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Abstract

This thesis presents solutions to various problems in the expanding field of
combinatorial geometry.

Chapter 1 gives an introduction to the theory of the solution of an
integer programming problem, that is maximising a linear form with integer
variables subject to a number of constraints. Since the maximum value of the linear
form occurs at a vertex of the convex hull of integer points defined by the constraints,
it is of interest to estimate the number of these vertices.

Chapter 2 describes the application of certain geometrical interpretations
of number theory to the solution of integer programming problems in the plane. By
using, in part, the well-known Klein interpretation of continued fractions, a method
of constructing the vertices of the convex hull of integer points defined by particular
constraints is developed. Bounds for the number of these vertices and properties of
certain special cases are given. N

Chapter 3 considers the general d-dimensional integer programming
problem. Upper and lower bounds are presented for the number of vertices of the
convex hull of integer points defined by particular constraints.

Chapter 4 is concerned with the approximation of convex sets by convex
polytopes. First, a detailed description of recent work on minimal circumscribing
triangles for convex polygons and the extension to minimal circumscribing equilateral
triangles is given. This leads to a new approach to constructing a Borsuk Division
and finding a regular hexagon circumscribing a convex polygon. Then, a method of
approximating general convex sets by convex polytopes is presented, leading to
consideration of the problem of a d-simplex approximating a d-ball.

Chapter 5 develops algorithms for finding points with particular
combinatorial properties, using containment objects such as balls, closed half-spaces
and ellipsoids.

Chapter 6 gives a new approach to the problem of inscribing a square in

a convex polygon, leading to possible ideas for an algorithm.
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1. Introduction to Integer Programming

1. General Notation

This chapter gives an introduction to the theory of the solution of typical integer
programming problems, that is finding non-negative integers {x,, X3, ... , Xn}
that maximise a linear form

€1X] + CoXg + oo + CnXn
subject to a number of linear inequalities

a1;X) + 89;Xa + .or + 3;Xn < L
where a;;, ¢; and L; are positive integersfor 1 <i<nand 1< j<r.

First, we state some basic definitions.
Definitions

i) Aset C C R"is convexif (1 -t)a +tb € C whenevera,b€ Cand0<t<1.

ii) A point x € R" is a convex combination of u;, u,, ... , u; € R™ if there are

non-negative numbers A;, Asy .oy A, With A; + Ay + ... + Ay = 1 and
X = AUy + Aglg + oo + AgUyg.
iii) The convex hull. convX, of a set X is the set of convex combinations of
points of X. Then convX is a convex set.
If X is a finite set, convX is a convex polytope.

iv) A point c is a vertex of the convex set Cifc € C and, ifc = (1 - t)a + tb

forsomea.be€ Cand0 <t <1, thena=b=c.

Next, we state and give proofs of the following well-known theorems.

Theorem 1.1

If C is a convex polytope and V its set of vertices then C = convV.

Proof

Since C is a convex polytope, C = conv{uy, ... , u;} for some uy, ..., u;. Select from
Uy, ... , U; @ minimal set vy, ... , vr such that C = conv{vy, ..., vr}. Suppose that
v1=(1-t)\:+tvforsome .ye€Cand0<t<l. Letx_z AV y= Z HiViy
with A; > 0, p; > 0 and E A; E p; = 1. Write v, = Zr: a,v,, =

where a; = (1 - t)A; + tp, Then (l - ay)vy = Z av;.

=2

Suppose that a; < 1.

[\
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Then Vi :i; m (1 — > 0 and ;_)

So v, is a convex combination of v2, ey v,-.

v;, where ——— a; = 1.
! 1-011) (1-01)1';2

Thus C = conv{vy, ... , vr} = conv{v,, ..., v} which contradicts the minimality of
Vi, ... , Vr. Hence a; = 1, so that (1 - t)A; + tu; = 1.

Therefore Ay = p; =1, Ay =gy = .= Ar = pr = 0. Sox =y = v,.

Hence v, is a vertex of C. Similarly v,, ... , v, are vertices of C and

C = conv{vy, ..., vr}. Thus C = convV. O

Theorem 1.2
If C ¢ R" is a convex polytope, then the linear form c¢Tx = ¢;X; + ... + CnXn
takes its maximum value at a vertex of C.
Proof
Since C is a convex polytope, C = conv{vy, ..., v, }, where vy, ... , vy are the
vertices of C, Let M = malx\ cTv,.
Now if x € C, k_z /\l\,,vnth/\ >0andz A; =1
ThuscTJ\—cTZ/\ Z/\(CT\)<Z/\ M=M.
So, if x € C. then cTx < M
Hence max c¢Tx =M. O

xeC
We can deduce from Theorem 1.2 that the maximum value of the linear form
C1X) + CoXo + ... + CnXp is Necessarily attained at one of the vertices of the convex
hull of integer points defined by the inequalities

a1;X] + a3jXg + . +a,Xn <Liforlcjcr

nj
and so we have an interest in estimating the number M of these vertices. In

Chapter 2. a method of constructing the vertices of the convex hull of integer points
in the plane for particular linear inequalities is given, enabling bounds for M to be
given, In Chapter 3. we give two results for M; one improving an upper bound result
for M concerning the Knapsack polytope, the other an example showing that, in

3-dimensions. it is possible to choose the coefficients to obtain a lower bound for M.



2. Integer Points in the Plane

1. Introduction
This chapter is concerned with the application of aspects of the theory of numbers to
the solution of integer programming problems in the plane. As we have seen, the
theory of solutions of integer programming problems is partly concerned with finding
the number M of vertices of the convex hull of integer points defined by the
associated linear inequalities. In this chapter we describe a method of constructing
these vertices, which reveals properties of their distribution, enabling bounds for M to
be given.

First, we consider part of the theory of continued fractions, which is

described in detail in Hardy and Wright [2]. We write continued fractions in the form

1 1
B+ qiF gp7

and, for n > 2, the convergents to the continued fraction in the form

qn nl+A
B,

An _ =2
Bn ~ Bn 1+ =2
where the q, are the partial quotients to the continued fraction, and

Ap=9qg, A; =qeq; + 1, B = 1. B; = q;.

It is well-known that the convergents to a continued fraction A form a sequence of
rational numbers, alternately less or greater than ), each convergent approximating A
better than the previous one. This property of the convergents to continued fractions
is described in a geometric form by Klein [3], which is known as the Klein Model.

By using the properties of the convergents to continued fractions, we can
obtain a significant amount of information about the vertices of the convex hull of
integer points associated to particular integer programming problem.s.

Further, we consider in detail certain special properties that arise
when A = — ( 1 + V5). These properties occur because the partial quotients q, are

such that q; = 0 and qr = 1, for 1 < r < n, so that

Api+A, o
__——Bz

An _
Bn



2. The Klein Mode]
In [1], Davenport describes the striking geometrical interpretation of the continued
fraction given by Klein {3] in 1895 as follows.

Suppose that « is an irrational number, which we take for simplicity to
be positive. Consider all integer points in the plane, and imagine that pegs are
inserted in the plane at all such points. The line y = ax does not pass through any of
them (except, of course, the origin). Imagine an elastic string drawn along the line,
with one end fixed at an infinitely remote point on the line. If the other end of the
.string, at the origin, is pulled away from the line on one side, the string will catch on
certain pegs; if it is pulled away from the line on the other side, the string will catch
on certain other pegs. One set of pegs (those below the line) consists of the points
with coordinates (Bg, Ag), (Ba, A,). ... , corresponding to the convergents which are
less than a. The other set of pegs (those above the line) consists of the points with
coordinates (B, A;). (Bs, Aj), ... , corresponding to the convergents which are
greater than a. Each of the two positions of the string forms a polygonal curve,
approaching the line y = ax.

Figure 2.1 gives an illustration of the case a = v/3.

Figure 2.1
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The pegs below the line are at the points (1, 1), (3, 5), (11, 19), ...
the pegs above the line are at the points (1, 2), (4, 7), (15, 26), ... .

This can be summarised by the following :

Theorem 2.1 (Klein)

, and

Let a > 0. Then the line y = ax in the positive quadrant is approximated by two

convex polygonal curves, one to the left of the line and one to the right. Further the

vertices of these convex polygons are precisely the points (B, A) whose coordinates

are the numerators and denominators of the successive convergents to a, the left

curve having the even convergents, the right one the odd.



3. Extension to Integer Programming Problems

Consider the nth convergent to a continued fraction A. In the plane, the convex
hull of the feasible solutions to a given integer program is a convex polygon. As seen
previously, we are interested in examining the set of vertices of this convex polygon.
In this section we describe a method of constructing the vertices of the convex hull of
integer points in the positive quadrant under the line joining (A, 0) on the x-axis
to (0, Bn) on the y-axis, in terms of the convergents to %—n

Consider all points in the plane whose coordinates are positive integers
and imagine that pegs are inserted in the plane at all such points. The line joining
(An, 0) on the x-axis to (0, Bs) on the y-axis does not pass through any other integer
points. Imagine an elastic string drawn along the line, fixed at X, (An, 0), on the
x-axis and Y, (0, B,), on the y-axis. If the two ends of the string are pulled toward
the origin O, on the x-axis to (An - 1, 0). on the y-axis to (0, B - 1), the string will
catch on certain pegs and take a position which forms a polygonal line. The pegs the
string catches on form the set of vertices of the convex hull of integer points below

the line. For example, see Figure 3.1.

Figure 3.1

Y (0,84)

X(An Xe))

S

O e
\
X

In this section, we describe a method for constructing the integer points that form the
vertices of the convex hull of integer points below the line XY, and, in doing so,
confirm that these points do, in fact, make up the set of vertices. In addition, we give

bounds for the number M of these vertices.

10



a) Construction of the Vertices

The pattern in which the vertices are arranged is geometrically striking, bearing
certain similarities to the Klein Model. We first establish, informally, the general
pattern in which the vertices are arranged, then give a method for constructing any
sequence of integer points and finally show formally that this method does build up

the set of vertices of the convex hull of integer points below the line XY.

i) General Description

Consider two new origins at Y and X, labelled respectively O, and O,, with

coordinates (u;, v;) and (u,, v,). orientated as shown in Figure 3.2.

Figure 3.2

v

Then it is clear that w.r.t. O, the arrangement of the vertices of the convex hull of
integer points below XY starts in precisely the same way as the right polygon of the
Klein Modél, and, similarly, w.r.t. O, it starts in the same way as the left polygon of
the Klein Model. This observation gives us the idea for a method of constructing the
vertices using the methods of the Klein Model. We must, however, consider not only
the arrangement of the vertices near X and Y, but also in the intermediate region.
The intermediate vertices do, in fact, follow a very straightforward pattern, since, at
some stage, a vertex formed w.r.t. one origin is a scalar multiple of one formed w.r.t.
the other origin. Hence it appears that we can construct the vertices by forming two
sets of integer points, w.r.t. O, and O,, and associating one particular vertex with

both O; and O,.

11



ii) The Construction

Let € denote the following construction.

i)  Consider two new origins at (0, Bn) and (An, 0), labelled respectively
0, and O,, with coordinates (u,, v,) and (u,, v,), orientated as shown in
Figure 3.2.

ii) It is clear that the first vertices of the convex hull of integer points

constructed are (0, 1) w.r.t. O; and (1, 0) w.r.t. O,, (see Figure 3.3).

Figure 3.3
I O
T (o)
v
(n,0) Oz
L 2 —<—@
o

Aj
B;

iii) The next integer points constructed are (A j» B J-), where is a convergent to

%, either

n

a) w.uat. O ifjis even, or
b)  w.r.t. O, if j is odd,

for 0 <j < n - 1, (see Figure 3.4).

Figure 3.4
I O,
® (R°|8°)
Y
(Al 1 Sl)
[ ] Oa.
®o— <

This construction certainly builds up a sequence of integer points below the line

joining X and Y in the first quadrant.



iii) Formalisation

First, we formalise the construction of the intermediate vertices.

Theorem 3.1

The penultimate integer point formed in the construction € is an integral scalar
multiple of the last integer point formed, when viewed from the origin w.r.t. which
the last point is constructed.

Proof

The last integer points obtained in the construction € are as follows.

i) Suppose n is even.

The last integer point formed is (A,,_;, B,,_;) w.r.t. O,. The previous integer point
formed, (A,_,, B,_,) w.r.t. Oy, is, by simple geometry, (qnA,_;, qnB,,_;) w.r.t. O,.
For,

An _@nAn, + A,
Bn B,

—2
q"Bn-—l + -2,

and, if (x, y) are the coordinates of the previous integer point formed w.r.t. O,, then
X = An - An_2 = ann_l,
y= Bn - Bn_-_; = ann—l’

(see Figure 3.5).

Figure 3.5

601A

(An-2,Ba-2) w.r4. O ) nytj) woht, Oz

3

°
-
X 0.,
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ii) Suppose n is odd.

The last integer point formed is (A B,_;) w.r.t. O;. The previous integer point

n-1
formed, (A, _., B,_,) W.I.t. O,, is, by simple geometry, (qnA,_1, qnB,_;) W.r.t. O;.
Similarly, if (x, y) are the coordinates of the previous integer point formed w.r.t. Oy,
then

X=An~Ap_2=aqnAp_p,

Y =Bn-B,_2=0aB,_,

(see Figure 3.6).

Figure 3.6

‘o,

( An-a, Sv\—-z) .-t 02, , (X,d) w4, 0

Corollary 3.2
In the case where q, = 1 it is clear that the last integer point formed w.r.t. O, is

coincident with the last point formed w.r.t. O,.

Next, we give three theorems showing that the integer points of the construction do,
in fact, form the set of vertices of the convex hull of integer points below the line XY.

The first result is well-known.
Theorem 3.3

Let T be a triangle in the plane whose vertices are integer points and whose area is at

most % Then T contains no integer points.

14



Theorem 3.4
There are no integer points in the region between the line joining (An, 0) on the
x-axis and (0, Bs) on the y-axis and the line joining the integer points of the
construction €.
Proof
This result is achieved by dividing the region between XY and the line joining the
integer points of the construction € into triangles of sufficiently small area.

We obtain a sequence of triangles by joining a line from each of the
constructed integer points to the origin O, or O, w.r.t. which it was constructed in €.

Thus one integer point P will be joined to both O, and O,, as shown in Figure 3.7.

Figure 3.7

The integer points formed w.r.t. O; are
(0, 1), (Ag. Bg). (Aae By), ooy (Aags Bag)e ooy (A, _as B,_5) if n is even,
(0, 1), (Ag. Bg)s (As. Ba), wee s (Aags Bag)s ooy (Ayg, B,_y) if n is odd.

Thus the triangles formed w.r.t. O, are
(01 0)‘ (0~ 1)7 (AO-, Bo),
(07 0), (A09 BO)v (A'J‘ B2)’

(0, 0), (Azj_2) Bag_o) (Agp. Boy), (o)

(0,0). (A, _y. B,,_y). (A,_ay B,,_a) if nis even,
(0.0), (A,,_3. B,,_3). (A,,_1, B,,_;) if n is odd.

15



The integer points and triangles formed w.r.t. O, may be found similarly. We

consider the triangle O;0,P independently of these triangles.

If the area of triangle o is A(o), then

Alo) = 51-2 det {g: gzi_z } = flz (A2Bap 2 - Agp_2Bay) = %
If qq; = 1, then the area of triangle ¢ is %, and there is nothing more to prove.
Suppose, then, that g, > 1 and let p be ;n integer, 1 < p < qoz. The line
joining (A, _a, Bop_s) to (Agy, Boy) has, w.r.t. O, the equation

(¥ = Bog_a)(Agg - Aggoa) = (X = Agp_a)(Bag - Byys)

(¥ = Bog_2)(@ogAaz_y) = (X - Ag_2)(qaxBor_y)

YAaro1 = XBop g = Boy_pAsiy = Agr_oBory

YAgp_y =XBop_; = L.

Consider the integer point ((qa; — P)Aag_; + A2y (Qag = P)Bag_; + Bop_o)-
We claim that for all integers, p, 1 < p < g, the integer point
((qax = P)Aag_1 + Asp_ay (Qa = P)Baj_; + Byp_,) lies on the line joining
(Aaj_ay Bap_a) to (Aag, Boy). This is because

((Qar = P)Bai_y + Boj_a)Aniy = ((Qap = P)Asg_y + Agg_2)Bopy
= BapooAspy - Agi_oBay
= 1,
thus satisfying the equation of the line joining (A, _a. Baj_5) to (Agx, Bog)-

Now, the area of triangle ¢ is q%"', and it has the integer points (0, 0),

(Agk_as Bag_a), (Aar, Bay) as its vertices. jglso, there are (q,; ~ 1) integer points on
the side of the triangle joining (A_s. Bog_,) to (Agy, Bap). We can construct qqp
triangles inside o, each of area % by joining each of these (q,, ~ 1) integer points to

(0, 0). Hence the triangle o contains no integer points, apart from its vertices and

those on one of its sides.

Thus each triangle formed w.r.t. O, contains no integer points, apart
from its vertices and those on its side opposite to O,. Similarly, each triangle formed
w.r.t. O, contains no integer points, apart from its vertices and those on its side

opposite to O,.

16



Now, consider the triangle O,0,P. There are two cases.

i) Suppose that n is even.
Then P is (A,,_,, B,_,) w.r.t. Oy, (qnA,_;, qnB,_;) W.r.t. O,, so that triangle
0,0,P is (0, 0), (A,_a, B,_a), (An, Bn) w.r.t. Oy.

If the area of triangle O,0,P is A(O,;0,P), then

(AnBo3 - An_2Bn) = F-

[} Lo

n Bn—'.!

A
A(0102P) = ;13 det {gn n=2 } =

If q» = 1, the last points formed w.r.t. O; and O, coincide, the area of triangle
0,0,P is %, and there is nothing more to prove.

Suppose, then, that q, > 1, and let p be an integer, 1 < p < qa.

Then the integer points ((qn - p)A,_;1. (4, - P)B,_;) all lie on O,P.

Thus the triangle O,0,P contains no integer points, apart from its vertices and

those on its side O,P.

ii} Suppose that n is odd.
Then P is (A,_», B,,_,) w.r.t. O,, (qnA,_;, @nB,_;) w.r.t. Oy, so that triangle
0,0,P is (0, 0), (A,_a, B,_a). (An. Bn) w.r.t. O,

If the area of triangle O,0,P is A(O,0,P), then

A(0,0,P) = 1 det {A”‘? An } =1 (A.B
- B,_» Bn =

If qn = 1, the last points formed w.r.t. O; and O, coincide, the area of triangle
0,0,P is %, and there is nothing more to prove.
Suppose, then, that q, > 1, and let p be an integer, 1 < p < gn.
Then the integer points ((qn - p)A,_;. (@n - p)B,_;) all lie on O,P.

