaluation of speech quality score. The introduction of the quantization method can reduce
the neural network weights to a 5-bit representation from a 32-bit, while effectively suppressing stationary
and non-stationary noise. Timing analyses also show that with the techniques incorporated in the proposed
DNN-QCM system to increase its compactness, the training and inference time can be reduced by 15.7%
and 10.5%, respectively.

INDEX TERMS Correlation coefficients, deep neural network, dynamic noise-aware training, quantization,
speech enhancement, training targets.

I. INTRODUCTION
Speech enhancement (SE) is the task of separating speech
from nonspeech noise, used with the aim to improve
perceived quality and intelligibility of speech. It is a
procedure fundamental in signal processing for a wide
range of applications including but not limited to hearing
prostheses, such as hearing aids [1] and cochlear implants [2],
mobile telecommunication [3], and robust automatic speech
recognition [4]. Traditional SE methods such as spec-
tral subtraction [5], Wiener filter [6], short-time spectral
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amplitude estimators [7], and maximum-likelihood spectral
amplitude [8] algorithms have demonstrated good noise
suppression performance when the assumed characteristics
of the speech and noise signal are maintained. However,
the performance of the traditional SE methods degrades
considerably when presented with non-stationary noise or
noisy speech at low signal-to-noise ratios (SNRs) since it is
difficult to estimate the speech and noise properties in these
conditions effectively.

The utilization of a mask for supervised SE was inspired
by the concept of time-frequency (T-F) masking in the
computational auditory scene analysis (CASA) method [9].
The CASAmethod operates based on the auditory perception
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mechanism, exploiting grouping cues such as pitch and onset
without assuming any properties or models of the noise.
T-F masking involves applying a two-dimensional weighting
to the T-F representation of a noisy speech to separate the
clean speech. The most common T-F mask is the ideal
binary mask (IBM) [10], which denotes whether a T-F unit
is dominated by the target signal by taking up values of
one and zero. The binary decision is usually computed by
comparing the local SNR in each T-F unit against a predefined
threshold. From listening studies conducted, the IBM showed
improved speech intelligibility for both normal-hearing and
hearing-impaired listeners in noisy conditions [11], [12].
An improvement from the IBM is the ideal ratio mask (IRM),
which can be viewed as a soft version of the IBM as it
adopts continuous values between zero to one to represent
the probability of a T-F unit being target dominant instead of
hard labels of strictly ones or zeros [13], [14]. The IRM has
been shown to improve objective speech quality in addition
to predicted speech intelligibility over the IBM as the latter
method has a drawback of often wrongly removing speech
or retaining noise portions, introducing speech distortion or
residual musical noise [15].

One of the recently proposed training targets is the
optimal ratio mask (ORM) [16]. The ORM, which considers
the spectral coherence between the speech and noisy in
a noisy speech mixture, has been reported to have the
potential to improve the SNR by approximately 3 dB
over the IRM by theoretical analysis, implying a better
separation performance. Besides the ORM, training targets
that incorporate phase information such as the complex ideal
ratio mask [17] and phase sensitive mask [18] have also
been utilized in SE recently. The complex ideal ratio mask
is computed on the complex domain whereas the phase
sensitive mask introduces phase information and operates on
the real domain. Favourable results have been reported for
these training targets, but the inclusion of phase information
increases the difficulty in estimating the clean speech.

Over the last decade, deep learning has been widely
utilized for SE and has demonstrated exceptional denoising
capability even in challenging conditions such as when
dealing with non-stationary noise, unseen and low SNR
conditions. Supervised deep neural networks (DNNs), which
include feedforward multilayer perceptrons [15], convolu-
tional neural networks [19], recurrent neural networks [20]
and generative adversarial networks [21], in particular,
have significantly elevated the performance of SE through
capturing the complicated relationship between the noisy
speech and clean speech. There has also been an increase in
the use of modified versions of conventional neural networks.
For example, Takeuchi et al. [22] proposed a real-time SE
system using equilibrated recurrent neural network to solve
the problem of vanishing or exploding gradient without
increasing the number of parameters within the network.

Although deep learning-based frameworks have outstand-
ing capability to be exploited in training ratio masks, their
large storage space requirements render them unsuitable to

implement in devices with limited resources. To improve the
compactness of SE models, methods such as pruning [23],
sparse constraints [24] and quantization [25] have been
proposed. Wu et al. report 90.24% size reduction in their SE
model from their baseline with their proposed combinative
approach that encompasses parameter pruning, parameter
quantization and feature-map quantization techniques [26].
Ko et al. investigated the correlation of precision scaling
and neuron numbers in an SE model and found that neural
networks with lower bit precision significantly reduce the
processing time by up to 30x. However, their performance
impact is significantly deteriorated (<3.14%) when imple-
mented in classification tasks such as those present in voice
activity detection [27]. In [28], a two-stage quantization
approach was derived to reduce the number of bits required
to represent floating-point parameters. Dynamic quantization
has been recently explored by Chang and Liu [29] and
Xiong et al. [30] for vehicle systems, which suggests a
growing trend in the use of an adaptive approach for signal
quantization. In [29], a dynamic quantizer was developed to
adjust the quantization level and parameter used to reduce
the steady state limit cycle in in-vehicle networked systems
as static quantizers suffer from sensor failure and dropouts.
In [30], the control input of nonfragile feedback control
for active suspension in vehicles is quantized by a class of
quantizers with adjustable dynamic parameters to provide
more desirable closed-loop system performance.

