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Introduction to thesis.

During my time at UCL I have been working in several different areas. My
thesis will reflect this fact in that it will consist of three papers I have written on
three different subjects. The two first papers have been submitted for publication
and the third will be.

The first paper is on measurable selection in usco-maps. The basis of the
paper is an observation that a method used by Sion for obtaining a selection can by
a slight alteration be made to work in more general circumstances. The rest of the

paper explores the possibilities of this more general method.

The second paper deals with the question of when the sets of first Baire-
and Borel-class functions coincide. Here the crucial point is a new technique, singled
out as Lemma 1, that allows me to approximate a Borel-1 function with continuous
functions. In & sense, the approximations get simultaneously better and worse, and

this is the crucial idea.

.-

The third paper contains a generalisation of a theorem by Namioka, Phelps
and Preiss. Ribarska obtained a strengthening of the conclusion to the theorem and
Deville pointed out that the original conclusion could be obtained with a weaker
hypothesis. I have weakened the hypothesis a bit more and obtain the same

conclusion as did Ribarska.
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Selection from upper semi-continuous compact-valued mappings.

Abstract.

The aim of this paper is to show that if axiom M (or the continuum
hypothesis) is assumed, then every upper semi-continuous compact-valued map from
the space of irrationals to a compact (not necessarily metric) space has a selection,
which is measurable in the sense that pre-images of Baire measurable sets are
universally measurable. The methods used will ye¢@ld generalisations and easier
proofs of well-known theorems, namely of a selection theorem by Sion [1], and a

representation theorem by loffe [3].

0. Introduction.

It was conjectured by Jgrgen Hoffmann-Jgrgensen that all upper semi-
continuous compact-valued maps of the irrationals into a compact I-it;usdorff space,
K, have a selection, which is measurable in the sense that pge-images of Baire sets
are universally measurable. A result of this kind would have implications in
asymptotic likelihood theory and in the theory for continuity of stochastic
processes. This note shows that such selections indeed do exist, if a special axiom
called axiom M is assumed. Axiom M says that, on the unit interval with the
Lebesgue measure, the union of strictly less than continuum many Lebesgue null-
sets is a Lebesgue null-set. Axiom M is clearly implied by continuum hypothesis and
also by Martin’s axiom, see [5]. First, a general characterisation of minimal usco-
maps is given, showing that images of hereditarily separable spaces by such maps
are separable. Next, a number of selection results are proved, using a method which
is a modification of that used by Sion in [1], leading to the answer to the original
question. Among these results is a generalisation of Sion’s selection result for set-
valued maps with a2 simpler proof. Finally, a new proof of a representation theorem
for set-valued maps by loffe in [3] is given. Again, the new proof is simpler than

Ioffe’s and allows a more general conclusion.



1. Definitions.

All spaces used here will be assumed to be Hausdorff. An usco-map ¢ of X
into Y is a set-valued correspondence which is upper semi-continuous and compact-
valued. For a set-valued correspondgnce we define the kernel: kerg={x:¢(x)=3}); if
¢ is an usco-map then ker¢ is closed. The space of all usco-maps of X into Y are
given a partial order as follows: ¥P<¢ if YP(x) is a subset of ¢(x) for all x€X and
ker=ker¢. An usco-map is said to be minimal if it is minimal in this partial
ordering. A selection from a set-valued correspond@nce, ¢:X—Y, is a function,
f:ker¢ -»Y such that f(x)E¢(x) for all xEkers.

A function is A—B measurable if f{~(B)EA for all BE®B. On any space, X, the
families of sets F(X),G(X),Bo(X),Ba(X) and Mu(X) are the families of closed, open,
Borel, Baire and universally measurable subsets of X, respectively. A subset of X is
universally measurable if it is measurable with respect to any o-finite Radon
measure on X. If A and B are families of sets we say that a funé{ion fis A3
measurable if f~%(B)EA for all BEB.

-

The space of irrationals will be identified with NN equipped with the
product topology. A space is said to be K-analytic if it is the image of NN by an

NS

usco-map. A Souslin scheme is a map, A, of , the set of all finite sequences of

integers, into 2X, the set of subsets of X. Performing the Souslin-operation on A
yc'dds the set

S(A)- U N A(oh).
UENN n€EN

The paving S(F(X)) consists of all subsets of X o¢ the form S(A) where A is a
closed-valued Souslin scheme. We denote by BiX) the o-algebra S(F(X))NCS(F(X)) of

biSouslin-sets. The paving f,(X) is the least o-algebra containing S(F(X)).

A pair consisting of a space, X, and a o-algebra, A4, on X is said to be

Blackwell if
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kerA={c :()A(oIn) 2} eS(FINTY))
n
for all A-valued Souslin-schemes, A. The pair (X,.4) is Blackwell with the selection
property if it is Blackwell and, for all .4-valued Souslin schemes, there exists a

.ALu(NN)—o.A measurable selection from the correspondence o —[}A(cin).
n

The weight of a space is the least cardinal, T, such that the space has a base
of cardinality 7. A space, X, is said to be injective if there exists a universally
measurable injection of X into the real line. If A is a subset of a space X, then A€

is the complement of A in X.

.

2. Minimal usco-maps.

The main result of this section is Proposition 2, which gives a necessary and

sufficient condition for a usco-map to be minimal. We start with a little lemma.

Lemma 1.

For an usco-map ¢:X—Y and an open set GCY define for each x€X

(NG, if xEint((x:p(xI\G <) Ukers®),

¢(G)(x)={ ]
o(x), if x€Ecl({x:4(x)CG}Nkerg).

Then ¢(G) is usco and ¢(G) <.



Proof.
Let F be a closed subset of Y, then
{x:6(G)x)NF =3}
=[{x:¢(x)NFNG®=F} Nint({x : ¢(x)\G <} Ukerg®)]
Ul{x:6(x)NF =)} Ncl({x:¢(x) TG ) Nkerg)]
={x:¢(x)NFNG® =3} Ul{x:¢(x)NF <@} Ncl({x :¢(x) CG}Nkerd)],
since

{(x:6(x)NFNC =z} C
[{x:8(x)NFNC® =2} Nint({x : (x\C < }Ukerg®)]
Ul{x :6(x)NF 3 ) Nel({x :6(x)CG Nkerg)]

We conclude that ¢(G) is usco and the rest of the lemma is immediate.

-

Proposition 2.

An usco-map, ¢:X-Y, is rﬁinimal, if and only if,
(*) {x:6(x)NG =T} Ccl({x:6(x)CG}Nkere)

for each open set GCY.

Proof.

Assume (*) holds for all open subsets of Y and let »:X—Y be an usco-map

such that ¥ <¢ and Y(y)s<é(y). Since ¥(y) is compact we can find an open set U such

that ¥(y)CU and ¢(y)Nlcl(U)I°~@. Then

y E{x:¢x)N[cl(U)I° <@ IN{x : 9(x) CU}



Cel({x:¢(x)Clecl(U)1°}Nkere )N{x : Y(x)CU}, by (*),

Cel({x :p(x) Clel(U) I )Nkery )N{x :p(x)CU}, since ¥ <o.

Hence ({x:9x)Clcl(U)I®}Nkery N{x:¥(x)CU} is nonempty which is a

contradiction, and we conclude that ¢ is minimal.

Now assume that (x) does not hold for the open subset G of Y. That is, there
exists y€int({x:6(x)\G <P} Uker¢®) such that ¢(y)\G is e proper non-empty subset of

#(y). Using Lemma 1 we conclude that ¢ is not minimal. o

We shall now use this characterization to give some properties of minimal
usco-maps. Recall that a function is said to have the Baire property if the pre-
image of every open set is an open set modulo a set of the first':;ategory. Also
recall that a family of sets is said to be Ty-separating if there, for any pair of
distinct points, exists a set from the family that contains one of the points but not

the other. We do not require that the separating set can be chosen such that it

contains, say, the first of the points of the pair.

Corollary 3.

Let ¢:X—Y be a minimal usco-map.

(i) If kero is separable, then ¢(X) is separable.

(ii) Any selection from ¢ has the Baire-property.

(iii) If there exists a countable T,-separating family of open sets in Y, then the set

{x:#¢(x)>1} is of the first category in X.
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Proof.

(i) Let cl{xp)=ker¢ and choose points ypE€¢(xy). If GNg(X)><S for an open set
GCY, then @#{x:6(x)NGC#}Ccl{{x:6(x)CG}Nkery) by Proposition 2. Hence the
open set {x:¢(x)CG} has nonempty intersection with kerg and we find x, such that

Yn E¢(xn) CG.

(ii) Let T be a selection from ¢. Then
{x:6(x)CGINkerg CfHG)C{x:6(x)NG =S} Ccl({x :4(x) TG NNkere
by Proposition 2, and hence f~(G) has the Baire-property for any open subset G of

Y.