Thus the triangle O,0,P contains no integer points, apart from its
vertices and those on its side O,P.

Hence the region between the line joining (Ar, 0) and (b, B») and the

line joining the integer points of the construction contains no integer points. 0

Theorem 3.5

The polygonal curve joining the integer points of the construction is convex.



Proof
This result is achieved by considering the gradients of the individual lines

joining the successive integer points. The construction of the integer points is as

follows.

w.r.t. Op: w.r.t. Oy

(0, 1) (1,0)

(Ao, By) (A, By)

(Aa By) (As, Bj)

(Agg—2r Boy_o) (Aag_1s Bag—1)

(Aags Bay) (Asks1s Bagya)

(Ap_ay B,_a) (Ap_1s Bpoi) if n is even,
(An—la Bn-l) (An-Q' Bn_g) . if n is odd.

Let G, be the gradient of the line joining two points formed in the

construction w.r.t. O;.

Bo; - B.;
Then Gy = == 2 A

l.’ IJ

Bs_q . . Ao
2k=1 i5 the reciprocal of the odd convergent m2k=1,
Az By,

Also, the odd convergents are strictly decreasing.
Thus the gradients of the lines joining those integer points formed w.r.t. O, are

strictly increasing w.r.t. O,.

Let G, be the gradient of the line joining two points formed in the

construction w.r.t. O,.

B', . - B . . Bl) 3 B") g
Then G, = A-Hl A“_1 = qﬂ“A-k =T
2k+1 T Aop-r Qaps1iak

By

2k

>

Ek

2k

Now is the reciprocal of the even convergent B

:>
-

Also, the even convergents are strictly increasing.
Thus the gradients of the lines joining those integer points formed w.r.t. O, are

strictly decreasing w.r.t. O,.

18



In order that the polygonal curve joining the integer points of the construction be
convex, we must show that the individual lines joining successive integer points have

gradients strictly increasing w.r.t. O,.

i) Suppose that n is even.

Let the points P, R, S and S’ be defined as follows.

a)Ris (A, _y4, B,_y) w.r.t. Oy,

b) Pis (A,_s, B,_,) w.r.t. Oy, (qnA,_;, GnB,_;) W.r.t. Oy,
¢)Sis (A,_;, B,_;) w.r.t. O,, '

d) S'is (A,_a, B,_3) w.r.t. O,,

e) S lies on O,P,

(see Figure 3.8).

Figure 3.8

We know that the individual lines joining successive integer points formed w.r.t. Oy,
up to and including RP, have gradients strictly increasing w.r.t. Oy, and w.r.t. O,,
up to and including S'S, have gradients strictly decreasing w.r.t. O, so strictly
increasing w.r.t. O,. .

Thus all we need show is that w.r.t. O; the gradient of RP is less than

the gradient of PS, and the gradient of PS is less than the gradient of SS'.

Gradient of RP w.r.t. O, = E"‘Q _ i”“" = i"‘S.
n—2 7~ n-4 n—3

qnB,_; - | : I - Bn-l.

Gradient of PS w.r.t. O; = Gradient of SP w.r.t. O, = P W Wl W

19



Bn-l - Bn—3

Bn—2

Gradient of SS' w.r.t. O, = Gradient of §'S w.r.t. O, =

. A,_s A,
Now the odd convergents are strictly decreasing, so B" 35 E—"—l
n-3 n—1

o}

n-1

B
Hence A"‘3 <=
n-3 n-1

so that w.r.t. O, the gradient of RP is less than the gradient of PS.

Also, every odd convergent is greater than any even convergent, so

o

n~1 Bn-—'.!

Hence <
A, _

9
n-2

»>

so that w.r.t. O, the gradient of PS is less than the gradient of SS'.

ii) Suppose that n is odd.

Let the points P, R, R’ and S be defined as follows.

a) R'is (A,,_3. B,,_3) w.r.t. Oy,

b) Ris (A,_;, B,,_;) w.r.t. Oy,

¢) Pis (gnA,_;. @nB,_;) w.r.t. Oy, (A, _a, B,_3) wr.t. Oo,
d) Sis (A, _4: B,_4) w.r.t. O,

e) R lies on O,P,

(see Figure 3.9).

Figure 3.9

n—

1
>
Bn—l

An—l - An-s = An-2.

An—2

n-2



We know that the individual lines joining successive integer points formed w.r.t. Oy,
up to and including R'R, have gradients strictly increasing w.r.t. Oy, and w.r.t. O,,
up to and including SP, have gradients strictly decreasing w.r.t. O,, so strictly
increasing w.r.t. O,.

Thus all we need show is that w.r.t. O, the gradient of R'R is less than
the gradient of RP, and the gradient of RP is less than the gradient of PS.

. B -B B
Gradient of R'R w.r.t. O, = ==L n=3 _ n=2

. ! An—l - An—3 An—z
q"Bn—l - Bn—l ~ Bn-—l.

Gradient of RP w.r.t. O, = =
v YT anAn - AL A

Bn—2 - Bn—4 = Bn-3.
An-2 - An—4 An-3

Gradient of PS w.r.t. O, = Gradient of SP w.r.t. O, =

. A, o A,_
Now every odd convergent is greater than any even convergent, so -B"—"’ > B"—l
- - n-2 n-1
B B
Hence A"'3 < n=t
n-2 An—l

so that w.r.t. O; the gradient of R'R is less than the gradient of RP.

. . . A, A, _
Also, the even convergents are strictly increasing, so 52= > F2=3.
° Bn—l Bn—S
B B
Hence A"‘l < A"“a,
n-1 n-3

so that w.r.t. O, the gradient of RP is less than the gradient of PS.

Thus the individual lines joining successive integer points of the construction have
gradients strictly increasing w.r.t. O;. Therefore the polygonal curve joining the

integer points of the construction is convex. O
Hence we have shown that the integer points of the construction are, in fact, the

vertices of the convex hull of integer points below the line XY in the positive

quadrant.
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b) Approximation of the Vertices

Finally, we aim to find an approximation for the number of vertices in the

construction.

Theorem 3.6

The number M of vertices of the convex hull of integer points below the line joining
A, on the x-axis to B, on the y-axis satisfies M > n.

Proof

In general, the construction builds up n + 2 vertices.

However, the following cases may arise.

i) qg=0,A,=0.

There will be no vertex constructed from the convergent %50, so that only n + 1
vertices are constructed.

i) qr=1,1<rgn .

The last point formed w.r.t. O; coincides with the last point formed w.r.t. O,, so
that only n + 1 vertices are constructed.

i) gp=0,qr=1,1<rg¢n.

In this case, only n vertices will be constructed. This is the case of the continued

fraction o, where o = ,1-, (-1 + V5).
Hence, M > n. O

Theorem 3.7

For large n, log¢ (M) <n < log, (An(r' + 1)),

(AO + ¢A1) (AO + TAI)
Bn(¢® + 1) Ba(7® + 1)
and log¢ (W) <n<logr ((Bo +78,)
where T=%(1 +~/5),¢=%(R+ V(R?+4))and 1 <q; <Rforlcign.

Proof

Consider the equation

X,42 = kX4 + Xn, with X, X, given.
The general solution is X, = aa™ + b3",
where a, 3 are the solutions to &2 = k€ + 1,

namely o = % (k + (k% + 4)) and 3 = -1)- (k - V(k* + 4)).

[ 2]
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Infact 8 = — é.

Therefore the solution is X, = aa™ + b(—é)", with Xg =a + b, X; = aa - c—l;.

Thus a= (XO + O'Xl) b = O(QXO - Xl).

(@®+1) 7 (a®’+1)
So, the solution is Xn = (Xo(;._,cixll.))an + (0310_1— (le)f-ll))n.
Hence, for large n, we have Xp ~ szv%ai()l) a®,
and n ~ logq (m—zchllg).

Now, we have the continued fraction relations
Apsa = QnA 4y + An,

Bhiy2 =anBpyy + B,

Let R be such that 1 < q; < R for 1 <i < n, so that
A +An A 0 SRAL L, + A,

B,y +Bn < B2 <RB,,; + Ba

Also,let 7 =1 (1 + V/5)and 6 = L (R + V(R? + 4)).

32 A(r? 41
Then, for large n. log¢ ((‘%"(i—dx_;) <n <logy ((I‘:xo(: 7'+A1)))$
0

Bn(6? + 1) Bn(r? + 1)
and 10g¢ ((_B-0+—¢Bl)) <n< ]OgT (m—)) O

Corollary 3.7
The number M of vertices of the convex hull of integer points below the line joining

An on the x-axis to B, on the y-axis satisfies

An(é® + 1)
M2 log, ((Ao " ¢A1))

and M> logd) (%%)



4, Properties of the Special Case q; = 0,qr =1,1<r<n

In this section we consider some of the properties of the special case where

o =5 (-1 + v5). We write ¢ in the form

Lo

o

111
1+ 1+

|

+

and, for n > 2, the convergents to o in the form

An _ Ap_1+An
Bn ~ Bn-l + Bn-z'

where Ag =0, A; =1, B =B; = 1.

a) Construction of the Vertices
An
B
following as the method of constructing the vertices of the convex hull of integer

Consider the nth convergent to the continued fraction o. In this case, we use the

points in the positive quadrant under the line joining (An, 0) on the x-axis to (0, Bn)

on the y-axis, in terms of the convergents to %
n
Let €' denote the following construction.
i)  Consider two new origins at (An, 0) and (0, By), labelled O; and O,

respectively, orientated as in Figure 4.1.

Figure 4.1




ii)  The first two vertices are (1, 0) w.r.t. O, and (0, 1) w.r.t. O,,

iii) The next vertices will be (A j» Bj), where B—;’ is a convergent to %—:-;‘,
a) w.r.t. O, if]is even, or
b) w.r.t. O, if j is odd,
forl<j<n-1.
iv)  The last vertex will be
(Ap_1y Bpy) wrt. Og, (A, _ay B,_5) w.r.t. Oy, if n is even, or

(Ap-2) Bp_g) wart. Oy, (A, _y, B,_;) w.r.t. O,, if n is odd.

b) Approximation of the Vertices

We know that in this case the number M of vertices constructed is bounded above by
n. Thus it is possible to use the available information in order to construct a better

approximation for n.

Theorem 4.1

For large n n = log-(An) + O(1),

and n = logr(Br) + O(1),

where 7 = }—, (1 +v5).

Proof

We have the two continued fraction relations

Appa=Apa + AnAg=0, 4, =1, (D
Bns2 =B, +Bn, By =1,B, = 1. (2)

Now, consider the equation
Xns+a = Xpyp1 + X, with X, X, given.
The general solution is X,, = ar™ + b(-%)",

o1 o . (Xo+ X)) (X - X)
\nthr_2(1+~/-3),a.. T2 1) , b= I
Thus the solution to (1) is An = 21 (1'”1 + (D)™,
(7% + 1)
and the solution to (2) is Bn = —51 (r+ 1" + (7 - 1)('71')n)'
(r?+1)

o
St



T n

So, for large n Ap ~ —+— 1",
g 2+ 1)

d B, ~ T+l .n
an n (T2+1)T

In fact, for large n n = logr(An) + O(1),

and n = logr(Ba) + O(1). O

Corollary 4.2
For large n M < log+(An) + O(1),

and M < logf(Bn.) + 0(1).

¢) Finding the Extreme Vertices

By using certain properties of the convergents, we are able to find the extreme
vertices. The extreme vertices are those vertices closest to the line L; joining

(An, 0) on the x-axis to (0, B,) on the y-axis in the first quadrant. We take a line
parallel to L; and move it, from the position of L;, in a direction towards the origin,

and find the vertices which the line meets as it is moved in this direction.
First. we note two properties of the convergents. For proofs refer to [2].

Lemma 4.3
AnB,_; - A,_Bp =(-1)""L
Aan—? - An—ZBn = (— l)n.

We shall transform from the (x, y) coordinate system to a new (u, v) coordinate
system, such that integer-valued coordinates in the (x, y) system are transformed

to integer-valued coordinates in the (u, v) system.



The transformation is fixed from (x, y) to (u, v) for the following points such that,
i) (An, 0) is transformed to (1, 0),
i) (0, By) is transformed to (0, 1),
iii) (A,_q B,_;) is transformed to (0, 0), if n is even,
(An_;, B,_») is transformed to (0, 0), if n is odd,

(see Figure 4.2).

Figure 4.2
A Y AV

(0.8.\)

(0.1)
(ﬁ'\-ly 8'\“') of~
(Ar\—i, Br\—&)

x
SY

(AA,0) (0,0) (1,0)

Hence the transformation must satisfy the following conditions.

i) Consider n even.

Then we must have

(%, ¥) = (An_2 Bp_y) + u(An = Aj_ay - B,y) + V(- Ay, Ba - By y)
(%, ¥) = (Ap_a2, Bpy) + u(Ap_y, - Byg) + V(= Aygy Booo)

(%, ¥) = (A1 + (1 - v)A, s, (1 - u)B,y + VB, _y).

So the transformation is
X = uA,,__l + (1 - V)An_Qs (3)
y=(1-uB,_,+vB,_, (4)

Now, (3) and (4) give
XB, s+ YA, _2o=uA, B, 2+ (1-u)A, B, +A, B,
XBn.—Q + yAn—'l - An—'.’(Bn—l + Bn-—'.’) = u(An—an—Z - An—2Bn-—1)‘



Hence, by Lemma 4.3,
u=xB,_, +yA, 5 - A, »Bn.

Also, (3) and (4) give
xBn—l + yAn—l = (1 - V)A, 2B, + vAn-—an--2 + An-an-l
xBﬂ-—l + yAn—l - (An—l + An—z)Bn—l = V(An—an—Z - An—ZBn—l)'

Hence, by Lemma 4.3,

v=xB,_; +yA,_; - AsB,_,.

ii) Consider n odd.

Then we must have

(%,¥) = (An-1, Baog) + W(An - Ap_qy - Bay) + V(- Apyy B - B, )
(X, ¥) = (Ap_1, Bpoo) + W(A,a, - Bys) + V(- Ap1y Bay)

(x,¥) = (A, s + (1 - V)A,_y, (1 - w)B,_5 + VB, _y).

So the transformation is
X= uAn_'_) + (1 - V)An_l, (5)
y=(1-u)B,_, +vB,_;. (6)

Now, (5) and (6) give
XBp_1 + YA,y =uA, B, + (1 -uA, B, »+A, 1B,
XBp_y +¥A, 1 - A Li(Baoy + Byo) = u(A, B, - An-1Baoo).

Heuce, by Lemma 4.3,

u= XBn_l + yAn—l - Aﬂ—lB"'

Also, (5) and (6) give
XBn—Q + yAn—2 =(1- V)An—an—'J + vAn—ZBn-—l +A,_2Bas
XBy_o + YA, - (Apo1 + Ap2)Boa = v(A_oBpoy - An-1Bass)-

Hence, by Lemma 4.3,
V= xBn_z + yAn_2 - Aan_z.



Thus the general formula for the transformation is
u=xB,_;+yA,_; - A,_;Bn,

v=xB, ; +Y¥A,_; - AnB,_},

where j =2,k =1,if niseven,j =1, k = 2, if n is odd.

We shall now consider what happens to the vertices of the convex hull under this

transformation.

i) Consider n even.

The first vertices formed w.r.t. O, and O, have (x, y) coordinates
(An - A, 0) and (0, B, - B,) respectively.

Thus under the transformation they have (u, v) coordinates given by
(u3: vq) = ((An - A1)By_y - Ay_5Bn, (An - A))B,_y - AnB,y) |
(43, Vo) = ((Bn - By)Ap_a - Ay_5Bn, (Bn = By)A,_y - AnB,y)

or

(ug, v;) = (AnBy_s - A _9Ba - Boo, - B,y)

(Uay Vo) = (- A2y A1Bn - AnB,_; - A,Ly)

So the origins O, and O, in the (x, ¥) coordinate system are transformed to the
points (u;, v;) and (u,, Vv,) in the (u, v) coordinate system, where

(a3, v1) = (1 - B,_a, - B,_3),

(uay va) = (- Apas 1 - Ay

The (x, ¥) coordinates of the other vertices are

a) formed w.r.t. O,.

(An - Aspq, Bopy). forlcr< %,

b) formed w.r.t. O.,

(A'_!:» Bn - Bv_),), fOl‘ 1 S S S n ; 2.

Under the transformation they have (u, v) coordinates given by
a) formed w.r.t. (u,, v,),
(W, v) = ((An - Ay 1)B, g + A, sBy, gy - Ay_5Bn,
(An = Agr_1)Byy + Ay_Bary - AnB,y)
(W, v) = ((AnBp_2 = Ap_2Bn) + (A,_2Bor_; - Agr 1By _s),
(An_1Bayy - Asp1Bny))
(4, V) = (1 + (A,_sBa,; - AgyryBoia) (AnoyBaroy - AgroyBaoy)) for Lsr<B.
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b) formed w.r.t. (u,, v5),
(0, v) = (Ag,By_y + Ay_2(Bn - By,) - A, _,Bn,
Az,Bn i + Ap_1(Ba - By,) - AnB, )
(u, v) = ((A2,Bn_s - A, _5Bs3)),
(Anc1Bn - AnB, 1) + (Ag,Bn_; - ApiBy,))
(8, v) = (A2,Bp_y - An_sBs,), 1+ (Ag,B,_s - A,_iBy,)), for 1<s < B2,

Thus we can represent the new (u, v) coordinate system as shown in Figure 4.3.

Figure 4.3

("'Ar\-) , |=— An—l)

(\— Bn—l ) Br\—ﬂ.)

We are now able to solve the problem of finding the extreme vertices using this
new (u, v) coordinate system. The line L, in the (x, y) coordinate system joining
(An, 0) to (0, By,) is transformed to the line N, in the (u, v) coordinate system
joining (1, 0) to (0, 1). Therefore, we can move the line N, in the (u, v) coordinate

system instead of moving the line L, in the (x, y) coordinate system.

In the (u, v) coordinate system, if we take a line parallel to N, and move it, from
the position of Ny, in a direction towards the origin (0, 0), it is possible to find the
vertices which this line meets as it is moved. Clearly, the vertex at C will be the
first one that is met; this is consistent with C being the last vertex formed in the

(x, y) coordinate system.
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ii) Consider n odd.

