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Abstract 

Study objectives: We investigated associations between actigraphy-assessed sleep measures and 

cognitive function in people with and without HIV using different analytical approaches to better 

understand these associations and highlight differences in results obtained by these approaches. 

Methods: Cognitive and 7-day/night actigraphy data were collected from people with HIV (PWH) 

and lifestyle-similar HIV-negative individuals from HIV and sexual health clinics in UK/Ireland. A 

global cognitive T-score was obtained averaging the standardized individual cognitive test scores 

accounting for socio-demographics. Average and standard deviation (SD) of eleven sleep measures 

over 7-days/nights were obtained. Rank regression, partial least-squares (PLS) regression, random 

forest, sleep dimension construct, and latent class analysis (LCA) were applied to evaluate 

associations between global T-scores and sleep measures. 

Results: In 344 PWH (median age 57 years, 86% males), average sleep duration, efficiency and wake 

after sleep onset were not associated with global T-scores according to rank regression (p=0.51, 

p=0.09, p=0.16, respectively). In contrast, global T-scores associated with average and SD of length 

of nocturnal awakenings, SD of maintenance efficiency and average out-of-bed time when analyzed 

by PLS regression and random forest. No associations were found when using sleep dimensions or 

LCA. Overall, findings observed in PWH were similar to those seen in HIV-negative individuals 

(median age 61 years, 67% males). 

Conclusions: Using multivariable analytical approaches, measures of sleep continuity, timing and 

regularity were associated with cognitive performance in PWH, supporting the utility of newer 

methods of incorporating multiple standard and novel measures of sleep-wake patterns in 

assessment of health and functioning.   

Keywords: HIV; sleep; cognition; sleep quality; machine learning; 
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Statement of significance 

This is the first study to apply different machine learning approaches to assess the link between 

sleep and cognition in people with HIV, who are considered to be at high risk for both sleep and 

cognitive disorders. 
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Introduction 

Widespread access to combination antiretroviral therapy has meant that HIV is now a manageable 

chronic disease for many of those affected [1]. Nevertheless, the quality of life of people with HIV 

(PWH) remains poorer than that of the general population, in part due to an increased burden of co-

morbidity [2], including highly prevalent and diverse sleep problems [3]. Established aetiological 

pathways and risk factors for sleep problems in the general population may be exacerbated in PWH 

by the additional prevalence of several psychosocial and behavioral factors also known to disrupt 

sleep (e.g. depression, stress, excessive worry [4,5]), by inflammation and neuronal damage induced 

by HIV [6] and by adverse effects of antiretroviral therapy [7].  

Cognitive disorders also remain prevalent among PWH, especially mild or moderate disorders [8], 

with a reported prevalence often exceeding that seen in HIV-negative populations [9]. Sleep 

deprivation and/or fragmentation can be responsible for alterations of toxin clearance and synaptic 

function, potentially contributing to impairment of many cognitive functions [10]. Whilst several 

studies have demonstrated the negative effect of poor subjective [11] and objective [12, 13] sleep 

health on cognitive function of adults from the general population, little is known regarding the 

association between sleep and cognition in PWH, with limited evidence suggesting a link between 

poor self-reported sleep quality and cognitive disorders. However the few studies on PWH that have 

investigated these associations, either relied on a limited sample size [14], on self-reported sleep 

quality [15] or lacked a control group of HIV-negative individuals [16]. Moreover, most of the studies 

that have investigated the link between sleep and cognition in the general population have either 

considered subjective measures of sleep [11] or have focused on sleep duration only [12,13], with 

only a few investigating the role of multiple dimensions of  sleep [17-21].  Thus information on 

associations between objective measures of sleep and cognitive function is lacking. 

The idea of sleep health as a multi-dimensional construct [22] recognizes that different aspects of 

sleep (e.g. duration, efficiency, timing, regularity) may all be important and have differential effects 

on health. Therefore, investigation of a single sleep characteristic only (for example, sleep duration) 

may lead to a limited understanding of the broader implications of poor sleep health. The 

introduction of accelerometers in clinical research has allowed researchers to objectively quantify 

various aspects of sleep over a prolonged period of time. Recently, there has been increasing 

interest in using a variety of statistical methods to exploit these data for studying  the effect of sleep 

on health outcomes [23]. Several studies have begun to consider multiple sleep characteristics using 

multivariate analytical methods, such as random forests, to handle high-dimensional and correlated 

sleep data [24]. Other studies have examined sleep as a multidimensional construct and have 

described the association of a composite sleep score or individual sleep dimensions on a given 

outcome [25, 26]. Individual-based approaches have also been applied, such as cluster and latent 

class analysis (LCA), to identify sleep health ‘profiles’ based on several sleep characteristics and then 

investigate differences in health outcomes across the different ‘profiles’ *27].  

These are conceptually different approaches each of which can provide important insight into the 

association between sleep and health outcomes. However, intrinsic differences related to the nature 

of these approaches and their specific aims can potentially lead to different conclusions about the 

relative importance of each sleep characteristic or dimension for a given outcome.  
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Our overarching aim was to assess the association between sleep health and cognitive function in 

both PWH and HIV-negative controls, and shed light on those aspects of sleep most strongly linked 

to cognition. While addressing this study question, we sought to evaluate several different statistical 

approaches that differ in how they take into account the relationships between sleep parameters. 

Secondly, when possible, we investigated the extent to which associations between sleep health and 

cognitive function may differ by HIV-status. 

Methods 

Study participants and procedures 

The Pharmacokinetic and Clinical Observations in People Over Fifty (POPPY) study is an observational 

cohort study of PWH and HIV-negative individuals with similar lifestyles from UK and Ireland. The 

study recruited three groups of individuals and has been described previously [28]. Briefly, two 

groups of PWH were recruited from eight HIV clinics: PWH aged ≥50 years and PWH aged 18-50 

years, with the latter group frequency matched on gender, ethnicity, sexual orientation and location 

to the older group of PWH. Inclusion criteria were: documented presence of HIV infection, white or 

black-African ethnicity, likely route of HIV acquisition via sexual exposure and ability to comprehend 

the study information leaflet. A group of HIV-negative individuals was also recruited from sexual 

health centers affiliated to the HIV clinics: these individuals were required to be 50 years or older 

and to have a documented negative HIV test. In addition, this group was frequency matched to the 

group of PWH aged ≥50 years on gender, ethnicity, sexual orientation and location.   

