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Introduction to  thesis.

During my time at UCL I have been working in several d ifferent areas. My 

thesis will reflect th is fact in th a t i t  will consist of th ree papers I have w ritten on 

th ree different subjects. The two f ir s t  papers have been submitted for publication 
and the third will be.

The f irs t paper is on measurable selection in usco-maps. The basis of the 
paper is an observation th a t a method used by Sion for obtaining a selection can by 
a slight alteration be made to work in more general circumstances. The rest of the 

paper explores the possibilities of th is more general method.

The second paper deals with the question of when the sets of f ir s t  Baire- 
and Borel-class functions coincide. Here the  crucial point is a new technique, singled 
out as Lemma 1, th a t allows me to approximate a Borel-1 function with continuous 
functions. In a sense, the  approximations get simultaneously better and worse, and 
th is is the crucial idea.

The th ird  paper contains a generalisation of a theorem by Namioka, Phelps 
and Preiss. Ribarska obtained a strengthening of the conclusfon to the theorem and 
Deville pointed out th a t the  original conclusion could be obtained with a weaker 

hypothesis. I have weakened the hypothesis a bit more and obtain the same 

conclusion as did Ribarska.
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Selection from upper semi-continuous compact-valued mappings.

A bstract.

The aim of th is  paper is to show tha t if axiom M (or the continuum 
hypothesis) is assumed, then every  upper semi-continuous compact-valued map from 
the  space of irrationals to a compact (not necessarily metric) space has a selection, 

which is measurable in the sense th a t pre-images of Baire measurable sets  are 
universally measurable. The methods used will yfild generalisations and easier 
proofs of well-known theorems, namely of a selection theorem by Sion [1], and a 
representation theorem by Ioffe [3],

0. Introduction.

It was conjectured by J0rgen Hoffmann-J0rgensen th a t all upper semi- 
continuous compact-valued maps of the irrationals into a compact Hausdorff space, 
K, have a selection, which is measurable in the sense th a t pre-images of Baire sets 
are universally measurable. A resu lt of this kind would have implications in 
asymptotic likelihood theory  and in the  theory  fo r continuity of stochastic 
processes. This note shows th a t such selections indeed do exist, if  a special axiom 
called axiom M is assumed. Axiom M says tha t, on the  unit interval with the 

Lebesgue measure, the  union of s tric tly  less than continuum many Lebesgue null- 
se ts  is a Lebesgue null-set. Axiom M is clearly implied by continuum hypothesis and 

also by M artin’s axiom, see [5]. F irst, a general characterisation of minimal usco- 

maps is given, showing th a t images of hereditarily  separable spaces by such maps 

are separable. Next, a number of selection resu lts are proved, using a method which 
is a modification of th a t used by Sion in [1], leading to  the answer to  the original 

question. Among these resu lts is a generalisation of Sion’s selection resu lt for se t­

valued maps with a simpler proof. Finally, a new proof of a representation theorem 

fo r set-valued maps by Ioffe in [3] is given. Again, th e  new proof is simpler than 
Ioffe’s and allows a more general conclusion.
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1. Definitions.

All spaces used here will be assumed to  be Hausdorff. An usco-map <f> of X 
into Y is a set-valued correspondence which is upper semi-continuous and compact­
valued. For a set-valued correspondence we define the  kernel: ker^-{x :0(x)t«^0}; if 

<t> is an usco-map then ker^ is closed. The space of all usco-maps of X into Y are
given a partial order as follows: if  is a subset of ^(x) fo r all xEX and
ker$=ker0. An usco-map is said to be minimal if it is minimal in th is  partial 

ordering. A selection from a set-valued correspondence, 0:X-*Y, is a function, 
f:ker0-*Y such th a t f(x)E0(x) for all xEkercfr.

A function is A —H measurable if f -1(B)E.X fo r all BE®. On any space, X, the
families of sets ?(X),Q(X),®o(X),®a(X) and ^ItiXX) are the  families of closed, open,
Borel, Baire and universally measurable subsets of X, respectively . A subset of X is 

universally measurable if it is measurable with respect to  any cr-finite Radon 
measure on X. If A  and ® are families of sets we say th a t a function f  is ~4-*® 
measurable if f “ l(B)E A  for all BE®.

The space of irrationals will be identified with equipped with the
product topology. A space is said to  be K-analytic if i t  is the image of 1N^ by an
usco-map. A Souslin scheme is a map, A, of , the set of all finite sequences of

y
integers, into 2 , the set of subsets of X. Performing the Souslin-operation on A 

¥

yefids the set

S(A)- U fl A(aln).
£TENN  nGlSI

The paving S(^F(X)) consists of all subsets of X o^  the form S(A) where A is a 

closed-valued Souslin scheme. We denote by ®/(X) the cr-algebra S(?F(X))nCS(?F(X)) of 

biSouslin-sets. The paving tfj(X) is the least cr-algebra containing S(^F(X)).

A pair consisting of a space, X, and a cr-algebra, A , on X is said to be 

Blackwell if
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kerA={ <x: f|A(aln) =^0} ES(^F(N^)) 
n

fo r all ^.-valued Souslin-schemes, A. The pair (X,-4) is Blackwell with the  selection

property if it is Blackwell and, fo r all JL-valued Souslin schemes, there  exists a

INI)-*A  measurable selection from the  correspondence o’-»f)A(o'ln).
n

The weight of a space is the least cardinal, t , such th a t the space has a base 

of cardinality r .  A space, X, is said to  be injective if there  exists a universally 

measurable injection of X into the real line. If A is a subset of a space X, then Ac 

is the complement of A in X.

2. Minimal usco-maps.

The main resu lt of th is section is Proposition 2, which gives a necessary and 

sufficient condition for a usco-map to  be minimal. We s ta r t  with a little  lemma.

Lemma 1.

For an usco-map 0:X-*Y and an open set GCY define for each xEX

0(G)(x) - { ^ X̂ G* ~
l0(x), if xE cl({x :0(x)C G }nker0).

Then 0(G) is usco and 0(G) ̂ 0 .



Proof.

since

Let F be a closed subset of Y, then

{x : 0(G)(x) flF 7̂ 0 }

= [{ x :0 (x ) f lF n G V 0 }  Hint({x :0(x)\G 7^0 }Uker0c )l 

U [ {x : 0(x) OF 7^0} fl cl( {x : 0(x) C G } fl ker0 ) ]

= {x : 0(x) OF OGc 7̂ 0 } U[ {x : 0(x)DF 7^0 } D cl( {x : 0(x) C G } O ker0) ],

{x:0(x)DFnGV0}C

[ {x : 0(x) OF DGC 7^0 } fl int( {x :0(x)\G 7^0 } U k e r0 °) ]

U [ {x : 0(x) DF 7^0} fl cl( {x : 0(x) CG D ker0 ) ]

We conclude th a t 0(G) is usco and the  rest of the lemma is immediate.

Proposition 2.

An usco-map. 0:X-»Y, is minimal, if and only if. 

(*) {x:0(x)D G t^0} C c l({ x :0(x)CG }D ker0 )

fo r each open set G CY.

Proof.

Assume (*) holds for all open subsets of Y and let 0:X-*Y be an usco-map 

such th a t 0<£0 and 0 (y)7 0̂(y). Since 0(y) is compact we can find an open set U such 

th a t 0(y)CU and 0(y)D [cl(U )lC7^0 . Then

y e{x:tf(x)n[cl(U)]<V0}n<x:#>(x)CU)
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C c l({x :0(x)C [cl(U )]c } n k e r0 )D{x: 0(x)C U }, by (*),

Ccl( {x : 0(x) C[ cl( U ) 1°} fl ker0 ) H{ x : 0(x) C U }, since 0 <^0.

Hence {x :0(x)C [cl(U )]c }nker0  fl{x :0(x)CU} is nonempty which is a 

contradiction, and we conclude th a t 0 is minimal.

Now assume th a t (*) does not hold for the open subset G of Y. T hat is, there  

exists y6int({x:0(x)\G7^0}Uker0c) such th a t 0(y)\G is a proper non-empty subset of 

0(y). Using Lemma 1 we conclude th a t 0 is not minimal. □

We shall now use th is  characterization to  give some properties of minimal 

usco-maps. Recall th a t a function is said to  have the  Baire property if the  pre- 

image of every  open set is an open set modulo a se t of the f ir s t  category. Also 

recall th a t a family of sets is said to be T0-separating if there, for any pair of 

distinct points, exists a set from the  family th a t contains one of the points but not 

the  other. We do not require th a t the  separating set can be chosen such th a t it 

contains, say, the f ir s t  of the points of the  pair.

Corollary 3.

Let 0 :X-*Y be a minimal usco-map.

(i) If ker0 is separable, then 0(X) is separable.

(ii) Any selection from 0 has the Baire-property.

(iii) If there exists a countable To-separating family of open sets  in Y, then the set 

{x:#0(x)>l} is of the f irs t category ill X.
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Proof.

(i) Let cl{xnH ker0 and choose points y n €0(xn). If GD0(X)t̂ 0  for an open set 

GCY, then 0=^{x :0 (x )n G ^ 0 }C c l({ x :^ (x )C G } n k er0 ) by Proposition 2. Hence the 

open set {x:0(x)CG} has nonempty intersection with ker^ and we find xn such tha t 

y n G0(xn)CG.

(ii) Let f be a selection from 4>. Then

{x : $J(x) C G } f l  ker# C f -1(G) C{ x : 0(x) HG ?^0 } Ccl( {x : 0(x) C G })f l  ker0 

by Proposition 2, and hence f -1(G) has the Baire-property for any open subset G of 

Y.