(iii) Let {Gp) be a countable Ty-separating family of open subsets of Y. Then
{(x:#8(x)>1 =U({x :¢(x) NG =D N x:8(x) TGy })
n
Qg( cl({x:0(x) CGa W\ x : 6(x) TG D). -

The latter set, as a countable union of sets of the first category, is of the first

category. 0

Let an usco-map, ¢:X—~Y, be given. Given a well-ordering of a base for the

open subsets of Y we explicitly construct a minimal usco-map ¥:X—~Y such that

¥v<o.

Let {G7=7<Q} be a wellordering of a base for the open subsets of Y and use

Lemma 1 to define ¢1-¢(Gl) and, still using the lemma, define inductively for Y<Q:
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= (1 65)Gx). Let ¥= (] ¢o.
Ty P v<a !

By Lemma 1 each ¢'Y is usco, contained in ¢ and has the same kernel so this
is also true for Y. By Proposition 2 the map ¥ is minimal, for
{x: 9(x)NGC =B )= U {x:9(x) NGy 72}
('Y:G.’ CG}

C U (x:pqNGy#2}C U ell{x: ) $5(x)CGy}Nkery)
{7:67 CG) {'Y:G-Y CG) B<LY

Cel( U {x:9(x) QG«/}H kery) Ccl({x:¥(x) CG)Nkery)
(7307 -e)

by the construction and the fact that wg¢7gﬁnv¢ﬁ. ]
<Y .

3. Selection. -

We shall now consider another way of cutting., compact-valued (not
necessarily usco) correspondances down. The approach used here will be very much
like that of Sion in [1], but the results we shall obtain will be more general. The
proofs in the rest of this note will depend on the properties of the following

construction.

For a compact-valued correspondence ¢:X—Y and an open set GCY we define

for each x in X

d(x\G, if ¢(x)\G =g,
¢G(X)={

¢(x), otherwise.



12

Let {G.Y:‘Y<Q} be a Ty-separating family of open subsets of Y, and define
¢'1-¢G1 and, for each Y<(, define inductively: ¢7—( N ¢B)G7. Let v= () Oy

B<LY Y<0
then we have the following consequences.

(i) kerg=kerp.

(i) #Y(x)<1 vYx€eX.

(iii) {x:PG)CG~)={x: [ ¢2(x)CG}= | (x:62(x)CG~} for all x€X.
| Vo ey P T gy AT

(iv) For any open set GCY we have

{x :¢¢Y(x)QG}

=(x: () ¢gRICCIUUx: (] ¢gICCUCYINIx: (] ¢4x)CCy)%)
<Y B<Y B<Y

= U (x:¢ﬁ(x)gG)U( N {x:¢ﬁ(x)QGUG7}ﬂ N (x:¢ﬁ(x)QG7}c).
B<Y B <Y B<Y

Define f:ker¢—Y by {f(x)}=p(x) for all x in kerg$. From the construction we

immediately get the following generalisation of Sion’s result.

Proposition 4.

Let ¢:X—-Y be a compact-valued correspondsnce, {G.Y:’1<w1}

(-2
(]
|

To-

separating family of open subsets of Y such that every open subset of Y is a

countable union of sets from this family, and let 3 be a o-algebra on X such that

{x:¢(x)QG.7}E% for all Y<w,. Then ¢ has a 36 —+Bo measurable selection.
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Proof.

Let ¥ be a selection from ¢ given by the construction above and let
{f(x)}=¥(x) for all x€Eker¢. It is sufficient to prove that f‘l(Ga./)Eil{» for every Y<w,.
By (iii) we have

fUGy)= U (x:¢2(x)CG).
v By B Y

The result follows by (iv) and transfinite induction. ]

In [1] Sion requires that Y be regular. Following [6], Proposition 1-6-2 we find
that on a measurable space (X,X), where ¥ is countably generated, the universally
Y-measurable sets are stable under the union of strictly less than continuum sets
when axiom M is assumed. The proof of the next proposition is similar to the proaf

of Proposition 4.

Proposition 5.

Let X be of countable weight and assume that the weight of Y is strictly less

than continuum. Let ¢:X—-Y be a compact-valued correspondence such that

{x:¢(x)CG} is universally measurable for all open subsets G of Y. Assume axiom M.

Then ¢ has a Mu(X)—-Bo(Y) measurable selection. O

Using Propositions 4 and 5 we obtain the next two propositions.
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Proposition 6.

Let Y be K-analytic, hereditarily Lindeldf and of weiglt4 less than or equal to

N,. Then (Y,Bi(Y)) is Blackwell with the selection property.

Remark: If the K-analytic space Y is regular and hereditarily Lindelof, then all open
subsets of Y are Souslin-F sets. This again implies that Bo(Y)=BHY) and Y is

hereditarily Lindelof.

Proof.

Write Y=¢(NN) where ¢ is usco and let F be an F(Y)-Souslin scheme. The
map w:NN ><NIN —-Y, defined by w(o,7)=¢(a)ﬂ[‘;]F(Tln), is usco and kerF=~%,(kery),
where %, is the projection of NNXNN onto the second coordinale. Let f be a
Borel measurable selection from % and let g:NN - NN be JF,—¥, measurable such
that (7,g(T))Ekeryp for all 7 in kerF (see [2]). Then fog is an f,—f, measurable

selection from F. u]

The proof of the next proposition is similar to the proof of Proposition 6.

Proposition 7.

Let Y be K-analytic of weigth strictly less than continuum and assume axiom

M. Then (Y,Bi(Y)) is Blackwell with the selection property.
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If we are willing to accept weaker measurability properties of selections, this

allows us to weaken the conditions of Propositions 4 and 5.

Proposition 8.

Let X be Lindelof and let Y be of weight less than or eguel to the first

uncountable ordinal. Then every usco-map of X into Y has a Bo(X)-Bal(Y)

measurable selection.

Proof.

Let ¢:X—=Y be usco and let {07=7<w1} be a base for Y. By our construction
we have a selection f from ¢ such that f"(G./)E‘.Bo(X) for all v. I;;t F-QGn be a
closed GG in Y. Then FN¢(X) is Lindeldf, and we can, for each n, find basic open
sets such that Fﬂ¢(X)QL“Jlenﬂ¢(X)g_Gnﬂ¢(X), implying Fﬂe&(X)—Q[m]Gmnﬂé(X). Now
f‘l(F)-Qlﬁlf'i(Gmn)Eﬂw(X). Finally note that Ba(Y) is generated by a family of

closed G 6-sets. O

Proposition 9.

Let X be of countable weight and let Y be of weight less than or equal to

continuum. Assume axiom M. Then every usco-map of X into Y has a Au(X)-+Ba(Y)

measurable selection.
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Proof.

Substitute Mu(X) for Bo(X) and 2w° for w, in the proof for Proposition 8. 0O

Theorem 10.

Let X be separable and Lindelof and let Y be regular. Then every usco-map

of X into Y with nonempty values has a selection, f, with the {following

measurability properties.

(i) (CH) f is Bo(X)—Ba(Y) measurable.

(ii) (CH) If Y also is hereditarily Lindeldf, then f is Bo(X)—Bo(Y) measurable.

Let, in addition, X be of countable weight.

(iii) (M) f is Mu(X)—Ba(Y) measurable. ' -

(iv) (M) If Y also is hereditarily Lindeldf, then £ is Mu(X)—-Bo(Y) measurable.

Proof.

Let ¢:X—Y be a minimal usco-map with nonempty values. Then cl{¢(X)) is
separable and regular, hence, by [4], Theorem 1.5.6., the weight of cl{¢(X)) is less
than or equal to continuum, and so (i) and (iii) follow from Propositions 8 and 9. If

Y is hereditarily Lindeldf, then (ii) and (iv) follow from Propositions 4 and 5. n]

Theorem 10 (iii) implies that, under axiom M, all compact Hausdorff spaces
with the Baire o-algebra are Blackwell with the selection property. But in the case

where the range space is compact we can obtain conclusions (i) and (iii) of Theorem
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10 with weaker conditions on the domain space.

Theorem 11.

Let Y be compact of weight 7 and let ¢:X—~Y be usco. Then ¢ has a selection,

f, with the following measurability properties.

(i) If 7<N,, then f is Bo(X)—-Ba(Y) measurable. -
(ii) If ‘rg2R°, then f is Mu(X)—>Ba(Y) measurable.
Remark.

If X is separable then the weight of cl{#(X)) is less than or equal to

continuum.

Proof. X

Let C(Y) be the space of continuous functions from Y to R equipped with the
topology of uniform convergence. Then there is a dense subset, C, of C(Y) of
cardinality 7. (Use the Stone-Weierstra8 Theorem. It can be found in [7].) The
family of sets U,={ {f <a}: a€Q, f€C} generates the Baire o-algebra on Y and is of
cardinality 7. Let U, be a base for Y of cardinality 7. Then U=U,UU, is also a
base for Y of cardinality 7, and Ba(Y) is contained in the o-algebra generated by

Uu.

If 7<N,, then by property (iii) of the construction of the selection we have
£ (U)YCBo(X) and (i) follows. If 7g2x°, then by axiom M we have {™(U)CMu(X)

and (ii) follows. O
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4. Representation.