Subsets of POPPY study participants from the three groups were recruited into this nested sub-

study, without regard to sleep symptoms. Additional inclusion criteria were: ability to wear a 

fingertip oximetry device and wrist actigraph for a week and to adhere to study procedures 

(according to the investigator’s judgement).  

Participants underwent a single study visit between March 2017 and July 2018 followed by in-home 

procedures including a daily sleep diary, actigraph and oximetry measurements and an additional 

visit to return the devices and the completed diaries. At the study visit, participants completed 

questionnaires detailing sleep quality, symptoms of sleep disorders, sleep medical history and 

medication use for sleep disorders, and underwent detailed assessment of anthropometric 

measurements and cognitive function. All participants provided written informed consent and the 

study was approved by the UK Research Ethics Committee (REC; Fulham, London; UK number 

16/LO/1409) and local ethics committees and/or institutional review boards. For the present 

analysis, only participants with at least 5 days/nights’ worth of valid actigraphy data and with 

completed cognitive assessment were included. 

Cognitive function 

Participants underwent detailed assessment of cognitive function using a comprehensive battery of 

nine tests covering five domains known to be affected by HIV-associated cognitive impairment: 

language, attention, processing speed, executive function and motor function (Supplementary Table 

1) [8]. The battery was administered by trained research staff. Individual test scores were converted 

into T‐scores (mean of 50 and standard deviation of 10) using appropriate normative data 
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accounting for age, gender, ethnicity and education as appropriate. Individual test T-scores were 

averaged to obtain domain T-scores which were, in turn, averaged to obtain a global T-score of 

cognitive function. Higher T-scores indicate better cognitive function.  

Actigraphy data 

A triaxial actigraph device (ActiGraph wGT3X-BT®, ActiGraph Corporation) was used to record 

activity data and estimate sleep parameters. Actigraphs were programmed to collect data at a 

sampling rate of 100Hz and participants were instructed to wear the device on the non-dominant 

wrist continuously until the time of return (a minimum of 7 days later), with removal only when 

needed to avoid damage to the device (e.g. contact sports, swimming, bathing). In addition, daily 

sleep diaries were completed at home by study participants describing timing of sleep, nocturnal 

awakenings, daytime napping and interruptions in the use of the actigraph device. 

Upon return of the device to study sites, data from the devices were downloaded at an epoch length 

of 15 seconds. After successful download, digital datafiles were transferred to the sleep reading 

center for central scoring. For each recording day, the sleep (or “rest”) periods were manually 

annotated based on a combination of sleep diary data (reporting bed and wake times) and 

visualization of an abrupt decrease (<1000 counts) and increase (≥ 1000 counts) in activity for 5 or 

more minutes, respectively. Daytime naps were scored based on identifying periods reported in the 

sleep diary as naps, accompanied (within 30 mins) by decreased activity. Sleep-wake epochs were 

then identified using the Cole-Kripke algorithm [29]. Daily sleep measures were obtained including 

sleep onset, midpoint (clock time between sleep onset and offset) and out-of-bed time, onset 

latency, duration (total time spent asleep), wake duration after sleep onset (WASO), maintenance 

efficiency (% of time spent asleep from sleep onset and sleep offset), movement index (% of 60-s 

epochs with movement divided by time spent in bed in hours), fragmentation index (% of 60‐s sleep 

epochs out of the total number of epochs in the sleep period), and number and length of nocturnal 

awakenings. For each participant, the average and the within-individual variability (i.e. the standard 

deviation: SD) across the observation period were obtained for each of these measures. 

Sleep questionnaires 

Sleep questionnaires were administered at study visits, including the Insomnia Severity Index [30] 

and the Patient-Reported Outcomes Measurement Information System sleep disturbance and sleep-

related impairment questionnaires [31+. In particular, answers to questions related to participants’ 

satisfaction with their current sleep from these two questionnaires were analyzed: “How 

satisfied/dissatisfied are you with your current sleep pattern?” and “I was satisfied with my sleep”, 

respectively. 

Sleep dimensions 

Six dimensions of sleep health as proposed by Buysse [22], i.e. satisfaction, alertness, timing, 

efficiency, duration and regularity (the so-called RU SATED scale [32]), were derived from the daily 

actigraphy measures and questionnaire data. Scores for the dimension of satisfaction were 

determined as follows: 2 (i.e. “good”) if answering ‘Very satisfied’ or ‘Moderately satisfied’ to the 

“How satisfied/dissatisfied are you with your current sleep pattern?” question and ‘Quite a lot’ or 
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‘Very much’ to the “I was satisfied with my sleep” question; 0 (i.e. “poor”) if answering ‘Dissatisfied’ 

or ‘Very dissatisfied’ and ‘Not at all’ or ‘A little bit’, respectively, to the same questions; and 1 (i.e. 

“fair”) in all other circumstances.  

In addition to continuous measures summarizing weekly averages and standard deviations, daily 

number of naps, sleep onset and out-of-bed time, maintenance efficiency and duration as measured 

by the actigraphy device were used to derive dichotomous variables indicating ‘good’ vs ‘bad’ health 

for the dimensions of alertness, timing, efficiency, duration and regularity. For each recorded night, 

‘good’ vs ‘bad’ sleep health was defined as follows: 0 naps vs. ≥1 naps (alertness), sleep onset time 

before 2am and out-of-bed time after 4am vs onset time after 2am or out-of-bed time before 4am 

(timing), maintenance efficiency ≥85% vs <85% (efficiency), sleep duration between 6 and 8 hours vs 

<6 or >8 hours (duration), sleep onset time within 30 minutes of the average sleep onset time across 

the whole observation period vs onset time ≥30 minutes before or after the average onset time 

(regularity). Cut-offs were selected to reflect the dimensions as originally proposed by Buysse [22], 

with the exception of sleep efficiency for which a current recommendation was used [33]. For each 

dimension, a score of 2 (i.e. “good”) indicates ≥70% of recorded nights classified as ‘good’, 1 (i.e. 