(iii) Let {Gn} be a countable Tc-separating family of open subsets of Y. Then

{x : #^(x) >  1 }-(J( {x : 0(x) flGn ^ 0  }\{ x : 0(x) C G n }) 
n

C |J( cl({ x : 0(x) CGn })\{ x : 0(x) CGn }). 
n

The la tte r set, as a countable union of sets  of the  f irs t category, is of the  firs t 

category. □

Let an usco-map, ^:X-*Y, be given. Given a well-ordering of a base fo r the 

open subsets of Y we explicitly construct a minimal usco-map #:X-»Y such tha t

Let <Q) be a wellordering of a base for the  open subsets o f Y and use

Lemma 1 to define 0 j-0 (G j) and, still using the lemma, define inductively fo r ~f<Q:
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0*v”“( D 0<a)(G»v). Let fl t y  
' 0 < 7  p  7 < «

By Lemma 1 each is usco, contained in 4> and has the same kernel so th is 

is also tru e  for #. By Proposition 2 the map \j> is minimal, for

{x:0(x)nG=^0}- U {x:tf(x)nG~^0>
I7:G~CG} ;

C U {x:<M x)nG~^0>C (J cl({x: f] <Mx)CG~}Dkertf) 
17:G7 CG) 1 1 (7:G7 CG) /3<7 P '

C c l(  (J {x : 0(x) CG-y} H kerVO Ccl({x:0(x) CG) Dkertf) 
<7:G7 CG} '

We shall now consider another way of cutting , compact-valued (not 

necessarily usco) correspondences down. The approach used here will be very  much 

like th a t of Sion in [1], but the resu lts  we shall obtain will be more general. The 

proofs in the  rest of th is note will depend on the  properties of the following 

construction.

For a compact-valued correspondence #:X-*Y and an open set G CY  we define 

for each x in X

by the construction and the fac t th a t #C 0 .yC  n  ta -
1 (3< 7 ”

□

3. Selection.

^(x)\G, if <£(x)\G^0, 

d(x), otherwise.0(x), otherwise.
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Let {G^:y<Q} be a T 0-separating family of open subsets of Y, and define

and, for each 7<ft» define inductively: 0-y-( f] fi 0*y»
1 7 /3<7 i 7 < f i

then we have the  following consequences.

(i) ker0 -ker$ .

(ii) # tf(x)£ l VxEX.

(iii) {x :^ (x )C G ^ M x : f] ^ (x ) C G ^ } -  |J  (x :M x )C G ^ }  fo r all xEX.
7 £ < 7  P /3<7

(iv) For any open set GCY we have

{ x :^ (x )C G }

=<x: n  0a(x)CG }U ({x: f |  « fl(x)CG U G ^')n{x: f) ^ « C G ^ } ° )
0< ~ f p (3 < 7  0 < 7  P

= (J <x:«tfl(x)CG)U( fl (x :^ « (x )C G U G ~ )n  f | ( x :« fl(x )C G J c).
/3<7 /3 < 7  p ' j3<7 P

Define f:ker0-»Y by {f(x)H#(x) fo r all x in ker^. Fro'm the  construction we 

immediately get the following generalisation of Sion’s resu lt.

Proposition 4.

Let 4>:X~* Y be a compact-valued correspondence, {G-y:7 <Ct?i> be a To- 

separating family of open subsets of Y such th a t every  open subset of Y is a 

countable union of sets from th is family, and let be a cr-algebra on X such th a t 

{x:0(x)CG-y}E!Hj fo r all 7«*>!. Then <f> has a measurable selection.
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Proof.

Let 0 be a selection from 0 given by the  construction above and let 

(f(x)}-0(x) for all xGker0. It is sufficien t to prove th a t f -1(G^)G!)€ for every  

By (iii) we have

f " ‘(G ~)- (J ( x :U x ) C G ^ I .
'  0<1 P 1

The resu lt follows by (iv) and transfin ite  induction. □

In [1] Sion requires th a t Y be regular. Following 16], Proposition 1-6-2 we find 

th a t on a measurable space (X,£), where £  is countably generated, the universally 

E-measurable sets are stable under the union of s tr ic tly  less than continuum sets 

when axiom M is assumed. The proof of the  next proposition is similar to  the proof 

of Proposition 4.

Proposition 5.

Let X be of countable weight and assume th a t the  weight of Y is s tr ic tly  less 

than continuum. Let 0:X-*Y be a compact-valued correspondence such th a t 

{x:0(x)CG} is universally measurable for all open subsets G of Y. Assume axiom M. 

Then 0 has a ^tli/(X)-»®o(Y) measurable selection. □

Using Propositions 4 and 5 we obtain the  next two propositions.
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Proposition 6.

Let Y be K-analytic. hereditarily  Lindelof and of weigM less than or equal to 

Nj. Then (Y,$/(Y)) is Blackwell with the selection property .

Remark: If the  K-analytic space Y is regular and hereditarily  Lindelof, then all open 

subsets of Y are Souslin-#- se ts . This again implies th a t 5Bo(Y)-$/(Y) and Y is 

hereditarily  Lindelof.

Proof.

W rite Y“ 0(N®^) where 0 is usco and le t F be an #(Y)-Souslin scheme. The

map $:N ^ X N ® ^ -*Y , defined by tf>(o,T)=0(o-)nf)F(Tln), is usco and kerF='7r2(ker^),
n

where "K2 is the projection of onto the second coordinate. Let f be a

Borel measurable selection from 0 and le t g :N ^ -*  be measurable such

th a t (r,g (r))6ker^  for all t  in kerF (see [21). Then fo g  is an measurable

selection from F. □

The proof of the next proposition is similar to the  proof of Proposition 6. 

Proposition 7.

Let Y be K-analytic of weigth s tr ic tly  less than continuum and assume axiom 

M. Then (Y,$/(Y)) is Blackwell with the selection property .
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If we are willing to accept weaker measurability properties of selections, th is 

allows us to weaken the  conditions of Propositions 4 and 5.

Proposition 8.

Let X be Lindelof and let Y be of weight less than or equal to  the  f irs t 

uncountable ordinal. Then every  usco-map of X into Y has a $o(X)-»$a(Y) 

measurable selection.

Proof.

Let 0:X-»Y be usco and let {G^:y<U)1} be a base fo r Y. By our construction

we have a selection f from such th a t f -1(G^)E®o(X) fo r all 7* Let F -f)^ n  be a
• n

closed in Y. Then FD0(X) is Lindelof, and we can, fo r each n, find basic open

sets such th a t F H^(X) C ljG mT1 H0(X) CGn fty(X), implying Fn^C X l-flU ^m n^^^)* Now
m nm

f _1(F )-f|U f-1^ mn ^ ® 0(^*  Finally note th a t $a(Y) is generated by a family of 
nm

closed G^-sets. □

Proposition 9.

Let X be of countable weight and let Y be of weight less than or equal to 

continuum. Assume axiom M. Then every  usco-map of X into Y has a JhuOO-*$a(^Y) 

measurable selection.
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Proof.

CdnSubstitu te  JkuiX) for 3So(X) and 2 for CJj in the proof fo r Proposition 8. □

Theorem 10.

Let X be separable and Lindelof and let Y be regular. Then every  usco-map 

of X into Y with nonempty values has a selection, f, with the following 

measurability properties.

(i) (CH) f is $o(X)-*$a(Y) measurable.

(ii) (CH) If Y also is hereditarily  Lindelof. then f is 9Bo(X)-*35o(Y) measurable.

Let, in addition. X be of countable weight.

(iii) (M) f is ^tbu(X)-»Sa(Y) measurable.

(iv) (M) If Y also is hereditarily  Lindelof. then f  is «4lu(X)-*38o(Y) measurable. 

Proof.

Let 0:X-*Y be a minimal usco-map with nonempty values. Then cl(0(X)) is 

separable and regular, hence, by [4], Theorem 1.5.6., the  weight of cl(0(X)) is less 

than or equal to continuum, and so (i) and (iii) follow from Propositions 8 and 9. If 

Y is hereditarily  Lindelof, then (ii) and (iv) follow from Propositions 4 and 5. □

Theorem 10 (iii) implies tha t, under axiom M, all compact H ausdorff spaces 

with the  Baire o-algebra are Blackwell with the selection property . But in the  case 

where the  range space is compact we can obtain conclusions (i) and (iii) of Theorem
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10 with weaker conditions on the domain space.

Theorem 11.

Let Y be compact of weight T and let 0:X-»Y be usco. Then 0 has a selection. 

f, with the following m easurability properties.

(i) If T<£Nlt then f  is 3Bo(X)-*33a(Y) measurable.

(ii) If t  <,2 °, then f is -/ltw(X)-»$a(Y) measurable.

Remark.

If X is separable then the weight of cl(0(X)) is less than or equal to

continuum.

Proof.

Let C(Y) be the space of continuous functions from Y to  R equipped with the 

topology of uniform convergence. Then there  is a dense subset, C, of C(Y) of

cardinality r .  (Use the  Stone-W eierstra/3 Theorem. It can be found in [7].) The 

family of sets {f <a>: aE<Q, f  €C} generates the Baire cr-algebra on Y and is of

cardinality r .  Let cl l1 be a base fo r Y of cardinality T . Then CU -CU1UCU2 is also a 

base for Y of cardinality r ,  and $a(Y) is contained in the cr-algebra generated by 

CU.

If t  then by property  (iii) of the  construction of the  selection we have 

f _1(cU)C®o(X) and (i) follows. If t ^ 2 ^ ° ,  then by axiom M we have f _1(CU)C*/H>w(X) 

and (ii) follows. □
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4. Representation.

Finally, we shall prove a representation theorem analoguous to  th a t of [3]. In 

comparison to Theorem 2 and Corollary 2.1 in [3], Theorem 13 below gives only a bit 

more information about the m easurability properties we can require selections to  

have. The main reason for including Theorem 13 in the  present paper is th a t it 

shows how the  method of selection th a t we have employed here can be applied to 

obtain representations. Furtherm ore, we can avoid using U-homomorphisms. We shall 

f irs t prove a set-theoretical lemma.