Finally, we shall prove a representation theorem analoguous to that of [3]. In
comparison to Theorem 2 and Corollary 2.1 in [3], Theorem 13 below gives only a bit
more information about the measurability properties we can require selections to
have. The main reason for including Theorem 13 in the present paper is that it
shows how the method of selection that we have employed here can be applied to
obtain representations. Furthermore, we can avoid using U-homomorphisms. We shall

first prove a set-theoretical lemma.

Lemma 12.

Let Y be regular of weight 7, let U, be a base for Y of cardinality 7 and let
U=, U( [cI(UN®: UEUI={U(T):Y <7}

Let sCT? be the set of bijections from 7 to T.

For any y€Y there exists 0 €X such that

yEU(e(Y)) = 3B<Y: yEU(e(BN® CUle(Y)).

Proof.

Let Y<7 and assume {oﬁ:ﬁ <Y}C¥X have been defined so that:
@) yeUePm), <8 =3t <my euePen® CuePmn); and
(i) V<7 3E<Y: o= VoB<t
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and Pm=otm  ve<B<y.

According to (ii) we can define YEZ by w(n)=kig’yoﬁ(17).

If yEU() and for no B<Y we have y€cU®@BNCCUX), find € such that

y Ecl(U)CU(Y), where UEU, and U(€)=[cl(U)I°. In this case we let

7 Ea if 77='Y,
o (M=17, if n=¢
~ ¥(17), otherwise.
Otherwise let o "=t.

Finally put o=lim o’. (8]
<1

Theorem 13.

Let ¢:X—~Y be usco with nonempty values, let Y be regular and let 7 be the

ordinal corresponding to the weight of cl(¢(X)). Let the spece 77 have the topology

induced by the base consisting of sets of the form {o’:0'lY=clY}, c€77,Y<T. Let

SC77 be the set of bijections from T to 7.

There exists a function h:Xx¥-~Y such that x—h(x,0c) has measurability

properties as indicated by Propositions 4 to 11, for all o €X. Furthermore o —h(x,0)

is continuous from ¥ to Y for all x€X and h(x,X)=¢(x) for all x€X.

Proof.

Let U, be a base of cardinality 7 for cl(¢(X)) and

U=U, U{[c{WI: UEW,)={U(Y): Y <T).
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Define ¢J=¢ , 02=C N ¢ ) and {h(x,0)}= (] ¢2(x). This produces
=%y » #7098 duen) Sy

selections with the desired properties. That any y€¢(X) can be targeted follows

from Lemma 12. 0
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When are Borel functions Baire functions ?

Abstract.

The following two theorems give the flavour of what will be proved.

Theorem.

Let Y be a complete metric space. Then the families of first Baire class
functions and of first Borel class functions from [0,1] to Y coincide, if and only if,

Y is connected and locally connected.

Theorem.

Let Y be a separable metric space. Then the families” of second Baire class
functions and of second Borel class functions from [0,1] to Y coincide, if and only
if, for all finite sequences, Ul,...,Uq, of nonempty open subsets of Y there exists a

continuous function, ¢:(0,1]1-Y, such that ¢_1(Ui)#ﬂ for all i<q.
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0. Introduction.

Given metric spaces X and Y we let Bay(X,Y) be the family of all continuous
functions from X to Y. For eall ordinals 0<a<w; we define the Baire class «,
denoted by Bay(X,Y), to be the family of all limits of pointwise convergent
sequences of functions from ﬁga‘Baﬁ(X,Y). A class o Borel function. from X to Y
(0<a<w,) is a function, f, such that f~G) is a Borel set of additive class o
whenever G is an open subset of Y. For reference on Borel sets see [1]. We denote

the family of all class oo Borel functions by Boy(X,Y).

The first Baire and Borel classes do not coincide in general. The function
£:0,11-{0,1) defined by f(1)=1 and f(t)=0 when t<1 is of first Borel class, but

clearly is not of first Baire class.

The Lebesgue-Hausdorff Theorem in [1], page 391 tells us that if X is metric
and if Y is an n-dimensional cube, [0,1]7, n€N, or the Hilberf cube, [0,1]]N, then the

first Baire and Borel classes of functions from X to Y do coincide.

More general theorems of this kind has been proved. Rolewicz showed in [4]
that if Y is a separable convex subset of a normal linear space, then the first Baire
and Borel classes of functions from X to Y coincide. In [2] Hansell gave an extension
of the Lebesgue-Hausdorff Theorem asserting that, if every continuous function
from a closed subset of X to Y can be extended continuously to X, then every o-
discrete (see section 2) first Borel class function from X to Y is also of first Baire
class. It was pointed out that Hansell’s proof was incomplete, and in [5] Rogers gave
a corrected version of Hansell's statement, namely that if every continuous function

from a closed subset of X to Y can be extended continuously to X, and if, for each
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point y in Y and each neighbourhood L of y, there is a second neighbourhood N of
y such that, for each closed subset F of X and each continuous map f from F to N,
there is a continuous extension of f mapping X into L, then every o-discrete first

Borel class function from X to Y is also of first Baire class.

In the present paper we prove that all o-discrete first Borel class functions
from a metric space into a metric, arcwise connected and locally arcwise connected
space are of first Baire class. We then look for a converse to this result and prove
the following theorem. We write I[=[0,1] and X(X,Y) for the class of o-discrete

functions from X to Y.

Theorem 2. Let Y be complete metric. Then the following three.statements are
equivalent: (i) Y is connected and locally connected; (ii) Ba,(I,Y)=Bo,(I,Y); and (iii)

Ba,(X,Y)=Bo,(X,Y)NZ(X,Y) for all metric spaces X.

Having considered the case for the first Baire and Borel classes, we then
turn our attention to the higher classes. Here the classic theorem is the Banach
Theorem which can be found in [1] or in [10]. This theorem uses the concept of an
analytically representable function. The analytically representable functions of
class one are the first Borel class functions and the analytically representable
functions of class o are the functions which are pointwise limits of analytically
representable functions of classes lower than . The Banach Theorem tells us that
if X is metric and if Y is separable and metric then the set of analytically

representable functions of class a coincide with the set of Borel class a (a+l1)
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functions when « is finite (infinite). Another theorem by Banach in [10] states that
if Y is also arcwise connected then the set of Baire class oo functions can replace
the analytically representable functions of class o in the Banach Theorem for a>2.
In [6] Brown showed in particular that if X is compact metric and Y is arcwise
connected, separable and metric, then the class of all Borel functions and the class
of all Baire functionscoincide. In [2] Hansell generalised the Banach Theorem to the
case where Y need not be separable, using the notion of a o-discrete function.
Hansell’s result states that if Y is metric and f:X—-Y is o-discrete and of Borel
class o (o+1) then f is analytically representable of class a, when a is finite

(infinite).

Again we find that a very simple ‘connectedness’ condition tells us when the
Baire and Borel classes coincide. We shall prove the following theorem.
Theorem 3. Let Y be a separable metric space. The following statements are
equivalent: (i) ‘For all finite sequences, Ul,...,Uq, of nonempty open subsets of Y,
there exists a continuous function ¢:1—-Y with ¢'1(Ui)9é9 for all i<Lq; (i)
Ba,(X,Y)=Bo,(X,Y) for all metric spaces X; (iii) For each metric space X and for each
finite (countable, infinite) ordinal o >2, Bay(X,Y) coincides with Boyx(X,Y)

(‘.BOa_'_l(X,Y)).

In [6] Brown makes a remark that implies that when Y is a separable metric
space the condition (i) implies that UaZoﬁaa(X,Y)-UaZO%oa(X,Y) for all metric
spaces X. His remark seems to imply the converse. He gives proof of neither of

these results.
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1. Def initions.

A space is said to be locally arcwise connected, if each point of the space
has an arbitrarily small ( not necessarily open ) arcwise connected neighbourhood.
This is equivalent to requiring that, for all €, every point of the space must have
an open neighbourhood, such that any two points of the neighbourhood, can be

joined with an arc of diameter less than e.

We say that a family of sets A refines a second family of sets B, if each set
of A is contained in a set of B, and UA=UB. We write this A4 <B. Given any set A
in a metric space X and €¢>0, we denote the generali§ed open ball with ‘centre’ A and

radius € as B(A,e)={x€X :d(x,A) <e}.



27
2. o-discrete functions.

We shall make use of the notion of a o-discrete function, as developed by
A.H.Stone and R.W.Hansell, to allow us to consider general metric spaces, using
techniques normally used for separable metric spaces. In this section the necessary
definitions and results concerning o-discrete functions will be given. The reader is
refered to [2], [3] and [8] for further informf:\tion. All spaces are assumed to be

metric.

A family of sets in a topological space is said to be discrete, if each point of
the space has a neighbourhood that meets at most‘one of the sets of the family.
The family is said to be uniformly discrete, if there exists ¢>0, such that the
distance between any two sets of the family is greater than €. A family of sets is
said to be o-discrete, if the family can be decomposed into countably many
subfamilies, each of which are discrete. By [8], Lemma 2, and .its proof, if A is a o-
discrete family of Fg-sets, then there exists a uniformly o-discrete family, B, of

Fo-sets such that B<.A.