“fair”) indicates between 30% and 70% of ‘good’ nights, and 0 (i.e. “poor”) indicates <30% of ‘good’ 

nights. 

A total sleep health score was obtained by summing up the scores from the six dimensions; scores 

range from 0 to 12 with higher values indicating better sleep health. 

Statistical analysis 

Continuous variables, including cognitive T-scores and actigraphy measures, were summarized using 

the median and the interquartile range (IQR); categorical variables were described using frequencies 

and percentages. Comparisons of sociodemographic, lifestyle and clinical characteristics across older 

PWH, younger PWH and HIV-negative individuals were carried out using χ2, Fisher’s exact test and 

Wilcoxon rank‐sum tests as appropriate. The two groups of PWH were subsequently combined into 

a single group of PWH; comparisons of actigraphy measures and cognitive scores between PWH and 

HIV-negative individuals were performed using median regression, adjusting for age. 

Different approaches to evaluate the association between actigraphy-assessed sleep measures and 

global cognitive function (i.e. the global T-score obtained as average of the five domain T-scores) 

were applied. These approaches have been previously used to investigate the link between sleep 

and health outcomes, as also reviewed by Matricciani et al. [23]. A brief overview of these methods 

with advantages and disadvantages of each method is reported in Table 1; further details concerning 

their use in this study are given below.  

i. Traditional approach: we investigated individual sleep measures selected based on prior 

knowledge and hypothesized pathological mechanisms [34,35], i.e. the average sleep duration, 

maintenance efficiency and WASO. Associations with global cognitive T-scores were evaluated 

using rank regression to account for the skewness of variables of interest, adjusting for 

potential confounders such as age, gender, ethnicity, education and use of sleep medication. 
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For sleep duration, where a U-shaped relationship with cognitive function can be expected, we 

also evaluated the absolute value of the difference between the observed duration and the 

median sleep duration (i.e. 7 hours). Each sleep measure was analyzed independently (using 

separate regression models) and also simultaneously in a single regression model also including 

potential confounders. Analyses were conducted separately in PWH (older and younger PWH 

combined) and HIV-negative individuals; the interaction between HIV-status and each sleep 

measure was tested using rank regression (also including potential confounders) to evaluate 

differences in the associations between the two groups.  

ii. Partial least squares (PLS) regression [36]: this multivariate approach was applied separately in 

PWH and HIV-negative individuals, to the averages and SDs of all continuous sleep measures 

(sleep onset, midpoint and out-of-bed time, onset latency, duration, WASO, maintenance 

efficiency, movement index, fragmentation index, number and length of nocturnal awakenings, 

i.e. a total of 22 variables) to predict global cognitive T-scores. All variables were centered and 

scaled to unit variance. For each variable, the variable importance for prediction (VIP) was 

calculated as a measure of the strength of the association between that variable and the global 

T-score [37] and in order to rank sleep measures with respect to their association with cognitive 

function.  

iii. Random forest [38]: this multivariate approach was also applied separately in PWH and HIV-

negative controls, with sleep measures (both the average and SD) and potential confounders 

(age, gender, ethnicity, education and use of sleep medication) as inputs (a total of 22 sleep 

measures plus 5 covariates) and the global cognitive T-score as the outcome. Among PWH (HIV-

negative individuals), the random forest approach fitted 5000 (8200) regression trees, each of 

which utilized 15 (5) randomly chosen variables of the 27 input variables (see also 

Supplementary Material) and empirically selected those that optimally split the sample into 

two sub-groups with global T-scores that were as different as possible. For each input variable, 

the variable importance measure (VIM) indicates the total decrease in the residual sum of 
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squares from splitting on that variable, averaged over all trees. VIM was used to rank input 

variables in terms of their ability to predict the global T-score; variables with larger VIM have 

greater predictive ability. In addition, importance of each variable was assessed by comparing 

the reduction in the R2 consequent to the exclusion of that variable from the model. 

iv. Sleep health as a multi-dimensional construct: we investigated associations of each sleep 

dimension and their sum in the previously proposed six-item RU SATED scale with global 

cognitive T-scores. Associations were investigated, separately in PWH and HIV-negative 

individuals, using median regression to test differences in overall cognitive function between 

individuals reporting good, fair and poor sleep in each dimension, when there were at least 5 

individuals in a given group. The six dimensions were considered individually in separate 

models. The association between global T-scores and the total sleep health score obtained as 

the sum of the six dimensions was assessed using rank regression. In all the regression models, 

we adjusted for age, gender, ethnicity, education and use of sleep medication.   

v. Latent class analysis (LCA) [39]: this individual-based approach was used to identify distinct 

groups of PWH and, separately, of HIV-negative individuals on the basis of the observed 

sleep measures (both averages and SDs) centered and scaled to unit variance. Groups were 

identified using a model-based clustering algorithm based on parameterized finite Gaussian 

mixture models [40]. The optimal number of groups was selected using the Bayesian 

Information Criterion (BIC) and was evaluated using the bootstrap likelihood ratio test and 

appropriate stability measures. In order to interpret the obtained groups, means and 95% 

confidence intervals (CIs) of each sleep measure were obtained within each identified group. 

Median regression was used to evaluate the difference in global cognitive T-scores between 

groups returned by the LCA, while adjusting for age, gender, ethnicity, education and use of 

sleep medication.   

Additional information regarding hyper-parameter optimization, validation procedures, and the 

predictive performance of PLS regression, random forest and LCA are reported in the Supplementary 
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Material. Analyses were performed using the using the statistical software R, version 3.6.0 and the 

libraries ‘quantreg’, ‘ropls’, ‘randomForest’ and ‘mclust’.   