Lemma 12.

Let Y be regular of weight r ,  let ‘Uj be a base for Y of cardinality r  and let 

tU='U,U{ [cl(U)]c : U 6 cU1M U ( 7 ) :7 < t ).

Let E C t  be the  set of biiections from T t o  T .

For any yGY there  exists crGE such th a t

y€U (a(7)) =» 30 <1t y6U(a(/3))c CU(a(7)).

Proof.

Let 7 < t and assume { o ^ :^ < 7 )C S  have been defined so th a t:

(i) y  eU(<Ar?)), V<.0 =>3? <t?:y 6 U (A f) )C C U toS(t))); and

(ii) V7?<T 3£< 7  : cra (r?)-CT̂ (r7) Va,/S<£
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and cA t7)=<7*(77) V£<£/3<7.
Q

According to  (ii) we can define # 6 E  by lp{7})=\im a (Tj).
0 < 1

If y€U(7) and for no /3<7 we have yGU(0(|8))c CU(7), find £ such th a t 

y  €cl(U)CU(7), where 116*11! and U(£)=[cl(U)]c . In th is case we let

7Otherwise let a

(S, i f  7 = 7 ,
cr 7(7 ) H 7 ,  i f  7=£

lV>(7)» otherwise.

Finally put cr-lim crT. □
7 < t

Theorem 13.

Let 0:X-»Y be usco with nonempty values, let Y be regular and let r  be the 

ordinal corresponding to  the weight of cl(0(X)). Let the spa eg t  have the topology 

induced by the base consisting of sets of the form {cr' icr'IT-crr/), o E t t ,7 < t .  Let 

E C t  be the set of bisections from t  to t .

There exists a function h:XxE-*Y such th a t x -,h (x ,a) has m easurability 

properties as indicated by Propositions 4 to 11, fo r all a  EE. Furtherm ore cr-*h(x,cr) 

is continuous from E to  Y for all xEX and h(x,E)-0(x) fo r all xEX.

Proof.

Let *LX! be a base of cardinality  r  for cl(0(X)) and

Tl-Tl, U([cl(U)]c : U e 'U J -f  U(7 ) :7  < r }.
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Define 0 f =0 u(l) ’ ^ 7 =  ̂ ^  ^0  ^U(ct(7)) and th(x,cr)}= H <t>°r(x). This produces 

selections with the desired properties. T hat any yE0(X) can be targeted follows 

from Lemma 12. □
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When are Borel functions Baire functions ?

A bstract.

The following two theorems give the  flavour of what will be proved.

Theorem.

Let Y be a complete metric space. Then the families of f irs t Baire class 

functions and of f irs t Borel class functions from [0,1] to Y coincide, if and only if, 

Y is connected and locally connected.

Theorem.

Let Y be a separable metric space. Then the fam ilies 'o f second Baire class 

functions and of second Borel class functions from [0,1] to Y coincide, if and only 

if, for all finite sequences, Up...,Uq, of nonempty open subsets of Y there  exists a 

continuous function, 0:[O,1]-*Y, such th a t 0-1(U-)t̂ 0  fo r all i^ q .
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0. Introduction.

Given metric spaces X and Y we let $ a 0(X,Y) be the  family of all continuous

functions from X to Y. For all ordinals 0 <ct<<*;1 we define the Baire class a ,

denoted by 3Jaa (X,Y), to be the family of all limits of pointwise convergent

sequences of functions from U $a,a(X,Y). A class ex. Borel function from X to Y
0 <cx P

(0<a<CJ!) is a function, f, such th a t f -1(G) is a Borel set of additive class a  

whenever G is an open subset of Y. For reference on Borel se ts  see [1]. We denote 

the family of all class a  Borel functions by $ o a (X,Y).

The f ir s t Baire and Borel classes do not coincide in general. The function 

f:[0,1] —►{0,1} defined by f ( l ) - l  and f(t)-0  when t < l  is of f ir s t  Borel class, but 

clearly is not of f ir s t  Baire class.

The Lebesgue-Hausdorff Theorem in [1], page 391 tells us th a t if X is metric 

and if Y is an n-dimensional cube, [0,l]n, n £ N , or the  H ilberf cube, [0,1]® ,̂ then the 

f irs t Baire and Borel classes of functions from X to  Y do coincide.

More general theorems of th is kind has been proved. Rolewicz showed in [4J 

th a t if Y is a separable convex subset of a normal linear space, then the f irs t Baire 

and Borel classes of functions from X to Y coincide. In [2] Hansell gave an extension 

of the Lebesgue-Hausdorff Theorem asserting th a t, if every  continuous function 

from a closed subset of X to  Y can be extended continuously to  X, then every  <7- 

discrete (see section 2) f irs t Borel class function from X to Y is also of f irs t Baire 

class. It was pointed out th a t Hansell’s proof was incomplete, and in [5] Rogers gave 

a corrected version of Hansell’s statem ent, namely th a t if every  continuous function 

from a closed subset of X to  Y can be extended continuously to X, and if, for each



point y in Y and each neighbourhood L of y, there  is a second neighbourhood N of 

y such tha t, fo r each closed subset F of X and each continuous map f  from F to N, 

there  is a continuous extension of f mapping X into L, then every  cr-discrete firs t 

Borel class function from X to Y is also of firs t Baire class.

In the  present paper we prove th a t all <7-discrete f irs t Borel class functions 

from a metric space into a metric, arcwise connected and locally  arcwise connected 

space are of f ir s t  Baire class. We then look for a converse to  th is  resu lt and prove 

the  following theorem. We write I—[0,1 ] and Z(X,Y) fo r th e  class of a-d iscrete  

functions from X to Y.

Theorem 2. Let Y be complete metric. Then the following th ree  -statements are 

equivalent: (i) Y is connected and locally connected; (ii) SBa^IjYJ-So^IjY); and (iii) 

^Ba^XjYJ-^Bo^XjYJHStXjY) for all metric spaces X.

Having considered the case for the  f irs t Baire and Borel classes, we then 

tu rn  our attention to the  higher classes. Here the  classic theorem is the  Banach 

Theorem which can be found in [11 or in [10]. This theorem uses the concept of an 

analytically representable function. The analytically representable functions of 

class one are the f irs t Borel class functions and the  analytically representable 

functions of class a  are the functions which are pointwise limits of analytically 

representable functions of classes lower than a .  The Banach Theorem tells us th a t 

if  X is metric and if Y is separable and metric then the  se t of analytically 

representable functions of class a  coincide with the  set of Borel class a  (a+1)
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functions when a  is fin ite  (infinite). Another theorem by Banach in [10] s ta tes  th a t 

if Y is also arcwise connected then the  set of Baire class a  functions can replace 

the  analytically representable functions of class a  in the  Banach Theorem for a  ^ 2 . 

In [5] Brown showed in particular th a t if X is compact metric and Y is arcwise 

connected, separable and metric, then the  class of all Borel functions and the class 

of all Baire function$coincide. In [2] Hansell generalised the Banach Theorem to the 

case where Y need not be separable, using the notion of a cr-discrete function. 

Hansell’s resu lt s ta tes  th a t if Y is metric and f:X-»Y is <r-discrete and of Borel 

class a  (a+1) then f is analytically representable of class ct, when a  is finite 

(infinite).

Again we find th a t a very  simple ‘connectedness’ condition tells us when the 

Baire and Borel classes coincide. We shall prove the  following theorem.

Theorem 3. Let Y be a separable metric space. The following statem ents are 

equivalent: (i) For all finite sequences, Up...,Uq, of nonempty open subsets of Y, 

there exists a continuous function gJ:I-*Y with 0-1( U ^ ) ^ 0  for all i^ q ; (ii) 

$ a2(X,Y)-$o2(X,Y) for all metric spaces X; (iii) For each metric space X and for each 

finite (countable, infinite) ordinal a  ;>2, 3Jaa (X,Y) coincides with $ o a (X,Y)

(®0ot+l(X’Y))-

In [6] Brown makes a remark th a t implies th a t when Y is a separable metric 

space the condition (i) implies th a t [Ja  ^Q^aatX.YJ-Ujx^o®00^ * ^  fo r a11 metric 

spaces X. His remark seems to imply the  converse. He gives proof of neither of 

these resu lts .



26

1. Definitions.

A space is said to be locally arcwise connected, if each point of the space 

has an a rb itrarily  small ( not necessarily open ) arcwise connected neighbourhood. 

This is equivalent to requiring tha t, fo r all e, every  point of the  space must have 

an open neighbourhood, such th a t any two points of the  neighbourhood, can be 

joined with an arc of diameter less than €.

We say th a t a family of sets JL refines a second family of sets 5B, if each set 

of JL is contained in a set of $ , and LL4.= U $. We w rite th is  Given any set A

in a metric space X and e>0, we denote the generalised open ball with ‘centre’ A and 

radius e as B(A,e)-{xEX :d(x ,A )< e).
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2. cr-discrete functions.

We shall make use of the notion of a cr-discrete function, as developed by 

A.H.Stone and R.W.Hansell, to  allow us to  consider general metric spaces, using 

techniques normally used for separable metric spaces. In th is section the necessary 

definitions and resu lts  concerning cr-discrete functions will be given. The reader is 

refered to [2], [3] and [8J for fu r th e r information. All spaces are assumed to be 

m etric.

A family of sets in a topological space is said to be discrete, if each point of 

the  space has a neighbourhood th a t meets at most one of the  sets of the family. 