This paper explores a new ratio mask representation for
the supervised SE to attain improved denoising capability
and implements efficiency optimization techniques to make
the SE algorithm more appropriate for real-time applications
on compact devices such as cochlear implants. The main
contributions of the proposed SE method include the
following: 1) it utilizes a correlation-based learning target
where the IRM is more optimally adjusted with inter-channel
correlation (ICC) factors. This paper proposes a more
efficient method of calculating normalized cross-correlations
(NCCs) in the ICC factors through using sum tables. The
computational cost (or time) of the proposed sum tables
method is significantly lower than direct calculation using
the ICC definition and this is achieved without sacrificing
the SE performance as the energy proportions between
speech and noise are used to more precisely adjust the
ratio mask; 2) fixed and k-means quantization techniques
are used in a two-stage process to reduce the required
number of bits to represent the neural network weights,
learning target and acoustic features in order to make
the supervised deep learning-based SE more compact; and
finally, 3) a DNN network has been optimized through
experimental findings to be used in combination with the
proposed quantized correlation mask (QCM). In this study,
the SE capability of the proposed QCM is evaluated when
implemented in conjunction with a four-layer structured
DNN (DNN-QCM). The incorporation of dropout regulation,
Boltzmann pre-training and noise-aware deep mapping
strategies in this work introduced a more robust SE with
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improved generalization performance on various scenarios.
Through a series of experiments using datasets combining the
TIMIT [31] corpus and the NOISEX-92 [32] database, the
DNN-QCM provided better perceived speech intelligibility
and quality scores when compared to a standard DNN-based
SE using IRM (DNN-IRM) and another correlation-based
training target proposed in [33] (DNN-CRM, with CRM
being the acronym for correlation ratio mask), as well as a
minimummean square error estimator-based (MMSE-based)
and non-negative matrix factorization-based (NMF-based)
SE.

The rest of this paper is organized as follows. In Section II,
the principles of the proposed method for calculating
low cost ICC factors are explained, and the quantization
techniques and acoustic feature extraction methods are pre-
sented. Section III elaborates the DNN framework and setup
employed for the SE application. The experimental settings,
including the datasets, evaluation metrics and benchmark
models, are presented in Section IV. The experimental results
obtained and details on the complexity, convergence and
timing analyses of the DNN-based methods are also provided
and discussed in this section. Concluding remarks are drawn
in Section V.

II. THE PROPOSED SYSTEM
The block diagram of the proposed DNN-QCM is shown
in Fig. 1. The baseline system is constructed in two stages.
In the training stage, a feedforward DNN with four hidden
layers is trained with acoustic features (feature extraction
is outlined in Section II-D), which is a combination of the
amplitude modulation spectrogram (AMS), relative spec-
tral transformed perceptual linear prediction (RASTA-PLP)
coefficients, mel-frequency cepstral coefficients (MFCCs)
and 64-channel gammatone frequency cepstral coefficients
(GFCCs). These acoustic features are extracted from the
noisy speech mixture. For the generation of the training
target, the ICC factors are calculated from the gammatone
magnitude spectra among the clean speech, noise and noisy
speech mixture, and then combined with the channel-weight
contour extracted from the noisy speech mixture. The inclu-
sion of the ICC factors fine-tunes the IRM with information
about the correlation between the noisy speech with noise and
noisy speech with clean speech. This provides the DNN with
correlation-based training on top the power spectra-based
training given by the IRM. Dynamic noise-aware training
(DNAT) is achieved by estimating theNCC between the noisy
speech and noise in each gammatone channel on a frame-
by-frame basis. The NCC coefficients are then fed together
with the training target and acoustic features to the DNN
for training. The DNAT elevates the DNN’s SE performance
and allows it to provide better denoising capability when
dealing with non-stationary and unseen noises. Quantization
represented by ‘Q’ blocks in Fig. 1 is applied to the weight
parameters within the DNN and to the acoustic features and
training target to reduce the size of the SE model with more
efficient data representation. The enhancement stage then

FIGURE 1. Block diagram of the proposed DNN-QCM, where the main
novelties including the correlation-based training target,
correlation-based DNAT (the noise estimation block) and quantization
processes are presented in blocks shaded in green, red and orange,
respectively. ‘Q’ denotes the quantization techniques which are applied to
make the DNN model more compact.

involves feeding the acoustic features of the noisy speech
to the trained DNN model to estimate the ratio mask for
reconstructing the clean speech signal (i.e., the enhanced
signal). The proposed DNN-QCM embeds both improved
denoising performance as well as compactness to the SE
framework which are crucial in real-time applications.