Results 

Participant characteristics 

A total of 241 older PWH, 103 younger PWH and 119 HIV-negative individuals completed the 

cognitive battery and had ≥5 days/nights of actigraphy data (Table 2). Compared to the HIV-negative 

individuals, PWH were more likely to be male (86.3% vs. 67.2%, p<0.001), men who have sex with 

men (79.1% vs. 52.9%, p<0.001), be retired or not working (48.3% vs. 37.1%, p=0.006) and to report 

ongoing use of sleep medication (8.7% vs. 1.7%, p=0.006), current smoking (26.2% vs. 15.1%, 

p=0.01), recreational drug (26.7% vs. 14.3%, p=0.006) and current/previous injection drug use (9.3% 

vs. 1.7%, p=0.004). Current alcohol use was more frequent among HIV-negative individuals 

compared to older PWH (91.6% vs. 81.1%, p=0.007).  

PWH had been diagnosed with HIV for a median (IQR) of 17.6 (10.8, 24.6) years, 97.1% had a HIV 

RNA <40 copies/mL, and the median (IQR) CD4+ cell count was 630 (483, 835) cells/μL. 

Cognitive scores and sleep measures 

Median (IQR) global T-score was 50.7 (44.3, 55.4) in older PWH, 48.7 (43.0, 54.0) in younger PWH 

(p=0.15 compared to older PWH) and 52.0 (48.3, 55.6) in HIV-negative individuals (p=0.04 compared 

to older PWH). When combining older and younger PWH, global T-scores did not differ significantly 

from those of HIV-negative individuals [median (IQR) in the combined group of PWH was 50.0 (44.2, 

54.9), p=0.21 after adjusting for age, Supplementary Table 2].  

Correlations between actigraphy variables are shown in Supplementary Table 3. There were no 

differences between PWH and HIV-negative individuals, after adjusting for age, with regards to 

average sleep onset time, onset latency, duration, WASO, fragmentation index and number of 

nocturnal awakenings (Supplementary Table 2). PWH were observed to have later average sleep 

mid-point and out-of-bed times compared to HIV-negative individuals (p=0.01 and p=0.02, 

respectively). The average movement index (%) was greater in PWH compared to HIV-negative 

individuals [median (IQR): 17.7 (14.3, 22.5) vs. 15.2 (12.5, 19.6), p=0.003], with a tendency towards 

lower average maintenance efficiency (p=0.07) and greater mean length of awakenings (p=0.08) in 

PWH compared to HIV-negative individuals.  

There were significant differences between groups with respect to the night-to-night variability of 

sleep onset time (p=0.05), duration (p=0.01) and movement index (p=0.04), with weaker evidence 

regarding fragmentation index (p=0.07) and mean length of nocturnal awakenings (p=0.08). For all 

these measures, there was a greater night-to-night variability in PWH compared to HIV-negative 

individuals. 

Finally, PWH were classified as having poorer overall sleep health as measured by the RU SATED 

construct: median (IQR) sleep health score was 7 (6, 9) in PWH and 8 (7, 10) in HIV-negative 

individuals (p<0.001 after adjustment for age, Supplementary Table 2). In particular, PWH had 
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poorer sleep health than HIV-negative individuals in the satisfaction (p=0.008), timing (p=<0.001) 

and duration (p=0.001) dimensions (Supplementary Table 4). Weaker evidence suggests that PWH 

experienced poorer health in the other sleep dimensions: alertness, efficiency and regularity, 

although only the associations with regularity met the strict threshold for statistical significance 

(p=0.07, p=0.07 and p=0.05 for the three dimensions, respectively). 

Association between sleep health and overall cognitive function 

Traditional approach 

Among PWH, global cognitive T-scores were not associated with average sleep duration (adjusted 

rho = 0.08, p=0.12), WASO (adjusted rho = -0.03, p=0.55) or maintenance efficiency (adjusted rho = 

0.06, p=0.25, after adjustment for potential confounders (Table 3). Whilst there was no strong 

evidence of an association with the absolute value of the median-centered sleep duration (p=0.36) 

in PWH, longer/shorter sleep duration was associated with poorer cognitive function in HIV-negative 

individuals (adjusted rho = -0.21, p=0.02). Among HIV-negative individuals, higher WASO (adjusted 

rho = 0.16) and lower maintenance efficiency (adjusted rho = -0.16) were associated with better 

cognitive function, although associations did not reach statistical significance (p=0.08 and p=0.07, 

respectively). However, observed associations did not significantly differ between PWH and HIV-

negative individuals (all p’s for the interaction term >0.05).  

In multivariable analysis, maintenance efficiency showed the strongest association with the global T-

score in PWH but without reaching statistical significance (adjusted rho = 0.26, p=0.09), with greater 

efficiency being associated with better cognitive scores. Among HIV-negative individuals, sleep 

duration remained significantly associated with global T-scores (adjusted rho of -0.25, p=0.008), with 

no associations for WASO and maintenance efficiency (p=0.49 and p=0.85, respectively; Table 3). 

Multivariate approach: PLS 

Among PWH, PLS extracted one predictive component (PLS score) obtained as a linear combination 

of the 22 actigraphy variables. This component explained 40.6% of the total variance in the 

actigraphy variables and was significantly correlated with the global T-score [rho = 0.30 (0.20, 0.39), 

p<0.001]. The variables that contributed the most to the PLS score were: SD of mean length of 

awakenings (VIP=1.77), average of mean length of awakenings (VIP=1.67), SD of maintenance 

efficiency (VIP=1.45), average duration (VIP=1.27), SD of movement index (VIP=1.25), SD of out-of-

bed time (VIP=1.24), average sleep onset time (VIP=1.23) and SD of duration (VIP=1.22, Figure 1). 

Specifically, as indicated by negative weights, greater variability in mean length of awakenings, 

maintenance efficiency, movement index, out-of-bed time and duration, and later average onset 

time were all associated with poorer cognitive scores. Longer average sleep duration (positive 

weight) was associated with better scores.      