The approach is entirely similar to the case of n even and is shown in the following

example.

Example
Let n = 7. Then A, = 13, B, = 21, so that O, = (13, 0), O, = (0, 21).

In the (x, y) coordinate system the vertices are

formed w.r.t. O;: formed w.r.t. O,:
(12, 0) (0, 20)

(12, 1) (1, 19)

(11, 3) (3, 16)

(8, 8)

The formula for the transformation is
u=13x + 8y - 168
= 8x + 5y - 104.

Hence (uy, v;) = (1, 0), (ua, v,) = (0, 1).

In the (u, v) coordinate system the vertices are

formed w.r.t. (u,, v,) formed w.r.t. (ua, V)
(-12, -8) (-8, -4)

(-4, -3) (-3, -1)

(-1, -1) (-1,0)

(0, 0)

See Figures 4.4, 4.5.

Figure 4.4

Y

oy

(12,0) x
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We show that Z will be a vertex of the convex hull of integer points
under the line L, parallel to L, if and only if L, lies between L, and L.

Let (t, 0) be the point of intersection of L, with the x-axis and N(t) be
the number of vertices of the convex hull of integer points below the line L, in the

first quadrant.

An
Then J N(t)dt = Z d-(X,Y)
0 (X.Y) # (0)0)

Let y,( N(t) ) be the average number of vertices of the convex hull of integer points

below the line L,.

Then \,( N(t)) = AL Z d-(X,Y)
(XY # (0.0) ’

Hence it only remains for us to find an approximation for

d.(X, Y) for large n.

1
An
(X.Y) # (0.0)

This is achieved by Theorem 4.4. The proof of Theorem 4.4 is long and fairly

complicated. so is given as an Appendix to Chapter 2.

Theorem 4.4

For large n

Aln Y dx(X,Y) = logr(An) + O(1)
(xX.Y) # (0.0)
where 7 = _l_) (1 + V5).

This gives rise to
Theorem 4.5

For large n, the average number of vertices of the convex hull of integer points below

lines parallel to L, in the first quadrant is a constant fraction of log(An).
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Figure 4.5

("‘2;"8)

d) Finding the Average Number of Vertices

Finally, we aim to produce a discrete averaging process which finds the average
number of vertices under a line parallel to L; passing through a given integer point in
the first quadrant.

Consider any integer point Z = (X, Y) in the first quadrant under L, and
construct a line L, passing through Z and parallel to L;. Let P be that integer point
below L; but above L, such that there is an integer point Q under L, with PZQ a
straight line and P as close as possible to L,. Let L3 be the line parallel to L, passing
through P and d (X, Y) be the distance between the intersection of Ly with the

x-axis and the intersection of L, with the x-axis, as shown in Figure 4.6.

Figure 4.6




5. Conclusion

From Corollary 4.2, we know that the maximum number of vertices of the convex
hull of integer points below L, in the first quadrant is log7(An) + O(1). From
Theorem 4.5 we know that the average number of vertices of the convex hull of
integer points below lines parallel to L, in the first quadrant is within an additive
constant of log;(An). We can say, therefore, that, in many cases, the number of
vertices M of the convex hull of integer points below a line parallel to L, in the first
quadrant is near to the maximum possible for the convex hull of integer points

below L,.
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Appendix

This appendix gives the proof of Theorem 4.4 of Chapter 2. That is,

Theorem 4.4

For large n

o Y de(X,Y) = logr(An) + O(1),
(X.Y) # (0,0)

where 7 = % (1 +v5).

Proof
The proof can be expressed formally in the following three stages :-
1.  Find an integer point P which satisfies

i) P lies in the first quadrant under L,, but above L,,

i)  there is an integer point Q in the first quadrant under L, such that

PZQ is a straight line,

iii) P is chosen as close as possible to L.

o

i) A, the intersection between the x-axis and L,
ii) B, the intersection between the x-axis and L.
Find the distances d-(X, Y) where
d-(X,Y) = A:B-.

Construct a line Ly through P parallel to L, and L,. Label the following :

3. Determine the sum over all integer points Z = (X, Y) of the distances dz(X, Y).

Note

In considering the point Z = (X, Y) we shall include integer points that lie on the

axes, but exclude the origin (0, 0).

We consider the proof in the three stages described above.
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1. Finding the Integer Point P

Consider the integer point Z = (X, Y). There are two cases.

i) Z lies on either the x-axis or the y-axis.

Clearly, if Z lies on one of the axes, then P and Q must both lie on the same axis.
The distance PZ must be 1 in order to satisfy the condition that P is as close as

possible to L,. Hence the distance ZQ must also be 1, (see Figure 4.7).

Figure 4.7

/\3 :j

(O:BV\)

it) Z does not lie on either of the axes.

Let L, intersect with the x-axis at J and with the y-axis at K.

Transform Z to a new origin O’ by means of the linear transformation

u=x-X,

v=y-Y.

Let M be the distance of the transform of J from the v-axis and N be the distance of
the transform of K from the u-axis, so that

M=(£‘—"Y+X)-X Any,

Bn ~Bn
N = ( %1 X+ Y) -Y= B—: X, (see Figure 4.8).
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Figure 4.8
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Consider a region of width é around the line L,, (see Figure 4.9).
Figure 4.9
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This region contains integer points, as defined by the Klein Model, occurring above
and below L,. We only need consider those integer points occurring in the quadrants
A (u<0,v>0)and B (u>0, v <0), since any integer points in the other two
quadrants will be too far from L, to be P. The Klein Model describes the integer

points in quadrants A and B as follows.



In A:
Below L,:
(- Ay, By)
(- Az, By)

(= Agg_gy Bagy)

(- An—l’ Bn.—l)
(_ An—2’ Bn—ﬂ)

In B:

Below L,:
(A2, - By)
(Ag - By)

(A2g, - Bay)

(An—Q’ Bn—'l)
(An—l! Bn—l)

Above L,:
(- Az, By)
(- Agy By)

(‘ A:.'k’ B‘.Zk)
(' An—'.” Bn—2)

(' An—l’ Bn-—l)

Above L,:
(A, - By)
(A3, - By)

(Agp—ye = Bapy)

(An-l‘ Bn~1)
(An—'.’q Bn—'_’)

if n is even,

if n is odd.

if n is even,

if n is odd.

We now reflect the quadrant A in O’ so that we may consider the single

quadrant B. There are two cases.

nX<%n

mY<%x

(see Figure 4.10).

The purpose of this reflection becomes apparent from Figure 4.10. Any integer point

C that is contained in the shaded regions in Figure 4.10 will always have a

reflection C' in O’ which is an integer point contained in the shaded region in A in

Figure 4.9. Thus, if we choose the integer point C in the shaded regions of Figure

4.10 that is closest to the line L,, then we have a pair of points C and C’, such that

i)  COC' is a straight line,

ii) one of C and C' is above L,,

ili) the point above L, is as close as possible to L.
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Figure 4.10

Ooq_x____,
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Ba X
An
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We obtain the point P by choosing from C and C’ that point which is above L, and

<« X >
A Y
B Lz

then transferring back to the (x, y) coordinate system.

We must now find C.

It is clear that the integer points in the shaded regions in Figure 4.10 are

Below L.:
(A2$ - BQ)
(A49 - B4)

(A2k' - B'.’k)

(An—2’ - Bn-—2)
(An1s - Baoy)

Above L,:
(A, - By)
(As, - Bs)

(AZk—l’ - B2k-—1)

(An—ls - Bn—l)
(An—Z’ - Bn—2)
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Consider
X< %f Y.

X will vary, in integer steps from 1 to | B_: Y). Thus X may be one of

a) the odd numerators Az, Az, ..., Agpigs oee s

b)  the even numerators As, Ay, ..., Aoy, o0

¢) the integers between the numerators Ay, < X < Agpy; OF Agpyy < X < Agpyo.
Note that since A; = A, = 1 we need not consider A;. This is because the point

(A 415 - Bj,,) is always closer to L, than the point (A;, - B;).

Thus the closest integer point to L, is, for k > 1,
a) fOl‘ A?L S x < A2k+1 . (A:’k7 - sz), belo“’ LQ,

b) for Ay, <X < Agpyat (Aggyqs = Bagyy), above Lo,

If the closest integer point is above L, then we take this as C.

If the closest integer point is below L., then we take its reflection in O’ as C.

We then transfer back to the (x. y) coordinate system using
x=X+u

¥y =Y + v,

Hence the point P is, for k > 1,

a) for A'_’k < X < A'_’k+l : (X - A'_’k’ Y + sz),

b)  Agyy X <Aoot (X4 Agpy Y - Byryy)

i) Y < B2 x.

Y will vary in integer steps from 1 to [ ;—Iz—" X]. Thus Y may be one of
n .

a) the odd denominators B;, Bg, ... , Byy_y, .0

b) the even denominators B,, By, ... , Baj, ...,

c) the integers between the denominators B, _; < Y < By, or By < Y < Byyy,y.
Hence, similarly. the point P is, for k > 1,

a) By <Y <By: (X+ Ay Y - Bogy)s
b)  Bop <Y <Bojyyt (X - Ao, Y + Byg).
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2. Finding the Distances d-(X, Y)

In order to find the distances dz(X, Y) we have to consider two possible positions for
P. We note that

i)  if Z lies on the x-axis, dz(X, 0) = 1,

ii)  if Z lies on the y-axis, dz(0, Y) = éﬁ.

Now Z = (X, Y). Let P = (X', Y'). Consider

)X <X
P is of the form P = (X - Ay, Y + Byy).

Therefore Ls has x-intercept: ‘]‘;‘—:(Y + By + (X - Ay,
and y-intercept: %‘(x ~ Ay + (Y + Byy),
(see Figure 4.11).

Figure 4.11

Hence  ds(X,Y)= ( ﬁ—:(y +By) + (X - Ag)) - ( £2Y + x)



)Y <Y
Pis of the form P = (X + Agp_;, Y - Baj_1)-

Therefore L has x-intercept: ‘%—:(Y =By )+ (X + Agi_1)s
and y-intercept: %—E(x +Agy) + (Y - Byy)s
(see Figure 4.12).

Figure 4.12

J

A
(0.84)
Ly
z
P (A'\lo)
(2 > x
2 L3
Hence d(X,Y)= ( g—:(y ~Bap_y) + (X + Agk_l)) - ( %—:Y " x)
A

= - k- 2k-
= _an 1 + Ao]_ 1
Bn -

Now, take P = (X - (-1)’A;, Y + (-1)'B}).

J
Hence d-(X,Y) = (]31) (AnB; - A;Bn),
n

and since it is known that ApB; - A;Bn = (—I)JAn,_ja

An;

d:(X,Y) = B,

43



Finally, we note the two cases X < &Y and Y < B"X.
Bn An

i) X < §2Y

When A,y < X < Agpyys d2(X, Y) = A_g—?-k, fork > 1.
n

. B,
i)Y < o

An—'.’k -
B, fork > 1.

When sz < Y < B2k+1’ dx(x, Y) =
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3. Determining the Sum

We have now found the values of d-(X, Y) for each (X, Y) # (0, 0) in the first
quadrant under L;. We note that

i)  if Z lies on the x-axis, d=(X, 0) = 1,

ii) if Z lies on the y-axis, dz(0, Y) = %f.

Let ¢«(X, Y) be the interval such that |«(X, Y)| = dz(X, Y), (see Figure 4.13).

Figure 4.13

9
(0,Bn)

e(X,Y)

Let x. be the characteristic function of ¢(X, Y), so that

An

x (J X4(X) dX)
0

Pl

1}
—_—
—~

>
-~
z
N’
(=9
Ed
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Thus the average of 3_ Y.(x) over x in [0, An] is Kl-’-, )IRNIE

Now,.L S| = L d-(X, Y)
" " (X.Y)F(0.0)
= -1 Y Bade(X,Y)
AnBn v viZ(0.0)
" Thus our first aim is to find > Bnd-(X,Y)
(X.Y)#(0.0)

We consider the sum in four parts, by considering separately the four different
types of points (X, Y). These are

i)  Points on the x-axis, (X, 0),

ii)  Points on the y-axis, (0, Y),

iii) Points (X. Y) satisfying

X< -’ﬁ\',
n
iv) Points (X, Y) satisfying
- Bny
Y < Ank'
Counsider

i) Points on the x-axis. (X, 0).

There are (A, - 1) such points, and for each point d-(X, 0) = 1.

So the contribution to b Bnd:(X,Y) is(An - 1)Bn. (7
(X.Y)F(0.0)

ii) Points on the y-axis, (0. Y).

There are (Bn - 1) such points, and for each point d-(0, Y) = g—:

So, the contribution to > Bnd (X, Y) is (Bn - 1)An. (8)
(X.Y)#(0.0) :

iii) Points (X, Y) satisfying X < %\
n

In this case, it is the variation of the X value which determines the value of
d:(X, Y). So. we need to know how many points (X, Y) there are in the region
X< %’-’y for a fixed value of X. The region x < ‘g—: is the shaded

n

region in Figure 4.14.
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Figure 4.14

For a fixed value of X, the number of points (X, Y) in the region x < %—:y will be
[- 32X + Ba] - [ 22x].

Define the function L(X) by

LX) =[- 3

2X + Ba] - [i"X] if [- 3 "X+ ,,]-[ 22X] > 0
L(X) = 0 if [- B"X+Bn]-[ 21X] <0

so that L(X) defines the number of points (X , Y) in the region x < %—:y for a fixed
value of X, and. if X lies outside this region, L(X) = 0.

Let G be the point (AT B")

Hence X must satisfy X <
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Thus X can vary from 1 to an integer p, such that A,_, < p < -“—\22

So we know the value of d-(X, Y) for each point (X, Y) for a fixed value of X,
the number of such points for this value of X, and the number of possible
values of X. To obtain the contribution to Y Bnd:(X, Y) we must

sum over all the possible values of (X)#(0.0)

X the product of B, dz(X, Y) and the number of points. We can compare the

values obtained in the following table.

X Value Brd:(X,Y) Number of Points
A, A, L(As)

Az An_s L(A3)

A, Ans L(A4)
Ag+1 A,y o L(Ay + 1)
As Ans L(As)

Ag + 1 A, s L(As + 1)
As+2 Ans L(A;5 + 2)
As Ancs L(Aq)

Ag +1 Ans L(Ag + 1)
A; -1 A,_in L(A; - 1)
AJ’ An—j L(Aj)
A;+1 An; L(A; + 1)
Aj+2 A L(A; +2)
Ajp - 1 Anej L(Ajur - 1)
Ajn Apoj-1 L(Aj41)
Aj+1 Anjs L(Aj + 1)
A,a-1 As L(Anp - 1)
A, A, L(A,_2)
A,_p+1 A, L(A,_, + 1)
Ao +2 A, L(A,_, +2)
1 A, L(p)
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Hence the contribution to 3 Brd:(X,Y)is
(X.Y)F£(0.0)
An_zL(Az) + An_aL(A3) + An_4(L(A4) + L(A4 + 1))
+ An_5(L(A5) + L(As + 1) + L(As + 2)) + An-G(L(AG) + L(As + 1) + oo )

+ A+ L(A;LY)
+ A, (L(A;) +L(A; + 1) + L(A; +2) + ... + L(A;4, - 1))
+ A g(L(Ajy) + L(Aju + 1) + )

+ As(... + L(An_z - 1))
4 As(L(An_a) + L(Ap_a + 1) + L(A,_a + 2) + ... + L(1)).

Now, since for X > p, L(X) = 0, we may add

As(L(p + 1) + L{p + 2) + .. + L(A,_; - 1))

to this sum.

So the contribution to ) Bnd (X, Y)is
(X.Y)#(0.0)

n=2 Aj+1 +1
2 Anj ( > LK) ) 9
gy

iv) Points (X, Y) satisfying Y < %Y

In this case it is the variation of the Y value which determines the value of

d-(X, Y). Thus, we need to know how many points (X, Y) there are in the region
y < %—"x for a fixed value of Y. The region y < %x is the shaded
n n

region in Figure 4.15.
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Figure 4.15

J

4= 8o
AA

Y= = Bax + B,

For a fixed value of Y, the number of points (X ,Y) in the region y < %—x will be
- 2V + Adl - [§2V]

Now, we define the function M(Y) by

L’I An n . An r n
(Y):[—B—nY-{-A]—[B\r] lf[—B—nY-i-An]—[BYJ)O

M(Y)=0 if [~ "Y+An]—[ Y]<0

so that, M(Y) defines the number of points (X, Y) in the region y < A—x for a fixed
value of Y, and, if Y lies outside this region, M(Y) = 0.

Let G be the point (%‘, %)

Hence Y must satisfy Y < BQ"

But B, =B,_, +B,_,and B,,_, <B,,_; < Bn.

Therefore % = B',‘)'l + B',',"" < B,,_; and %ﬂ = B'é'l + B’é"z > B,,_o
so that B,_. <F" B <B,_;.



Thus Y can vary from 1 to an integer p, such that B,,_, < p < E,;'l

So we know the value of d-(X, Y) for each point (X, Y) for a fixed value of Y, the
number of such points for this value of Y, and the number of possible values of Y.

Hence the contribution to ) Bnd:(X, Y) is
(X, Y)#(0,0)

ne2 Ajia-1
)3 A,,_,-( ) M(l)) (10)



We aim to find an approximation for > Bnd:(X, Y) for large values of n.

(X.¥)#(0,0)

Again, 7 = % (1 + v/5), so that 71. =r-1

Then we use

i) Ban=A,,,forn>1,

i) An~ I/—;, for large n,

iii) -E—'i ~ 7, for large n,
n

é—n ~
B, ~T- 1, for large n.

Consider the various contributions to P> Bnd:(X, Y).
(X, Y)#(0,0)

(7) gives

n +1 .
(An - D)A,,, ~ (% _ 1)r35 _ %(T-n+1 _ rys)
(8) gives

n+1 n . )
(An+1 - DA, ~ (T\/5 -~ 1)?) = %(T-"'H _ TnJa)
(9) gives

o

n—

Aj+1 -1
A,,_,.( kZA L(k))

J

(&)

j=

~ 1 ((n - 3)Tn_2/5 LI (n - 3)7_271 _ T2n+2) + A,

V5

ot

2(n - 3)r"?
where A; < 2n -3)r " .

5
(10) gives
n=2 Ajpa-1
2. An_j X MO
=1 = Aj+1

~ (- (n-2)7r""2V5 4+ ™ 4 (n - 2)r2" - r2"+2) + A,

W]
~
—_
()]
~

2n - 2)7"
where A4 < (___)_._)_._ .