A. CORRELATION-BASED TRAINING TARGET
For improved readability, the notations used in this section
are listed and defined in Table 1. In this study, the IRM is
effectively extended to consider the ICC among the noise,
clean speech and noisy speech signal. The IRM can be viewed
as a soft version of the IBM. Both masks are defined on a
two-dimensional T-F representation of a noisy speech signal
such as a cochleagram or spectrogram. However, instead of
assigning a ‘1’ if the SNR within a T-F unit exceeds the
specified threshold and ‘0’ otherwise, the IRM adopts a more
partial suppression of T-F units that are deemed noisy. The
optimal estimator of the power spectra for speech and noise
is similar to the square-root Wiener filter, which is defined as
when the tuneable parameter (β), used to adjust the scale of
the mask, is set to 0.5 in the IRM definition [15]. With the
ICC factors introduced, the IRM definition becomes [33]:

ICCIRM(c,m) =
ρx(c,m)·Px(c,m)

ρx(c,m)·Px (c,m)+ ρn(c,m)·Pn(c,m)
, (1)

where Px(c,m) and Pn(c,m) denote the speech and noise
energy, respectively, of the mth frame in the cth channel.
ρx(c,m) is the NCC coefficient between the clean speech
and noisy speech power spectra in the cth channel of the mth
frame and ρn(c,m) is the NCC coefficient between the noise
and noisy speech power spectra in the cth channel of the mth
frame. The ICC factors are expressed as percentages of the
clean speech or noise components within the noisy speech
signal. When speech components are dominant in a channel
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TABLE 1. Index of key notations.

of a frame, ρx(c,m) becomes larger as stronger correlation
exists between the speech components and the noisy speech.
Similarly, ρn(c,m) is larger when noise components are
dominant. Therefore, with the adaptive ICC factors, the
weights of speech and noise components can be adjusted
according to how much they are present in a noisy speech
unit.

Reference [33] recommends calculating in the adaptive
ICC factors, ρn(c,m) and ρx(c,m), by means of NCCs in the
gammatone domain (i.e., with 64 channels, used to process
the audio signals sampled at 8 kHz). The ICC factors can then
be expressed as:

ρn (c,m) =
yTc,m · nc,m√∥∥yc,m∥∥2 · ∥∥nc,m∥∥2 , (a)

ρx (c,m) =
yTc,m · xc,m√∥∥yc,m∥∥2 · ∥∥xc,m∥∥2 , (b)

(2)

where yc,m, nc,m and xc,m are the magnitude spectrum column
vectors of noisy speech, pure noise and clean speech in each
frame of each gammatone channel, respectively. T represents
the transpose of the matrix.

FIGURE 2. A diagram depicting the NCC calculation process where the
energy calculation of the reference and comparison signals are shown in
(a), and the non-normalized cross-correlation calculation between the
reference and the comparison signals are shown in (b). In (a), the
extensive search of the comparison windows (e.g., when the search is
equal to τ and τ + 1) and the shifting of the reference window at less
than W lead to significant overlap (indicated by the shaded overlapping
regions between the shifted windows) where redundant calculations are
present. Similarly in (b), overlap persists as long as the comparison signal
is shifted by less than W , allowing the non-normalized cross-correlation
to be calculated more efficiently by eliminating redundant calculations.

The noisy speech
(
yc,m

)
from (2) is also referred to as the

reference signal and the nc,m (or xc,m) is referred to as the
comparison signal. The process of calculating the correlation
between two signals is depicted in Fig. 2. Fig. 2(a) shows
a segment of a sample speech signal where the reference
window is located within the interval of [u, u + W − 1],
where u is the origin of the reference window andW denotes
the window size. As interpreted from (2-a), the NCC is
obtained by calculating the energy (i.e. squared signal) of
the reference signal

∑u+W−1
l=u yc,m (l)2 and the comparison

signal
∑u+W−1

l=u nc,m (l + τ)2 in the denominator as well
as the dot product between the signals in the numerator.
Here m, denoting the frame number, has been expanded and
replaced with l to account for overlap (i.e., l is the number of
samples in a signal). τ is the shift between the comparison
and reference windows. When calculating the NCCs, the
reference window is shifted by1W (1W � W ) through the

VOLUME 9, 2021 24353



S. Abdullah et al.: Towards More Efficient DNN-Based SE Using QCM

entire speech signal, and for each reference window, (2) is
calculated progressively for every search τ . Such calculation
process requires significant computational cost and is time-
consuming.

In place of performing the costly NCC calculations in (2),
this paper proposes performing NCCs using pre-calculated
sum tables [34] to reduce the operations required to obtain
the ICC factors for adjusting the ratio mask. As shown in
Fig. 2(a), the sum tables-based NCC exploits the fact that
most calculations are redundant due to the extensive search
of the comparison windows (i.e., nc,m and xc,m) and high
overlap between the reference windows (i.e., yc,m). When
the searches for the comparison windows are equal to τ
and τ + 1, significant overlap such as the one depicted
by the shaded area in Fig. 2(a) occurs. This is seen as the
foundation of the sum tables method: redundant operations in
the overlapped region can be eliminated with more efficient
energy subtraction between the starting and ending points of
the window.

