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Abstract

Advances in neuroimaging are ideally placed to facilitate the translation from progress made in cellular 
genetics and molecular biology of neurodegeneration into improved diagnosis, prevention and 
treatment of dementia. New PET ligands allows one to quantify neuropathology, inflammation and 
metabolism in vivo safely and reliably, to examine mechanisms of human disease and support clinical 
trials. Developments in MRI based imaging and neurophysiology provide complementary quantitative 
assays of brain function and connectivity, for the direct testing of hypotheses of human 
pathophysiology. Advances in MRI are also improving the quantitative imaging of vascular risk and co-
morbidities. In combination with large datasets, open data and artificial intelligence analysis methods, 
new informatics-based approaches are set to enable accurate single-subject inferences for diagnosis, 
prediction and treatment that have the potential to deliver precision medicine for dementia.  

Here we show, through the use of critically appraised worked examples, how neuroimaging can bridge 
the gaps between molecular biology, neural circuits, and the dynamics of the core systems that 
underpin complex behaviours. We look beyond traditional structural imaging used routinely in clinical 
care, to include ultra-high field MRI (7T MRI), magnetoencephalography (MEG), and positron emission 
tomography (PET) with novel ligands. We illustrate their potential as safe, robust and sufficiently 
scalable to be viable for experimental medicine studies and clinical trials. They are especially 
informative when combined in multi-modal studies, with model-based analyses to test precisely 
defined hypotheses.
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Highlights

 Neuroimaging can be used to establish and test models of disease mechanisms in humans.

 Positron emission tomography can quantify and localise molecular processes in vivo. 
Amyloid imaging has already changed clinical trials design and identified new drug targets. 

 New ligands for synaptic density, protein synthesis, tau and other proteins are scientifically 
informative but have yet to find their place in healthcare.

 Neuronal populations are functionally and structurally connected at multiple scales, which 
can be examined by multimodal brain imaging.

 Relating molecular pathology to brain connectivity reveals disease mechanisms and validates 
drug targets.

 Focal neurodegenerative syndromes are important disease models, selectively perturbing 
complex neuronal systems.

 Powerful model-based analyses can reveal microcircuit-level consequences of 
neurodegeneration, in humans.

 Neuroimaging can enrich and stratify cohorts, for precision medicine approaches.

 Small-N experimental medicine studies and large-N observational trials enable the 
generation and testing of complementary hypotheses. 

 Data sharing is now readily available, facilitated by consensus data formats and 
infrastructure like the Dementias Partnership UK Portal, enhancing the value of imaging data 
through Open Data initiatives, meta-analysis and repurposing. Disease-specific examples 
such as ADNI and PPMI, as well as global initiatives such as ENIGMA have transformed the 
field of collaborative research.

 Clinical trials can build on the success of longitudinal cohort studies combining behavioural 
and cognitive assessment with multi-modal imaging, genetics, serum and CSF measures.
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Introduction

Brain imaging can bridge the gap between the progress made in understanding the cellular genetics 
and molecular biology of neurodegeneration 1-4 and clinical trials of novel interventions for 
dementia.  The success of such translational medicine will be measured in terms of better diagnosis, 
treatment, and ultimately prevention (figure 1). 

For diagnosis, improving current clinical practice requires quantitative methods that are not only 
accurate in terms of individual disease processes, but also allow precision medicine by 
accommodating the complex multidimensionality of dementia. The multidimensionality of disease 
has been recognised in psychiatry in the Research Domain Criteria 5, which provides a conceptual 
framework to integrate pathophysiology and symptomatology in disease spectra rather than 
arbitrary categories. The spectral, rather than discrete, nature of dementia phenotypes is 
increasingly recognised in trans-diagnostic cohort studies 6-8 and recent revisions of the diagnostic 
criteria and disease frameworks to encompass phenotypic variants 9-15.