The family is said to be uniformly discrete, if there  exists €>0, such th a t the 

distance between any two sets of the  family is greater than e. A family of sets is 

said to be cr-discrete, if the  family can be decomposed into countably many 

subfamilies, each of which are discrete. By [8], Lemma 2, and j t s  proof, if A  is a cr- 

discrete family of ^F^-sets, then there  exists a uniformly cr-discrete family, 3B, of 

^ - s e t s  such tha t

A family of sets is a base fo r a function from one topological space into 

another, if the pre-image of any open set is the  union of sets  from the  family. A 

function is said to  be cr-discrete, if it has a tr-discrete base. The family of all 

<7-discrete functions from X to Y is denoted by E(X,Y). In any metric space there 

exists a (7-discrete family of open sets, forming a base fo r the topology, (see 

[l],p.235.) Using th is  it can be shown th a t any continuous map with metric range is 

cr-discrete. The family E(X,Y) is closed under pointwise limits ([3]), so all Baire class 

a  functions, a. <(*>!, are cr-discrete. In [1], page 386, it is shown th a t functions of
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Baire class a  are of Borel class a ,  respectively  a+1, according as a  is fin ite or 

infinite. In [2] it is shown th a t a (7-discrete Borel class a  function, where a  ;>2, is 

the pointwise limit of a sequence of (7-discrete Borel functions, all of which are of 

classes s tr ic tly  lower than a .  Hence, if fo r some a ^ l  *Baa (X,Y) is equal to 

®oa (X,Y)nS(X,Y), respectively 3Joa + j(X,Y)n£(X,Y), according as a  is fin ite or 

infinite, then we have th a t $a^(X,Y) is equal to ®o^(X,Y)HE(X,Y) 

(®o^+^(X,Y)DE(X,Y)) fo r all fin ite  (infinite) ordinals 0  g reater than a .  A (7-discrete 

function of the  f ir s t  Borel class from one metric space into another, has a 

(7-discrete closed base ([2]). E very  function from a metric space to  a separable 

metric space is cr-discrete, and ev ery  Borel function" from a space, th a t is a Souslin- 

?F set in some complete metric space, to  a metric space is cr-discrete ([2]). It is 

consistent with and independent of ZFC to assume th a t all Borel functions from a 

metric space to  a metric space are cr-discrete, ( see [9].)
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3. F irs t Baire class functions.

We shall s ta r t with two lemmas. The f irs t is purely  technical.

Lemma 1.

Let .A be a cr-discrete family of closed sets covering the  metric space X. 

Then there  exists families. 3BP , p=l,2,..., of closed sets  such th a t :

P
each member of 3JP is contained in some member of 35p+\  fo r all p;

3JP is uniformly discrete for all p; and

u u $ p=x.
p

Proof.

W rite J.  as the  countable union of discrete families <5f closed sets and, 

for each j, let C ;-{A \ U U.A^rAE.AJ and let C-UC^. Then C is a disjoint,
J k < j  J j J

a-d iscrete  family of ^ j - s e ts  such th a t By [8], Lemma 2, and its proof, we can

write each CEC as an increasing union of ^F^-sets, C=UDjl, where the families 

{Djl.'CEC} are uniformly discrete for all n. W rite each Dq-U F q1*1, where the  sets

Fflm are closed. Then the families 35P={ U Fjlm:CEC}, pE N , sa tisfy  then»m<£p ^

conclusion of the lemma. □

Our second lemma provides us with approximating functions to a given 

f unction.
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Lemma 2.

Let X be a metric space and let Y be a metric and arcwise connected space. 

Let f  :X-»Y be given and let 3>n, n=l,...,p be families of non-empty closed sets in X 

such tha t :

3>n is uniformly discrete for all n;

each member of is contained in some member of 3)n for

all n<p; and

x 1,x2GA€3>n implies th a t f(xj) and f(x2) can be .joined with 

an arc of diameter less than 2"n.

Then there  exists a continuous function g:X-»Y such th a t when xEU3>n, 

n ^ p , then d(f(x),g(x))^2~n+2.

Proof.

Since the  families 3>n, n<^p, are uniformly discrete, we can find

€ i> 2e2> * "> 2P ^£p>0 so th a t (B(A,en) : AE3>n ) is a discrete family of open sets for 

each n<;p. Observe tha t, fo r ACC with AE3>n+j and CE3)n, we have

B(A,€n+j)CB(C,€n/2). Pick y'Ef(X) and y^E f(A ) for all AE^U^3)n . For each AE9)j let 

: I —Y be an arc with 0^(O)=y' and ^ ^ ^ =yA* ^ or eac^ AEtDn> l < n <lP there  is a 

unique CE3>n with ACC, since the family 3>n_̂  is disjoint. Let :I-»Y be an arc 

of diameter at most 2~n+*, with 0^(O)=yc an(* ^ A ^ =yA*

We shall define a sequence gQ,gpg2»“ Mgp of continuous functions from X to

Y and arrange th a t the function g=gp satisfies the  requirem ents of the  lemma. We
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s ta r t the  inductive process by taking

g0(x)«y'

for all x in X.

W rite

D1-U<B(A,€1/2 ):A e® 1>,

E1-X \U (B (A ,€1):A 6® 1>.

Since the family

{B(A#€1):A €® 1}

is discrete, the  sets and are disjoint closed sets. W rite
d(x,Ej) 

h l (x)"  d(x,D1)+d(x,E1)’ 
so th a t h j is a continuous function on X taking the  value 1 on and the  value 0

on E j. Take

g^xl-gQ txl-y ' on E v  

gj(x)=y^ on B(A,e^/2) fo r each AE3)j, and 

gjCxl^j^ohjCx) on B(A,€j)\ B(A,€j/2) for each AE3>j.

Since the sets  E^, BCA,^^), B(A,£i)\B(A,€l/ 2), for AESDp are disjoint with union X, 

the function gj is well-defined. We v e rify  th a t g^ is continuous on X. For x0EX we 

can choose a neighbourhood N of X th a t meets at most one set of the family

{BC A ^hA E^}.

If N meets none of these sets g^xJ-gQtx) fo r x in N, and g^ is continuous a t x0. 

Suppose th a t N meets BCA^) fo r some A in 3>p but meets no se t BCA'^) with A'E^Dj, 

A ' ^ A .  Then, on

N \B(A ^),
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takes the value 0 and gj takes the value y '. Thus

g1(x )= 0^oh1(x),

both on BCAjCi) and on NXBCA ĵ) and so on N. Hence gj is again continuous at x0.

In particular, g  ̂ is a continuous function on X, with

gjCxl-ggCx) on Ej-XX (JtBCA.ej): AEfD̂ }

and

gj(x)=y^ on B(A,€v/ 2) for each AG3)j.

Now suppose th a t for some n, l ^ n < p ,  we have defined continuous functions 

gpg2>—»gn on x  so th a t

gnCxJ-g^ ^x) on En-X \ LH B(A,en) : AG3)n)

and

inW ^yA  on BCA,en/2) for each AG3>iy

W rite

En+1-X\U(B(A,en+1): A € $ n+1),

Dn + r U<B(A,£n+1/2):A e® n+1}.

Since the  family of sets

<B(A,€n+1):A€a>n+l>

is discrete, the  sets En+j and Dn+j are disjoint closed sets. Hence the function
d(x,E +1)v, ______

n n + rXJ d(x,Dn+1)+d(x,En+1) 
is a continuous function on X taking the  value 1 on Dn+  ̂ and the  value O on En+i«

Take

Bn- l ^ ) “ gn(x) on En+1,

gn+l(x)=yA on B(A>€n+l/2) for each AG3)n+T
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en+l(x)-*A+1° h n+l on BCA,en+1)\B(A; en+2/ 2) for each A in 3)n+1.

Since we have assigned values to Bn+j on a family of disjoint se ts  with union X, the 

function gn+  ̂ is well-defined. We v e rify  th a t gn+j is continuous on X. Let x0 be 

any point of X. If x0 belongs to none of the sets of th e  discrete  family

{B(A,€n+i)j AG3>n+1}

of closed se ts  we can choose a neighbourhood N of x0 th a t meets none of these 

se ts . Then gn+^(x)-gn(x) on N and so gn+j is continuous at x0. Suppose th a t

x0EB(A,cn+1)

fo r some A G ^ j .  Then

x0GB(C,en/2)

fo r ju s t one C in 3>n. Now we can take N to be a neighbourhood of x0 contained in 

B(C,€n/2) th a t necessarily meets B(A,cn+j) but meets no set B(A',en+j) with 

A 't̂ A. Now on

N\B(A,,n+1)C E n+1, 

h n+i takes th e  value 0 and gn+^(x)-gn(x)-yQ, since NCB(C,€n/2), and so

en+l(x)“ «‘A+1° hn+l(x)-

We also have

*n+l(x>-«sA+1° h n+l(x)

on

N nB(A,cn+1)\B(A,£n+1/2).

F u rther, on B(A,cn+j/2), the  function h n+j(x) takes the 1 and gn+j(x) takes the 

value y ^  so th a t again

gn+l(x)“ '*iA+ lo h n+l(x:i-
n+1Thus gn+1(x )-^A ° h n+i(x) on N and gn+j is continuous a t x0. It follows, in



34

particular, from these considerations th a t when gn+j(x)7*̂ gn(x) we have

en+l(x)“*A+lolW x)
and

gn(x )-y c .

Since the arc in Y given by tfA+*(t), O ^ t ^ l ,  is of diameter a t most 2 'n, we have

d(gn+1Cx),gn(x ))^ 2 'n,

fo r all x in X.

Proceeding inductively in th is  way we define continuous functions 

gQ»gp"‘»Sp-g on X satisfying

in<x)-yA fo r x £ A€3)n,

fo r l<[n<;p, and

d(gn(x),gn+1(x ))^ 2 'n,

fo r xGX and l< ;n < p . Thus

d(g(x),Bn(x ))^ 2 'n+2 'l1”1+...+2”P+^ 2 ~ n+  ̂

fo r xGX and l ^ n ^ p .  Now, if xEAE3>n> l ^ n ^P> we have

d(g(x),yA)=d(g(x),gn(x)) ̂ 2 "n+1.