The sum tables for the comparison window s2n(m) (or
s2x(m)) are constructed as follows:

s2n (m) =


n2 (m)+ s2n (m− 1) (1 ≤ m ≤ M)

0 (m= 0) ,

(3)

where m, again, represents the frame number and M is the
total length in frames of the comparison signal. The energy
of the comparison window used in the denominator of (2-a)
can then be calculated as:
u+W−1∑
l=u

n2 (l+τ)=s2n (u+W−1+τ)− s
2
n (u− 1+ τ) , (4)

where u is the origin of the window,W is the window length
and τ is the shift between the comparison and reference
windows.

Similarly for the reference windows, energy differencing
using the sum tables constructed for the reference signal
can be used to calculate the energy of the reference signal∑u+W−1

l=u yc,m (l)2. Hence, the sum tables for s2y(m) and the
energy of the reference window y2 (l) can be constructed
similarly to (3) and (4), respectively.

Finally, the same theory of overlap and redundancy
is employed to define the standard (i.e., non-normalized)
cross-correlation terms in the numerator of (2-a) and (2-b).
The numerators in (2-a) and (2-b) are the products of the
reference and the comparison signals. As shown in Fig. 2(b),
during the whole shift and product process between the two
signals, there is a remarkable overlap between the reference
window at u and the comparison window at u + τ , and the
shifted reference window at u + 1W and the comparison
window at u + τ + 1W . This leads to the following set of
sum tables:

sy,n(m, τ )=

{
y(m)·n(m+τ )+sy,n(m−1,τ ) (1≤m≤M )
0 (m= 0).

(5)

The numerator can then be calculated through the subtrac-
tion of the sum tables sy,n (m, τ ) before and after shifting:

u+W−1∑
l=u

y(l)n(l + τ ) =sy,n(u+W−1,τ )− sy,n(u−1,τ ). (6)

Therefore, the ICC factor ρn (m) in (2-a) can be calculated
through sum tables s2n (m) and s2y (m) for the denomi-
nator, and sy,n (m, τ ) for the numerator (i.e. ρn (m) ≈

sy,n (m, τ ) /
√
s2n (m) .s2y (m)). Similar applies to the ICC

factor ρx (m) in (2-b).

B. QUANTIZATION TECHNIQUES
In this section a two-stage pipeline quantization approach
as shown in Fig. 3 is proposed to optimally reduce the
number of bits required to represent parameters encoded
in floating point representations. The first stage utilizes
fixed quantization to retain the necessary number of bits
to represent the training target and acoustic feature set
including the noise estimate without compromising the SE
performance. On the other hand, the second stage comprises
a k-means-based quantization approach where the weights of
the neural network are replaced with quantized centroids.

In the first stage where the fixed quantization is con-
cerned, the impact on the evaluation metrics comprising the
short-time objective intelligibility score (STOI) [35], percep-
tual evaluation of speech quality (PESQ) [36], segmental
SNR (SSNR, in dB) [37] and the log-spectral distortion
(LSD, in dB) [38] are observed when the number of fixed
quantization levels is increased incrementally by 1 for levels 1
to 10 and then incrementally by 5 for levels 10 to 50. All
STOI, PESQ and LSD but the SSNR results shown in Fig. 4
suggest that quantization levels of 20 and above are suitable.
This means that the 14-bit representation used previously
can be reduced to a 5-bit representation, which gives up
to 32 quantization levels corresponding to the quantized
mask values. The SSNR may be a poor indicator of the SE
performance as the quantization may have led to more strin-
gent noise suppression that also came with high distortion.
A similar process was applied to the acoustic feature set and
it was found that a 5-bit representation provides sufficient
granularity in the feature set without causing significant
deterioration in the SE outcome. However, an additional sign
bit is required for the representation of the acoustic feature
set.

Utilizing the k-means algorithm in the second stage, the
weights in a neural network are grouped into several clusters,
with each cluster of weights sharing a centroid value.With the
k-means algorithm, meaningful centroids often representing
the more dominant weight values are extracted and used in
place of any numbers in the 32-bit float range. An example of
the k-means based parameter quantization process is depicted
in Fig. 5. With k = 4, a look-up table with 4 cluster centroids
is obtained. Each weight in the model is then denoted with a
cluster index that corresponds to its cluster. Therefore, with
a look-up table containing 4 integer indices representing the
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FIGURE 3. Block diagram depicting the two-stage quantization process
where a fixed quantization is applied on the acoustic features and
training target in Stage 1, and a k-means quantization is then applied on
to the neural network weights in Stage 2.

FIGURE 4. The resulting average performance evaluation when different
levels of fixed quantization were applied to the QCM.

4 centroids, only 2 bits are required to represent the weights in
the neural network model. For finding the optimal ‘k’ value,
the number of clusters was set to 2, 4, 8, 16, 32 and 64, and
the corresponding STOI and PESQ results were obtained as
shown in Fig. 6. It was found that k-means with k = 32
ensures minimal bit requirement without compromising the
performance of the SE in this work. Therefore, the 32-bit
floating number representation can also be replaced with a
5-bit integer representation, increasing the compactness of
the DNN model.

C. ACOUSTIC FEATURES
The acoustic features used in this study are a fixed set of
complementary features recommended in [39]. The com-
plementary feature set is a concatenation of the: (1) AMS;
(2) RASTA-PLP coefficients; (3) MFCCs and; (4) GFCCs.
In the computation of the AMS feature, the envelope of
the signal is extracted using full-wave rectification before

FIGURE 5. An example of the weight quantization technique
where 4 centroids were obtained utilizing the k-means algorithm.