A family of sets is a base for a function from one topological space into
another, if the pre-image of any open set is the union of sets from the family. A
function is said to be o-discrete, if it has a o-discrete base. The family of all
o-discrete functions from X to Y is denoted by X(X,Y). In any metric space there
exists a o-discrete family of open sets, forming a base for the topology, (see
[1],p.235.) Using this it can be shown that any continuous map with metric range is
o-discrete. The family X(X,Y) is closed under pointwise limits ([3]), so all Baire class

a functions, aa<w,, are o-discrete. In [1], page 386, it is shown that functions of
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Baire class o are of Borel class o, respectively a+l, according as o is finite or
infinite. In [2] it is shown that a o-discrete Borel class o function, where o >2, is
the pointwise limit of a sequence of o-discrete Borel functions, all of which are of
classes strictly lower than o. Hence, if for some a>1 Bay(X,Y) is equal to
Bog (X,Y)NZ(X,Y), respectively Bo,, +1(X,Y)OE(X,Y), according as o is finite or
infinite, then we Thave that fBaB(X,Y) is equal to fBoB(X,Y)ﬂZ(X,Y)
(fBoﬁ_._l(X,Y)ﬂZ(X,Y)) for all finite (infinite) ordinals B greater than a. A o-discrete
function of the first Borel class from one metric space into another, has a
o-discrete closed base ([2]). Every function from a metric space to a separable
metric space is o-discrete, and every Borel function from a space, that is a Souslin-
F set in some complete metric space, to a metric space is o-discrete ([2]). It is
consistent with and independent of ZFC to assume that all Borel fupctions.from a

metric space to a metric space are o-discrete, ( see [9].)



29
3. First Baire class functions.

We shall start with two lemmas. The first is purely technical.

Lemma 1.

Let A be a o-discrete family of closed sets covering the meétric space X.

Then there exists families, P s p=1,2,..., of closed sets such that:

ugP ~< A3
p

+
each member of 3P is contained in some member of gP 11 for all p;

3P is uniformly discrete for all p; and

uusP=x.
P

Proof. -

Write A as the countable union of discrete families &f closed sets ‘Ak’ and,

for each j, let C.={A\ U U.Ak:AE.A-} and let C=UC.. Then C is a disjoint,

I k<) J j?

o-discrete family of Fg-sets such that C<.A. By [8], Lemma 2, and its proof, we can

write each CE€C as an increasing union of Fy-sets, C=l'{Dn, where the families

{D:C€C) are uniformly discrete for all n. Write each DE=%‘JF8", where the sets

FIM are closed. Then the families °.Bp={ U FIM.Cee), peN, satisfy the
C nm<p C

conclusion of the lemma. 0

Our second lemma provides us with approximating functions to a given

function.



30

Lemma 2.

Let X be a metric space and let Y be a metric and arcwise connected space.

Let f:X—Y be given and let Pp, n=1,...,p be families of non-empty closed sets in X

such that :

Dp is uniformly discrete for all n;

each member of fDn+1 is contained in some member of P, for
all n<p; and
X;,X, EA €Dy, implies that f(x;) and f(x;) can be joined with

an arc of diameter less than 277,

Then there exists a continuous function g:X—Y such that when x€UDy,

.-

n<p, then d(f(x),g(x)) S2-n+2.

Proof.

Since the families 9P, n<p, are uniformly discrete, we can find
€l>2€2>...>2p-l€p>0 so that {B(A,eq):A€ED,) is a discrete family of open sets for
each n<p. Observe that, for ACC with AEfDM_l and C€9,, we have
B(A,en+1)CB(C,en/2). Pick y’€f(X) and yAEf(A) for all Aengpﬂ)"' For each AGEDl let
¢‘k ¢:1-Y be an arc with ¢}A(0)=y' and ¢}A,(1)=VA' For each A€Dp, 1<n<p there is a
unique Ceﬂ)n_l with A CC, since the family EDn_l is disjoint. Let ¢R ¢:]—=Y be an arc

of diameter at most 2'"+1, with ¢2(0)=yc and ¢R(1)=yA.

We shall define a sequence 881182+ 8D of continuous functions from X to

Y and arrange that the function g=€p satisfies the requirements of the lemma. We
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start the inductive process by taking
go(x)=y’

for all x in X.

Write

Since the family
(B(A,el) tA Eivl}

is discrete, the sets Dl and El are disjoint closed sgts. Write
d(x,E,)
d(x,D)+d(x,E,)

so that hl is a continuous function on X taking the value 1 on Dl and the value 0

h(x)=
on E;. Take -

gl(x)-go(x)-y’ on Ey, .

gl(x)=yA on ﬁ(_A—,Zl/—ﬁ for each A€3,, and
gl(X)=¢A1A ohy(x) on B(A,eq\ m for each A€D;.
Since the sets E;, B(A,e,/2), B(A,e \B(A€,/2), for A€, are disjoint with union X,
the function gy is well-defined. We verify that gy is continuous on X. For x,€X we
can choose a neighbourhood N of X that meets at most one set of the family
{m:AEfDI}.

If N meets none of these sets gl(x)==g0(x) for x in N, and g1 is continuous at x,.
Suppose that N meets B(A_,el) for some A in ibl, but meets no set B(A—’,€1) with A'EfDl,
A’s#A. Then, on

N\B(A,¢,),
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hl takes the value 0 and ) takes the value y’. Thus
gl(x)=¢1\ oh;(x),

both on B(A,¢;) and on N\B(A,¢,) and so on N. Hence g is again continuous at x,.

In particular, g is a continuous function on X, with
g(x)=gg(x) on Eq=X\ U{B(A,el):AefDI)
and

gy(x)=y, on B(A,e/2) for each AED,.

Now suppose that for some n, 1<n<p, we have defined continuous functions
g)8se-wBn ©ON X so that )
gn(x)=g,_1(x) on Eq=X\ J{B(A,eq): AEDp}
and
gn(x)=y, on B(A,eq/2) for each AEDy,.
Write
En+1-X\|_J{B(A,en+1): AED 1)
Dpyy=U(B(Ak 1 /2):A€D ).
Since the family of sets
{B(Ae,  ):AED 4}

is discrete, the sets En +1 and Dn +] 8Te disjoint closed sets. Hence the function
dx,E._.4)
by 1™)= 355 )+'3?i E_..)
*n+l “n+l

is a continuous function on X taking the value 1 on Dn+1 and the value O on En+1'

Take
gn=1(x)-=gn(x) on E_,q

gn+1(x)=yA on B(A,en+l/2) for each AE‘.'Dn+1,
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gn+1(x)=¢g‘+1 Ohn+1 on B(A,en+1)\W for each A in EDn+1.
Since we have assigned values to Bh+1 ON 8 family of disjoint sets with union X, the
function 8n+1 is well-defined. We verify that 8h+1 is continuous on X. Let x, be
any point of X. If x4, belongs to none of the sets of the discrete femily
(B(Aye_ 2 AED L)
of closed sets we can choose a neighbourhood N of x, that meets none of these
sets. Then gn_,;l(x)-gn(x) on N and so Bn41 1S c;antinuous at X5. Suppose that
X0 € By, 1)

for some A65Dn+1. Then

X,EB(Cyen/2)
for just one C in P,. Now we can take N to be a neighbourhood of x, contained in
B(C,eq/2) that necessarily meets B(A,€n+1) but meets no set B(A’,enﬂ_),with A'EfDn+1,

A’>£A., Now on
N\B(A,e  JCE ¢

hn+1 takes the value 0 and gn+1(x)=-gn(x)-yc, since NCB(C,en/2), and so

gne1(0=8Rton, L),
We also have

gn+l(}§)=¢2+1 Ohn+l(X)
on

NNB(Ae,, \BlAe, ,172).

Further, on W, the function hn+l(X) takes the 1 and gn+1(X) takes the
value Yp SO that again

Ene 108} Ohp100).

Thus gn+1(x)=¢2+lohn+1(x) on N and 8n4+ is continuous at x,. It follows, in

)
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particular, from these considerations that when gn+l(x)9égn(XJ we have
gn+1(x)==¢2+1 Ohn+1(X)
and

Zn(x)-YC-
Since the arc in Y given by ¢R+1(t), 0<Lt<], is of diameter at most 2'", we have
dlgp 41 ()ienxN <27,

for all x in X.

Proceeding inductively in this way we define continuous functions
(81s++»Ep~8 ON X satisfying
gn(x)=y, for x€A EfD,;,
for 1<n<p, and
| dlgn(x),e,, xN <27, -
for x€X and 1 <n<p. Thus )
d(g(x),gn(x)) g2’“-|>2'"'1+...+2'p+1 <2t
for x€X and 1<n<p. Now, if x€A€D,, 1 <n<p, we have
d(g(x),y ,)=d(g(x),en(x) <271,
Since yAef(A) and any two points of f(A) can be joined by an arc of diameter less
than 27, we have
d(f(x)y 4) <27
Hence

d(f(x),g(x)) <27+2

as required. (N}
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Theorem 1.