Since y A Ef(A) and any two points of f(A) can be joined by an arc of diameter less 

than 2~n, we have

d(f(x),yA)^2~n.

Hence

d(f(x),g(x))^2'1,+2

as required. □
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Theorem 1.

Let X be a metric space and let Y be an* arcwise connected and locally 

arcwise connected metric space. Then SBo^X.YinECX^-SBa^XjY).

Proof .

Every  f irs t Baire class function is cr-discrete and of f ir s t  Borel class, so let 

f  G$o1(X,Y)nE(X,Y). We shall then define a sequence of continuous functions, 

converging pointwise to  f.

Using locally arcwise connectedness find, for each point yEY and each n, an 

open neighbourhood Un(y) of y such th a t any two points of Un(y) can be joined 

with an arc of diameter at most 2“n .

Since f  is cr-discrete and of f irs t Borel class, f  has a cr-discrete closed base, 

which we will denote by A .  For each n define -4.n-{ AE-4.: 3y GY f(A)CUn(y)}. Note 

th a t U^tn=X for each n.

For each n apply Lemma 1 to  the family A n to find families of closed sets  s jj 

satisfying:

each member of *s contained in some member of {f-1(Un(y)) :y  GY};
.p. | 1

each member of $ n is contained in some member of S n ; 

is uniformly discrete fo r all p; and

U s£ is a cover of X (for all n).
P

We shall use these families to  construct a new se t of families of closed sets
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by defining, for all p and n,

3>}J={ A2nA 2n...D A n : fo r all m<^n}.

Note th a t 3)  ̂ is uniformly discrete, th a t each member of is contained in some

member of and th a t U3>n covers X fo r all n. For each p apply Lemma 2 to f  and

the  families n<;p, to yield continuous functions gp :X-»Y such th a t, when 

xE and P^>n> ^ e n  d(f(x),gp(x))<;2”n+^.

The sequence {gp } converges pointwise to f. To see th is  let e> 0  and xEX be 

given. Find n such th a t 2"n+^ ^ e  and find p;>n such th a t xEU3>{}. Then 

d(f(x),gq(x))^e for all q ^ p . □

We shall now show th a t the  converse of Theorem 1 is tru e  when X is the 

unit interval I and Y is complete. This will be done through a series of lemmas.

Lemma 3.

Assume B a ^ Y )—BojttjY) where Y is a metric space. Then fo r aU €>0 and all 

yEY there  exists an open neighbourhood U(y) of y such th a t, for all nonempty open 

subsets UqjU! of U(y), there  ex ists ^ E $ a 0(I,Y) with 0(i)EU^ fo r i=0,l and diam0(I)<£e.

Proof.

Assume the statem ent is not tru e . Then we can find e> 0  and yEY  such tha t, 

in all the open balls B(y,2‘ne), th e re  exist two nonempty open sets, U(n,0) and U(n,l), 

with the property  th a t all arcs, ^EBa0(I,Y), with $J(i)EU(n,i) fo r i—0,1, satisfies
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diam0(I)>e. For each n and ipick a point y(n,i)£U(n,i)

Let a:N X (0,l}-*O  be a 1-1 map such th a t fo r any open in terval ( t^ t^ C I

there  exists n with t o< a (n ,0 )< a (n ,l)< ti. Define the function f:I-*Y by
fy, if te l\a (N X (0 ,l} ), 

f(t)-<
ly(n,i), if t=a(n,i), (n,i)GNX{0,l}.

Note th a t f(I) is contained in B(y,e/2). Since the y(n,i) converge to y, the function f

is of the f irs t Borel class, and so, by assumption, th e re  exists a sequence,

{0^} C5Ba0(I,Y), converging pointwise to  f.

Define for each m th e  set Hm= U 0 r 1[ Y \B (y,e/2)|. Then each Hm is open and
k ^ m  K 1 }

dense. To see th is let 0 ^ t o< t 1̂ l  and find n such th a t t o< a (n ,0 )< a (n ,l)< t1. The

sequence <0j.} converges pointwise to f, so we can find k;>m so big th a t

0jt(a(n,i))£U(n,i) fo r i—0,1. By the definition of U(n,i), i—0,1, we have 

diam0jc(a(n,O),a(n,l))>e. So there  exists t 2£(a(n,0),a(n,l)) such th a t 

0k(t2)€Y \B(y,e/2).

Using the Baire category theorem we get which is a contradiction

with nHmC f_1(Y\B(y,€/2))«0. □

Lemma 4.

Let Y be complete. Then Y is locally arcwise connected, if and only if, for all 

e> 0  and fo r all y£Y  there  ex ists an open neighbourhood U of y, such th a t fo r all 

nonempty open sets Uc^UiCU th ere  exists an arc of diameter less than e, starting  in 

U0 and ending in



38

proof.

The f irs t implication is triv ia l. The second implication of the  lemma implies

th a t Y is locally connected. To see th is let €>0, yEY and let U be an open

neighbourhood U of y, such th a t any two nonempty open sets  Uq, contained in U 

can be joined with an arc of diameter less than e/3 starting  in UD and ending in Up 

Let VCY be the set obtained from U by adding to  U all arcs intersecting U having 

diameter less than e/3. We prove th a t V is connected. Indeed, if V-G qUGp  where 

Gq and G^ are non-empty, disjoint re la tively  open subsets of V, then each arc in V 

lies in e ith e r Gq or in Gp Since each point of V\U lies, by definition, on an arc in V 

th a t in tersects U, it follows th a t UDGq7^0 and th a t U n G ^ 0 .  Since UOGq and 

UflGj are open sets, we can find an arc of diameter less than e/3 joining UDGq and 

UDGp By definition th is arc lies in V, which is impossible since it in tersects both 

Gq and G p Finally we observe th a t diam(U)^e/3, hence diam (V)^2e/3<e, which

shows th a t V is a connected neighbourhood of y of diameter less than e.

Now [7], Theorem 1, p.254 shows th a t Y is locally arcwise connected. □

Lemma 5.

Let Y be complete and assume that SajCLYl-SSojGjY). Then Y is arcwise 

connected.

Proof.

Let yo»yj£Y. We shall define an arc joining these two points. Use Lemma 3 

and Lemma 4 to find open neighbourhoods U0,Ui of y 0 and y i} respectively, such
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th a t any pair of points of U0 can be joined with an arc, and any pair of points of Uj

can be joined with an arc..

( y 0, if t=0,
The function f(t)={ from I to Y is of f ir s t  Borel class. By

[ y ls if t> 0 ,
assumption f  is then of f ir s t  Baire class, so there  exists an arc 0EBao(I,Y) with 

0(i)EU^ fo r i—0,1. Join y 0 to 0(0) and 0(1) to  y 1 with arcs. Then these th ree  arcs 

together join y 0 and y ^  □

Theorem 2.

Let Y be complete m etric. Then the following th ree  statem ents are 

equivalent:

(i) Y is connected and locally connected;

(ii) Ba.q.YMBo^LY); and

(iii) B a1(X,Y)-Bo1(X,Y)DS(X,Y) for all metric spaces X. .

Remark.

The implication: Y is arcwise connected and locally arcwise connected => (iii), 

is th e  statem ent of Theorem 1 which does not assume th a t Y is complete.

Proof.

Theorem 1, p.254 in [7] shows th a t (i) implies th a t Y is locally arcwise 

connected. This again implies th a t Y is arcwise connected. To see th is  le t yEY  and 

let U be th e  union of all arcs going through y . Since Y is locally arcwise connected 

U is a non-empty clopen set. Since Y is connected we conclude th a t U equals Y, and
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hence th a t Y is arcwise connected. Now, to  obtain the conclusion of the  theorem, 

combine Lemma 3, Lemma 4, Lemma 5 and Theorem 1 and note th a t every  function 

from I to  Y is a-d iscrete . □

Note th a t the proofs of Lemma 3 and Lemma 5 still work when I is replaced 

by a metric space X containing a homeomorphic copy of I. T herefore we immediately 

get the  following corollary.

Corollary.

Let X be a metric space th a t contains a homeomorphic copy of I. Let Y be a 

complete metric space. Then Sa^XjYl-BOiCXjYJHZCXjY), if and only if^ Y is locally 

connected and connected. □

Remark. The remark a fte r Theorem 2 applies here as well.

Next we shall look at some examples. The f irs t will show th a t Lemma 4 and 

Lemma 5 fail to be tru e  in general when Y is not complete, and th a t it is not enough 

to  assume tha t Y is a K ^-set in a complete separable metric space, to  obtain the 

conclusions of the lemmas.

We will be working in the  Hilbert cube 1®̂ , equipped with th e  complete metric 

d((tp,(si))=Z2”1 |tpSj|, and we will let 7^ be th e  projection on the  i’th  coordinate.
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Example 1.

We shall define a K^-set Y C I ^  such th a t :

(i) So^XjYl-SajfXjY) fo r all metric spaces X; and

(ii) Y is not locally arcwise connected nor arcwise connected.

For all p let Y p={(tj)G l^:tp=l, t^=0 Vi >p  }. Then {Yp:pGN} is a countable 

and disjoint collection of compact se ts . Define Y= UYp.

(i) Let f GSo^XjY). Then f GSojCXJ) for each k, since the  projection is

continuous. By Theorem 1 th e re  exist sequences of continuous functions 

(g™)C3Ja0(X,I) converging pointwise to ^ o f  fo r each k.

Now gma=(g|1, g™, ... , gJn, 1, 0, 0, ... ) is a continous function from X to Ym+j 

and {gm} converges pointwise to f.