FIGURE 6. The resulting average performance evaluation when different
values of ‘k’, representing the number of centroid clusters, were used to
quantize the weights of the DNN.

decimation by a factor of 4 is applied. Thereafter, the
decimated envelope undergoes Hanning windowing before
being zero-padded to become a 256-point FFT. Finally, the
resulting FFT magnitudes are integrated by 15 triangular
windows uniformly spaced from 15.6 to 400 Hz to produce
a 15-D AMS feature vector. To derive the RASTA-PLP
coefficients, the power spectrum of the signal is warped
to a 20-channel Bark scale using trapezoidal filters, log-
compressed, filtered by the RASTA filter [40] with a single
pole at 0.94 and then expanded again by an exponential
function. Subsequently, loudness pre-emphasis and intensity
loudness law are applied. The cepstral coefficients from
linear predictions then form the RASTA-PLP features.
Following a common practice in speech recognition, a
12th order linear prediction model is used. This yields a
13-D (including the zeroth cepstral coefficient) RASTA-PLP
feature vector. For the MFCCs, the signal is first pre-
emphasized, followed by a 512-point short-time Fourier
transform with a 20-ms Hamming window. The resulting
power spectra are then warped to a 64-channel mel scale.
This is then followed by a log operation and discrete cosine
transform (DCT) to yield a 31-D MFCC feature vector. The
extraction of the GFCC features involves decomposing the
signal with a 64-channel gammatone filterbank first before
being decimated to an effective sampling rate of 100 Hz.
The outputs are then loudness-compressed by a cubic root
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FIGURE 7. Illustration of the DNN training framework. The neural
networks shown are the RBM stack used for pre-training which includes a
visible Gaussian-Bernoulli RBM layer with four hidden
Bernoulli-Bernoulli RBM layers (i.e. H1, H2, H3 and H4). The RBM stack
can be replaced with feedforward multilayer perceptrons to depict the
subsequent main training process which occurs after the network weights
and biases have been initialized with the RBM.

operation, followed by DCT to yield a 31-D GFCC feature
vector, as with the MFCC feature vector.

III. DNN-BASED SPEECH ENHANCEMENT
The acoustic features extracted from a noisy speech mixture
along with the corresponding training targets are fed into
the DNN for training as shown by the flowchart in Fig. 7.
An experimental study was conducted to optimize the
configuration of the feedforward DNN within the proposed
SE system for the mapping process. In the preliminary study,
a sample subset of the training and testing dataset (further
described in Section IV-A) were used to evaluate the SE
performance when changes to the configuration of the DNN
were made. As shown in the sample results, it was observed
that the utilization of dropout regulation (see Fig. 8) for
the hidden layers led to improvements across all evaluation
metrics (explained in Section IV-B). It was found through the
simulations that a dropout rate with 0.2 provides the optimal
SE performance.

The final DNN configuration consists of four hidden
layers, each having 1024 Rectified Linear Units (ReLUs)
as their activation functions. The ReLU activation function
is responsible for transforming the summed weighted input
from a node into a non-linear output by being linear for
all positive values and returning 0 for all negative values.
Mathematically, the ReLU transformation function is given
by:

y = max (0, x) . (7)

At the output layer, a sigmoid activation function is used since
the training targets possess a range between [0,1].

Layer-wise pre-training using restricted Boltzmann
machines (RBMs) [41] is employed to make the feature

FIGURE 8. The impact of dropout regulation on SE performance.

learning more robust by more optimally initialize the
network’s weights and biases with a subset of the training
data. This paper utilizes a multiple of RBMs stacked together
for pre-training as illustrated in Fig. 7. The first RBM is
a Gaussian-Bernoulli RBM that has one visible layer of
linear variables connected to a hidden layer. Thereafter, a pile
of hidden Bernoulli-Bernoulli RBMs (i.e. H1, H2, H3 and
H4) is added to the prior Gaussian-Bernoulli RBM. The
RBMs are trained by contrastive divergence algorithm [42]
for faster and more computationally stable convergence.
100 epochs of mini-batch gradient descent are employed
for RBM pre-training and 100 epochs of limited-memory
Broyden-Fletcher-Goldfarb-Shanno algorithm [43] are used
for fine-tuning the whole network. Lastly, a learning rate of
0.001 is used for the Gaussian-Bernoulli RBM and a learning
rate of 0.01 is used for the Bernoulli-Bernoulli RBM.