(11)

(12)

(13)

(14)



The result (13) is obtained in Lemma 4.4.1, and (14) follows similarly.

Lemma 4.4.1

A (Aj%— 1 )) vl
ne—j L(k ~ —rT-n
AN EY 573

(8]

n—

[}

j=

((n 35 e ™ (n - )" - 72"+2) +4,

V5

2(n - 3)r"!

where A, < =
5
Proof
Ajp -1 Ajy -1 B
S L) ~ ) ([_ 22K - | Ank] + Bn)
k = A] k = AJ
A, -1
i+l
~ -2[32Kk] + (Ba - 1)

where ¢, = B"k [ B"k] ysothat 0 < ¢, < 1.

Aj+1 -1 Aj+1 -1 AJ‘ -1
Now 2 > k)=2 > k- Yk

“~

(A -1 (A;-1)
=2(Aj+1 5 - AL
=( j+1 'A ‘Aj+1+Aj)

53



= ((Ajﬂ +A5)(Aj - Aj) - (Aj - Aj))

((AJ.+1 “ANAj + A - 1))
- (Aj_l(AM - 1)

Hence we have

Ajg-1 5 | Aj,-1
LU0~ An(Be - D - AR D e T g
. = j

-

=

Ba
~ Aj..1((An+1 -1)- A—n(Aj+2 -1)+ 2( EA Ek) (15)

In the course of this summation we have assumed that |- %k + Bn] - [ g—"k] > 0.
n n

In general, this is not always true. Hence there may be some additional negative
terms in (15). However, consider (A,,,; - 1) - E_Z(Aj” - 1). This quantity is

summed over j = 2 to n — 2 in order to obtain (11).

Now, consider the line y = — %—'1:( + (Bn - 1). For values of x from
n

(Ag - 1) to (An - 1), we have y > 0. Thus any additional negative terms in (15) will

only arise in the form A 1
i+l =
S €.
k=A;

i=2

=

n=2 Ai+1 -1
Then > A, _; b L(k))

3
|
9

~ % (AnoiAia(Anan - D - 22855 - 1))+ A

n~j‘tj-1

w.
1
19

- S (G ) (s - )



3
!
X

- T Tty
= 5 ( 5 + T - 1) + A]_
(m-3)r* (n-3)r""? n+3/n=3 ;
575 5 ',/5(j=1’)*A1
_ (n- 3)r" (n - 3)r""2 Tﬂ+3(r(r"'3 - l)) A
575 5 BB (ro1) /T
~ (-9 s e L (a3 - )L A
n=2 Aj+1 -1
Furt‘her Al = 2( Z A"I—j Z fk )
j=2 k=4A;
n=—-2 -
so A< 2(]':2 Ap_j(Ajy - Aj))
A < -2(j=2 AnsjAj)
n=2 _n-j _j-1
, 2 T r__
A1 < ’(j=2 75 75 )
T |
A< 5(j=2 T )
9 _ n—1
o A, 2(n g,)-r o
n—2 Aj+'.’ -1
Similarly 3 A,_; ( > M(l))
j=1 l = A]+l
~ 1 (- Nrn-2/5 n+4 _9y.2n _ 2042
5J(5)( (n-2)r"""J5+ 7 +(n-2)7 T ) + A,
n=2 AJ"\“'-’ -1
where A, = 2( > A > 6 )
2 - 2)r"
s A, < 2(n 5.)1' .

ot
(1]



Lemma 4.4.2

i > Bnde(X, Y) ~ —2-logr(An) = logr(An) + O(1)

AnBn (X, Y)#(O. 0) V5

Proof

First, the approximation to 3 Bnd-(X, Y) is obtained by finding the sum
(X.Y)#(0,0)

of (11), (12), (13) and (14).
The sum of (11), (12), (13) and (14) is given by

2 - 4 n+l n-2
1 (_ QT-ﬂ+2 + 21,2n+1‘/0 + (2n _ 5)1,271 + Tn+5 + rn+ _57 +1 577 7 J5)

V5

ot

+(A1+4y).

1
Hence 3 Bnd(X.Y)
. (X. Y)#(0, 0)

~ (B T By

T (X. Y)# (0. 0)
~ S L By
(X. Y)#(0. 0)
~ ﬁ(rﬂ"(_ 277 4275 4 2 - 5) + 77T 4 75 - 57° - 577 - JS))
+ T23+1<‘31 + Az) (16)

2n -3

I 5 i3
and 7' + 7° 573 _ 572 _ /5

1+ 1) = 5r%(r + 1) - V5

(r+ 12 =573 r +1) - V5



9 n-1 9 - “)) n

2(n - 37 2(n - 2)7

Further A< —(——3—)— and A, < —5— -
9p N1

Hence AL+ Aqc %

So (16) is approximated by (—hl—IJS-)((Qn -3)r 4™ s A)
T .

where A < 2n7"*1y5.

However, for large n

1 4™ < 4 -0 asn— x,
' 2r"tlys

Ty mr**ly5 < % <+ 0asn— o0,
So for large n (16) is approximated by ;:1/—5 (2n - 3).

Now n = log-(7").

So n~ ]og,—(:}—:’)

[

n ~ logr(An) + log#(v5).
So 2n -3~ 2ogr(An) + 2logr(v5) -3
2n -3 ~ 2dogr(An) + log,(5) - log,-(ra)

M -3 ~ 2logr(An) + logr(%).

(2n - 3) 9 1 5
Thus—m— ~ mlogr(An) + T~/5108T(T3)-

But #5 logr(l_%) < %

n -
Hence (__n_?;) ~ =2

V5 V5

logf(An) = lOgT(An) + O(l). a

The result of Lemma 4.4.2 completes the proof of Theorem 4.4. O
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3. Integer Points in Polyhedra

L. Introduction
This chapter gives two results concerned with the theory of solution of general integer
programming problems.

Let P be a polyhedron in R®, K the convex hull of integer points in P
and M the number of vertices of K. P is a rational polyhedron if it is defined by
finitely many inequalities of the form aTx < a, where a€ Q" and a€ Q. The size of
such an inequality is defined to be the number of bits necessary to encode it as a
binary string. and the size ( of a rational polyhedron P is the sum of the sizes of the
defining inequalities, as described in [8]. Then it is known that K can have at most
O(p" 1) vertices, that is M < Ano" ! for some constant A, dependent only on n.

Hayes and Larman [5] establish that. if K is the Knapsack polytope, then
M < (log,(0))", where ¢ = 4L / min{a,, ... , an}. Here, we shall use the geometry of
the Hayes and Larman result to show that. in fact, M < nlog,(2n)(log,(a))"".

The conjecture that K can have as many as Q(;>" ") vertices, that is
sup(M) > pnyp"~! for some constant p, dependent only on n, is well-known, and
Rubin [7] gives an example for n = 2. Here, we give an example for n = 3. The proof
involves constructing a polyhedron P with five faces, three of which are coordinate
planes. We count the number of vertices of the convex hull, K, of integer points in P
by using various techniques of number theory. The numbers 8, ¢, ¥ that are used in

the proof originate from work by Davenport [3, 4].

Note

Subsequent to the completion of this work, the author has received personal
communication concerning the following two results. Cook, Hartmann, Kannan and
McDiarmid [2] have proved that K can have at most 2m”(6n%p)"~! vertices, where
m is the number of defining inequalities. and Barany, Howe and Lovasz [1] have

established that K can have as many as Q(»" ') vertices for every n > 2.



2. Upper Bound Result

i) Notation
First, we state the Knapsack problem :
maximise ¢;X; + ... + CnXn subject to a;X; + ... + anXn < L, (1)

where a i» Cjr Xj L are positive integers for 1 < j < n.

The Knapsack polytope % is defined to be the convex hull of the feasible solutions of
the inequalities associated with (1). That is

% = conv{x = (X}, . , Xn)€ Z" : a;X; + ... + anXn < L, where x; > 0 for 1 < j < n}.

Hayes and Larman [5] partition the integer points of % into boxes in such a way that

no box contains more than one vertex of 3. We use their notation.

Define a sequence {X;} ;27 of integers by
Xo=0,X;=2""forj>1,
and for each i = 1, ..., n define the integer N; by

L
XNi-l < 5‘1 < XN‘_.

Let 1; be the closed-open interval [X j-1» X;) and 3’ be the set of boxes

JI=(jli[1Iki:15kjij )

From the definition of % and 3’ it follows that
% C U _ B
Be g’

The number of elements of 3’ is
n
[T N; < (loga(e))" , where ¢ = 4L / min{a,, ... , an}.
i=1
Some members of 3’ clearly do not meet %; let 3 C 3’ comprise those elements of 3’

which do.

Lemma 2.1 (Hayes and Larman)

No box in 3 contains more than one vertex of 3.



i1) The Geometry

It is clear that some of the members of 3 cannot contain vertices of %. This is
because they occupy a position in % which is not sufficiently close to the boundary
of %.

Let B C /3 comprise those elements of 3 which contain vertices of %.

From Lemma 2.1 no box in B contains more than one vertex of %. Hence we can
“obtain our result by estimating the number of elements of B. A restriction on the
members of B is that they must meet the plane which intersects the ith axis at the

integer part coordinate m; = [%] forl<ic<n.
t

Lemma 2.2

The set B has cardinality at most nlogg(:h})_(logg(o))""l.

Proof

The members of B must be such that there exists a solution to the following :

Al 4+ A =1 (2.0)
xil < Am; < Xil+1 (2.1)
Xip < amg < X (2.k)

Xip € Aamin < X, 4 (2.n)
Dividing (2.k) by m; and summing for 1 < k < n gives

J:<1—.I:+...+§Ti: <1< X+$+...+Xlif:l (3)
in view of (2.0). Hence, since X,;L_H = ’2X,~k for 1 <k < n, (3) gives )
15%—:—1+."+§1€%}152 4)
Now, from (4) there is some j with 1 < j < n such that

k< }n—f—l )
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Also, from (4) we have for all j with 1 <j < n

X4
n{j < 2 (6)

Hence from (5) and (6) there is some j with 1 < j < n such that

1 Xij+1 5
ns m;, <-

J

or that

ij
Tlis%‘f;<2 (7

From (7) we can deduce that there are at most log,(2n) possible values of i}, so that,
as there are n possible values for j, the number of elements of B is at most

nlog,(2n)(log.(¢))" 1. O
Hence from Lemma 2.2 we may deduce:

Theorem 2.3
If M is the number of vertices of the Knapsack polytope %, then

n-1

M < nloga(2n)(log,(a))

Note ly
This result implies that the number of facets of % is smaller than that originally
predicted by Hayes and Larman. By the Upper Bound Theorem for convex
polytopes [6] the maximum number of facets of a polytope in d dimensions

with v vertices is O(vd/ 2). Hence the number of facets of % is at most

(nlog,(2n))"*(loga(a))" "2,
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3. Lower Bound Result
i) Notation
Let 8, @, ¥ be the roots of the equation
t2+t2-2-1=0.
Then 9, ¢, 1) can be taken as
: 27\
g = 2cos(—7-) ~ 1.24698,

6= ‘2cos(477r) ~ - 0.44504,

1 = 2cos

—
~$

T) ~ - 1.80104.
We note the following properties of 8, ¢, .

i) The numbers 6, ¢, ¢ satisfy :
0 +¢+1p=-1and b = 1.

ii)  The numbers 6, ¢, ¥ define an algebraic field of numbers of the form
PP + qé + i, with p, q. r rational.

iii) The algebraic integers in the field are of the form
af + bo + c¢h, with a, b, ¢ integers.

iv) Conjugation in the field is obtained by cycling
the numbers 8, ¢, 1.

v)  The product (ad + bg + cy’)(bf + co + av’)(cl + a¢ + b)) is always a
rational integer, which is zero only whena =b =c = 0.

vi) The units in the field are of the form

+ 07¢°, + é"¢*, £ ¥"8°, with r, s non-negative integers.



We shall work in three coordinate systems, the x, y, z system, the u, v, w system
and the 1, m, n system, defined by

X =0u+ ¢v + tpw

Yy=0u+ v+ fw

z=9u+ 0v + gw

or, alternatively

u=1(0-2x+ (¢ -2y + (¥ - 2)2)

v=1((6-2x+ (¥ -2y + (6 - 2)2)

w= 3¢ - 2x+ (8 - 2y + (¢ - 2)2)

and
l=u+L
m=u-v
n=u-w

or, alternatively
u=1-L
v=1-(L+m)

w =1 - (L + n), where L is an integer.

Lemma 3.1

If L is an integer, then the transformation given by

l=u+L,
m=u-yv,
n=u-w,

is unimodular.

Proof

Since L is an integer, it is clear that the given transformation and its inverse,
u=1-1L

v=l-(L+m)

w=1-(L +n),

preserve integer points under their action. O

We shall work in the regions of these coordinate systems defined by
A={(x,y,2):x20,y>0,z >0}

B = {(u. v, W) : 0u+ v+ ¢w > 0, gu + ¥v + fw > 0, Yu + v + ¢w > 0}
C={l.myn):l+om+¢n<L,l+ym+0On<L,1+6m+¢n<L}

These are clearly the same region represented in the three coordinate systems.
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il) The Geometry
Let C; = {(x,y,2)E A:xyz31} C A
and S; = {(x,y,2)€ A:xyz=1} C A

so that C, is convex and S, is the boundary of C,. The tangent plane to S; at any

point (X, y, z)€ S, does not meet S, again in A, so C, is strictly convex.

Let Cy = {(u, v, W)€ B : (fu + ¢v + yw)(¢u + ¥v + Ow)(Yu + Ov + gw) 21} C B
and S, = {(u, v, W)€ B : (fu + ¢v + yw)(du + ¢v + Ow)(Yu + Ov + ¢w) =1} C B
so that C, is convex and S, is the boundary of C,. Clearly C, and S, are the

transformations of C, and S, respectively.

Lemma 3.2

All non-zero integer points in B are in C.

Proof _

Let (ug. vg, wg)€ B be a non-zero integer point. The linear combinations

Bug + OV + ¥'wg, oug + ¥vg + Bwg, Yug + Ovy + ¢w, are all algebraic integers in the
field. Thus (fugy + ovg + ¥wg)(Sug + U'vg + Owy)(Yug + 8vy + ¢wy) is a rational
integer. which is non-zero unless (ug, vo. wq) = (0, 0, 0).

Hence (fug + ovy + v'wy)(9ug + vy + Owy)(Yug + 8vg + ¢wy) > 1, which is the

condition for C,. O

Define C3 C % by
Cj = conv{(ug. vy, wg) : (ug, vg, W) is an integer point in B and
(Bug + 6vg + Lwg)(GUg + ¥V + Owg)(Pug + Ovg + éwg) 2 1}

so that the integer points on S, are vertices of Cg.

Now, suppose that (uy, vy, Wg)€ S.

Then fug + vy + 1wy, duy + ¥ivg + fwgy and Yug + Bvg + éwy are units of the field
and, since the units of the field are of the form + 87¢°, + ¢"¢°, + ¢"6°,

we can set (possibly after cyclic permutation) )

fug + Ovy + Ywy = €(674%)

uy + Yvg + Owy = €(¢Y")

Yug + Ovy + owy = €(¥70%)

where € = + 1.
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In order that (uy, vo, wy)€ B we require that

Bug + ¢vy + Ywy = €(876°) 2 0

Pug + Yo + 0wy = €(¢"Y") 2 0

Yug + Ovg + dwy = €(¥"0°) > 0.

Since # > 0 and @, ¥ < 0 this can only be satisfied by choosing € = 1, and r, s to
be even.

This gives an alternative representation for the integer points on S, and, hence, an-

alternative representation for some (but not necessarily all) of the vertices of Cg.

We now aim to produce, in the 1, m, n coordinate system, a polyhedron P with five
faces, three of which are the coordinate planes 1 > 0, m > 0, n > 0. We obtain a
bound for the number of vertices of the convex hull K of the integer points in P by
considering the vertices of C3 in the u, v, w coordinate system. Since, by Lemma 3.1,
the transformation from the u, v, w coordinate system to the 1, m, n coordinate
system is unimodular, then the vertices of C3 will be transformed to become vertices

of K.

Lemma 3.3

A polyhedron P with five faces is formed by imposing the following inequalities on
the 1, m. n coordinate system

I>0.

m > 0,

n > 0.

l+om+ ¢nc<L,

l+ym+ <L,

l1+6m+ ¢n < L.

Proof

We know that =3((0 - 2)x + (6 - 2)y + (v - 2)2)

and 6-2<0,6-2<0,v-2<¢0.

Thus x>20,y20,z>0 = uc<0,

and I=u+L = 1<,

so that $<0,¢v<0 = l+o¢m+ ¢¥ngL.

Hence the equation 1 + ¢m + ¥n < L is automatically satisfied.



The inequalities on the I, m, n coordinate system are now given by

1>0,

m >0,

n>0,

l+ym+6n<L,

l+0m + ¢én <L,

which define a polyhedron P with five faces, three of which are the coordinate planes

1>0,m>0,n>0.0

We now attempt to count the number of vertices of the convex hull K of the integer

points in P by considering the vertices of Cj.

Lemma 3.4
Let (uq, vo, wy) be a vertex of C3 and let (1, mg, ng) be the point in P which is the
transform of (ug, vo, wy). Then, in terms of the representation by r, s, the number N
of possible combinations of r, s is given by

N> 3l,zlogﬂ(L).
Proof
Clearly, (15. mg, ng) is an integer point in the 1, m, n coordinate system.

In order that (15, mgy, ny)€ P it must satisfy the inequalities given in Lemma 3.3.

The equations | + ym + fn < L and 1 + fm + ¢n < L are automatically satisfied,
since we are working in C. It therefore remains to satisfy the equations

1>0,

m> 0,

n > 0.

These are equivalent to

u+L >0,
u-v>0,
u-w>0,
or

O -2x+(6-2y+(¢-2)2)+L20,
H(0 - 9)x + (8 - )y + (¢ - 0)z) 2 0,
H(O - ¥)x + (6 - 0)y + (¥ - 8)z) 2 0.
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Let the integer point (x,, y,, 2,) be the transform in the x, y, z coordinate system of
the integer point (g, mg, ny) in the 1, m, n coordinate system. Then we can set

Xo = 074",

Yo = ¢"¢’,

zg = ¥70°, forr, s even.