(ii) Let 0:1-*Y be an arc. Then 0-I(Yp)=^0 fo r exactly one p fo r otherwise we 

could write I as a disjoint union of countably many but a t least two nonempty 

closed sets, which is impossible by the  Sierpinski Theorem in [11], p440.

This shows th a t Y is not arcwise connected. In fact it also shows th a t Y is 

not locally arcwise connected, fo r any open nonempty subset of Y in tersects 

infinitely  many of the sets {Yp:pGN} and, as we have ju s t seen, a pair of points 

th a t do not lie in one of these sets can not be joined with an arc. □

If a metric space Y satisfies ^Ba^LYl-So^LY), then Y must have th e  following

1 2two properties which we call P and P .

P*: For all fin ite  sequences of nonempty open sets U-pL^.-.iUnCY there
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exists an arc 0 €®ao(I,Y) such th a t 0-1(U-)t^0  for all i<£n.
2P : For all e> 0  and all y £ Y  th ere  exists an open neighbourhood U of y such

that, fo r all fin ite  sequences of nonempty open sets  U p l^ fe iU n C U , there  exists an 

arc 0G $ao(I,Y) such th a t 0-1(U -)t^0 for all i<[n and such th a t diam0(I)<^£.

T hat P* must hold can be shown with an argument similar to  th a t in the
2proof of Lemma 5, and th a t P must hold can be shown along the  line of the proof 

of Lemma 3.

1 2Conversely, if a complete space Y satisfied P and P then by Lemma 4 it

would be arcwise connected and locally arcwise connected. If Y were also separable,

then we would have SBa^X.Yl-SoiCXjY) for all metric spaces X. The next example

shows th a t th is  conclusion fails when Y is not complete. Indeed, it shows th a t the

1 2conclusion fails for a space th a t  satisfies P and P and is a Ka -set in a complete 

separable metric space.

Example 2.

There exists a Kn-subset Y of 1 ^  satisfying P* and P^ but where 

B aA Y M B o A Y ).

We shall construct the se t Y. Consider the subsets of 1 ^

t j-0  V i> p  }

Y p -K tjJ e l^ r tp - l^ ,  t r 0 V i> p  ).

These sets are disjoint. To see th is  assume th a t Yp HYp* is non-empty. We cannot 

have P i7̂ p2 because of the  restric tion  on the last non-zero coordinate. For the same 

reason we cannot have
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The space I*''* has a countable base of se ts  of the  form

o 1x o 2x . . .x o kx ix ix . . .
with 0 p 0 2,...,0 k non-empty open subsets of I, so the  set of all fin ite  sequences of 

sets from th is  base is countable. We denote it by

«uj, u i , , ..., u j ^  )•. iensn.
Note th a t  the  function cr:N -«N  determines the  length of each of the  fin ite  

sequences.

For each i there  exists a q(i) such th a t '7Tq(Uj)=-l fo r all q^>q(i) and all j^cr(i). 

Let p(l)-max{q(l),3} and define inductively p(i+l)-max{q(i+l),(p(i)+l)}. Then {p(i)} is a 

s tr ic tly  increasing sequence of integers, all bigger than 3, and such th a t 

U jnY p(i)=^0 and fo r all i and j^ o ( i) .  To see th is  le t us fix i and j

and write Uj*=VXl^ where V is an open subset of IP^  Let

Then ( tp t2,..., t p(i)-l’1,0,0’***^Uj nY p(i) and ( t l ’t 2’**'’t pCi)-l,2’0,°’:**)eU J nY p(i)*

For each i and j^cr(i) pick a point uj^ ^ j^ ^ p ( i)*  ^or 

y 1=(0,l,0,0,...,0,1,0,0,...), where the  second 1 is on th e  p(i)’-th  coordinate. Note th a t 

the  distance between y* and y=(0,1,0,0,...) is 2 P^ ,  and th a t 2 p^ < ^ 2~  ̂ fo r all i.

For each i we will define a continuous piecewise linear function by

yi> if ^ 2^ 0?

^ i(t)={ yi+(t-5 w +^ 0 j )2tr(i)(uj-yi)’ if  M

uJ+(t- ^ 0 ))2CT(i)(yi-uj )' if 

Note th a t is convex and th a t 0 ?(I) is the union of a(i) stra igh t-line  segments

joining y 1 to  the  points u j.

Let N={iGN: diamf U u U ^ l /2 ) .  For each iGN le t 0?:I-*YJvn be a piecewise 
lj£cx(i) 1 P(l)
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linear continuous function satisfying:

, 2 /0^(1) OUj 7^0 Vj^cr(i); and

diam0?(I)<^diamf U U^l.
1 l j<;a(i) Jj

We can construct these functions by the  method used to  construct the  functions

*]■

The space providing the  example is defined by

y - y I  u  y ? u  u  *,■«) u  u  ).
i£M  i£N

Note the  following points:

Y is a Ko-set;

any arc 0(1) CY must be contained in one of th e  d isjoint se ts  of which Y 

is the  union;

the  subsets {0 |(I)} of Y ensures th a t Y satisfies P*; and 

the subsets {0?(I):i£N} of Y ensures th a t Y satisfies P^.

Let us assume th a t tBajGjYJ-SojGjY) and seek a contradiction to prove th a t Y 

is indeed the  example. Define the  f ir s t  Borel class function f:I-*Y by
„  x f(t,|,0,0,...), if t  < 1, 
f ( tM

1(1,1,0,0,...), if  t - 1.
Then, by assumption, we can find a sequence of functions, {0n)C $ a o(I,Y), converging 

pointwise to f .  When n is su ffic ien tly  large the  points 0 n(O) and 0n(l) are near 

(t,|,0,0,...) and (1,1,0,0,...). We may assume th a t 0 n(I)C  ^or n» ^or a^  arcs

contained in one of th e  se ts  0^(1), i£lN , would have too small a diam eter. In fac t 

0nG)C0 -1G) fo r some i=i(n).

Let y =(0,1,0,0,...), which is in Y^, and for each m define the  set

Hm= U 0 n 1(B(y,J)). Then clearly  Hm is open and y*EB(y,J) fo r all i. To see th a t 
n >̂m
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is also dense in [ |, l l  le t a and b be such th a t |< a < b < l .  When e is su ffic ien tly

small th e re  is no line th a t in te rsec ts  B(f(a),c), B(f(b),e) and {ylU lJly1}. However, fo r
i

large n we have 0 n(a)GB(f(a),e) and 0 n(b)EB(f(b),€). But f ° r  some i, so,

since 0 n((a,b)) cannot be contained in one of th e  linear segments of 0*0 ), we see th a t 

0n((a,b)) cannot lie on ju s t one of the  line segments making up 0^(I). T herefore

y ^ tfn K M O ) aTld so

Hence each Hm is dense and open in [|,1 ] and so nH m C \[^ l]^ 0  by the  Baire 

category theorem, which is a contradiction with nH mn [ |, l ] C f _l(B(y,l))=-0. We 

conclude th a t SajOjY^^BojCLY) as required. □

Example 3.

2Consider the  subset of ]R

M-<(x,sin£ ):0 < x < ;ll U<0) Xt-1,2] U[0,1 ]X{2)U{1 1X10,2]

The space M is metric, separable, compact, complete, arcwise connected and a 

continuous image of th e  real line. But M is not locally arcwise connected and so, by 

Theorem 2, we have SaiO jM ^SO idjM ).
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4. Second Baire class functions.

Lemma 6.

If U ®a^(X,Y)- U ®Oo.CX,Y), then, fo r all q GIN, fo r all sequences,
o l « j J i  o l < U 1

Up...,Uq, of nonempty open subsets of Y and fo r all sequences, X j , . . . , X q ,  of distinct 

points of X, th e re  ex ists a continuous function ^:X-»Y with 0(xp6U j fo r all i<[q. 

P roof.

Let Up...,Uq be a sequence of nonempty open subsets of Y and Xp...,Xq be a

sequence of distinct points of X. Pick for each i< q  a point yjG lL . Define the« 1 1

cr-discrete f ir s t  Borel class function
(yp if x -x {, q ^ i > l ,  

f(x)-{ 1 1
(yn otherw ise.

Then by assumption f  is a Baire class a  function, fo r some a< u)lt and f(x^)GUj fo r 

all i^ q .

Observe th a t, whenever a non-continuous function g of Baire class 0  satisfies 

g(x^)GU^ fo r all i<;q, then th e re  ex ists T}<& and a function h of Baire class 77, such 

th a t h(xj)GU^ fo r all i<[q.

Apply th is  observation to  f  to  yeild a function, fj, of s tr ic tly  lower Baire 

class than  th a t of f, with f L(x^)GU^ fo r all i<^q. If f] is continuous, then f x satisfies 

the  conclusion of the  lemma. If f x is not continuous, we apply our observation to  fj 

to  yeild a function f 2 of s tr ic tly  lower Baire class than th a t of fj. We repeat th is  

process until it halts. The process will halt, since a s tr ic tly  decreasing sequence of 

ordinals can only be fin ite . The function we have when the  process h a lts  satisfies 

the  conclusion of the  lemma. □
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Lemma 7.

If Y is separable, metric and X is metric such th a t fo r all qGIN, for all 

sequences. Fp...,Fq, of disjoint closed subsets of X and for all sequences. Uj,...,Uq, 

of nonempty open subsets of Y, there  exists a continuous function 0 :X-*Y with 

0(F^)CU^ fo r all i<£q, then 3Ba2(X,Y)-?Bo2(X,Y).

Proof.