Among HIV-negative individuals, one component was extracted, explaining 38.5% of the total 

variance in the actigraphy variables. The component was significantly correlated with the global T-

score [rho = 0.38 (0.22, 0.52), p<0.001] and VIP was the highest for SD of mean length of awakenings 

(VIP=2.64), average of mean length of awakenings (VIP=2.36), SD of fragmentation index (VIP=1.66), 

average number of awakenings (VIP=1.37) and SD of movement index (VIP=1.29). Based on the sign 
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of the respective weights, greater variability of mean length of awakenings, fragmentation index and 

movement index, and longer average of mean length of awakenings were associated with poorer 

cognitive scores. A greater average number of awakenings was linked to better cognitive scores. 

Multivariate approach: random forest 

The VIMs for the 22 actigraphy variables derived from random forest and expressed as the 

percentage relative to the variable with the highest VIM are reported in Figure 1. Among PWH, the 

average mean length of awakenings showed the highest VIM among all the actigraphy variables (the 

corresponding average decrease in residual sum of squares was 1133.1) to separate PWH with 

different cognitive scores. VIM was also high for the SD of mean length of awakenings (90.9% of VIM 

of average mean length of awakenings), average sleep duration (82.4%), SD of out-of-bed time 

(81.1%) and average sleep onset time (79.2%).  

Among HIV-negative individuals, the SD of mean length of awakenings showed the greatest ability to 

predict global cognitive scores, with an average decrease in residual sum of squares of 284.6). VIM 

for the average sleep onset time, sleep mid-point, fragmentation index and movement index were 

88.2%, 71.9%, 71.5% and 71.4%, respectively of the VIM of the SD of mean length of awakenings.  

Sleep health as a multi-dimensional construct 

None of the six sleep dimensions (satisfaction, alertness, timing, efficiency, duration and regularity) 

was individually significantly associated with overall cognitive function of PWH (Figure 2). Efficiency 

was the only dimension approaching statistical significance (p=0.06) with cognitive scores; PWH with 

fair efficiency (i.e. poor efficiency during 30%-70% of nights) showed poorer cognitive scores than 

PWH with good sleep efficiency [adjusted difference in global T-score (95% CI) = -2.7 (-5.3, -0.2), 

p=0.04]. For all other dimensions, the median global T-score did not appear to differ significantly 

across PWH with poor, fair or good sleep health, after adjustment for potential confounders. 

Among HIV-negative individuals, sleep efficiency appeared to be associated with overall cognitive 

function (p=0.04), with individuals reporting fair efficiency showing better cognitive scores than 

those reporting high efficiency [adjusted difference in global T-score (95% CI) = 4.3 (1.0, 7.7), 

p=0.01]. This association appeared to differ from that seen in PWH (p for interaction = 0.002). 

Associations of other sleep dimensions with the global T-score were weak and non-significant (Figure 

2) and did not differ significantly from associations observed in PWH (interaction p=0.16 for 

satisfaction, p=0.96 for alertness, p=0.85 for duration, and p=0.88 for regularity). 

Finally, the association of the total sleep health score with overall cognitive function was weak in 

both PWH and HIV-negative individuals [adjusted rho (95% CI) = 0.04 (-0.06, 0.14), p=0.42 and -0.05 

(-0.24, 0.13), p=0.57, respectively]. There was also no evidence that the association differed by HIV 

status (p for interaction = 0.25).   

Individual-based approach: LCA 

According to the BIC criteria and stability measures (Supplementary Figures 4 and 5), a model with 

two latent groups was identified based on sleep parameters observed in PWH. The mean and 95% CI 

of the 22 actigraphy-assessed sleep variables in PWH allocated to the two groups are shown in 
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Figure 3. Group 1 included the majority of PWH (n=331, 96.2%) with only 13 (3.8%) PWH in Group 2. 

Compared to PWH in Group 1, those in Group 2 had later average time of sleep onset and mid-point, 

earlier average time of out-of-bed, longer average onset latency and WASO, shorter average 

duration, poorer average maintenance efficiency, greater average movement index, fragmentation 

index, number and length of nocturnal awakenings. Variability of all sleep measures except 

fragmentation index was greater among PWH in Group 2 compared to those in Group 1. The median 

(IQR) global T-score was 50.0 (44.2, 54.9) and 50.0 (45.7, 52.4) in PWH in Group 1 and 2, 

respectively. After adjustment for potential confounders, the difference between the two groups 

was not significant [adjusted difference in global T-score (95% CI) = 1.4 (-2.4, 4.0), p=0.59].  

Two groups were also identified by the LCA in HIV-negative individuals (Figure 3). Compared to 

individuals in Group 1 (n=93, 78.2%), those in Group 2 (n=26, 21.8%) showed later average mid-point 

and out-of-bed time, longer average onset latency and WASO, lower average maintenance 

efficiency, greater average movement, fragmentation and mean length of awakenings. In Group 2, 

the night-to-night variability of all the variables except for fragmentation index was greater 

compared to that observed in individual in Group 1. The median (IQR) global T-score was 52.9 (48.4, 

55.9) and 51.5 (47.7, 54.7) in HIV-negative individuals in Group 1 and 2, respectively. These did not 

differ significantly after controlling for potential confounders [adjusted difference in global T-score 

(95% CI) = 0.1 (-2.7, 2.7), p=0.97]. 

Discussion 

This is the first study, to our knowledge, that has comprehensively assessed the relationships 

between objectively measured, actigraphy-assessed sleep characteristics and cognitive function in a 

multi-centre cohort of PWH, with an appropriate control group. We also applied several analytical 

approaches to these complex, correlated, and multi-dimensional actigraphy data and found that 

interpretation of results differed by the analytic approach used, highlighting the importance of more 

advanced machine learning approaches to better handle these complex data and shed light on the 

impact of sleep on health outcomes.   

When we applied the traditional approach of investigating individual sleep characteristics 

hypothesized to have an impact on cognition and other health outcomes, we observed only weak 

associations between cognitive function and sleep duration, sleep efficiency and WASO, in line with 

a previous study of 36 treated PWH [41].  