Let X be a metric space and ]let Y be an, arcwise connected and locally

arcwise connected metric space. Then Bo,(X,Y)NI(X,Y)=Ba,(X,Y).

Proof .

Every first Baire class function is o-discrete and of first Borel class, so let
f€Bo,(X,Y)NZ(X,Y). We shall then define 8 sequence of continuous functions,

converging pointwise to f.

Using locally arcwise connectedness find, for each point YyE€Y and each n, an

open neighbourhood Ug(y) of y such that any two points of Up(y) can be joined

-
-

with an arc of diameter at most 277,

Since f is o-discrete and of first Borel class, f hes a.cr-discrete closed base,
which we will denote by A. For each n define Ay={A€A:3y€Y f(A)CUx(y)}. Note

that UAp=X for each n.

For each n apply Lemma 1 to the family A, to find families of closed sets ‘:BE
satisfying:
each merﬁber of ?Bg is contained in some member of {f ! (Uy(y)):y€Y}
each member of mﬁ is contained in some member of ‘.Bg+1;
‘.Bg is uniformly discrete for all p; and

%’JfBg is a cover of X (for all n).

We shall use these families to construct a new set of families of closed sets
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by defining, for all p and n,

Dp={A;NASN...NAp: A EBR, for all m<n).
Note that fbg is uniformly discrete, that each member of fbg +1 is conteined in some
member of ng and that Lg‘.Dg covers X for all n. For each p epply Lemma 2 to { and
the families ng, n<p, to yield continuous functions gp:X—Y such that, when

XE€ ngpmﬂ and p>n, then d(f(x),sp(x))gfn"'z.

The sequence {gp} converges pointwise to f. To see this let ¢ >0 and x€X be
given. Find n such that 2'n+2ge and find p>n such that xEUng. Then -

d(f(x),gq(x))<e for all q>p. ‘ 0

We shall now show that the converse of Theorem 1 is true when X is the

unit interval I and Y is complete. This will be done through a series 6}‘ lemmas.

Lemma 3.

Assume Ba,([,Y)=Bo,(l,Y) where Y is a metric space. Then for all ¢>0 and all

YEY there exists an open neighbourhood U(y) of y such that, for all nonempty open

subsets Uy,U; of U(y), there exists ¢ €Bao(L,Y) with ¢(i)€U, for i=0,1 and diame(l) <e.

Proof.

Assume the statement is not true. Then we can find €¢>0 and y€Y such that,
in all the open balls B(y,2 "¢), there exist two nonempty open sets, U(n,0) and U(n,1),

with the property that all arcs, p€EBay(l,Y), with ¢(i)€U(n,i) for i=0,1, satisfies
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diam¢(I) >e. For each n and ipick a point y(n,i)€U(n,i)

Let o:INX{0,1}—~Q be a 1-1 map such that for any open interval (t,t,)CI

there exists n with ty;<oa(n,0) <oa(n,1)<t,. Define the function f:I-Y by
y, if tENa(IN X{0,1}),
f(t)=

y(n,i), if t=a(n,i), (n,i) €N X{0,1}.
Note that f(I) is contained in B(y,e/2). Since the y(n,i) converge to y, the function f

is of the first Borel class, and so, by assumption, there exists a sequence,

{¢k} CBa(l,Y), converging pointwise to f.

Define for each m the set Hm=k§m¢i’[ Y\§(y,e—/2)]. Then each Hy, is open and
dense. To see this let 0<t;<t,;<1 and find n such that to <a(n,0)<a(n,1)<t,. The
sequence (¢k} converges pointwise to f, so we can find k>m so big that
¢k(a(n,i))€U(n,i) for i=0,1. By the definition of U(n,i), i=0,1, we have
diam¢k(a(n,0),a(n,l))>e. So there exists t,€(a(n,0),a(n,1)) ~ such that

8, (1) EV\B(y,e/2). )

Using the Baire category theorem we get QHm;-éQ, which is a contradiction

with OHp CI(Y\B(y,e/2))~2. o

Lemma 4.

U, and ending in U,.
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proof.

The first implication is trivial. The second implication of the lemma implies
that Y is locally connected. To see this let €>0, YEY and let U be an open
neighbourhood U of y, such that any two nonempty open sets UO’ Ul contained in U
can be joined with an arc of diameter less than €/3 starting in Uy and ending in Ul'
Let VCY be the set obtained from U by adding to U all arcs intersecting U having
diameter less than e€/3. We prove that V is connected. Indeed, if V-GOUGI, where
GO and Gl are non-empty, disjoint relatively open subsets of V, then each arc in V
lies in either GO or in Gl' Since each point of V\U lies, by definition, on an arc iﬁ v
that intersects U, it follows that UﬂGo;éQ and ti:at UﬁGl;é@. Since UﬂGO and
UﬂG1 are open sets, we can find an arc of diameter less than €/3 joining UI’TG0 and
UﬂGl. By definition this arc lies in V, which is impossible since it intersects both
GO and Gl' Finally we observe that diam(U)<e/3, hence d.iam(V)g2e/3<e, which

shows that V is a connected neighbourhood of y of diameter less than €.

Now [7], Theorem 1, p.254 shows that Y is locally arcwise connected. O

Lemma 5.

Let Y be complete and assume that Ba,(I,Y)=Bo,(l,Y). Then Y is arcwise

connected.

Proof.

Let yo,¥v:€Y. We shall define an arc joining these two points. Use Lemma 3

and Lemma 4 to find open neighbourhoods UgyU; of y, and y,;, respectively, such
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that any pair of points of U, can be joined with an arc, and any pair of points of U,

can be joined with an arc..

Yo, if t=0,
The function f(t)= from I to Y is of first Borel class. By

ys if t>0,
assumption f is then of first Baire class, so there exists an arc ¢EBay(l,Y) with
¢(i)€Ui for i=0,1. Join y, to ¢(0) and ¢(1) to y, with arcs. Then these three arcs

together join y, and y,. ]

Theorem 2.

Let Y be complete metric. Then the following three statements are

equivalent:

63 Y is connected and locally connected;

(ii) Ba,(I,Y)=Bo,(L,Y); and il
(iii) Ba,(X,Y)=Bo,(X,Y)NZ(X,Y) for all metric spaces X. .
Remark.

The implication: Y is arcwise connected and locally arcwise connected = (iii),

is the statement of Theorem 1 which does not assume that Y is complete.

Proof.

Theorem 1, p.254 in [7] shows that (i) implies that Y is locally arcwise
connected. This again implies that Y is arcwise connected. To see this let y€Y and
let U be the union of all arcs going through y. Since Y is locally arcwise connected

U is a non-empty clopen set. Since Y is connected we conclude that U equals Y, and
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hence that Y is arcwise connected. Now, to obtain the conclusion of the theorem,
combine Lemma 3, Lemma 4, Lemma 5 and Theorem 1 and note that every function

from I to Y is o-discrete. 0

Note that the proofs of Lemma 3 and Lemma 5 still work when I is replaced
by a metric space X containing a homeomorphic copy of I. Therefore we immediately

get the following corollary.

Corollary.

-

Let X b

a metric space that contains a8 homeomorphic copy of I. Let Y be a

complete metric space. Then Ba,(X,Y)=Bo,(X,Y)NX(X,Y), if and only if, Y is locally

connected and connected. 8]

Remark. The remark after Theorem 2 applies here as well.

Next we shall look at some examples. The first will show that Lemma 4 and
Lemma S fail to be true in general when Y is not complete, and that it is not enough
to assume that Y is a Kgy-set in a complete separable metric space, to obtain the

conclusions of the lemmas.

We will be working in the Hilbert cube IN, equipped with the complete metric

d((ti),(si))=2 27 [ti-s; |, end we will let %; be the projection on the i’th coordinate.
i
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Example 1.

We shall define a Kg-set YCINN such that:

(i) Bo,(X,Y)=Ba,(X,Y) for all metric spaces X; and

(ii) Y is not locally arcwise connected nor arcwise connected.

For all p let Yp={(t;)EIN:tp=l, t,=0 Vi>p }. Then {Yp:p€EN]) is a countable

and disjoint collection of compact sets. Define Y= %)JYP.

(i) Let f€Bo,(X,Y). Then wkofEfBo!(X,I) for each k, since the projection is
continuous. By Theorem 1 there exist sequences of continuous functions

(gﬂ')(;ﬁao(x,l) converging pointwise to wkof for each k.

Now gm=(gin, g'zn, vee s g'n'}, 1, 0, 0, ... ) is a continous function from X to Ym+1

and {g™} converges pointwise to f.

O

-

(ii) Let ¢:I-Y be an arc. Then ¢"1(Yp);é® for exactly one p for otherwise we
could write I as a disjoint union of countably many but at least two nonempty

closed sets, which is impossible by the Sierpinski Theorem in [11], p440.