To improve noise robustness of the SE system through
introducing DNAT, noise information is appended to the
input acoustic feature and fed to the DNN to better the
prediction of the clean speech as shown in Fig. 7. Static
noise-aware training used in [44] that assumes a fixed
noise estimation over the entire utterance, is not a practical
approach for suppressing non-stationary or burst noises. For
the suppression of non-stationary or burst noises, dynamic
noise estimation is needed and this can be implemented using
the conventional MMSE-based noise estimation method [45]
at each frame. However, it has a drawback of introducing
non-linear distortion in the estimated noise spectrum which
in turn results in more challenging DNN learning. Therefore,
DNAT employing the correlation-based approach discussed
in Section (II-A) is proposed here by the use of the following
equation:

ryn (m) = ryy (m)− ryx(m)), (8)

where ryy (m) is the autocorrelation of the noisy speech
y (c,m) and ryx(m) is the cross-correlation between the noisy
speech and the estimated clean speech. ryn (m), which is
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the cross-correlation between the noisy speech and noise,
is calculated for each channel of the gammatone frequency
domain and then concatenated to the acoustic feature vector
for DNN training to reflect the coherent relationship among
different frames and gammatone frequency channels.

After initializing the network’s weights and biases, the
DNN is trained by streaming the feature vectors through a
standard backpropagation algorithm where the mean squared
error (MSE) is used as the cost (loss) function:

E
(
wi, bi

)
=

1
2

∑
m

∑
c

∥∥∥[ ˆQCM (c,m),wi, bi
]
−ai(c,m)

∥∥∥2 ,
(9)

where c is the channel index, m is the frame index and i
represents the network layer index. ˆQCM (c,m) denotes the
proposed quantized training target in this paper. ai (c,m) is
the activation value in the cth channel of the mth frame.
Finally, wi and bi are the weights and biases vectors in the
ith layer, respectively. The update and estimation of wi (and
similarly, bi) in the ith layer, with a learning rate λ = 0.1,
can then be completed iteratively according to Eq. (10) along
with a momentum factor ω:{

wi← wi +1wit
1wit = −λ.E∇

(
wi
)
+ ω ·1wit−1,

(10)

where t is the index of the iteration.
Adaptive gradient descent [46] along with a momentum

term (ω) are used as the optimization technique. In this paper,
a momentum rate of 0.5 is initially used for the first 5 epochs
before it is increased to 0.9 thereafter. The total number of
epochs is 100. During each iteration, the difference between
the training target and the concatenated input feature vector
is fed back through the network to generate the mapping
patterns in the hidden and output layers.

IV. RESULTS AND ANALYSIS
A. DATASETS
In the performance evaluation, 1500 randomly chosen clean
utterances from the TIMIT [31] training set were used as
the training utterances and 100 utterances from the TIMIT
core test set, which comprises of 192 utterances from
unseen speakers of both genders, were used as the test
utterances. Five types of noises including babble, factory,
pink, Volvo (car) and white noise from the NOISEX-92 [32]
database were used as the training noises. The same five
noises were used for testing, with the addition of ‘f16’ and
‘factory 2’ from the same database used for evaluating the
generalization performance. To avoid using the exact same
frames of noise for both testing and training, random cuts
of the first 2 minutes of each noise were used for training
whereas random cuts of the last 2 minutes of each noise were
used for testing. A sampling frequency of 8 kHz was used
throughout the experiment. The noisy speech mixtures were
generated by contaminating the utterances with each type of
noise at -5, 0 and 5 dB SNR.

B. EVALUATION METRICS
Since the output from the speech enhancement system is
ultimately presented to a human listener, the evaluation
metrics used have been designed to quantitatively predict
how a human listener will perceive the enhanced speech
signal. Speech intelligibility and quality are two different
key aspects of speech perception that are often assessed
both objectively and subjectively to evaluate the performance
of an SE system. The STOI [35] is the most commonly
used intelligibility metric since it has been shown to be
highly correlated with human speech intelligibility score
consistently. The STOI measures the correlation between the
short-time envelopes of the clean signal and the enhanced
signal, and it is presented in a range between 0 and 1,
which can be interpreted as percentage correct. For speech
quality, the PESQ [36] is recommended by the International
Telecommunication Union as a standard metric. As with most
speech intelligibility and quality measures developed, the
PESQ is also calculated by comparing the enhanced speech
with the clean reference speech. More specifically, PESQ
compares the loudness spectrum of the two signals to produce
a score in a range of −0.5 to 4.5. Other evaluation metrics
used are the SSNR [37], representing the degree of noise
reduction, and the LSD [38], which denotes the level of
speech distortion present in the enhanced signal. For the LSD,
lower values equate to lower levels of speech distortion, thus
indicating better SE performance.

C. EVALUATION OF DIFFERENT SE NETWORKS BASED ON
GENERATED NOISY SPEECH SIGNALS
To assess the benefits of the proposed DNN-QCM, its SE
performance was compared with: (1) a model-based SE
using the MMSE by Hendriks et al. [47]; (2) a supervised
NMF method in [48], where informative prior distributions
obtained from the temporal dependencies of speech and noise
signals are applied in a Bayesian framework to perform the
NMF; (3) the DNN-IRM (when the conventional IRM is used
as the training target); and (4) the DNN-CRM proposed in
[33] where a conventional correlation-based training target
is used for SE (DNN-CRM, with CRM being the acronym
for correlation ratio mask). In the MMSE system, an MMSE
estimator of speech DFT coefficients assuming a generalized
gamma distribution for speech magnitude is employed.