So, we must satisfy

L((8 - 2)87¢° + (6 - 2)6"¢" + (¥ - 2)¥"6%) + L > 0, (1)
L((6 - 9)876° + (6 - ¥)¢"¢* + (¢ - 0)p76°) > 0, (2)
10 - ¥)87¢° + (¢ - )¢™w* + (¢ - @)¥"8%) > 0. (3)

The equations (2) and (3) are certainly satisfied if the term involving 8"¢° is made

dominant.

Now, 1>—+%-> and —,>1>|—(ﬂ.
El ¥

Hence, provided s < 0 and 0 < r < |s|, we have

()= (5 e ()= ()
07lol" > |v]"0" and 6716|" > oI [¥I"

Taking into account the numerical values of the coefficients, the conditions (2) and

(3) are then satisfied. To satisfy the condition (1) it is sufficient to require that
H(2-0)07¢° + (2-6)0"V* + (2-4)¥"6°) <L
or, 16-0-06-v)8¢*=0"0"<L.

Since - < e, this will be satisfied provided s < 0 and 0 < r < 3| 5%]og(L).

|#]

The number of choices for the pair r, s of even integers satisfying these inequalities is
given by
N> 3L,Zlog?(L). O
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Therefore since the integer points in P that are considered in this analysis are all

transformations of integer points in B from Lemma 3.4 we may deduce:

Theorem 3.5
If M is the number of vertices of the convex hull K of integer points in P then

M> %Zlog"’(L).
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4. Approximation of Convex Sets by Convex Polytopes

1. Introduction

The problems of circumscribing and inscribing convex sets with convex polytopes of
minimum and maximum volume, respectively, have been studied extensively in the
recent past because of their applications to robotics and collision avoidance problems;
for example see [3, 4]. The general framework for these problems can be posed thus.
Let %™ be a class of convex sets, £™ a class of convex polytopes and u a real
function on convex polytopes with the property that for all P, Q € £™,

P C Q = u(P) < u(Q). The classes of inscription and circumscription problems can
be defined as follows :

insc(%6™, £™. p) : Given P € %™, find the u-largest Q € L™ that is inscribed in P;
circ(%™. L™, y) : Given P € %™, find the p-smallest Q € L™ that circumscribes P.
In this chapter, we consider the solutions to various of these problems.

First. we survey the work of Klee and Laskowski [11] and O’Rourke,
Aggarwal, Maddila and Baldwin [16] concerning the problem circ(%?,;;, P23, area),
that is finding the triangle of minimal area circumscribing a given convex polygon.
Following on from this. we give a solution to the problem circ(‘fP2a,,, @23,”» area),
that is finding an equilateral triangle of minimal area circumscribing a given convex
polygon.

Next. we give a new approach for constructing a Borsuk Division and,
using this division. give a method of finding a regular hexagon circumscribing a plane
convex set of diameter 1.

Finally. we consider the d-dimensional problem circ(Cd ol Pd,, volume),
that is finding a convex polytope P, with n facets of minimal volume circumscribing
a given convex set. In fact, we find such a convex polytope P, circumscribing a given

—2/(d-1 .
/! )), and give an argument to show

convex set C. so that volume (P,\C) = O(n
that this result is the best possible.

The presentation of this method leads us to ask whether the d-simplex
approximates the d-ball better than it does the d-cube. This problem is, of course,
completely solved in 2-dimensions, using, in part, the work of Klee and Laskowski
[11] and O'Rourke. Aggarwal, Maddila and Baldwin [16], but not for d > 3. We

survey in detail the cases d = 2, 3 and give a conjecture for the case d = 3.



2. Finding Triangles of Minimal Area Circumscribing a Convex Polygon

This section describes the results of Klee and Laskowski [11] and O’Rourke,
Aggarwal, Maddila and Baldwin [16] for finding the triangle of minimal area

circumscribing a given convex polygon.

i) Introduction

When a set M of m points in the plane R? is given, an algorithm of Kirkpatrick and
Seidel [9] finds the convex hull P = convM in O(mlog(n)) time, where n is the
cardinality of the vertex-set N of P, this set being obtained in an order of traversal of
P’s boundary. We are, therefore, able to limit our consideration in the plane to
convex polygons.

Solutions to various inscription and circumscription problems have been
presented recently, for example, when N is given in the above manner, an O(n) time
algorithm of Dobkin and Snyder [5] finds a triangle T of maximum area contained
in P. '7

This section is concerned with finding the triangle of minimal area
circumscribing a given convex polygon. A triangle T is said to be the local minimum
(with respect to area) among those triangles that contain P if there exists some ¢ > 0
such that the area of T is Jess than the area of each triangle T’ that contains P and is
at a Hausdorff distance less than ¢ from T. In [11), Klee and Laskowski describe an
O(nlog®(n)) time algorithm that finds all such local minima. Their algorithm does
not. in fact. compute any areas, relying solely on an elegant geometric
characterisation of the local minima. so avoiding simple brute force optimisation.
They show that although there may be infinitely many local minima, these fall into
at most n equivalence classes. each of which is a (possibly degenerate) segment of
triangles having the same area. Their algorithm computes all the local minima in
O(nlog*(n)) time. Selecting the global minima from these can be achieved in
additional O(n) time.

O’Rourke. Aggarwal, Maddila and Baldwin [16] improve this result to
©(n) time. which they show to be optimal for finding all local minima and finding
just one global minimum. They note that Klee and Laskowski find each local
minimum afresh, without using any information obtained from the previous local
minima. and show that it is possible to move from one local minimum to to the next
in an orderly fashion. so achieving a linear-time algorithm. This is obviously
asymptotically optimal for finding all minima, and they also show that it is optimal

for finding just one global minimum.



i) Klee and Laskowski’s Results

Let P be the convex polygon to be circumscribed and T be the circumscribing
triangle. T has sides A, B, C with vertices a, 3, ¥ opposite these sides. A triangle
side S is said to be flush with a polygon edge e if e C S. Vertices of the polygon P

are described by their indices which will increase clockwise.

Theorem 2.1 (Klee)
If T is a local minimum among triangles containing P, then the midpoint of each side

of T touches P.

In [10] Klee has established a much stronger version of this theorem, generalised to

arbitrary dimensions and arbitrary convex bodies.

Theorem 2.2 (Klee and Laskowski)
If T is a local minimum among triangles containing P, then at least one side of T is

flush with an edge of P.

We use the convention that side C is the one guaranteed flush by Theorem 2.2. The
key to Klee and Laskowski's algorithm is their idea of low and high. Let h(p) be the
height of p above the line determined by side C. Fixing C induces a partition of the
vertices of P into a left chain, made up of those vertices p for which h(p) < h(p + 1),
and a right chain, consisting of all the remaining vertices. Let a be a vertex on the
left chain, a -~ 1 the previous vertex. A the side flush with the edge [a - 1, a], v the
point on A such that h(4,) = 2h(p). and finally, for any point a on the left chain, let

ba be the point on the right chain with h(ba) = h(a).

Definitions
1. Theedge[a-1,a)is
i)  low if q.b, intersects P above b,.

ii)  high if 4,_,b,_, intersects P below b,_,,

iii) critical if neither low nor high.

2. A circumscribing triangle T is P-anchored if one side of T is flush with an edge
of P and the other two sides of T touch P at their midpoints. A P-anchored
triangle is not necessarily a local minimum, but every local minimum is

P-anchored.

~1
I~



Theorem 2.3 (Klee and Laskowski)

In order of increasing height from C, both the left and right chains consist of a
sequence of low edges, followed by at most two critical edges, followed by a
sequence of high edges. For each flush C, a P-anchored triangle exists. If ABC is
P-anchored with C flush, then the midpoints of sides A and B lie either on critical

edges, or on a vertex between a low and a high edge.

By using the ideas of high and low, Klee and Laskowski search for the critical edges
using binary search. Each of log(n) probes on the left chain requires log(n) probes on
the right chain to determine high or low status. Thus, for a given side C, they

identify the midpoints in log®(n) time, giving an O(nlog®(n)) time algorithm.

iii) O'Rourke, Aggarwal, Maddila and Baldwin's Results

O’Rourke, Aggarwal. Maddila and Baldwin improve the algorithm by eliminating the
need for the binary searches.

They eliminate the first of the binary searches using a method they term
interspersing. This examines all P-anchored triangles by examining the segment

endpoint representatives guaranteed by Lemma 2.4.

Lemma 2.4 (O'Rourke, Aggarwal, Maddila and Baldwin)
For any P-anchored triangle T, there always exists another equal-area P-anchored
triangle T’ within the same segment as T (and therefore a representative of the

same equivalence class) that has at least two of its sides flush with P.

If x, y are two points of P let (x, y) indicate the open chain of points and [x, y] the
closed chain clockwise from x to y.

Lemma 2.5, the interspersing lemma, is the key to the algorithm.

Lemma 2.5 (O'Rourke, Aggarwal, Maddila and Baldwin)

Let T = ABC be a P-anchored triangle flush on side C with a, b the midpoints of
A, B, and c the clockwise endpoint of the flush edge. Let C’ be tangent to P within
the chain (c, a). Then, if T' = A’B’C’ is a P-anchored triangle flush on side C’, with
a’, b’ the midpoints of A’, B, and ¢’ the clockwise endpoint of the flush edge,

then b’ € (b, ¢’) and a’ € (a, b’).



Now, the first reduction by O'Rourke, Aggarwal, Maddila and Baldwin is to an
O(nlog(n)) algorithm, which avoids binary search on the A side but maintains it on
the B side. Firstly, a single P-anchored triangle is obtained and a second side is made
flush, as in Lemma 2.4. These triangle sides are labelled C and A (in clockwise
direction). The algorithm advances C to be flush with the next edge of P and
searches for new contact points for sides A and B, these only needing to be searched
for in clockwise direction, as in Lemma 2.5. Lemma 2.4 allows the algorithm only to
consider flush contacts for A. After advancing C, whether [a - 1, a] is high or low can
be determined in O(log(n)) time using Klee and Laskowski's binary search procedure.
If the edge is low, then a is advanced and the procedure repeated until the edge
behind a is no longer low, so is critical or high. This triangle is the output and C is
then advanced.

It now remains to show how binary search is avoided on the B side.

Lemma 2.6 gives sufficient conditions for establishing whether edge are high or low.

Lemma 2.6 (O'Rourke, Aggarwal, Maddila and Baldwin)
If h(b) > h(a) and v.b

i)  cuts P above b, then edge [a - 1, a] is low.

ii)  is tangent to b, then edge [a - 1, a] is low.

i1)  cuts P below b, then edge [a - 1. a] is high.

The need for Lemma 2.6 is that it may be possible to determine low/high status for
an edge on the left chain without examining vertices at the same height on the right

chain, and vice versa, even though low and high are defined in terms of such vertices.

The Algorithm (O'Rourke, Aggarwal. Maddila and Baldwin)

The C side of the triangle is advanced to be flush with each edge of the polygon P in
turn with a for loop, so searching for all P-anchored triangles, a superset of the local
minima. With the for loop, vertex pointers a and b are advanced clockwise by three
consecutive while loops. The first advances b until it is on the righi chain : the
advancement of ¢ by the for loop may have redefined the chains so that b is on the
left chain. The second while loop advances a or b according to circumstances dictated
by Lemma 2.6. The third while loop takes over when a critical edge has been found
for the A side; it advances b until tangency is achieved, and adjusts if side A cannot

be flush. Finally, the area of the triangle is computed.



Finally, we note :

Theorem 2.7 (O'Rourke, Aggarwal, Maddila and Baldwin)
The algorithm correctly finds all locally minimal triangles circumscribing an n-gon in

©(n) time.

Theorem 2.8 (O'Rourke, Aggarwal, Maddila and Baldwin)
Q(n) is a lower bound for any algorithm that finds at least one globally minimal area

triangle.

O’Rourke, Aggarwal, Maddila and Baldwin conjecture that a similar approach may
be applicable to the problem of finding minimal convex k-gons circumscribing a

convex polygon, see [3, 4] for example.
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3. Finding Equilateral Triangles of Minimal Area Circumscribing a Convex Polygon

For a given convex polygon P we give a method of constructing the equilateral
triangle of minimal area circumscribing P. This method gives rise to an O(n) time

algorithm which finds the minimal equilateral triangle circumscribing P.

i) Introduction
The aim of this section is to produce an algorithm similar to those in Section 2 which
finds the equilateral triangle of minimal area circumscribing a convex polygon P. It is
not, however, possible to use the Section 2 algorithms in this situation, since they
involve having two sides of the triangle T flush with two edges of the polygon P. This
clearly only occurs in certain specialised situations.

We claim that, in fact, for T to be the equilateral triangle of minimal
area circumscribing P at least one of the sides of T must be flush with an edge of
P. Once this is established, we operate a search on the n edges of P to find this

minimal equilateral triangle.

ii) One Side of the Triangle Flush With an Edge of the Polygon

Let T be an equilateral triangle with vertices A, B, C. which circumscribes the
polygon P, touching P at only three of the vertices of P, v,, v,, v3. We rotate T
through an angle 4" to obtain a new equilateral triangle T' with vertices X, Y, Z,

which circumscribes P, again touching P only at v,, v,, v3, (see Figure 3.1).

Figure 3.1




The points A, B, C, v;, va, v3 are fixed, while the points X, Y, Z vary with ¢. Using
simple geometry, we construct three circles S;, S,, Sz, such that

S, is determined by A, v,, v and passes through X,

S, is determined by B, v, v, and passes through Y,

S3 is determined by C, v,, v, and passes through Z.

Thus, S;, Sa, S all pass through the point M, and X always lies on S;, Y always lies

on S,, Z always lies on S, (see Figure 3.2).

Figure 3.2

Si3 Sa.

Clearly, the areas of the triangles T and T’ are proportional to the lengths of their
sides. We claim that we can decrease the length of the sides of the triangle T’, and so

decrease its area, by varying . This claim is justified by the following theorem.
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Theorem 3.1
Consider the intersecting circles S and S’, with centres O and O, and radii R and R’
respectively, where R > R'. Let M be one of the points of intersection between S and
S’. Also, let L be on S and N be on S’ such that that the line LN passes through M
and let P be on S’ such that the line PO passes through M.
Let 6 = ZLMO,

a = ZPMO/,
so that a is fixed, with a < %, and 6 can take any value, with - (% —a)<h< 72-5,
(see Figure 3.3).
Figure 3.3

Let the length LN = p.
R/sina

R+ Ricosa’ and p cannot have

Then p has a maximum at angle 8., where tanfm =
a local minimum for - (% -a)<h< %"

Also, p is strictly decreasing for

i) 8 strictly increasing from 6,, to %,

ii) @ strictly decreasing from 6, to - (,7—; - a).
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Proof

p = 2Rcosf + 2R'cos(a - 6)

o opu PR
30 =" 2Rsinf + 2R'sin(a - )
6-‘; = -2Rcosf - 2R'cos(a - 0) = - p
a9
Now, in order that % =0, we requiré R'sin(a - 8) = Rsind,
that is R'sinacosf - R’cosasind = Rsind,
or sinf(R + R'cosa) = R'sinacosf,
_ __R'sing

and hence tanf = R+ Ricosa”
NOW.0-€=—p<0for—(?—;—a)565§.

a9- 2 2

R'sing

Hence p has a maximum value at ;. where tanf, = R , and p cannot

+ R'cosa
have a local minimum for — (?—; -a)<bh< 7—;

Further it can be deduced from this that p is strictly decreasing for

i) 6 strictly increasing from 6, to %.

ii) @ strictly decreasing from 6, to - (3 - a). O

From Theorem 3.1 we may conclude that whatever position AC takes it is possible to
decrease the length of the sides of the equilateral triangle T’ circumscribing P by
rotating T’ in a direction determined by the position of AC. The only limitation on
this rotation is that one of the sides of T’ may become flush with a side of P at some
stage of the rotation. Thus, given any equilateral triangle T circumscribing the
polygon P, touching P only at three of the vertices of P, we can find another
equilateral triangle T’, such that

i)  one side of T' is flush with an edge [v;, v;4;] of P,

i) T’ touches P otherwise only at two vertices of P, distinct from v;, v;41,

iii) area(T') < area(T).



iii) The Algorithm

We now use the fact that one side of the minimal equilateral triangle T
circumscribing the polygon P must be flush with an edge of P to produce an

O(n) time algorithm.

Let T be an equilateral triangle circumscribing P with one side of I flush with an
edge of P. Let the vertices of P which touch 9" on the two sides of T distinct from
its flush side be the tangent vertices of 9. To produce the algorithm we use the
following. If the flush side of I is advanced from one edge of P to the next, the
tangent vertices of 9 are advanced in the same direction around P, (see Figures

3.4, 3.5).

Figure 3.4

Figure 3.5




It can be seen therefore that the total time required to find the tangent vertices is

O(n), and hence the algorithm as a whole is an O(n) time algorithm.

The Algorithm

Let T be the equilateral triangle which we shall attempt to construct as the minimal
equilateral triangle circumscribing the polygon P. One side of 7 is advanced to be
flush with each edge of P in turn with a for loop. Since one side of the minimal
equilateral triangle T circumscribing the polygon P must be flush with an edge of P,
T must be among the set of triangles found using this for loop. As the flush side of T
is advanced to the next edge of P, the tangent vertices of I are advanced in the same
direction. We therefore use two consecutive while loops to find the tangent vertices of

J. Once the tangent vertices of I have been found, its area can be computed.

Hence the algorithm is an O(n) time algorithm.
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4. Construction of a Borsuk Division
Let C be a convex set of diameter D = 1 in the plane. We give a new approach for
constructing a Borsuk Division and, using this division, give a method of finding a

regular hexagon circumscribing C.

i) Introduction

Borsuk’s Theorem [2] states that a plane point set can always be decomposed into
three parts, each of smaller diameter than the original point set. Gale [6] sharpens
this result : every point set of diameter D = 1 can be covered by three point sets, each
of diameter 1/2—3 or less. Further, Lenz [12, 13] has obtained various results on the
magnitudes of diameters for decompositions of point sets into a prescribed number of
parts.

We generalise Borsuk’s ideas by taking convex hulls of the point sets,
and give a construction which covers our plane convex set C with three of diameter
? or less.

In [7] Griinbaum gives a proof of Borsuk's Theorem in three dimensions,

and in [8] gives a full survey of problems related to Borsuk's Theorem.

ii) The Method of Division

Let C be a plane convex set of diameter D = 1. We construct a parallelogram P, such
that P has vertices a, o', 6. ' and

i) P is formed by two directions u;, u, at an angle 2?”

iil) P circumscribes C,

iii) each edge of P is in contact with at least one point of C,

(see Figure 4.1).
Figure 4.1

S!