This shows that Y is not arcwise connected. In fact it also shows that Y is
not locally arcwise connected, for any open nonempty subset of Y intersects
infinitely many of the sets {Yp:pEN} and, as we have just seen, a pair of points

that do not lie in one of these sets can not be joined with an arc. O

If a metric space Y satisfies Ba,(I,Y)=Bo,(1,Y), then Y must have the following
two properties which we call P1 and Pz.

Pl: For all finite sequences of nonempty open sets Ul,Uz,...,UnCY there
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exists an arc ¢ €Bay(1,Y) such that ¢_‘(Ui);£® for all i<n.
P2: For all ¢e>0 and all y€Y there exists an open neighbourhood U of y such
that, for all finite sequences of nonempty open sets Ul,Uz,...,UnCU, there exists an

arc ¢ €Bay(,Y) such that ¢7(U,)>@ for all i<n and such that diamg(l) <e.

That Pl must hold can be shown with an argument similar to that in the
proof of Lemma 5, and that P2 must hold can be shown along the line of the proof

of Lemma 3.

Conversely, if a complete space Y satisfied Pl and P2 then by Lemma 4 it
would be arcwise connected and locally arcwise conqected. If Y were also separable,
then we would have Ba,(X,Y)=Bo,(X,Y) for all metric spaces X. The next example
shows that this conclusion fails when Y is not complete. Indeed, it shows that the
conclusion fails for a space that satisfies l“1 and P2 and is a Ko-sé{ in a complete

separable metric space. .

Example 2.

There exists a Kg-subset Y of IN satisfying Pl and P2 but where

Ba,(1,Y) >=<Bo,(1,Y).

We shall construct the set Y. Consider the subsets of IN
Yh-tt)eMitp=1, t,=0 Vi>p )
Y3-((t)eMN:itp=1/2, t.=0 Vi>p ).
These sets are disjoint. To see this assume that YgllﬂYgi is non-empty. We cannot
have p,>¢p, because of the restriction on the last non-zero coordinate. For the same

reason we cannot have j, #j,.
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The space IN has a countable base of sets of the form
leozx..’XOkX]XIX.‘.
with 01,02,...,01( non-empty open subsets of I, so the set of all finite sequences of
sets from this base is countable. We denote it by
i g4 i s
{(U3, Uy, ey Ua(i) ): ieEN).
Note that the function o:IN-IN determines the length of each of the finite

sequences.

For each i there exists a q(i) such that ﬂq(U§)=l for all g >q(i) and all j<o(i).
Let p(1)=max{q(1),3} and define inductively p(i+1)=max{q(i+1),(p(i)+1)}. Then {p(i)} is a
strictly increasing sequence of integers, all bi'gger than 3, and such that
Ul Nyl );éQ and UfjﬂYg(i);éQ for all i and j<o(i). To see this let us fix i and j
Ip(i)-l

pli

and write Ui-*==V><II\J where V is an open subset of . Let (tl,-t—z,...,tp(i)_l)EV.

i
Then (tl,tz,. “toi)- 1,1 0,0,.. .)EU ﬁYp[l) and (tl,tz,. st pi)- 1,2,0 0,...)EU. an(x)

For each i and j<o(i) pick a point ugeUgﬂYl For all 1 let

p(i)’
yi=(0,1,0,0,...,0,1,0,0,...), where the second 1 is on the p(i)’-th coordinate. Note that

the distance between yi and y=(0,1,0,0,...) is 2-p(1)’ and that 2-p(1)$2-3 for all i.

For each i we will define a continuous piecewise linear function ¢11:I—~Y11)(i) b

i, 1
v if ts‘2d(i)

. i i o . i i)-
m(t)-{ YTt ()’2"(‘)(“ T GG Rem e WEe
1
uj+(t- ())20'(1)()’ -u )» if (l)<t§a(1) 20G)’

Note that Y:;(i) is convex and that ¢il(l) is the union of o(i) straight-line segments

joining yl to the points uf,

Let N={i€N: dlam[ gU( U']gl/"} For each i€N let ¢ I—oY (i) be a piecewise
4 <o)
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linear continuous function satisfying:
¢-2(I)0Ui-7éﬁ Vj<ol(i); and
d1am¢2(1) gdxam[ U Ul]

J

ji<oli)

We can construct these functions by the method used to construct the functions
ol

The space providing the example is defined by
Y-y uYZu U slm vy sim.
i€EN iEN
Note the following points:
Y is a Kg-set;
any arc P(I)CY must be contained in one of the disjoint sets of which Y
is the union;

the subsets {¢il(l)) of Y ensures that Y satisfies Pl; and -

the subsets {¢i2(]):iEN) of Y ensures that Y satisfies P2,

Let us assume that Ba,(I,Y)=Bo,(,Y) and seek a contradiction to prove that Y

is indeed the example. Define the first Borel class function f:I-Y by
(t,%,0,0,...), if t<1
£(t)= { 2 ’

1,1 00,...), if t=1.
Then, by assumption, we can find a sequence of functions, {5} CBay(l,Y), converging

pointwise to f. When n is sufficiently large the points ¥,(0) and ¥n(1) are near

(t,%,0,0,...) and (1,1,0,0,...). We may assume that p5(DC _eUthil(I) for all n, for all arcs
i

contained in one of the sets ¢12(D’ i€EIN, would have too small a diameter. In fact

wn(l)_C_qb;‘(I) for some i=i(n).

Let y=(0,1,0,0,...), which is in Y%, and for each m define the set

Hm=ngmwﬁl(8(y,f—‘)). Then clearly Hy is open and yiEB(y,ﬁ) for all i. To see that
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Hp is also dense in [},1] let a and b be such that ;<a<b<1. When ¢ is sufficiently
small there is no line that intersects B(f(a),e), B(f(b),e) and {y}UU{yi). However, for
large n we have Pp(a)EB(f(a)e) and Y,(b)EB(f(b),e). But wn(l)(_:¢:1(l) for some i, so,
since Pp((a,b)) cannot be contained in one of the linear segments of ¢il(])’ we see that

¥nl(a,b)) cannot lie on just one of the line segments making up ¢il(l). Therefore

v E€¥n((a,b)) and so Pn((a,b) NBly,1)) 2.

Hence each Hp, is dense end open in [%,1] and so QHmﬁlg,ll#Q by the Baire
category theorem, which is a contradiction with QHmﬂ[%,llgf—l(B(y,%)F-@. We

conclude that Ba,(I,Y)>*Bo,(l,Y) as required. O

Example 3.

Consider the subset of R2
M={(x,sin%):0 <x <1}U{0} X[-1,21U[0,11 X {2} U{11X[0,2]
The space M is metric, separable, compact, complete, arcwise connected and a

continuous image of the real line. But M is not locally arcwise connected and so, by

Theorem 2, we have Ba,(I,M)=<Bo,(I,M).
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4. Second Baire class functions.

Lemma 6.

If U Bag(X,Y)=- Box(X,Y), th f 11 ,
It Y, ag( )agw, o0 (X,Y) en, for all g€NN, for all sequences,

Ul”"’Uq’ of nonempty open subsets of Y and for all sequences, X1eerXqs of distinct

points of X, there exists a continuous function ¢:X-Y with ¢(x;)€U; for all i<q.

Proof.

Let Ul,...,Uq be a sequence of nonempty open subsets of Y and X{yeenXq be a
sequence of distinct points of X. Pick for each i<q a point yieUi. Define the

o-discrete first Borel class function
yp if x=x;, q2>i>1,
f(x)=
vy, otherwise. ’
Then by assumption f is a Baire class a function, for some a <w,, and f(xi)EUi for

all i<q. .

Observe that, whenever a non-continuous function g of Baire class 8 satisfies
g(xi)EUi for all i<q, then there exists 7<8 and a function h of Baire class 7}, such

that h(x;)€U; for all i<q.

Apply this observation to f to yeild a function, f;, of strictly lower Baire
class than that of f, with fl(xi)EUi for all i<q. If f, is continuous, then f, satisfies
the conclusion of the lemma. If f; is not continuous, we apply our observation to f,
to yeild a function f, of strictly lower Baire class than that of f,. We repeat this
process until it halts. The process will halt, since a strictly decreasing sequence of
ordinals can only be finite. The function we have when the process halts satisfies

the conclusion of the lemma. ' a
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Lemma 7.

If Y is separable, metric and X is metric such that for all q€IN, for all

sequences, Fl"“’Fq’ of disjoint closed subsets of X and for all sequences, Ul,...,Uq,

of nonempty open subsets of Y, there exists a continuous function ¢:X—Y with

¢(F)CU; for all i<q, then Ba,(X,Y)=Boy(X,Y).

Proof.