Multivariate approaches such as PLS regression and random forest permit the investigation of a 

larger number of sleep characteristics as well as consideration of within-individual variability of 

these over a period of time, overcoming issues related to multicollinearity between sleep measures, 

multiple testing and the estimation of large numbers of parameters. Here, both methods seem to 

indicate that longer nocturnal awakenings and greater within-individual variability of awakenings is 

associated with poorer cognitive function in PWH, with stronger associations than seen with any 

other sleep measure considered. Furthermore, other aspects related to the intra-individual 

variability of sleep patterns (e.g. the variability of sleep maintenance efficiency and out-of-bed time) 

appeared to have a negative effect on overall cognitive function of PWH, with average sleep 

duration itself playing a marginal role. These are novel findings, given the limited number of studies 

that have investigated these aspects of sleep in relation to cognition even in the general population.  
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Of studies that have gone beyond sleep duration, several have shown similar results in 

demonstrating potential deleterious cognitive impact of poor sleep continuity, as indicated by 

objectively-measured WASO, sleep efficiency or number of nocturnal awakenings, to which sleep 

duration appeared to add little [17, 20, 21]. Nevertheless, we have investigated a larger array of 

measures underlying the variability of sleep patterns than previous studies. Our findings suggesting 

the potential deleterious cognitive impact of high night-to-night variability of sleep efficiency, high 

variability of sleep fragmentation, and longer duration of nocturnal awakenings have not been 

comprehensively investigated previously and could result from important behavioral, social and 

environmental factors as well as circadian or homeostatic drive. Whilst these findings require further 

validation in other cohorts, it is possible that chronic disruptions to the circadian rhythm and 

homeostatic drive could affect the function and structure of brain regions such as the prefrontal 

cortex [42], responsible for high-order cognitive functions. Our study did not include formal 

assessments of circadian rhythm (e.g. dim light melatonin onset, core body temperature tracking) 

and an actigraphy-derived analysis of circadian rhythm was beyond the scope of this current 

analysis, but such future analyses will be important to a more comprehensive understanding of how 

sleep and circadian rhythms relate to cognition.   

The use of a composite sleep score and pre-defined sleep dimensions failed to reveal any strong 

association between sleep and cognition in PWH, with only sleep efficiency showing a weak 

association that was close to reaching statistical significance. Finally, an individual-based approach 

such as LCA, which aims to identify homogenous groups of individuals with similar sleep profiles, 

also failed to detect any important relationships between objective sleep measures and cognition. 

Whilst LCA identified two distinct groups of PWH distinguishing those with more irregular, 

fragmented and inefficient sleep patterns from the rest of PWH, it showed no evident differences in 

the cognitive performance of the two groups.  

Another important aim of our study was to assess whether the association between sleep measures 

and cognitive function in PWH differed from those seen in HIV-negative individuals with similar 

lifestyles. Of the approaches explored, we could formally compare associations by HIV status using 

the traditional approach (i.e. specific sleep characteristics using regression models) and the overall 

sleep score because PLS regression, random forest and LCA don’t allow assessment of interaction 

terms. In general, associations did not seem to differ between PWH and HIV-negative individuals. 

However, the direction of the association between cognitive function and sleep efficiency appeared 

to be significantly different in the two groups when using a categorical score reflecting the frequency 

of poor efficiency. Whilst the possibility of a false positive finding cannot be ruled out, the 

differential association may reflect different underlying causes of poor sleep efficiency in those with 

and without HIV, so further studies are warranted to better elucidate the effects of sleep efficiency 

on cognitive outcomes in PWH. 

PLS regression and random forest highlight some similarities between the associations seen in PWH 

and HIV-negative individuals. In particular, length of nocturnal awakenings and the within-individual 

variability in this measure seem to have a similarly important relationship to cognitive performance, 

regardless of HIV status. On the other hand, among HIV-negative individuals, aspects related to sleep 

fragmentation and overnight movement/limb motions are more strongly associated with cognition 

than among PWH. Possible explanations include altered clearance of toxins or disturbed sleep 
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neurophysiology (e.g. reduced slow-wave sleep and rapid eye movement) reflected by greater sleep 

fragmentation causing less restorative sleep and leading, in turn, to deleterious effects on cognition. 

By adopting a multi-method analytic approach, we comprehensively and robustly investigated the 

proposed associations beyond the limitations of each analytical method, while also highlighting the 

differences in the findings across methods. Each approach used has its own strengths as well as 

weaknesses (Table 1). The traditional approach may fail to detect associations of individual and 

often neglected sleep characteristics that are not selected when only few characteristics are 

analyzed. PLS regression does not allow the incorporation of potential confounders into analyses 

and assumes a linear relationship between the sleep measures and the outcome of interest. Random 

forest does not provide a direct measure that would allow the evaluation of either the direction or 

magnitude of any associations. Moreover, variable importance metrics obtained from random 

forests are known to be biased when input variables are of different measurement scales and when 

are highly correlated [43]. Nevertheless, here we also reported another importance metric (i.e. the 

decrease in R2 due to the exclusion of a given variable from the model, Supplementary Figure 3) that 

showed results similar to the VIMs, in terms of the actigraphy variables which appear to more 

strongly contribute towards the prediction of cognitive scores. Multi-dimensional sleep constructs 

rely heavily on a priori conceptualizations of sleep health which may not be appropriate for a specific 

health outcome or a unique population such as PWH. Moreover, statistical power is reduced when 

continuous measures are dichotomized. LCA does not directly aim to evaluate associations with 

outcomes but rather aims to partition the population under study into groups based on the 

observed sleep characteristics, without regards to the outcome of interest; therefore the obtained 

groups may not necessarily identify those at greatest risk of a poor outcome nor, in turn, the sleep 

characteristics that might predict this outcome.  