O is the centre of the parallelogram P, and c;, ¢, ¢35 and ¢, are the contact points
between C and P. Now, consider the hexagon H with vertices a, 8, 7, 6, €, p formed
by introducing the direction us at an angle -2-3Z to both u, and u, and so introducing

two new lines 3y and ¢p, (see Figure 4.2).

Figure 4.2

U
2.m
3
Uz
2m
3
Uz

Let 6 be the angle of rotation of H about O. so that initially § = 0. The perpendicular
distances of 34 and ¢p from O are d 5+ (0) and d¢y(8) respectively. Suppose, without
loss of generality. that d;_(0) > dc,(0). We now rotate the hexagon H through
about O. so that d;_(7) < de¢p(7). Since the rotation of the hexagon H about O is
continuous, there is some value of 8, w say, such that

d/3-,(<~') = dep(w).

Since the diameter D of the convex set C is at most 1, we have

d,‘i-)("") = dfﬁ(*’) < 1

ol

So we have constructed a hexagon whose centre is O and whose perpendicular
distance from O to each side is at most % We form the subdivision of this hexagon
into three convex sets by constructing the perpendicular line from O onto alternate
sides of the hexagon, (see Figure 4.3). Hence the diameter of each of these three
v3

convex sets is at most 5



Figure 4.3

Figure 4.4

D &g

See Figure 4.4,
OA < l) and OB < ,1-,

So, by simple geometry, AB < Q

ili) Finding a Regular Hexagon

By expanding the hexagon in Figure 4.3 until each of its sides is exactly distance
% from O. we obtain a regular hexagon which circumscribes the plane convex set C.

It is then straightforward to subdivide this regular hexagon.
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5. Approximation of a Planar Convex Set by a Convex Polygon

Let C be a convex set of area 1 in the plane. We give a method for constructing an

n-gon P, with C C Py, such that area(P,\C) = O(n™?).

i) Introduction

The aim of this section is to produce an n-gon P, circumscribing C such that
area(Pn\C) = O(n~?). In [14] MacBeath proves that it is possible to inscribe in any
plane convex body an n-gon occupying no less a fraction of its area than the regular
n-gon occupies in its circumscribing circle. We use the inscribed n-gon guaranteed by

MacBeath to produce the circumscribing n-gon P, for C.

ii) Construction of the n-gon

Essentially, we can suppose that C

(Sl

i)  is contained in a disc, centre Q. radiqg(%g) ,

o=

ii) contains a disc, centre O, radius (ﬁ?,) .

Consider the n-gon Qn that is the best approximation to C from within. Then the
vertices of Qn lie on the boundary of C and area(C\Q») = O(n™?).

Let Qn = {A}, ..., An}, with Ay, ..., An the consecutive vertices of Qq,
and consider A;_;. A;. A, ;, A;, .. We expand A;A;,; about O so that the expanded
edge A;'A; ' is parallel to A;A;,, and tangential to C, (see Figure 5.1).

Figure 5.1




Let Q; be the quadrilateral with vertices A;, A;,;, A;,;’, A;’ and %; be the region
bounded by the line A;A;,; and that part of the boundary of C between A,
and A;. Then essentially area(Q;) < 2area(%®,).

Let H;" denote the half-space which contains C and whose boundary

contains the line A; ,’A;’. Then A H,* = P, is (at most) an n-gon containing C.

1=

Since P, C Qn U (gl Q,-), we have

area(P,\C) < Y area(Q,)
< 2area(C\Qn)
= Om™?).
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6. Approximation of a Convex Set in d-Dimensions by a Convex Polytope

Let K be a convex set of volume 1 in E9. We give a method for constructing a
polytope P, with m facets, K C Pm, such that volume(Pm\K) = O(m_z/(d-l))

and give an argument to show that this is the best possible.

i) Introduction

The aim of this section is to produce a polytope with m facets Pm circumscribing K
such that volume(Pm\K) = O(m™>/**"")). We aim, if possible, to make use of the
method used in Section 5. However, in order to relate the inscribed and circumscribed
polytopes by this method, we need to work with a prescribed number of facets. This
is due to the fact that we have no control over the number of vertices of the
circumscribed polytope (except when d = 3), only over the number of facets of the
circumscribed polytope. We use the method of Barany and Larman [1] to find a

convex polytope Qn, with m facets such that Q, C K, and then use a method

similar to that of Section 5 to produce the circumscribing polytope for K.

ii) The Construction

We can, using the method of Barany and Larman [1] of removing sections of volume
rli from K to form K, ,,, find a convex polytope Qm with m facets, Qm C K, such
that m = nvolume(K\K, ,,) where. up to constants,

%(108 ll)d—l < volux]]e(l(\l{l/n) < 11—2/(d+1).

~2/(d+1) (d-1)/(d+1
Hence m < n(n 7t )=n / ),
(d+1)/(d-1)
or n>m .
o\ ope =2/(d+1 -2/{d-1
So volume(K\K, ,,) <n / ) <m / )

From the Barany and Larman method, we know that volume(K\Kl1 /n) Is essentially
volume(K\Qum). Note that the case of d = 2 gives area(K\Qm) = O(m™?),
which is consistent with the proof in Section 5.

Hence in every convex set of volume 1 we can find a convex polytope

Qm with m facets, such that volume(K\Qm) = O(m_:’/(d-l)).
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We now follow a similar argument to that in Section 5 to produce a convex polytope

. —-2/(d—
Pn with m facets circumscribed about K, such that volume(Pm\K) = O(m 2/( 1)),

The following theorem shows that this result is the best possible.

Theorem 6.1

The convex polytope Pm, with m facets circumscribed about the convex set K of
volume 1, such that volume(P,\K) = O(m™*/"), is the best possible.

Proof

Consider the unit sphere in R4 Place as many points as possible on this sphere,
subject to the restriction that no 2 points are less than distance 2r apart from each
other. This uses m = Q(r_(d_”) points. Consider the cap of the sphere which has
radius r. This cap determines essentially a volume r?*! and there are Q(r_(d_l)) such
caps. Hence the total volume is Q(r?). -

Now, asm = Q(r-(d_l)). the total volume is Q(m-z/(d—l)). This is
essentially volume(S?~\Q), where Q. is the polytope with m facets formed by
cutting off the m caps at depth 2r* and radius 2r from S%1.

The obvious expansion (which does not affect the order Q(m_g/(dnl))) yields a

polytope P, with m facets circumscribed about the sphere, such that

volume(Pn,,\S?7?) = O(m_g/(d‘”). 0
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7. Approximation by the d-simplex

The above results and methods lead us to ask whether, in d-dimensions, the
d-simplex approximates the d-ball better than the d-cube. First, we consider the
‘2-dimensional case, that of minimal area triangles circumscribing triangles and

circles.

i) Triangles Circumscribing Circles and Squares

Consider the triangles of minimal area circumscribing the unit circle and the unit

square.

a) Circle
Clearly, the triangle of minimal area circumscribing the unit circle is the equilateral

triangle of area 37#, (see Figure 7.1).

Figure 7.1

This is unique (up to rotation).

b) Square

The algorithms of Klee and Laskowski [11] and O'Rourke, Aggarwal, Maddila and
Baldwin [16] give the triangle of area 2 shown in Figure 7.2 as the triangle of
minimal area circumscribing the unit square. It is, however, possible to move the
apex A in order to obtain other circumscribing triangles whose areas are still 2. For

example, triangle T’ shown in Figure 7.3 has area 2.

So, the minimal triangle circumscribing the unit square is not unique.



Figure 7.2

Figure 7.3

Hence we may conclude that in 2-dimensions it is possible to approximate the unit

circle more closely than the unit square.

The analogous problem in 3-dimensions is of minimal volume tetrahedra

circumscribing unit balls and cubes.



ii) Tetrahedra Circumscribing Balls and Cubes

Consider the tetrahedra of minimal volume circumseribing the unit ball and the unit

cube.

a) Ball

It is known that the tetrahedron of minimal volume circumscribing the unit ball is

the regular tetrahedron of volume 67,.&, (see Figure 7.4).

Figure 7.4

This is unique (up to rotation and permutation of vertices ).

b) Cube
The problem of finding the tetrahedron of minimal volume circﬁmscribing the unit
cube is, as yet, unsolved. Here, we present some suggestions to the solution of this
problem.

First, we show that the minimum volume of any tetrahedron

circumscribing the unit cube with one of its facets flush with a face of the unit cube is

9
5
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Theorem 7.1

Let T be a tetrahedron circumscribing the unit cube with one of its facets flush with
a face of the cube. Then volume(T) > g

Proat 2

Let the facet of the tetrahedron flush with a face of the unit cube be the facet lying in
the plane x5 = 0. Then, the opposite vertex v to this facet lies in the half-space

X3 > 0. Let h be the height of v above the plane x3 = 0 and let Ay, A; be the areas of
the sections of the tetrahedron at heights 0 and 1 respectively above the plane x3 = 0.
Then, by Klee and Laskowski [11],

A 22

Hence, if the volume of T is V,

\’ = :@ = Alhs 3 > 2h3 5o
3 T3(h-1)273h-1)°

Hence V has a minimum value of % ath=3.0

Corollary 7.2

There is an infinite set of tetrahedra of volume g, circumscribing the unit cube, each
tetrahedron having one of its facets flush with a face of the cube.

Proof

The tetrahedra are obtained by continuously deforming the triangle T N {x3 = 1},

- (see Figure 7.5).

Figure 7.5

T NA(xgz=1)




Now, let T be the tetrahedron analagous to the minimal area triangle produced by
the O'Rourke, Aggarwal, Maddila and Baldwin algorithm, such that three of the
facets of the tetrahedron are flush with three of the faces of the unit cube on the
- planes x; =0, x, = 0, x3 = 0. Then the volume of T, is % and the vertices of T

are (0, 0, 0), (3, 0, 0), (0, 3, 0), (0, 0, 3).

Also, let T, be the tetrahedron of volume g circumscribing the unit cube guaranteed
by Theorem 7.1, such that a facet of the t;trahedron is flush with a face of the unit
cube, and the centre of gravity of this flush facet is contained in one of the edges of
the cube. The vertices of T, are (-1, 3, 0), (2, -1,0), (2, 2, 0), (-1, 3, 3).

The centre of gravity of the facet is at

% ((-1,4,0)+ (2 -1,0) + (2,2,0)) = (1, },0)

which lies in the edge [(1, 0, 0), (1, 1, 0)] of the unit cube.

Lemma 7.2

There is a continuous path of tetrahedra of volume g from T, to T;.

Proof 2

Consider the plane x; = 1 and continuously deform the triangle Ty N {x3 = 1} to the
triangle T; N {x3 = 1}, (see Figure 7.6). The tetrahedra formed as a result of this

deformation give rise to the continuous path. O

Figure 7.6

Ton (X3=1) TiNn(x3=1)

—)-
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Let T, be the tetrahedron analogous to that suggested by McMullen and Wills in

[15], (see Figure 7.7). Note that T, is not a regular simplex.

- Figure 7.7
P. MCMULLEN AND J. M. WILLS

Let D be the diameter of this tetrahedron. Then it is clear that D: 1 + 2a = 1: a.

Let V be the volume of this tetrahedron, so that

)

. (14207142 _(1+2a)
V= ( )__-——.

3 av? 6a”
. 9n )2
Then d—z.—.(l ;O:sa) (a - 1)
and d2v - (1 + 2a)
da’ a?

Hence V has a minimum value of ,9, at a = 1.

Lemma 7.3

There is a continuous path of tetrahedra of volume % from T, to T,.

Proof 2

To form the tetrahedron T, analogous to the McMullen and Wills tetrahedron, we
simply drop the edge [(-1, 3, 0), (-1, }, 3)] to [(-1, }, -1), (-1, 3, 2)], whilst allowing
the planes to rotate about the edges [(1, 0, 0), (1, 1, 0)] and [(1, 0, 1), (1, 1, 1)}. O
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The results of Lemma 7.2 and 7.3 give rise to

Theorem 7.4

There is a continuous path of tetrahedra of volume % from T, to T,.
This leads us to suggest the following conjecture.

Conjecture
9

The tetrahedron of minimal volume circumscribing the unit cube has volume 5

There is no unique tetrahedron of minimal volume circumscribing the unit cube.

Remark

In spite of various conjectures. the question of minimal volume simplices
circumscribing cubes in higher dimensions still remains open, as does the question of
minimal volume tetrahedra circumscribing general convex sets. The above conjecture
could lead us to perhaps think that the tetrahedron of minimal volume
circumscribing the unit cube must have a facet flush with one of the faces of the
cube. This might lead us to think that this is also true for tetrahedra circumscribing
general convex sets. The following, however. may provide an example of a convex
polytope whose circumscribing tetrahedra of minimal volume touch it only along its
edges and are not flush with a face of the polytope.

Consider the cube of unit volume and remove small prism shaped
sections of width € from the edges of the cube. If these sections are replaced by
similar sections of the same width, but with a larger obtuse angle and smaller acute
angles, then the volume of the cube is only slightly decreased. The tetrahedron T,
analagous to the minimal area triangle produced by the O'Rourke, Aggarwal,
Maddila and Baldwin algorithm is again the tetrahedron such that three of its facets
are flush with faces of the cube. The volume of this particular tetrahedron is only
slightly decreased from g However. if we consider the tetrahedron T;, where the
centres of gravity of one of the facets is contained in one of the e‘:dges of the cube,
then it may be possible to reduce the volume of this tetrahedron from % by more than
that of T,. This is thought to occur because of the greater freedom of movement

when the facets of the tetrahedron are balanced on the edges of the cube.
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5. Algorithms for Finding Points with Particular
Combinatorial Properties in Various Containing Objects

1. Introduction

This chapter is concerned with presenting algorithms for finding points with
particular combinatorial properties contained in objects such as balls, ellipsoids and
closed half-spaces. The problem of the container being a ball was originally
considered by Diaz and O'Rourke in their unpublished work [3], in which they also
suggested the possibility of considering other containment objects, such as regular
polygons or ellipsoids. In this chapter we present a guide to the methods of Diaz and
O’Rourke for the case of the ball and then give algorithms for the cases of the

closed half-space and the ellipsoid.

The combinatorial bounds used in [3] were obtained from the work of
various authors in [2], [4] and [5]. The bound required for the case of the closed
half-space follows immediately from Radon's Theorem while that for the ellipsoid is
obtained from Barany and Larman [1].

The problems are presented in the following form. We begin with the
required introductory theory. then give the solution to the planar case and finally

consider the generalised d-dimensional case.
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2. The Ball
This section gives a detailed consideration of the unpublished work of Diaz and

O’Rourke [3] regarding the ball.

Given a set of n points P in IRd, by [2] there exist [ .l,(d + 3) ] of these points with the
property that any ball containing these | .%(d +3)] ;oints also contains at least a
certain number c,n of all the points of P.-‘The problem is to find these

[ %(d + 3) ] points.

i) The Planar Case
Let P = {p;. ps. ... , Pn}. Define the function é(p;, p;) for any two points p;, p; of P

to be the minimum number of points of P contained in any disc that contains p; and
P;» and denote the maximum of ¢ over all pairs of points in P by ¢*. We present the
algorithms of Diaz and O'Rourke for finding 6 in O(nlog(n)) time and ¢* in O(n3)

time.

Definitions

1. Define Dy to be the closed disc in the plane with centre ¢ and radius r, i.e.
Dr. = {p: dist(p. ¢) < r}.

2. The boundary of D, . is denoted by C, ..

3. Given a set of points P in the plane. the function «(r. ¢} is defined to be the
number of points of P contained in the disc Dr .. i.e.
(r.c)=|{p:p € Pand p € D, }|.

4. Given a pair of points p;, p; € P.
o(p;. p;) = l'nirl}c i(r, c) for all r, ¢ such that p;. p; € Dr...

3. ¢" = max_ o(p;. P;) for all p;. p; € P.
i.j

Combinatorial bounds for ¢ and ¢~ for all P have been given recently in [4] and [5],

for example

Theorem 2.1 (Hayward, Rappaport and Wenger)

Given a set P of n points in the plane, there exist two points p;, p; of P such that

[95 +2]<elpip) s [§+11.

The basic definition of @ involves a search over an infinite number of discs. This

can, however, be reduced to O(n) discs by the use of the following lemma.
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Lemma 2.2 (Diaz and O'Rourke)

Given any disc D, and two points p;, p; € Dr,c, it is always possible to find a disc
D,,4 such that ‘

1. Dgy+y C Dy,

2. p;pjareon Cp,q,
3. upyv) < ur, ).
Proof

Assume that p;, p; are both interior to Cr,c. Shrink this circle about its centre until
it touches one point, p; say. Then move the centre towards p; shrinking the radius so
as to keep p; on the boundary, until the circle touches p j+ This circle is Cp,v. Since’
each new disc is contained within the previous one, the number of points contained

within the disc, ¢, cannot increase. O

There is still an infinite number of circles that pass through two points. A circle
Cr,c through the points p;, p ; can, however, always be shrunk or enlarged without
changing ¢ until it touches a third point. Since three points uniquely determine a
circle, it is possible to consider only the linear number of circles formed by p;, p j and
each of the other n - 2 members of P. This certainly leads to a simple brute force
algorithm for computing é(p;, p;) in O(n?) time:

For each of the remaining points p, of P, determine the disc formed by
P, P; and p;, check each point of P for inclusion and record the minimum. The
value of ¢(p;, p ;) is one less than the minimum, since any disc with three points on
its boundary can be shrunk or enlarged about two of the points so as to exclude the
third. Repeating this for all of the O(n”) pairs of points yields ¢* in O(n*) time.

As is to be expected this brute force approach is not the best posible and

the following sections describe faster algorithms for finding both ¢ and ¢*.
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a) Calculating d(p;. p;)

Given the points p;, p;, although it is not possible to avoid the consideration of the

other n - 2 circles, the determination of which points of P lie within each circle can

be streamlined. Firstly, it should be noted that the centres of all the circles which

pass through p; and p; lie along the perpendicular bisector to the line segment p,p;.

This bisector is denoted by 3, ; and it is assumed that 3, ; coincides with the
x-axis. When the centre of the circle through p;, p; is at x = - 0o the circle is a

straight line through p; and p;. As the centre sweeps in from x = - oo towards

X = + o the circles will sweep out the entire plane, touching each of the other points

of P exactly once, except for points co-linear with p; and p;, which will be touched

twice. At each event of a circle passing through a point the number of points within

the circle is changed by 1. These events occur when three points p;, p j» Py, are

concyclic, which is exactly when the centre is at the intersection of 3; i Bix
and 3; ;.