We will f ir s t  show th a t all f irs t Borel class functions from X to Y with 

fin ite range are of f ir s t  Baire class. So let f:X-*Y by a f ir s t  Borel class function 

with fin ite range. Let {y^ri^q} be th e  finite range, and let, fo r each m, {F^Tn: i<^q} be 

a disjoint family of closed sets such th a t f ^ y j ^ U F ^  fo r every  i<[q. By 

hypothesis we can find continuous functions, 0n:I-»Y, nGN, so tha4

U F- )CB(yi,2"n) for all i<;q. Then the  sequence {0n} converges pointwise to f. 
m<^n lin 1

Now let h:X-*Y be of second Borel class. We shall show th a t h is of second 

Baire class. In [11, pages 389-391, it is proved th a t all second class Borel functions 

from a metric space to  a separable metric space are pointwise limits of f irs t Borel 

class functions with finite range. By the argument above, all these f ir s t  Borel class 

functions are of f ir s t  Baire class. Thus h is of second Baire class. □
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Theorem 3.

Let Y be a separable metric space. Let X be a metric space containing a 

homeomorphic copy of the  unit interval. The following statem ents are equivalent:

(i) $ a 2(I,Y)*$o2(I,Y);

(ii) For all qE N , for all sequences. X p . . . , X q ,  of distinct points of I and for all

sequences. Uj,...,Uq, of nonempty open subsets of Y, there  exists a continuous 

function 0:1-»Y with 0(xpEUi for all i<^q;

(iii) For all qELf, for all sequences. Fj,...,Fq, of disjoint closed subsets of X

and for all sequences. Up...,Uq, of nonempty open subsets of Y, there  exists a 

continuous function 0 :X-«Y with 0(F^)CUi fo r all i<^q;

(iv) $ a 2(X,Y)-$o2(X,Y);

(v) For each finite (countable, infinite) ordinal a  ^ 2  we have ®aa (X,Y) equal

to $oa (X,Y) (®oa + 1(X,Y)); and

(vi) U $ a a (X,Y)« U $oa (X,Y).
a < w l a<W !

Proof.

(i)=*(ii) follows from the argument of Lemma 6 .

(ii) =»(iii). By T ietze’s theorem let f:X-*I be a continuous extension of the 

function defined by f(x)“  «=* xEFj. By (ii) we can find a continuous function 0:1 -»Y

with 0(^)EUi for all i<[q. The function 0 of satisfies th e  condition in (iii).

(iii) =>(iv) is Lemma 7.

(iv)=»(v) follows from the remark in section 1, or from Banach’s theorem in

[1], page 394.
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(v)=*(vi) is triv ia l.

(vi)=>(i). By Lemma 6 we have th a t I satisfies (ii), since ICX. We have 

already noted th a t (ii) implies (iv) so I satisfies (iv), which is the  statem ent of (i). □

Let X be a topological space and let Y be a metric space. Every a-d iscrete  

second Borel class function from X to  Y is, by [2], Theorem 5, the pointwise limit of 

a sequence of cr-discrete f ir s t  Borel class functions, each of which have discrete 

range.

Let us assume th a t X and Y together has the . property that, fo r every  closed 

subset F of X, every  continuous function with discrete range g:F-»Y and every  

e>0, there  exists a continuous function h:X-*Y such th a t d(h(x),g(x))<[e for all 

xEF.

Then, using an argument similar to th a t in Lemma 2, we can show th a t every

cr-discrete f irs t Borel class function with discrete range is of f ir s t  Baire class.

Indeed, let g:X-»Y be a cr-discrete f irs t Borel class function with discrete range. Let

{y«y:7 ^ r}  be the discrete range and let, for each n, be a discrete family

of closed sets  such th a t g- 1(y ^ ) - U F ^  for each 7* Define continuous functions, gm

by letting gm(x)-y-v, if and only if, xE U F*v„, and note th a t U U F^_ is closed & n ^ m 7n 7 e r n ^ m  Tn

for every  m. Let hm:X-»Y be a continuous function such th a t d(hm(x),gm(x))^2”ni

fo r all xE U U F~„. Then the  sequence of functions {hm} converges pointwise to 
7ET n <̂ m /n

g, and hence g is of firs t Baire class. Thus SBo2(X,Y)nE(X,Y)-tBa2(X,Y) and we have 

proved the following theorem.
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Theorem 4.

Let X be a topological space and let Y be a metric space. Assume th a t for 

every  closed subset F of X, every  continuous function with discrete range g:F-*Y 

and every e>0, there  exists a continuous function h:X-»Y such th a t d(h(x),g(x))^e 

for all x G F .  Then $ o 2(X,Y)nX(X,YMBa2(X,Y). □
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A Banach space with a Lipschitz Gateaux-smooth bump
has w*-fragmentable dual.

Introduction.

In [1] Namioka, Phelps and Preiss proved a theorem which stated th a t a 

Banach-space with a Gateaux-smooth norm is weak Asplund. Later, in [2], Ribarska 

showed th a t the  idea of the proof in [1] could be used to obtain a stronger theorem, 

namely th a t the existence of a Gateaux-smooth norm implies th a t the  dual is 

w*-fragmentable. The w*-fragmentability of the dual implies the weak Asplund 

property  (see [8]). Then in [3] Deville remarked th a t the Namioka-Phelps-Preiss 

theorem still holds with the s tric tly  weaker (see [6] and [7]) assumption of existence 

of a Lipschitz Gateaux-differentiable bump.

The aim of th is paper is to use the technique of the Namioka-Phelps-Preiss 

theorem to prove th a t the existence of a Lipschitz G ateaux-differentiable bump 

implies th a t the  dual is w*-fragmentable. In fact, we shall assume a slightly weaker 

condition; let us s ta te  the  theorem.
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Theorem.

Let (E,|M|) be a Banach-space such th a t there  exists a Lipschitz bump-

function, 0 :E-*]R , satisfying

liminf t -1[ 0(x+tu) + 0(x-tu) - 2#(x) ] ;> 0, 
t - 0+

for all x,u.

Then (E*,w*) is fragmentable. □

Before we proceed with the  proof we shall s ta te  the  necessary definitions and 

theorem s. For fu r th e r  background the reader is referred  to [5],

n«n -
A bump-function is a real-valued function assuming only positive values and 

with bounded, non-empty support. One should note th a t we do not need the  

p ositiv ity  assumption, since, if we have a bump which assumes both negative and 

positive values, we can take the  positive part.

If X is a topological space and p is a metric on it we say th a t p fragments X 

if, fo r every  c> 0  and fo r every  non-empty subset Y of X, there  exists a non-empty 

re la tive ly  open subset U of Y whose p-diameter is at most c. A topological space is 

said to be fragmentable if there  exists a fragmenting metric on it.

A Banach space E is called weak Asplund if every  convex function on E is 

G ateaux-differentiable a t a dense G^-subset of its  domain. In [8] we find the 

following theorem: If (E*,w*) is fragmentable then E is weak Asplund.

A well-ordered family CU — { : 0< £< £o } of subsets of the  topological
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space X is said to be a re la tive ly  open partitioning of X if Uo= 0 , is a rela tively  

open subset of X\( U U^) fo r every  £, 0 < £< £o and X-=UCU.
rj <6 1

A family CU is said to be a cr-relatively open partitioning of X if CU=UCUT1, 

where cUn, n=l,2,... are re la tive ly  open partitionings X and *11 is a separating cr- 

re la tively  open partitioning of X if *11 separates points. By 14], Theorem 1.9 a 

topological space is fragmentable if and only if it admits' a separating cr-relatively 

open partitioning.

To ease notation we shall define

Af(x,u) -  f(x+u) + f(x-u) - 2f(x)

fo r all f,x and u.

With all the a rtille ry  in position we can attack the proof. Let us begin with a

Lemma

The following two statem ents are equivalent.

(1) There exists a Lipschitz bump-function, 0 :E-»R, satisfying, fo r all x,u,

liminf t -1[ 0(x+tu) + 0(x-tu) - 20(x) ] ;> 0. 
t - 0 +

(2) There exists a function p0:E-*IR having the following properties:

(i) p0(x) ^  0;

(ii) p0(^x) -  |Mp0(x);

(iii) 3 c,C such th a t B(0,c) C  { x : p0(x)<;l } C  B(0,C);

(iv) p0 is Lipschitz; and

(v) Vx,u GE limsup t -1|[ p0(x+tu) + p0(x-tu) - 2p0(x) 1 ^ 0 .
t - 0+
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Proof of lemma.

The implication (2) =>(1) follows immediately upon defining

0(x) = ( 1 - p?(x) )+ .

So let us assume th a t 0 is a bump with 0  supp0 C  B(0,C), Lipschitz-

constant K, satisfying liminf t - l A0(x,tu) ;> 0,
t - 0+

for all x,u. Following Leduc [91 we define

Now conditions (i), (ii) and (iii) are triv ially  satisfied . We shall prove (iv) and (v).

F irs t note th a t we have Ixl/c <; p0(x) <; Ixl/C for all x. Given x and y  we can

assume th a t 0 5̂  Ixl lyl. If clyl <, Clxl then

| p0(x) -Po(y) | = Ixl ^,p0(x/lxl) - p0(y/lxl) |

In case clyl ;> Clxl we have

0 Po(y) " P0(x) <. lyl/c - Ixl/C <; ly-xl/c + Ixl/c - Ixl/C

<; ly-xl/c + (lyl-lxl)/C (1/c + l/C)ly-xl.

This proves (iv). To prove (v) note th a t since <t> is Lipschitz we get by Fatou’s

lemma th a t

h(x) -  y*0(tx)dt and p0(x) = h(x) l.

i ^ K l x - y l .

limsup t  Ĵ 2h(x) - h(x+tu) - h(x-tu)] <; 0.

The differentiability  assertion now follows by the chainrule. □
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Proof o f theorem.

F irst apply the  lemma to yafcld a function p0 satisfying (i) to  (v). For the

sake of easy reference the conditions (i) to (iv) of the  lemma will be called condition

(a). Note th a t (v) is not part of condition (a).