We will first show that all first Borel class functions from X to Y with
finite range are of first Baire class. So let f:X—oY'by a first Borel class function
with finite range. Let {yi:igq} be the finite range, and let, for each m, {Fim: i<q} be
a disjoint family of closed sets such that f'l(yi)-'L'{Fim for every i<q. By
hypothesis we can find continuous functions, ¢n:l—Y, n€N, so that

¢n( U Fim)QB(yi,T") for all i<q. Then the sequence {¢y} converges pointwise to f.
m<n

Now let h:X—~Y be of second Borel class. We shall show that h is of second
Baire class. In [1], pages 389-391, it is proved that all second class Borel functions
from a metric space to a separable metric space are pointwise limits of first Borel
class functions with finite range. By the argument above, all these first Borel class

functions are of first Baire class. Thus h is of second Baire class. ]
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Theorem 3.

Let Y be a separable metric space. Let X be a metric space containing a

homeomorphic copy of the unit interval. The following statements are equivalent:

(i) Ba,(I,Y)=Bo([,Y);

(ii) For all g€N, for all sequences, x,,...,Xq, of distinct points of I and for all

sequences, Ul""’UQ’ of nonempty open subsets of Y, there exists a continuous

function ¢:1-Y with 4;t$(xi)€Ui for all i<q;

(iii) For all g€N, for all sequences, Fl,...,Fq, of disjoint closed subsets of X

and for all sequences, Ul,...,Uq, of nonempty open subsets of Y, there exists a

continuous function ¢:X—-Y with ¢(Fi)gui for all i<q;

(iv) Ba,(X,Y)=Bo,(X,Y);

(v) For each finite (countable, infinite) ordinal o >2 we have Bay(X,Y) equal

to Bog(X,Y) (Bo ,(X,Y)); and
(vi) U Bag(X,Y)= U Bog(X,Y).
o<W o<W,

Proof.
(i) =(ii) follows from the argument of Lemma 6.

(ii)=(iii). By Tietze’s theorem let f:X—~] be a continuous extension of the
function defined by f(x)=é = xEFi. By (ii) we can find a continuous function ¢:I-Y

with ¢(ci|)€Ui for all i<q. The function ¢ of satisfies the condition in (iii).
(iii) =(iv) is Lemma 7.

(iv)=(v) follows from the remark in section 1, or from Banach’s theorem in

[1], page 394.
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(v)=(vi) is trivial.

(vi)=(i). By Lemma 6 we have that I satisfies (ii), since ICX. We have

already noted that (ii) implies (iv) so I satisfies (iv), which is the statement of (i). O

Let X be a topological space and let Y be a metric space. Every o-discrete
second Borel class function from X to Y is, by [2]), Theorem 5, the pointwise limit of
a sequence of o-discrete first Borel class functions, each of which have discrete

range.

Let us assume that X and Y together has the.property that, for every closed
subset F of X, every continuous function with discrete range g:F—Y and every
€>0, there exists a continuous function h:X—Y such that d(h(x),g(x))<e for all

x€F.

Then, using an argument similar to that in Lemma 2, w’e can show that every
o-discrete first Borel class function with discrete range is of first Baire class.
Indeed, let g:X—~Y be a o-discrete first Borel class function with discrete range. Let
{y.y:‘)'EI"} be the discrete range and let, for each n, (F.yn:VEI‘} be a discrete family
of closed sets such that g'l(y7)-%JF7n for each Y. Define continuous functions, gn
by letting gm(x)-y-y, if and only if, xEn ng'Yn’ and note that 'ylél‘nng’Y“ is closed
for every m. Let hy:X—~Y be a continuous function such that d(hy(x),gm(x))<2™™
for all XE’YLEJI’ nng'V“' Then the sequence of functions {hy} converges pointwise to

g, and hence g is of first Baire class. Thus Box(X,Y)NZ(X,Y)=Ba,(X,Y) and we have

proved the following theorem.
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Theorem 4.

Let X be a topological space and let Y be a metric space. Assume that for
every closed subset F of X, every continuous function with discrete range g:F-Y
and every €>0, there exists a continuous function h:X—Y such that d(h(x),g(x))<e

for all x€F. Then Bo,(X,Y)NXZ(X,Y)=Ba,(X,Y). 0
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A Banach space with a Lipschitz Gateaux-smooth bump

has w*-fragmentable dual.

Introduction.

In [1] Namioka, Phelps and Preiss proved a theorem which stated that a
Banach-space with a Gateaux-smooth norm is weak Asplund. Later, in [2], Ribarska
showed that the idea of the proof in [1] could be used to obtain a stronger theorem,
namely that the existence of a Gateaux-smooth norm implies that the dual is
w¥-fragmentable. The w*-fragmentability of the t.:lual implies the weak Asplund
property (see [8]). Then in [3] Deville remarked that the Namioka-Phelps-Preiss
theorem still holds with the strictly weaker (see [6] and [7]) assumptien of existence

of a Lipschitz Gateaux-differentiable bump.

-

The aim of this paper is to use the technique of the Namioka-Phelps-Preiss
theorem to prove that the existence of a Lipschitz Gateaux-differentiable bump
implies that the dual is w*—fragmentable. In fact, we shall assume a slightly weaker

condition; let us state the theorem.
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Theorem.

Let (E,|.]) be a Banach-space such that there exists a Lipschitz bump-
function, ¢:E—R , satisfying
liminf t™ ¢(x+tu) + g(x-tu) - 2¢(x) 1 > 0,

t-ot
for all x,u.

Then (E*,w*) is fragmentable. n]

Before we proceed with the proof we shall state the necessary definitions and

theorems. For further background the reader is referred to [5].

. . ) Aan - negerhiiac
A bump-function is a real-valued function assuming only pesitive values and
with bounded, non-empty support. One should note that we do not need the
positivity assumption, since, if we have a bump which assumes both negative and

positive values, we can take the positive part.

If X is a topological space and p is a metric on it we say that p fragments X
if, for every €>0 and for every non-empty subset Y of X, there exists a non-empty
relatively open subset U of Y whose p-diameter is at most €. A topological space is

said to be fragmentable if there exists a fragmenting metric on it.

A Banach space E is called weak Asplund if every convex function on E is
Gateaux-differentiable at a dense Gs-subset of its domain. In [8] we find the

following theorem: If (E*,w”¥) is fragmentable then E is weak Asplund.

A well-ordered family U = { UE : 0<€<€, } of subsets of the topological



54

space X is said to be a relatively open partitioning of X if Uy=@, UE is a relatively

open subset of X\( nLéEUn) for every £, 0<€<£, and X=UU.

A family QU is said to be a o-relatively open partitioning of X if ‘u=g°u",
where UM, n=1,2,... are relativély open partitionings X and U is a separating o-
relatively open partitioning of X if U separates points. By [4]), Theorem 1.9 a
topological space is fragmentable if and only if it admits’ a separating o-relatively

open partitioning.

To ease notation we shall define
Af(x,u) = f(x+u) + f(x-u) - 2f(x)

for all f,x and u.

With all the artillery in position we can attack the proof. Let us begin with a

Lemma .

The following two statements are equivalent.

(1) There exists a Lipschitz bump-function, ¢:E - R, satisfying, for all x,u,
liminf t7) ¢(x+tu) + ¢(x-tu) - 2¢(x) ] > 0.
t-0*
2) There exists a function p,:E—~R having the following properties:
(i) po(x) > 0;
(ii) Po(Ax) = IN|po(x);
(iii) 3 ¢,C such that B(0,c) C { x : po(x)<l } C B(0,C);
(iv) po is Lipschitz; and
(v) Vx,u€E limsup t7[ po(x+tu) + py(x-tu) - 2ps(x) ] < 0.

t-ot
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Proof of lemma.

The implication (2)=(1) follows immediately upon defining

é(x) = (1 - pe(x) )t
' T | O0€sa

So let us assume that ¢ is a bump with & = suppg¢ C B(0,C), Lipschitz-
constant K, satisfying hmmf t~Ag(x,tu) > 0,
t-0%
for all x,u. Following Leduc [9] we define

h(x) = [¢(tx)dt and po(x) = h(x)~.

Now conditions (i), (ii) and (iii) are trivially satisfied. We shall prove (iv) and (v).

First note that we have Ixl/c < po(x) < ixI/C for all x. Given x and y we can
assume that 0 < Ix|I < lyl. If clyl < CIxl then
| Polx) -poly) | = IxI hpo(x/lxl) - poly/IxI) |
< Ix1 po(iZ) Pol y)2/ | ot - ot )l'dt

Iyl 2
<l LRl E-glC

€ 3
<SS Kix-yl

o3
In case clyl > Cixl we have

0 < poly) - po(x) < lyl/e - IxI/C < ly-xl/c + Ixl/c - IxI/C
< ly-xi/c + (lyl-Ixl)/C < (1/c + 1/O)ly-xl.

This proves (iv). To prove (v) note that since ¢ is Lipschitz we get by Fatou's
lemma that

limsup t”[2h(x) - h(x+tu) - h(x-tu)] < 0.

The differentiability assertion now follows by the chainrule. n}



56
Proof of theorem.

First apply the lemma to yetld a function p, satisfying (i) to (v). For the
sake of easy reference the conditions (i) to (iv) of the lemma will be called condition

(at). Note that (v) is not part of condition ().