Algorithm 2.3 (Diaz and O’Rourke)

Given a set of n points P and p;,. p; € P. calculate ¢(p;, p;).

1.
f)

i)

iii)

Gt

Determine 3; ;. [ O(1) ]

Initialise the number of points enclosed in the circle C _oc, i-e. the number of
points in the closed half-plane bounded by and to the left of the line through
p; and p;. [O(n) ]

For each other point p; in P [ O(n) ]

Determine 3; . [ O(1) ]

Let b, be the point of intersection of 3; ; and 3; ;. [O(1)]

Mark b, as to whether p, is to the right or left of the line through

p; and p;. [O(1) ]

Sort the intersection points by along 3; ;. These are the events. [ O(nlog(n)) ]
Sweep through the events. At each event the number of points enclosed by the
circle just before and just after the event can be determined by examining
whether b, was a right or left point. ¢(p;, p;) will be the minimum for the

sweep. [ O(n)]

Hence the algorithm is an O(nlog(n)) time algorithm.
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b} Calculating ¢*

The calculation of ¢* involves finding the maximum value of ¢(p;, p j) for all pairs of

points p;, p; in P. Repeated application of Algorithm 2.3 for each of the O(n?) pairs
of points in P yields an O(n®log(n)) algorithm.

It is possible, however, to reduce the time required by spending more
time, O(n?), on each individual point of P, instead of O(nlog(n)) time for each pair
of points in P. For example, suppose that ¢(p,, p,) is being computed. The
intersection of J; , with 3, ; is found for k = 3, ... , n and then a sweep made along
‘/31,._,. Similarly, to compute ¢(p;, p3), the intersection of 3, 3 with 3, ; is found for
k =2,4,..., n and a sweep made along 3, ;. Thus, if for a point p, the arrangement
A, of 3,4, k # 1, is computed, then ¢(p;, p;) can be computed for each of the other
points p; in P by sweeping along each line in the arrangement. An important benefit
of this technique is that it removes the need to sort the intersections along each of the

bisectors, as that information is inherent in the structure of the arrangement.

Algorithm 2.4 (Diaz and O'Rourke)

Given a set of n points P, determine ¢~.

1. For each point p; in P [ O(n) ]

i)  Generate the arrangement A; of /3,-,j forallj # 1. [ O(n?) ]

ii)  Sweep along each of the bisectors 3, ; using the method of Algorithm 2.3
and record the minimum. [ O(n?) ]

2. Record the maximum ¢(p;. p;) for all p,. p;. [0(1)]

Hence the algorithm is an O(n®) time algorithm.



ii) The d-Dimensional Case

Let P = {p;, ps, ... , Pn}. Define the function ¢(p,~l, «e s Pi,,) for any m points

Pi,s -+ » P, of P as the minimum number of points of P contained in any ball that
contains p; 1 Pigg and denote the maximum of ¢ over all m-tuples of P by ¢*.
We present algorithms for finding 6* and ¢ for all possible m-tuples of P in

O(n?*™) time.

Definitions
1.  Define Bdr,c to be the closed d-ball with centre ¢ and radius r, i.e.
Bdr,c = {p : dist(p, ¢) < r}.
2. The boundary of Bdr,c is denoted by Sd,-,c.
3.  Given a set of points P, the function «(r, ¢) is defined to be the number of
points of P contained in the ball Bdr,c, i.e.
t(r,c)=|{p:p€Pandp € Bdr,c}l,
4.  Given a subset M of P, M = {pil, ve s Pim s
o(M) = mirl}c ((r, c) for all r. ¢ such that M C Bdr,c.

ot
b

9" = Dla].\\"I o(M) for all m-tuples M C P.

.l
: . .. o . .
The existence of a non-trivial lower bound on 4 for a particular value of m is

given by [2],

Theorem 2.5 (Barany, Schmerl, Sidney and Urrutia)

For each d > 1 there is ¢; > 0 such that for any finite set X C IRd there is

ACKX |Al <] _15(d + 3) ]. having the following property : if B D A is a d-ball, then
BAXI > cglX.

The previous algorithms do not lend themselves easily to extension for arbitary
m or d. Lemma 2.2 does not extend to more than two points in higher dimensions
and, although in two dimensions the addition of one point uniquely determines the

circle, in higher dimensions it is necessary to consider all the remaining

(a_m o1 roptes
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First, it is necessary to generalise the previous notation for arbitary dimensions.
Denote by ,Bd‘l,-’ ; the set of all points p which are equidistant from the points p;
and pj, i.e. the (d - 1)-dimensional hyperplane which bisects these two points. For a
given point p; the arrangement A; of hyperplanes ﬁd'li_ ; can be formed for all
j # i. A point p, not necessarily in P, on the same side of ﬂd'li' j 3 Pjy has the
property that any B?, , that contains p; must also contain p;. Thus with each cell
in A; is associated a subset, L = {pkl’ -y pk’}, of P, such that any Bdr,c that
includes p; and with a centre ¢ in that cell must contain L. In particular, a ball with
a centre in that cell and p; on its boundary will contain exactly the points LU {p;}.
If1 > m - 1 then for each of the ( m l_ 1 ) subsets M’ of L, the set M is
given by M = M'U {p,;} = {pjl, w++ Pis o« P }. The value of 1 is then an upper
bound for the function ¢(M), so using an m-dimensional array W,
W [j;s ... v iv ..., jm] can be updated to reflect the current minimum for that m-tuple.
After repeating this for each cell in A;, the number of points in W will attain the
current best values for ¢(p;. ... , pm) for each m-tuple of points from P. However,
W does not contain the actual value of o(py, ... , Pm), since the entries reflect only
those balls which had p; on the boundary. After this procedure has been repeated for
all the points in P, then for any m-tuple (p;, ... , pm), the minimum number of
points of P enclosed by a ball that contains the m-tuple and had, in turn, each of the
points on the boundary. will have been considered. This is then the true value of
é(pye e« Pm).
Generating the point sets associated with each cell is relatively easy :
as one crosses from one cell to another through the boundary Bd_li, j the point P;
associated with the boundary is either added to or deleted from the cell’s subset,
depending on whether the cell is on the same or opposite side, respectively, of
,Bd'l,-. j as p;. A graph G can be constructed from the arrangement where each node
of the graph corresponds to a cell, and two nodes are connected by an arc if and only
if the cells share a face. Then. by starting at the node of the graph corresponding to
the cell containing only p;, the labels can be generated by traversing the graph and

adding and deleting points from the label set L as each arc is traversed.
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Algorithm 2.6 (Diaz and O’Rourke)

Given a set of n points P and m < n, compute ¢ and é(p;, ... , pm) for each of the
( 0 ) subsets of P.

o

e
—

i)

i)

3.

Initialise an m-dimensional array W of size n™ to - co. [ O(n™) ]

For each point p; in P [ O(n) ]

Construct the arrangement A; of bisecting hyperplanes ﬁd'l,-’ jforallj #i.
[0(n?)]

Generate the search graph G associated with A;. [ O(n?) ]

Starting at the node corresponding to the cell in A; that contains only p;,
traverse the graph and, for each node :

Incrementally determine the point set L associated with the node.

Let1 = |L|. [O(1)]

For each of the (m'_I) (m-1)-tuples of L, (Pjgr +ee s pfm—1)’

if W [igs ooy by oo v Ipmey] > 1, then set it to 1. [ O(n™1) ]

Set ¢* to be the maximum over all the entries in W. [ O(n™) ]

For each of the O(n?) nodes of the graph. O(n™"!) work is being done, yielding a

time of O(n?*™ ") for 2.iii). Hence, repeating this for each point, the algorithm

is an O(n

4+my time algorithm (for computing ¢ and ¢(M) for all m-tuples M C P).

It is interesting to note that for d = 2 and m = 2, Algorithm 2.6 runs in

O(n*) time. a factor of n slower than Algorithm 2.4,



3. The Closed Half-Space

This section is concerned with the use of the closed half-space as the containment

object. The combinatorial bounds used follow immediately from Radon’s Theorem.

Given a set of n points P in [Rd, there exist [ %(d + 2) ] of these points with
the property that any closed half-space containing these [ ,l,(d + 2) ] points also
contains at least a certain number cyn of all the points of P. The problem is to

find these | ,l,(d + 2) ] points.

i) The Planar Case

Let P = {p;, ps. ... , pn}. Define the function p(p;, p;) for any two points p;, p; of
P as the minimum number of points of P contained in any closed half-plane that
contains p; and p j- We present an O(n®) time algorithm for finding that pair of

points p;, p; such that p(p;, pj) > Col.

Definitions
1.  Define H; ; to be a closed half-plane containing the points p;, pj-
2. The boundary of H; ; is. therefore, the line H.
3. Given a set of points P in the plane, the function A(H, ;) is defined to be the

number of points of P contained in H, ;. i.e.

AH, ;) = | PNH,  |.
4. Given a pair of points p;, p; € P.

p(p;. P;) = min /\(Hi.j).

H; ;
The reduction of the search from an infinite number of closed half-planes is
achieved by noting the following. If H; ; is a closed half-plane containing p;, p;,
then there exist two closed half-planes H; ;. H; ; which contain some subset of the
subset PN H, ; of P in H, ; and. for some point p, € P\{p;, p;}, also contain
Pis Py OF pj, py respectively in their boundaries. This certainly leads to a simple
brute force algorithm for finding that pair p;. p j such that p(p;, p;) 2 con in
O(n?) time:
Given a pair of points p;. p; € P we check for each p, € P\{p;, p;}

the closed half-planes H*; ;, H* j i determined by the lines p,;p, and p;p;, containing
p; and p; respectively. If both A(H%; ) > con and /\(H‘j.’k) 2 c,n, we record p;, p;.
The points that we are seeking are that pair p;, p;€ P such that for each

PLE P\{p,, pJ}. both A(H‘,‘,k) > Con a-nd A(H.]J\) > Coll.
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As is to be expected this brute force approach is not the best possible. The following
describes an algorithm for finding that pair of points p;, p; such that p(p;, p;) < ¢,n
in O(n®) time. The reduction in time is achieved by firstly considering each point

P; € P and sorting the points of P\{p,} in rotation order about that particular point
p;. Next, for each pair of points {p;, p;}€ P, the rotation orders of the remaining
points of P\{p;, p ;} are combined to form a joint rotation order for those points
around the pair {p;, p;}. A contact line then sweeps around the pair using the above
rotation order, keeping a cumulative count of the number of points contained in the

closed half-plane determined by the pair {p;, p i}

Algorithm 3.1

Given a set of n points P, find that pair of points {p;, p j} € P such that

P(P;s P;) > con.

1. For each point p;€ P, sort the points in P\{p;} in rotation order about p;
[ O(n’log(n)) ]

For each pair of points p;, p; € P [ O(n?) ]

184

i) Join the rotation orders of the points P\{p;, p;} to form a combined rotation
order [ O(n) ]

ii)  Sweep a contact line around the pair using the combined rotation order, keeping
a cumulative count of A(H; ;) [ O(n)]

Hence the algorithm is an O(n?) time algorithm.



ii) The d-Dimensional Case

Let P = {p;, pas ..., Pn}tand m = | ;,(d + 2) ]. Define the function

p(p,—l, Piys » s Pj ) for any m points of P as the minimum number of points of P
contained in any closed half-space that contains p; 2 Pigy o1 Pipm We present an
O(lld+m_1) time algorithm for finding a set of m points Pi;s Piyr 1 Pipy

such that p(pil, Pins +++ s Pipy) 2 €40

Definitions

1. Define the closed half-space gd im t0 be that closed half-space bounded

il""l"“!’
by the hyperplane H9 and containing the points p; , Piys +- s Pipy-
The boundary of Hd

3. Given a set of points P, the function /\(Hd

o

iaiS+ therefore, the hyperplane ud.

im) is defined to be the

1‘1.1‘0....,

i1 9.

number of points of P contained in ud

Ad ) =|PnEd,

il,iq,...:im’

il.ig ..... im
4.  Given points {p,-l. Pigs e - Pi,,} €P,

P(pi,. Piys = v Pipy) = Hdmin )\(Hd,-l',gg‘__.‘,-m) over all HY

51,8'2,...,im°

fl.ig,...,i171.

The reduction of the search from an infinite number of closed half-spaces can be

achieved using a method similar to that of the planar case. If nd i 15 a closed

i,g,00

half-space containing Pij+ Piye e « Pip,- then there exist d closed half-spaces which
2 4

im of Pin H

i, and, for some

contain some subset of the subset PI"IHdi1 i1 g

igeen,
point p; € P\{p; . p;,. .- . P;,,}. also contain p; and a further d - 1 points of P,
Pjj+ Pjge o« Pj,_, SAY. in their boundaries. This certainly leads to a simple brute
force algorithm for finding that set of m points {p"f Pigr o s Pi,,} € P such

(n4*") time:

that (P - Pigs o+« Pigy) 2 €40 in O
Given m points p; . p;,. ... , P;,, € P we choose a further d - 1

. that
m

points Pjy Pjgs 2 Pj,_, € P and consider the closed half-space nd i yigueni

has the points p,, Pj,s Pjy »ee s Pj,_, OD its boundary and contains the points

Pijs Pige o+« Pipye if 4, i eerim contains at least ¢ n points of P, for each p;€ P,
then we record {p,-l. Pigs e+ Pin,}- The points that we are seeking are that

set {p,-l. Pigs e s D;,,} such that Hd*,-ly,.? ..... im contains at least c;n of all the points

of P for all choices of p; and Pjys Pjge oo s Py o
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As is to be expected this brute force algorithm is not the best possible. We use a
method similar to that of the planar case to produce an algorithm for finding that set
of m points {p,-l, Pigr e s Pi,,} € P such that p(pil, Pigr ++v 1 Pi,,) 2 ¢4n in
O(n‘“’m'l) time. The reduction in time is achieved by firstly considering each set of
d points {p jr Pigr e 1 Dj d} € P, and counting the number of points of P contained
in the closed half-space with {p ipr Pigr e 1 P J'd} on its boundary. If this is less than
cqn, then all the sets of m points {p; , p;,, - » Pi,,} € P within this closed
half-space are recorded. All the sets of m points recorded are then sorted to remove
any duplicates and to find the set {p,—l, Pigr woe P;,,} € P such that

p(p;l, Piys ++ 3 Pip,) 2 €40 guaranteed by the theory.

Algorithm 3.2

Given a set of n points P find that set of m points {p,-l, Pigr vee s P;,,} € P such

that p(p,-l, Pigs =oe s Pip) 2 €4l o

. d

1. For each set of d points {p; , p;,. -+ P;,} € P [O(n%)]

i)  Count the number of points of P contained in the closed half-space with the
points {pil’ Pj,s pjd} on its boundary [ Of

ii)  If this is less than ¢ n record all sets of m points {p,-l, Di,» - » Pipp} € P in the
closed half-space determined by {p; . p;,. ... . P;,} [ O(

3. Each set of m points is recorded, the sets are sorted and any duplicates are
removed. The set of m points {p; . p;,. .- - P;,,} € P such that
P(Pi}s Piyr ++o 1 Pipy) 2 g is found from the sort [ O(

d+m-1

Hence the algorithm is an O (n ) time algorithm.
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4. The Ellipsoid
This section considers the natural extension to the work of Diaz and O’Rourke,

the use of an ellipsoid as the containment object.

Given a set of n points in RY, by [1] there exist [ % d(d + 3) + 1] of these points
with the property that any ellipsoid containing these | lll d(d + 3) + 1] points also
contains at least a certain number cyn of all the points of P. The problem is to

find these | % d(d + 3) + 1] points.

i) The Planar Case

Let P = {py, ps, ... , Pn}. Define the function o(p,, p;, p;) for any three points
Pi» Pj» Py of P as the minimum number of points of P contained in any ellipse that
contains p;, p j» Pr- We present an O(nslog(n)) time algorithm for finding those

points p;. Pj: Pi such that o(p;. p;. pi) 2 con.

Definitions

1. Given a set of points P in the plane and the ellipse E. the function x(E) is
defined to be the number of points of P contained in E. i.e.
k(E) = | PNE |

2. Given points p,. p;. p; € P.
o(pP;. Pj- Pi) = miE k(E) for all E.

Similarly to the case of the ball. the basic definition of ¢ involves a search over an

infinite number of ellipses. This can. however, be reduced to a finite search by use of

the following procedure.

Let € define the following conditions.

Let {p;. p;. p,} € P.

L. For each triple of points {p;, pm. pn} € P\{p;. pj, p;}. form the unique
quadratic through the points p;, p;, P;s Pm, Pn. If this is an ellipse E, then
check if p; € E. If p, € E, then check | PNintE |. If | PNintE | > ¢;n, then

record py, pj, Py

2. For each pair of points {pr, ps} € P\{p;, p;, P}, choose (if possible) an ellipse

F joining p;, p;, pr, ps such that p; € F. If such an ellipse F exists, then check

| PNintF |. If | PNintF | > c,n, record p;. Pjs Pi-
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We claim that if {p;, p;, p,} satisfy the conditions € then they are the points such
that o(p;, p;, P;) > con. This is justified by Theorem 4.1.

Theorem 4.1
Suppose that the triple of points p;, p;, p; satisfies the conditions €.
Then o(p;, Py Pi) > con.
Proof
Suppose that E, is an ellipse containing p;, p;, pj, with | PNintE,; | < c,n. We can
assume that p;, p ; € bdE,.
Since p;, p;. p; satisfy €, we can choose an ellipse E, with
P;s P; € bdE,, p; € E, and | PNintE, | > c,n. By interpolation between E; and E,,
there exists an ellipse E3 and a point p; € P\{p;, p;, px} with p;, p;, p; € bdEj,
pr € E3 and | PNintE; | = | PNintE, | < con.
Again, since p;, p;, p;, satisfy €, we can choose an ellipse E, with
Pi+ Pj» P; € bdEy. p; € E; and | PNintE,| > c,n. By interpolation between E; and
E,. there exists an ellipse E; and a point pm € P\{p;. p;, p;} with
P;- Pj- Pi- Pm € bdE;s. p;. € E5 and | PNintEs | = | PNintE; | = | PNintE; | < cpn.
Further. since p,. p;. p; satisfy €, we know that there is a
point pn € P\{p;. p;. p;} and an ellipse Eg with p,. p;, p;. pm, Pn € bdEg,
Pr € Es and | PNintEg | > ¢,n. By interpolation between E; and Eg, there
exists an ellipse E. with p,. Pj- Pi- Pm. Pn € bdE;. p; € E; and
| PNintE;| = | PNintE; | = | PNintE; | = | PNintE, | < ¢,n.
This contradicts a condition of €. Hence every ellipse E containing p;, p;, p; € P has

| PNintE | > con. O

Therefore we are able to find that triple of points {p,, p;, p;} such that

o(p;: P;. P;) > can by operating a search over all triples of points of P to find that
triple {p,. p;. p;} satisfying the conditions €. This certainly leads to a simple brute
force algorithm for finding that triple of points {p;, Pj px} such that

o(pis ;. Pi) 2 conin O(n") time.