Table 2 shows how the DNN-QCM compare to the
MMSE, NMF, DNN-IRM and DNN-CRM-based SE. The
SE algorithms were subjected to trained noise types (i.e.,
babble, factory, pink, Volvo and white noise) under −5,
0 and 5 dB SNR conditions. The values printed in boldface
indicate the best achieved metric values for each noise
type and SNR condition. The introduction of SE is vital
for achieving improved speech intelligibility and quality.
This is reflected in the improvements across all evaluation
metrics over the unprocessed data after the SE systems were
introduced. Among all the SE algorithms, the MMSE-based
SE gave the worst performance as it consistently led to the
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TABLE 2. Evaluation performance comparisons of the various SE algorithms, including the proposed DNN-based SE with QCM, on different noise types
and SNR conditions.

lowest speech intelligibility and quality improvements in
every scenario. This is because the model-based SE relies
on its assumption on speech characteristics for denoising.
In many cases, proposed DNN-QCM gave better evaluation
metric scores across all noise types and SNR conditions.
When processing speech contaminated with babble and
Volvo noise at 0 dB, however, the DNN-CRM provided
the best SSNR. The performance of the DNN-CRM often
fell slightly short of the DNN-QCM. This suggests that
although the sum tables method and quantization techniques
were used to increase the efficiency and compactness of the
DNN-QCM, the introduction of DNAT and nuances as a
result of optimizing the DNN configuration have led to its
net better performance. When denoising speech utterances
contaminated with Volvo noise, the STOI scores obtained
from all SE algorithms were almost equally high especially
at 0 and 5 dB. The evaluation metric values obtained from
processing the Volvo noise were higher than the rest of the
noise because it is the more stationary noise compared to the
other noise types. A one-way analysis of variance (ANOVA)
performed to assess significant differences between the STOI
scores obtained with each SE algorithm in Table 2 confirmed
that no significance was found in the STOI results when
processing the Volvo noise. However, the SE systems pro-
vided significantly different results for the Volvo noise when

the PESQ, SSNR and LSD were the evaluation metrics of
concern (p = 5e-5). Although the PESQ scores appear to be
close, the differences between the averages of some groups,
representing the different SE algorithms, are large enough
to be statistically significant, resulting in a p-value of less
than 4e-4.

The performance of all SEs deteriorated with diminish-
ing SNR. Overall, the proposed DNN-QCM consistently
provided better SE performance. This is then followed by
the DNN-CRM and subsequently, the DNN-IRM methods.
When compared to the DNN-IRM, the DNN-QCM led to an
improvement of approximately 6.5% in STOI score, 11.0%
in PESQ score, 35.7% in SSNR score and 28.1% in LSD
score. When compared to the DNN-CRM, improvements
of approximately 1.9% in STOI score, 3.3% in PESQ
score, 1.2% in SSNR score and 4.8% in LSD score were
obtained. From a statistical standpoint, the Tukey’s HSD
test [49] performed following the ANOVA confirmed that the
DNN-QCM performed significantly better than the unpro-
cessed speech, MMSE and NMF-based methods. However,
although improved speech intelligibility and quality, and
lower noise distortion were observed with the DNN-QCM
in most conditions when compared to DNN-IRM and
DNN-CRM, the differences in the evaluation metric scores
were not statistically significant. The exception was where
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FIGURE 9. Example visualizations of the denoising performance of the different SE methods compared on a
speech sample contaminated with babble noise at 0 dB. The circled portions depict an example segment of the
speech where the DNN-QCM outperforms the DNN-CRM method in speech denoising.

the DNN-QCM provided significantly better STOI scores
than the DNN-IRM. The DNN-CRM did not perform
significantly better than the DNN-IRM in any conditions.
This suggests that the DNN-based algorithms have reached
near saturation in speech denoising in the conditions tested.
Differences between the evaluation metric scores were
deemed significant if the p-value obtained was smaller than
0.05.

Example visualizations of the enhanced signals obtained
from the various SE systems are provided in Fig. 9. The figure
shows example resulting time-domain waveforms of the
enhanced signals and their corresponding spectrograms when
speech contaminated with babble at 0 dB SNR was presented
to the SE systems. The waveforms and spectrograms of the
clean speech and noisy speech mixture (the unprocessed
signal) have been additionally provided for comparison.
The MMSE method removed much high-frequency noise
components but it also removed some high frequency speech
components as a result, leading to the introduction of
distortion. It also performed worst in denoising silenced

segments. The NMF method fell short of the DNN methods
in terms of low-frequency noise suppression. The DNN
methods were able to well segregate the beginning and end
of the voiced fragments of the noisy speech mixture. The
DNN-QCM method provided better high-frequency noise
suppression than the DNN-IRM method and from observing
the time-domain waveforms, it also excelled in suppressing
low-amplitude noise. The DNN-QCM performed similarly
to the DNN-CRM, however, some obvious improvements
can be observed with the DNN-QCM. An example segment
of the enhanced signals where the DNN-QCM can be
seen to outperform the DNN-CRM has been marked with
superimposed dashed circles in Fig. 9. Here, low-amplitude
noise spanning across all frequencies were suppressed in the
DNN-QCM but not in the DNN-CRM. In order to assess
the generalization performance of the proposed SE method,
noises that have been excluded from the training dataset
(unseen noise types ‘f16’ and ‘factory 2’) were also fed
to the SE for testing. The resulting outcomes are shown
in Fig 10. The enhancement performance worsened for all
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FIGURE 10. Evaluation performance comparisons of the various SE
algorithms, including the proposed DNN-based SE with QCM,
on untrained noise types, ‘f16’ and ‘factory 2’ noise.