Let B* be the dual unit ball. Since E* = UmB* it suffices to show th a t B* ism
a fragmentable space in the weak s ta r topology. To do th is it suffices to  produce a 

separating <7-rela tive ly  open partitioning of (B*,w*).

Given a function p satisfying condition (a) we let p be the norm, equivalent

to the original norm, having unit ball conv{ x : p(x)<;l }. Note th a t p<£p.

We shall use the  following basic construction.

Let U be contained in B* and let p sa tisfy  condition (a). Given c and /3 we construct

a rela tively  open partitioning

B -  { Ve : 0 < ^ < 6o }

of (U,w*) and associate to  every  element of 5B a non-negative real s^, an element 

e^EE with p(e^)-l and a new function p^, satisfying condition (a), in the following 

way.

Let Vo= 0 , so=0 and e0,p0 be a rb itra ry . Assume we have constructed V^, s^, e^

and prj fo r all Tj <£ and consider -  U\( U V-n).U fc 77 <£ 'I

If R^=0 we put £0=£ and stop the process.

If not, we put

S£=sup{ < x * ,x >  : x*ER£, p(x)<;l ).
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If Sg-=0 it means th a t Rg-{0}, by condition (a). Then put Vg-IO}, let e£

and pg be a rb itra ry  and stop.

If Sg>0 then there ex ists e^EE with p(e^)=l such that

Vg = { x*ERg : < x * ,eg >  >(l-e)sg } ^ 0 .

Moreover, Vg is w *-relatively open in Rg. We put

q^Cx) -  inf{ po(x-Xeg) : XEJR }, 

for all xEE, and pg = p^+ f3^qg.

Note th a t pg satisfies condition (a) and th a t the  process stops.

Thus the re la tive ly  open partitioning 3B of U is constructed.

We shall now construct the cr-relatively open partitioning *11 = UTl11 ofn
(B*,w*). Fix two sequences of positive real numbers J> € t >€2> ... and /31>/32>*** 

such th a t

and 2 > k <oo.
p k

Applying the basic construction with U=B*, p=p0, €“ €i and we obtain a

rela tively  open partitioning CU*={ Ug : 0<;£<£j } of (B*,w*) and for all £<€} we get

Sg^O, eg EE and pg satisfying condition (a) with pg(eg)=l.

1 2  nIf we have constructed rela tively  open partitionings CU ,*11 ,...,CU we consider 

Uj? E cUnH  Ug : }, and apply th e  basic construction to U=Ug with p=pg,

e_£n+l and 0 _^n+r

We then get a re la tive ly  open partitioning Tig = { Uj^ : 0^?7<7?” ) of Uj? to
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ev ery  element of which a function satisfying condition (ct) and a point e ^  with 

p”^ (e ^ )= l are associated.

Now cUn+1 = U{ : 0<;£<{;n ) is a re latively  open partitioning of B* if its 

elements are ordered alphabetically (see [41, prop. 1.5) and cUn+* is a

refinement of cUn.

We shall now see th a t CU is separating.

Let us assume the contrary, i.e. there  exist two points xf,x*E B * such th a t 

they  belong to the same element Vn of cUn for all n. Let sn, pn and en be the 

associated reals, functions and points, respectively, from the construction. By 

assumption sn >0 for all n.

The construction immediately gives us th a t the  following properties hold:

(i) B* = V0 D Vj D V2 D ...D  DVn D {xf,x?>;

(ii) sn = sup{ < x * ,x >  : x*EVn, Pn_ i(x )^ l ) >  0;

(iii) Vn C { x*€V n l : <x*,en >  > (l-€ n)sn } fo r all n;

(iv) f ° r  n> an(^

(v) p„ = p^ j + /3nqn» where qn(x) = inf{ p0(x-Xen) : XEIR ).

We will derive the following facts.

(a) {pn} is an increasing sequence of functions, all satisfying condition (a),
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converging uniformly on bounded sets to a function p©© satisfying condition (a) and

Po^Poo^2p0.

To see th is note tha t

Po ^  Pn = Po + S  ^k qk ^  ( 1+ 2  0k  ) Po £  4p?, 
k-1 k-1

so the  sequence converges and Po^Poo^2p0. Hence, if ||x||<;K, then
O ^ O O OO <5 OO o OO <-> rr2

Poo(x) - £ /3 kqk(x) '  Po(x) "  S  % qk(x) ^  S  ^kPo(x) ^  ? “* °-
1 n+1 n+1 n+1 c^

Thus the sequence pn converges uniformly on bounded sets, hence so does pn.

(b) sn ^  Sn+1""*s°° ^

Using Vn+1CV n and pn ^ P n_1 we have

0 <  sn+l = sup* < x**x >  : x* eVn+l’ >

^  sup{ < x * ,x >  : x*EVn, pn_ j(x )^ l } = sn .

(c) en -*eoo with pc©(eoo)“ l.

To prove th is  we will show th a t

Po(en+1 - en) ^  1 0 ^  + 4en

for n suffic ien tly  large. The conclusion then follows since ilHI<^Po> < 00
U Pn

and £ en <  oo.

Let n be a positive integer. We have Pn_^(en)-1 and qn(en)=0 so pn(en)=l. Let 

us estimate Pn_](en+])«

^Pn-l^n+P  ^  sup{ < x*-x > ! Pn-l(x)^ Upn-l(en+l) ^  < x * en+ l> > (1-€n+l)sn+l> 

by positive homogeneity. On the other hand

(l-en)sn <  < x f ,e n > ^  sup< < x f ,x >  : pn(x )£ l }pn(en) ^  sn + r
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Therefore

pn-l^en+P >  (1_£n+ lH ^T  >  >  1̂_2€n) >  °-

We can now estimate
2f . _ Pn(en+1) - Pn_!(en+1) _ 1 - P n-l^n+ P  

q" (en+ l>----------------72------------------------- 72-------
Pn Pn

4€n(l-en) Cn

&  % 2  '

or

cln(en+l) <

We can express en+i as eT1+ ŝ=̂ nen+un> where Xn ElR and u n E E  satisfies

P o ( u n ) -  9 n t e n + 1 ) <  2 ^  ,

so

pn(un) £  2p0(un) <  4 ^  .

Note th a t fo r all e such th a t pn(e)<|l we have < x f ,e >  sn+ ,̂ so

< x f ,e >  ^  sn+-j for all e with pn(e )^ l , hence p j(x f)  <; sn+1 sn.

We now have

1 , ,< x * en+l ’ u " ‘ en > l  ^ l< x * en+l " en > l  + l< x f ,u n >  
l^n"l I “  r- ^  ^  T- *< xi »en >  < x l t en >

2£"Sn + 4̂Sn - |7
^  (l-2cIl)sn ^  4tn + S /3n 

Consequently, using th a t Po(en ^ P n_^en)“ l» we have

P o (e n + i _ e n ) “ PoC ( ^ n " ^ e n + u n^ ^  l^ n _ l |P o ( e n )  **" P o (u n^

<; 4en + 1 0 ^
Pn
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so {en} converges to eo©.

The fac t th a t Poo(eoo)” l is immediate from Pn“*Poo uniformly on bounded 

sets, en -»eoo and Pn_](en)“ l* This establishes (c)

For all n we have (l-cn)sn <  < x f ,e n > <  P*(xf)pn(en) ^  sn+l* Getting n-»oo

we observe th a t s©© = <xf,e©©> = < x2\eoo>*

Note th a t p©© is an equivalent norm with p©©<£ Poo*

For all x with p©o(x)<;l we have < x f ,x >  <; sn for all n, so < X ? , X >  £  So©

whenever poo(x)<; 1* It follows th a t pJUxfl^s©©.

Now poo(eoo) <[ Poo(eoo) -  1» so

Sqo ~ <Cx i<:»eoo^> ^  PooCx*) ^  Sqoj 

Poo(xf) -  So© and p©o(e©o) ■ 1.

Hence x f  and x* belong to the subdifferential of p©o at e©©. We must now 

show th a t po© is Gateaux-differentiable a t e©©, since th is implies th a t xf=x*, a 

contradiction.

Let K be the  Lipschitz constant of p0, and note th a t we have

Ap2(x,tu)
2

= [ Po(x+tu) + po(x-tu) ]Ap0(x,tu) + [ po(x+tu) - po(x-tu) ]

- [ Po(x) - Po(x+tu) ]2 - [ Po(x) - Po(x-tu) ]2 

^ [ Po(x+tu) + Po(x-tu) ]Ap0(x,tu) + 4K2t2 |u |2.

Let {7 ^} be reals such th a t q^^oo) *= Po^oo-T^e^) for all k, and note th a t



62

q£(e<x>+tu) + qjj(eoo-tu) - 2q£(eoo) ^  Pk(eoo-7kek+tu) + Pk<eoo-7kek-tu) - 2pk(eo©) 

for all t and u.

By convexity we get

0 limsup t^Apooteoojtu)

<i limsupt_1Apoo(eo©>tu)

+ limsup t - i

limsup t  \  A p o (e < x » tu )  +  £ / 3 k A q k ( e o o ,t u )

^  limsup t  \  Apo(ecx»tu) + S ^ A p o t e o c ^ e ^ t u )  J

^  limsup t^Apoteoo/tu)

£  ( ( Pofeoo-7kek+tu) + Po(eoo-7kek"tu) l^Po(eoo-7kek»tu)
k < N  2 2 2 1+ 4 K V | u r  )

+ £  0? ( [ p?(eoo-7kek+tu) + p?(eoo-7kek-tu) ]2K|u|t + 4K2t 2 |u |2 ) 
k^N

^  M £  /32 
k^N

fo r some constant M, and th is sum converges to 0 as N-*oc*.

Thus we see th a t poo is G ateaux-differentiable a t eo©; th is  is the 

contradiction we we sought and the  proof is concluded. □
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