Let B* be the dual unit ball. Since E* = %mB* it suffices to show that B* is
a fragmentable space in the weak star topology. To do this it suffices to produce a

separating o-relatively open partitioning of (B*,w*).

Given a function p satisfying condition () we let p be the norm, equivalent

to the original norm, having unit ball conv{ x : p(x)<1 }. Note that p<p.

We shall use the following basic construction.

Let U be contained in B* and let p satisfy condition (). Given € and B we construct
a relatively open partitioning ]

B = { VE 1 0<E<Ep }
of (U,w*) and associate to every element VE of B a non-negative real SE, an element

eseE with p(es)-l and a new function Pes satisfying condition (), in the following

way.

Let Vy=0, s,=0 and eyp, be arbitrary. Assume we have constructed VT)’ Sms e

and Py for all 7<¢ and consider RE = U\( nL<JEVn).
If R$=Q we put £,=¢ and stop the process.

If not, we put

s¢=sup( <x*x> : x*GRE, p(x)<1 ).
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If sE-=O it means that RE-{O}’ by condition (). Then put VE-{O}’ £o=£+1, let e

and p¢ be arbitrary and stop.
If S¢ >0 then there exists eEGE with p(e£)=1 such that
VE = { X*ERE : <x*,es> >(1-e)s£ } #£B.
Moreover, VE is w¥-relatively open in RE‘ We put
qE(x) = inf{ po(x-)\es) : AER },

for all x€E, and pg - p2+ ﬁzqg.

Note that P¢ satisfies condition (o) and that the process stops.

Thus the relatively open partitioning B of U is constructed.

We shall now construct the o-relatively open partitioning U = t{u“ of
(B*,w*). Fix two sequences of positive real numbers §>61>62>... and B,>8,>...
such that

€
Zﬁlz( <3, E-E(<oo and Xe, <.
By
Applying the basic construction with U=B*, p=po, €=€¢, and B=5, we obtain a
relatively open partitioning =u1=( Ué : OgE<El )} of (B¥*,w*) and for all £<£1 we get

s% >0, eéEE and p% satisfying condition (a) with pé(eé)ﬂ.

If we have constructed relatively open partitionings °u1,°u2,...,‘u“ we consider
UE € U= Ug : 0<€<tq }, and apply the basic construction to U=U? with p=p2,

€=€n4q and B=8, ;.

We then get a relatively open partitioning ‘Ug ={ Ugn : Ogn<n§’ } of UE to



58

every element of which a function pgn satisfying condition () and a point 6277 with

pgn(e?n)ﬂ are associated.

Now ‘1.L"+1 = W "U.g : 0<¢<€n } is a relatively open partitioning of B¥ if its
elements U?ﬂ are ordered alphabetically (see [4], prop. 1.5) and ‘Il"+1 is a

refinement of UM.

We shall now see that U is separating.

Let us assume the contrary, i.e. there exist two points xf,x’{EB* such that
they belong to the same element V, of Up for all n. Let sy, pp and ey be the
associated reals, functions and points, respectively, from the construction. By

assumption s >0 for all n.

s

The construction immediately gives us that the following properties hold:

-

@) B* =V, DV, DV, D..D NV D xFxTy

(ii) sp = sup{ <x*x> : x*eV,, pn_l(x)gl ) > 0;

(iii) Vp C{x¥eV,__;: <x™en> >(l-eplsy ) for all n;

Giv) pn_l(en)=1 for all n; and

(v) p% - pﬁ_l + B%q%, where qp(x) = inf{ po(x-Neg) : NER }.

We will derive the following facts.

(a) {pn} is an increasing sequence of functions, all satisfying condition (a),
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converging uniformly on bounded sets to a function poo satisfying condition (o) and

Po £Poo £2pg.

To see this note that

n n
ps < ph=pe+ 3Bl < (1+ 38 pE< 42,
k=1 k=1

so the sequence converges and py<peo <2py. Hence, if |x]| <K, then

2 D 22 S 2 2 K2
pao(x) - %ﬁqu(x) - Polx) = Z‘IB qk(x) < Eﬁkpo(x) < ZB = —0.
n+

c
Thus the sequence pg converges uniformly on bounded sets, hence so does pg.

(b) Sn > sn+1—'S°o > 0.

Using Vn+1 CVq and pp 2P, | We have
0 < 5,41 = supl <x*x> : x*EVn+1, pn(x)<L1 }

.-

< sup{ <x*x> : x*eVn, pn_l(x)gl })=sq . -

(c) en—ex with pm(ew)“l.

To prove this we will show that

{&

ﬁo(en+1 -ep < 10& + 4¢q
,,Ie
for n sufficiently large. The conclusion then follows since éll'llgfao, Z-ﬁ—n <
n

and > epn< oco.

Let n be a positive integer. We have p_ (ep)=1 and qp(ep)=0 so pplep)=1. Let
us estimate p__;(e_. ).
snPy_ylenep) = Supl <x5x> tp 4 (I<hp jlep ) > <xPie 1> > (e, q)8,4p
by positive homogeneity. On the other hand

(1-ep)sp < <xThen> < supl <x\x> : pp(x) <1 lpplen) < Sp+1°
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Therefore
Sn+1
pn-l(en+1) > (1-€n+1)ﬁ > (1-€n+1)(1-6n) > (1-2¢q) > 0.

We can now estimate
PA(ens1) = Poi(®ner) _ 1 - Ppgleny)
B2 83

q%(enﬂ) =

4€n(l-€n) €n
7 <2
Bn Bn

or
anle. 1) < 2En
" n+l Bn
We can express e . as e, =Apep+up, where MER and up €E satisfies
€n
po(Un) = qn(em_l) < 2—B—J: ’
so -

Pn{un) < 2polup) < 4%‘—1 .

Note that for all e such that pp(e)<1 we have <x’f,e> < Sp4p SO

<x¥e> < Sqp41 for all e with Pple)<1, hence PH(x¥) < Sp+1 < Sn-

We now have
|<x¥iep4q - Un - en>| < |<xfie pq - en>1 + [<xtup>|

Ap-11 =
n <x¥,en> <xTen>
2€nSn + 4Es
< e By " < den + 8E
(1-2€n)Sn n Bn

Consequently, using that ﬁo(en)gpn_l(en)=l, we have

f’o(en+1'en) -ﬁo( ()\n-l)en"'u“) < I)\n'llﬁo(en) + ﬁo(u“)
< 4€n + IOE
n
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so {en} converges to eqo.

The fact that poolesc)=1 is immediate from pp—pe uniformly on bounded

sets, ep—ex and pn_l(en)-l. This establishes (c)

For all n we have (l-ep)sy < <xTen> < Prxnlen) < Sp41 Letting n—oo

we observe that s = <x’1",e°°> = <x’2",e°°>.
Note that poo is an equivalent norm with Pac< Peo-.

For all x with peo(x)<1 we have <x¥x> < s for all n, so <x§",x> < Soo

whenever Peo(X)< 1. It follows that pX(x¥) <seo.

Now Poolecs) < Pooless) = 1, so -
S0 = <x’1kseoo> < f”oko(x?‘) < Soos

BE(XT) = S0 and  Pooleso) = 1.

Hence x?‘ and x’{ belong to the subdifferential of P 8t €. We must now
show that Poc is Gateaux-differentiable at e~, since this implies that x?‘=x’2", a

contradiction.

Let K be the Lipschitz constant of p, and note that we have
Apg(x,tu)
= [ po(x+tu) + po(x-tu) JApo(x,tu) + [ polx+tu) - po(x-tu) 12
- [ po(x) - po(x+tu) ]2 - [ polx) - po(x-tu) ]2

< [ po(x+tu) + po(x-tu) JApy(x,tu) + 4K2t2|u |2.

Let ”k} be reals such that qk(eoo) - po(eoo-‘Ykek) for all k, and note that
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qi(ewﬂu) + qﬁ(eoo-tu) - 2qﬁ(eoo) < pﬁ(eoo-'ykekﬂu) + pﬁ(ew-ﬁkek—tu) - 2p12{(e°°)

for all t and u.

By convexity we get

0 < limsup t™'APS(ecs,tu)
< limsupt"lApgo(eog,tu)
= limsup t7 Apg(eoo,tu) + ZﬁﬁAqlz((eoo,tu) ]
< limsup t7Y Apg(eoo,tu) + EB%Ap?(eoo-’Ykek,tu) ]

< limsup t"Apg(eoo,tu) -

+ limsup t~! ngﬁﬁ ( [ pg(eoo—‘ykekﬂu) + pg(ew-vkek-tu) ]Apo(eoo-’Ykek,tu)
+ 4K%% )2 )

+ T 8 ([ pleco-Yyep+tu) + pilecoVyey-tu) RKMuit + K¢l ]
kSN

<M 3T B
kSN

for some constant M, and this sum converges to 0 as N—oo.

Thus we see that poo is Gateaux-differentiable at eo; this is the

contradiction we we sought and the proof is concluded. 0
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