Some limitations of our study need to be considered. Firstly, given the cross-sectional nature of the 

study, we cannot establish the direction or causal nature of any associations seen. Secondly, 

unmeasured confounding (e.g. physical exercise and stress) may have resulted in biased estimates of 

the associations of interest. Thirdly, PWH recruited in this study are mainly white men having sex 

with men, on effective HIV treatment with stable viral suppression, and therefore our results may 

not be generalizable to other populations of PWH with different socio-demographic and clinical 

characteristics, in particular women and PWH with poorly controlled HIV. Moreover, differences in 

terms of age and age-related factors between PWH and HIV-negative individuals may have 

introduced bias when comparing the relationship between sleep and cognition across the two 

groups. However, when possible, we included age and other potential confounders in the analysis so 

to minimize this potential bias. Sample size was pragmatically set considering resource and time 

constraints and was not based on the statistical power of any of the methods used. Whilst our study 

is one of largest in its fields, some methods, for example LCA, may have lower power to detect 

significant associations than others, sample size being equal. Lastly, we used actigraphy-based 

assessments of sleep parameters rather than more detailed sleep measurements such as 

polysomnography. We therefore could not study detailed sleep physiology and mechanisms. Future 

studies incorporating polysomnogram data would likely benefit from machine learning approaches 

similar to our study, given the multi-dimensional and often collinear nature of polysomnogram data. 

We feel that such work with detailed physiologic measures and robust statistical approaches have 

tremendous potential to allow our field to better understand mechanistic pathways and to develop 

novel therapeutic interventions. 
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Conclusions 

Through the use of analytical approaches that allow the simultaneous consideration of multiple 

sleep characteristics, we found that aspects related to sleep continuity and regularity, including 

several novel measures of within-individual variability of wakefulness during sleep and sleep 

efficiency, were associated with cognitive performance in PWH. Other aspects of sleep more 

traditionally thought to be related to health problems (e.g. sleep duration) did not appear to have 

strong associations. Sleep is increasingly recognized as having a multi-dimensional construct, and our 

analysis demonstrates that multivariate analytical approaches can provide novel insights into the 

role of sleep on cognitive function and other health outcomes. A better understanding of which 

aspects of sleep are most strongly linked to a given outcome would help the development of 

targeted interventions to improve those aspects of sleep and, in turn, improve other health 

outcomes. 
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Figure captions 

Figure 1: VIP and VIM for each actigraphy variable as obtained from PLS and random forest, 

respectively, run separately in PWH (n=344) and HIV-negative individuals (n=119).    

 

Note: VIM are expressed as the percentage relative to that of the variable with the highest VIM. The 

random forest model additionally included age, gender, ethnicity, education and use of sleep 

medication; VIM for all variables, including potential confounders, are shown in Supplementary 

Figure 2 

 

Figure 2: Association between RU SATED sleep dimensions and global cognitive T-score in PWH 

(n=344) and HIV-negative individuals (n=119). Associations are expressed as differences in the 

median global T-scores with participants reporting ‘good’ sleep health as reference category and 

adjusting for potential confounders.  

 

Figure 3: Means (95% CI) of the 22 sleep variables (centered and scaled to unit variance) in PWH and 

HIV-negative individuals, stratified by groups identified using LCA. 
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Tables 

Table 1: Overview of the analytical approaches used to investigate the association between sleep health and cognitive function 

Analytical 
approach 

Overview Advantages  Disadvantages Comments on statistical power 

Traditional 
approach 
(multivariable 
regression 
analysis) 

Multivariable regression analysis is 
used to describe the relationship 
between a set of independent 
variables (e.g. sleep parameters) 
and an outcome variable (e.g. a 
health outcome), through 
mathematical models (e.g. in linear 
regression the outcome is 
modelled as a linear combination 
of the independent variables). 
 

It allows the estimation of 
independent relationships 
between sleep variables. 
It is the most widely used method 
to investigate associations. Due to 
its popularity, the interpretation of 
regression analysis is widely 
accessible to non-statisticians.  
 

Due to issues related to the 
number and collinearity of sleep 
variables, its use is often limited to 
the inclusion of few pre-selected 
sleep variables, in order to avoid 
overfitting and instability in the 
estimation of model parameters.  
It often over simplify the 
relationships between the 
variables of interests and handling 
complex patterns of relationships 
is difficult. 

Statistical power depends mainly, 
other than the sample size, on the 
number of independent variables. 
There are no generally agreed 
methods for relating the sample 
size versus the number of 
independent variables. Common 
rules-of-thumbs recommend at 
least 15 or 30 observations per 

variable [44, 45]. 

Partial least-
squares (PLS) 
regression 

PLS-based methods reduce the 
input variables (e.g. sleep 
variables) to latent variables, and 
regress those latent variables 
against the outcome. Metrics such 
as the variable importance in 
prediction (VIP) are then calculated 
to rank each of the input variables 
according to their importance to 
predict the outcome.  

PLS regression is preferable to 
standard regression analysis when 
there are multiple input variables, 
and when these input variables are 
correlated. 

It is often difficult to interpret the 
model parameters that define the 
latent variables and those that 
relate these to the outcome. Both 
the latent variables and the 
outcome are modelled as linear 
combination (of the input variables 
and the latent variables, 
respectively). Therefore, non-linear 
relationships would be missed. 
It only handles continuous input 
variables and does not provide a 
straightforward way to account for 
potential confounders and effect 
modifiers (e.g. HIV-status).  

PLS-based methods are thought to 
provide significant advantages 
when analyzing small sample sizes 
or data with small number of 
observations to number of 
variables ratios. However, the 
optimal approach to assess 
statistical power for PLS-based 
approaches is still debated [46]. 
Statistical power should be 
determined based on various 
factors, such as distributional 
assumptions, characteristics of the 
input variables, or the strength of 

the relationships of interest [47]. 

Random forest Random forest is a non-parametric 
multi-variable ensemble technique 

The random selection of sampled 
observations and input variables 

It can be computationally intense 
and require longer times to train. 

Random forest has been reported 
to be robust to model training with 
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based on decision trees. Several 
different decision trees, each 
randomly selecting a subset of 
observations and input variables, 
are merged into one learner.  

helps the model to avoid 
overfitting. 
It can handle both categorical and 
quantitative variables and deal 
with missing data. 
It requires minimal assumptions 
about the type of associations 
between the outcome and the 
input variables, and can detect 
non-linear associations. 