SE algorithms when unseen noise types were presented.
Nevertheless, a similar performance pattern to the seen noise
test was obtained and the DNN with the proposed QCM
continued to show better denoising capability than the other
methods across both unseen noise types and at different SNR
conditions.

D. COMPLEXITY, CONVERGENCE AND TIMING ANALYSIS
OF THE SE NETWORKS
The training complexity of the DNN networks depends on
the network parameters, forward-backward propagation for
network tuning, quantity of neurons in the hidden layers and
weights. A higher number of neurons leads to greater network
complexity. In this paper, the number of layers and neurons in
each layer (hidden as well as visible) for all the DNN-based
methods (i.e., DNN-IRM, DNN-CRM and DNN-QCM) were
kept the same. According to [20], by defining the dimension
of the input acoustic features as Xi, number of training data
points (size of the training target) as ND, number of hidden
layers as NH , number of output neurons as NO and number
of epochs for parameter turning as NE , the complexity of the
DNNs employed can be quantified by the big O notation as
O(NDNE (Xi + NH + 2N 2

H + NHNO)).
As shown in Figure 11, even though the same number

of neurons and layers were used, the proposed DNN-QCM
converged faster as a result of the quantization and DNAT.
The RBM pre-training led to lower values of loss functions.
The MSEs were observed to begin plateauing when the
number of epochs reached approximately 50 and close to a

FIGURE 11. Convergence of training and validation errors obtained when
tuning the parameters of the DNN-IRM, DNN-CRM and DNN-QCM.

TABLE 3. Training and inference time of the proposed DNN-QCM versus
the DNN-IRM and DNN-CRM methods.

full plateau was reached when the number of epochs is 100.
This led to the decision to set the total number of epochs for
training to 100, as mentioned earlier in Section III.

The average training and inference time required for
processing each frame of 25 ms were observed on a CPU
for the DNN-QCM method to further evaluate the impact
of using the sum tables NCC calculation method, quanti-
zation techniques and DNAT. These were compared to the
DNN-IRM and the DNN-CRM, where NCCs were calculated
in a conventional manner, and DNAT and quantization tech-
niques were not implemented. As shown in Table 3, it took
a longer time to train the DNN-QCM and DNN-CRM as
their procedures involved calculating the NCCs for obtaining
the required ICC factors used to adjust the IRM. With the
introduction of the DNAT; alternative method of calculating
the NCCs using sum tables; and quantization techniques to
reduce the bit representations within the DNN; the training
time of the proposedDNN-QCMwas successfully reduced by
approximately 15.7% when compared with the DNN-CRM.
As for the inference time, which refers to the time required
for a frame to undergo the SE processing, the DNN-IRM
and DNN-CRM spent almost a similar amount of time
for processing noisy speech. Quantization techniques have
effectively reduced the inference time for the DNN-QCM
due to reduced bit operations. When compared with the
DNN-CRM, the inference time for the DNN-QCM was
approximately 10.5% less.
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V. CONCLUSION
Much room for improvement exists for monaural SE
algorithms. They can be made more compact, computation-
ally efficient and powerful in denoising under low SNR
mixture and in non-stationary noise condition. In this paper,
an efficient correlation-based ratio mask representation is
proposed to address these limitations in SE algorithms. The
proposed mask, coined as the QCM (quantized correlation
mask), operates based on the CASA-DNN model for SE.
In the QCM, adaptive ICC factors are used to adjust the
ratio mask to more accurately retain and suppress speech and
noise components. Since the traditional method of calculating
NCCs, required to obtain the ICC factors, is computationally
expensive, an alternative method of calculating NCCs using
sum tables is presented. To increase noise robustness, a
correlation-based DNAT (dynamic noise aware training)
is proposed to be used in conjunction with the QCM.
Quantization techniques are further applied to the QCM,
neural network weights and acoustic features extracted to
make the DNNmore compact.With quantization, the weights
within the employed neural network could be reduced to a
5-bit integer representation from a 32-bit float representation.
If 100 different weights are employed in the DNN, this would
mean achieving a compression rate of around 2. Despite the
introduction of the DNAT, the sum tables and quantization
techniques have led to approximately 15.7% and 10.5%
reduction in the training and inference time respectively, for
executing the pipeline of the proposed method. Furthermore,
the proposed DNN-QCMmethod outperformed the reference
methods, which included DNN-based SE systems trained
with IRM and another correlation-based training target,
and a model-based and NMF-based SE. Future work will
include investigation of the DNN-QCM’s denoising and
generalization performance when trained with larger datasets
having a wider range of SNRs, and implementation of
dynamic quantization and real-time training capability to the
DNN-QCM while keeping the memory and computational
requirements at a minimum. The viability of the application
of the proposed compact speech enhancement algorithm in
hearing prostheses will also be assessed.
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