As is to be expected this brute force approach is not the best possible. The following
describes an algorithm for finding that triple of points {p;, p;, px} € P such that
o(Pj\ Pj« Px) 2 con in O(nslog(n)) time. The reduction in time is achieved by using a

method similar to that for the closed half-space.
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First, for each set of four points {p; , Pi,» Pi,» P1,} € P, we consider the pencil of
conics through these points, and sort the remaining points of P\{p:l, Pi,s Pigs P14}
around the set {p,l, Py Prys p,4} with respect to the pencil. We then sweep through
the points of P\{p,11 Piys Pigs p,4} around {ph’ Pjp Pjg pj4} keeping a cgmulative
count of the number of points, identifying that triple of points {p;, p;, p;} such that

p(p;, Pjs Pi) 2 con using a sort.

Algorithm 4.2

Given a set of n points P, find that triple of points {p;, p;, Pz} € P such that

P(Pis Pjs Pi) 2 Con.

1. For each set of 4 points {p, s P;,, P1» Pi,} € P [ O(n*)]

i)  Form the pencil of conics through the points {p; 4 Piy Pigr P 4}. [O(n) ]

ii) Sweep through the remaining points P\{p,l, Pr,» Pig» p,4}, keeping a
cumulative count of x(E) for each ellipsoid E in the pencil of conics.
[On)]

2. Each triple of points is recorded, the triples are sorted, and any duplicates are
removed. The triple of points {p;. p;, p;} € P such that p(p;, pj, p;) 2 con
is found from the sort. [ O(n°log(n)) ]

Hence the algorithm is an O(n®log(n)) time algorithm.
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ii) The d-Dimensional Case

Let P = {p;, P2y -.. , Pn} and m = [ }—1 d(d + 3) + 1]. Define the function

o‘(p,-l, Piy -oe s p,-m) for any m points of P as the minimum number of points of P

. contained in any ellipsoid that contains Piyr Pigs + 1 Pipy We present an
d(d 2 -
O(n (d+3)/2 +

) time algorithm for finding that set of m points Pij» Pigs » 3 Pipy

such that cr(pil, Pigr +e s Pi,) 2 €4D-

Definitions

1.

154

Given a set of points P and an ellipsoid E, the function x(E) is defined to be the
number of points of P contained in E, i.e.

x(E) = | PNE |.

Given points Pijs Pigs e 1 Pipy, € P,

a(p,-l, Piys - s Pi,,) = mi}r} K(E) for all E.

Again, the basic definition of ¢ involves a search over an infinite number of

ellipsoids. This can, however, be reduced to a finite search by use of the following

procedure, similar to that of the planar case.

Let € define the following conditions.

Let {p; ;s Pipe -+ Py} € P

1.

o

Let K be a subset of P such that k = [K| = % d(d + 3) - | }1 dd+3)+1]+ 1.
For each subset K, K = {ph‘ Py wee s pjk} € P\{p;l, Piyr wor s D;,,}» form the
unique quadric surface through the points Piys Pigs oo v Pi 19 Pj1s Pjgs vee s Pje
If this is an ellipsoid E, then check if p, € E. If p; = € E, then check

| PNintE |. If | PNintE | > ¢ n. then record {pil, Pigr o s Pin)-

Let L be a subset of P such that ] = |L| = % d(d +3) - % d(d+3)+1].

For each subset L, L = {Pjs Py s piz} € P\{p,-l, Piyr s Pin}s choose

(if possible) an ellipsoid F joining Pij+ Pigr oo s Pi v Pjis Pigs o s Py such
that p; . € F. If such an ellipsoid F exists, then check | PNintF |.

If | PNintF | > ¢ n, then record {p,l. Piys e s Pin )}

We claim that if {pil, Dj,» - + Pi,,,} satisfy the conditions € then they are the points

such that cr(p,-l, Pi,e +-+ s Pip,) 2 ¢g0. This is justified by Theorem 4.3.
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Theorem 4.3

Suppose that the m-tuple of points {Pi)s Piyr e o P ) satisfies the conditions €.
Then a(pz’l, Pigs ooy pim) 2 cyn.

" Proof

Suppose that E, is an ellipse containing {pi1’ Pigr oo 1 Pi,,} With | PNintE | < ¢4n.
We can assume that p; , p;,, - P;,_, € bdE,.

Since {p; s Py,» ++ ) Py, } satisfy €, we can choose an ellipse E,
with Piys Pigr s Py € bdE,, p;,,, € E; and | PNintE, | > ¢4n. By
interpolation between E; and E,, there exists an ellipse E3 and a point
p; € P\{pil, Pigr e s P, } with Piy» Pigr s Py 12 Pj; € bdEg, p;,, € E;
and | PNintE; | = | PNintE, | < ¢ n.

Again, since {pil, Pi» - » Pi, } satisfy €, we can choose an ellipse E,
with Pijs Piys =+ Py, _» P; € bdEy, p; . € E4 and | PNintE,| > ¢ n. By
interpolation between E3 and E,, there exists an ellipse E5 and a point
P;, € P\{p,-l, Pige wor P;,,} with Pijs Pigr =+ P13 Pjs Pj, € bdEg, p;,, € Ej
and | PNintEg | = | PNintE; | = | PNintE, | < ¢,n.

This procedure is continued until, since {pil, Pigy e pim} satisfy C,
we know that there is a point p;, € P\{pil, Pigr s Pi,} and an ellipse E; 5
with p;. . Pigs o+« Pip (v Pjijs Pjgr oo+ Py € DAE; 5, Py € Epys and

| PNintE, 5 | > ¢yn. By interpolation between E,,, and E,, 5, there exists an

m-=1

ellipse E; ¢ with Pijs Pigr e s P+ Pjie Pjge - s Py, € bdEgy6: Py, € Epye and
| PAintE; ¢l = ... = | PNintEy | = | PNintE; | = | PNintE, | < ¢4n.
This contradicts a condition of €. Hence every ellipse E containing

{pi)» Piys - s Pipy} € P has | PNIntE | 2 ¢4n. O

Therefore, we are able to find that set of m points {pil, Pigr s Pi,,} € P such that
0’(p,-1. Piys «o v Pipy) 2 €g0 by operating a search over all sets of m points of P to find
that set {p,-l, Pigs =1 P; ) satisfying the conditions €. This certainly leads to a

simple brute force algorithm for finding that set of m points {p,-l, iy o s Pi,.} EP

m+k+1y time using the conditions €. A

such that a’(p,vl, Pigs +ov s Pip,) 2 ¢4n in O(n
problem associated with this brute force algorithm is to determine an efficient
method of choosing an ellipse F joining Pijs Pigr o s Pip. 19 Pjs Pjgs =1 P with
Pi,, € F. This process requires a function of d time, but an efficient method is not
known at the moment. Because of these geometric limitations, the possibility of

improving the efficiency of this algorithm is limited.
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5. Conclusions
The algorithms that are presented in this chapter are certainly more efficient than a
brute force approach. They are relatively straightforward and can be easily
- implemented. It is possible, however, that further improvements may be made,
more so in d-dimensions, and particularly in the case of the ellipsoid. In their work,
Diaz and O’Rourke [3] use fundamental geometrical properties of the ball in order to
simplify their algorithms, and it is unfortunate that similar geometric properties
cannot be used in the case of the ellipsoid to simplify the algorithms.

The possibility of using other containment objects, for example regular
polygons, general quadric surfaces and even objects of higher complexity, still exists,

with the use of regular polygons probably being of most interest at present.
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6. Inscribing a Square in a Convex Polygon

- 1._Introduction
In [1] and [2] Emch proved that at least one square can be inscribed in any convex
polygon in the plane. We aim to give an alternative proof of this particular result,
adapting some of the ideas Emch used. In addition, the method of the proof provides
us with ideas for an algorithmic approach to finding such a square.
The proof is achieved by associating all pairs of orthogonal lines through
a fixed point with all thombi inscribed in the polygon. We obtain a square from these
rhombi by selecting that particular rhombus which has axes of equal length. This
method is, in fact, only valid for a convex polygon that has no pair of edges parallel.
However, we also show independently that at least one square can be inscribed in a
convex polygon with any pair of edges parallel. Finally, we present some ideas for an

algorithm for finding the square.



2. The Geometry

Let P be a convex polygon in the plane.

i) P is a convex polygon with no pair of edges parallel

First, we quote a theorem of Emch, giving an updated version of the proof.

Theorem 2.1 (Emch)

Two distinct rhombi with corresponding parallel sides or parallel axes can never
be inscribed in P.

Proof

First, consider a re-entrant quadrangle a;a,aga,. This is a quadrangle in which
one of the vertices, a, say, lies within the boundary of the triangle formed by the
remaining three vertices a,, a,, az. Then it is clearly impossible for all the vertices

of this re-entrant quadrangle to lie on the boundary of P, (see Figure 2.1).

Figure 2.1
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The aim of the proof is to show that whatever the relative position of the
two rhombi, there is always at least one re-entrant quadrangle among the eight
vertices. Hence the vertices can never all lie on the boundary of P, so proving the
result.

Suppose that the two rhombi are a;a,aga, and b;bybsb,, with
the lines a,a,, aja; and a,a,, aja; extended to infinity. Let the two regions of
the plane enclosed by the pairs of parallel lines defined by a,a,, a,a; and
a,a,, ajas be the blank regions, and let the remaining regions of the plane be the

shaded regions, (see Figure 2.2).

Figure 2.2

First, suppose that one vertex of b;b,bgb,, b; say, lies in any one of
the five shaded regions of the plane determined by aja,aga,, (see Figure 2.2). Then
there are always three vertices of a;ajaga, which with b; form a re-entrant
quadrangle.

The other possibility for the location of b;b,bsb, is within the four
blank regions of the plane. In this second case, all vertices of a,a,aga, are within
the shaded regions as determined by b;b,bgb,, (see Figure 2.3). Then there are
always three vertices of b;b,bgby which with any vertex of a;ajaza, form a

re-entrant quadrangle.
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Figure 2.3

Both cases include those where points of one rhombus lie on the side of
the other. In a similar manner the proof can be extended to polygons with parallel

axes. [

We now present the construction that gives rise to the square inscribed in P.
Consider any point O in the plane of P. Construct any line 1, through O and
determine the mid-points of all chords of P parallel to la. If 14 is parallel to an edge
of P, the mid-point on the boundary of P will be the mid-point of this edge.

Otherwise, the mid-point on the boundary of P will be a vertex of P, (see Figure 2.4).

Figure 2.4




It is clear, therefore, that the locus of these mid-points is a continuous
curve. Repeat this construction for a line 1, through O perpendicular to lo. Let
the locus of the mid-points w.r.t. 1o be Co and the locus of the mid-points

w.r.t. lﬂ be Cﬁ'

Theorem 2.2

There is a point of intersection I, 5 between Coq and C4 which lies in the

interior of P.

Proof

Let u, v be two perpendicular directions in the plane.

Let U = {u(t) : 0 < t < 1} be the path of mid-points of chords of P in direction u

and V = {v(t) : 0 < t < 1} be the path of mid-points of chords of P in direction v.

If u(0) # v(0), v(1) and u(1) # v(0), v(1) we may suppose that u(0), v(0), u(1), v(1)
are distinct points occurring in that order around the polygon P. Hence the

continuous curve U must meet V at least once in the interior of P, (see Figure 2.5).

Figure 2.5

v(0)

u(t)

v(y)

Otherwise, we may suppose that u(0) = v(0) = (0, 0), where u is in the
direction of the vertical axis and v is in the direction of the horizontal axis. Consider
the mid-point (w, —t) of the chord of P in the direction of v determined by the point
(0, -t), where t is small and positive. Also, consider the chord determined by (w, 0)
in the direction of u. This chord meets P at points (w, -to), (w, -t;),

where t; <t < t;. Let a, 3, v, B < ¥ be the angles defined, (see Figure 2.6).
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Then t - t; = wtan(a + 3) - wtana,

t; -t = wtan(a + 3 + 7) - wtan(a + 3).

So t; -t > wtan(a + 23) - wtan{a + 4).

Now, g-é (wtan(8 + 3) - wtanf) = w(sec’(8 + 3) - sec?8) > 0.
So wtan(a + 2.3) - wtan(a + 3) > wtan(a + 3) - wtana.
Hence ty —t>t - tg.

Consequently the mid-point (w. -3(t, + t;)) lying on U falls below the mid-point

(w, -t) lying on V, for t small and positive. So unless u(1) = v(1), u(1) will lie above
v(1), with the consequence that UNV is non-empty and contains a point of the
interior of P.

Suppose, then, that u(1) = v(1) = (1, -1) say. By symmetry of argument,
the mid-point (1 - w. -1 + t) of the chord of P in the direction of g. determined by
the point (0, -1 + t), t small and positive, lies below the mid-point
(1 - w, 1 -1ty + ty)) of the chord of P in the direction of u determined by
the point (1 - w, 0). Consequently UNV is non-empty and contains a point of
the interior of P.

Thus we have proved the existence of a point of intersection I, 5 between

Cqs and Cﬂ in the interior of P. O



The extremities of the lines through I, 4 parallel to lo and 15 on P form a rhombus,
(see Figure 2.7). The vertices of P are vy, ... , Vg, I, 5 is as shown and the rhombus

is ABCD.

Figure 2.7
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Theorem 2.3

The point of intersection I, 5 is unique.

Proof

Suppose that there are two distinct points of intersection. Then there are two
thombi with parallel axes inscribed in P. This contradicts Theorem 2.1. Hence the

point of intersection I, 5 is unique. O

So for every pair of orthogonal lines 15 and 1, through O there is one definite
rhombus inscribed in P associated to it. The same rhombus is cleaily obtained when
la and 14 are interchanged.

If ABCD is a square there is nothing further to prove. Suppose, then,
that ABCD is not a square. We turn a line 1, through O continuously from la to
13. The line 1, orthogonal to I¢ will turn in the same sense from 14 to lo.

Clearly there is a (1, 1)-correspondence between all pairs of orthogonal

lines through O and all rhombi inscribed in P.



Theorem 2.4

As the lines 1 and 1, are turned continuously through O, the point of intersection
I

¢n varies continuously.

Proof

Suppose not.

Then there are two sequences of thombi {R J'}j(: and {S j}f:1 such that each
sequence converges to a rhombus with centre I, 5. Thus the point I, 4 has associated

to it two distinct rhombi inscribed in P, a contradiction. O

Hence the point of intersection I cn describes a continuous curve and, as a
consequence, the corresponding rhombus varies continuously.

Let the axes of the rhombus be A, p. If the angle through which 1. and 1,
have rotated from the original positions of 1o and 14 is 6, then

A = ¢(0),

1= ¥(0),

for ¢, ¥ continuous functions of 4, 0 < 8 <

e

Now, ¢(0)

o(3)

n ]

©.
;\ —
=R
-

Hence, since ¢, y* are continuous, there is some value of 8, ¥ say, such that

o(7) = v(9)-
So, we have
Theorem 2.5

If P is a convex polygon with no pair of edges parallel, then it is possible to inscribe

a square in P,



If a < b, then we can perturb one of the parallel edges by a small angle ¢
to obtain a polygon which, as we have seen, has a square inscribed in it. From the
continuity of the system we may deduce that as ¢ = 0 we are still able to inscribe
a square in P,

It is clear that this method of perturbation also works for the case a > b.
It is, however, relatively trivial to observe that when a> b a square can be inscribed

in the polygon, so making the perturbation argument rather an overcomplication.
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ii) P is a Convex Polygon with at least one pair of edges parallel.

Let a be the maximum distance for which the two edges are parallel and let b be the

perpendicular distance between these parallel edges, (see Figure 2.8).

Figure 2.8

Clearly, if a > b, then a square can be inscribed in P; its sides are of length b and

two of these sides correspond with the parallel edges of P, (see Figure 2.9).

Figure 2.9
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3. Ideas for an Algorithm

The method of constructing an inscribed square outlined previously is continuous
and apparently does not lend itself easily to an efficient algorithmic approach.
-However, we present some ideas that, using the method of binary search, will find a
bound for 6, and, by again using binary search, will find improved bounds for the

positions of the vertices of the square on the edges of the polygon.
Let M define the following method of proceeding.

i)  Take the pair of orthogonal lines at angle a to the stated original position.

ii)  Construct the curves C,; and C,,, such that
C,1 is the locus of the mid-points of all chords of P parallel to L,
Ca» is the locus of the mid-points of all chords of P parallel to L,.

iii) Find the point of intersection of I, between C,; and C,,.

iv) Through I,, construct lines parallel to L, and L,, with end points on the
boundary of P,

v)  Construct the rhombus whose vertices are the four end points on the boundary

of P.

Let the rhombus be ABCD and the lengths of the axes of ABCD be
l,, = BD
l,» = AC

Since 0 < 8 < 7‘?' we can operate a binary search on the values of § to obtain a more
accurate bound for its value. We proceed with the binary search on the values of #
until we know the four edges of the polygon the vertices of the square lie on. We then
repeat the process of binary search for the positions of the vertices on these edges
until improved bounds for the positions of the vertices are found. This approach gives

an algorithmic approach to the problem independent of the number of edges of P.



The method to obtain a lower bound for 8 is as follows.

1.  Consider the polygon P. State the original position o = 0.
Operate M for a = 0. Find 1, 1, 1, 0.

o

Operate M for a; = % Find 1, 3, lojo-

3. j) Iflag > lagz and Iy g > 1
3

then take a; = 5.

012 or 10’01 < 1002 a'nd 1011 < 1012’

ii) Iflag > lagz and lp)y <lgporly s <logn andl, ;> Loy 20

then take o, = 78—r
Operate M for a,.
) a; «; .
4. Repeat this process, continually taking a;,; = a; + 5 or a; - -—2—' depending on

the values of I, and 1, 0.

The method to obtain a bound for the position of the vertices on the edges of the

polygon is similar.

Remark

The outstanding problem is to find an efficient method of calculating 6 explicitly.
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