The estimated relationship 
between the outcome and the 
input variables can be difficult to 
interpret with no direct measure 
to evaluate either the direction or 
magnitude of associations. 

small sample sizes [48]. 
In particular, it has been shown to 
perform well in term of statistical 
power, when the distributions of 

input variables were skewed [49]. 

Multidimensional 
construct 

Objective or subjective sleep 
parameters are combined using 
pre-defined criteria to derive 
several sleep dimensions. 
Associations between these sleep 
dimensions are then investigated, 
typically using regression-based 
approaches. 

It allows to integrate clinical 
knowledge and expert opinion into 
the analysis. 

There is not an objectively-defined 
paradigm that describes which are 
the dimensions that characterize 
sleep health are and how to best 
define and operationalize each 
dimension. 

Statistical power depends on the 
statistical method used to 
investigate associations between 
the outcome and the sleep 
dimensions. When using 
regression, the use of fewer sleep 
dimensions, compared to the 
individual sleep variables, 
improves statistical power. 

Latent class 
analysis (LCA) 

LCA helps recognizing latent sleep 
profiles that are shared by many 
individuals who, in turn, may 
experience similar risks for health 
outcomes. Latent sleep profiles 
refer to the specific combinations 
of several sleep characteristics 
experienced by individuals. 

It is flexible with respect to the 
distribution of sleep variables. 
It can accommodate different data 
types, including non-normal and 
skewed continuous sleep variables. 

The identification of sleep profiles 
is not oriented towards the 
assessment of relationships with 
health outcomes.  
The selection of the appropriate 
number and the underlying 
distribution of profiles is often 
challenging. 
 

Little is known about the exact 
effect of sample size on the ability 
to identify the set of underlying 
latent profiles. Simulations have 
shown that having a too small 
sample size often leads to choosing 
too few latent profiles to 
adequately describe the data-

generating model [50].  
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Table 2: Socio-demographic, lifestyle, clinical and HIV-related characteristics of study participants. 

Median (IQR) or n (%) PWH (n=344) HIV- negative (n=119) p 

Male gender 297 (86.3%) 80 (67.2%) <0.001 

Age [years] 57 (52, 62) 61 (57, 66) <0.001 

White ethnicity 305 (88.7%) 109 (91.6%) 0.37 

MSM/homosexual 272 (79.1%) 63 (52.9%) <0.001 

University degree or above 158 (45.9%) 61 (51.3%) 0.32 

Years of education 16 (12, 18) 16 (13, 18) 0.76 

BMI [Kg/cm2] 25.4 (23.5, 28.7) 25.8 (23.6, 29.7) 0.18 

Resting pulse oximetry [mm Hg] 96 (95, 98) 96 (95, 97) 0.68 

Use of sleep medication* 30 (8.7%) 2 (1.7%) 0.006 

Work schedule   0.006 

Day shift 120 (35.1%) 60 (51.7%)  

Other/Irregular shift 57 (16.7%) 13 (11.2%)  

Retired/Don’t work 165 (48.3%) 43 (37.1%)  

Current alcohol use 279 (81.1%) 109 (91.6%) 0.007 

Current smoking 90 (26.2%) 18 (15.1%) 0.01 

Current recreational drugs 92 (26.7%) 17 (14.3%) 0.006 

Ever injected drugs 32 (9.3%) 2 (1.7%) 0.004 

Current CD4+ count [cells/µL] 630 (483, 835) N/A N/A 

Nadir CD4+ count [cells/µL] 190 (87, 290) N/A N/A 

Years since HIV diagnosis 17.6 (10.8, 24.6) N/A N/A 

On antiretroviral treatment 316 (91.9%) N/A N/A 

HIV RNA <40 copies/mL 332 (97.1%) N/A N/A 

Global T-score  50.0 (44.2, 54.9) 52.0 (48.3, 55.6) 0.01 

Sleep duration [h] 7.0 (6.3, 7.6) 7.2 (6.7, 7.6) 0.12 

Maintenance efficiency [%] 88.7 (84.4, 91.4) 90.2 (86.2, 92.2) 0.01 

WASO [minutes] 54 (40, 74) 49 (35, 69) 0.02 

Note: PWH: people with HIV; MSM: men who have sex with other men; * These include 

Amitriptyline (5 PWH), Nitrazepam (2 PWH), Nytol (2 PWH), Zopiclone (13 PWH and 1 HIV-negative), 

Diazepam (2 PWH) and other medications 
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Table 3: Association of average sleep duration, WASO and maintenance efficiency with the global 

cognitive T-score, as estimated via rank regression, adjusting for age, gender, ethnicity, education 

and ongoing use of sleep medication. 

Sleep measure 
PWH (n=344) HIV-negative (n=119) p 

interaction adj. rho (95% CI)  p adj. rho (95% CI)   p 

Univariable analysis      

Average duration  0.08 (-0.02, 0.17) 0.12 -0.02 (-0.20, 0.15) 0.78 0.49 

Absolute value of median-

centered average duration 
-0.04 (-0.14, 0.05) 0.36 -0.21 (-0.38, -0.04) 0.02 0.71 

Average WASO -0.03 (-0.13, 0.07) 0.55 0.16 (-0.02, 0.34) 0.08 0.27 

Average maintenance efficiency  0.06 (-0.04, 0.16) 0.25 -0.16 (-0.35, 0.01) 0.07 0.18 

Multivariable analysis      

Absolute value of median-

centered average duration 
-0.03 (-0.13, 0.06) 0.51 -0.25 (-0.43, -0.07) 0.008 0.64 

Average WASO 0.21 (-0.09, 0.51) 0.16 0.27 (-0.51, 1.06) 0.49 0.71 

Average maintenance efficiency  0.26 (-0.04, 0.56) 0.09 0.08 (-0.71, 0.86) 0.85 0.50 
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Figure 1 
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Figure 2 
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Figure 3 
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