For treatment trials, there are two complementary roles of imaging. The first role is to identify 
individuals who are well but who are at-risk for dementia at a later date, whether for genetic or 
unknown reasons, to track their latent or premanifest pathogenic mechanisms and potential 
therapeutic modifications 16-21. The second role is in support of experimental medicine studies, in 
advance of late phase clinical trials, using surrogate markers of disease processes as treatment 
outcome. These secondary outcomes include measures of drug target engagement, and diverse 
measures of pathological protein burden, neurophysiological activity, brain connectivity, and 
function.

For prevention, imaging allows insight into potentially modifiable disease processes in terms of 
neurochemistry, physiology, molecular pathology and structure, and how these interact with the 
environment and the patient’s underlying genetics. While no single imaging modality can quantify 
the cascade of events from root cause to final phenotype (figure 2), combinations of imaging 
methods can connect each of these causal processes 22 23. 

The role of imaging to inform causal models of disease allows the design of rational, precise and 
optimally powered clinical trials. This is not a substitute for efficacy outcomes in trials, but a process 
of de-risking clinical trials, with better designs and endpoints that would support early closure of 
futile lines of enquiry so as to direct precious resources towards more promising goals. 

Each of these applications of advanced imaging benefits from active engagement with the tools, and 
culture, for data sharing and integration – within and between modalities. We are entering a new 
age of large-scale collaborative efforts, which have proven so powerful in fields such as cancer 
biology. 

This review aims to illustrate how advances in neuroimaging allow us to do much more than the 
structural imaging used clinically for differential diagnosis 24-27 and staging of disease 28-35. Novel 
ligands for positron emission tomography can localise and relate molecular processes to each other 
in vivo. Combining these tools with the network-level connectivity analyses now possible on 
neurophysiological, functional and tract-based datasets allows the direct evaluation of hypotheses of 
disease progression. The use of focal neurodegenerative syndromes as disease models allows the 
delineation of core neuronal systems, which can then be related back to help us understand the 
complex behavioural abnormalities that arise in dementia. Model-based analyses can now reveal 
microcircuit-level consequences of neurodegeneration, generating hypotheses that can be directly 
evaluated in small-N experimental medicine studies, which are much more intensive and 
mechanisms-based than efficacy-oriented large-scale trials. As we move to human use of many 
emerging therapeutic candidates, the role neuroimaging in the trials is of particular importance, with 
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rich and transferrable datasets supporting mechanistic insights and Go/Nogo decisions for clinical 
trials. 

Quantification of molecular 

Current ligands for positron emission tomography (PET) allow the topographical quantification of 
metabolic activity (FDG), beta amyloid (e.g. PiB), tau neuropathology (e.g. flortaucepir), 
neuroinflammation (e.g. TSPO and P2X7R ligands), and synaptic loss (e.g. UCB-J). 

In clinical practice, a commonly used ligand is [18F]-fluorodeoxyglucose (FDG), to estimate regional 
metabolic activity, with longstanding evidence of partial utility for differentiating the major 
dementia syndromes 36 37. FDG-PET has largely superseded single photon emission computed 
tomography (SPECT) quantification of regional blood flow, due to its greater resolution, signal to 
noise ratio, and robustness to non-linear relationships between metabolic demand and blood flow in 
cerebrovascular disease 38-40. Clinically, it has value in delineating areas of hypometabolism to 
support diagnosis, but it can also be a trial outcome measure: tracking cerebral metabolic rate, a 
correlate of clinical measures with more statistical power 41.

The advent of Pittsburgh compound B (PiB), florbetapir, florbetben and flutemetamol have allowed 
the use of PET to quantify brain beta-amyloid 42. Together with measurement of cerebro-spinal fluid 
amyloid and tau from lumbar puncture, amyloid-PET is applied in clinical practice. It is most 
commonly used to segregate mild cognitive impairment with underlying Alzheimer’s pathology from 
other causes 43 44. It can enrich study populations in clinical trials of early stage Alzheimer’s disease, 
screening out the ~40% of patients with amnestic mild cognitive impairment who are amyloid 
negative 45 46. It has proven sufficiently reliable to act as an ante mortem benchmark for validation of 
CSF biomarkers of Alzheimer’s disease 47, as well as putative blood markers such as plasma 
phosphorylated tau 181 and 217 48 49. However, amyloid burden appears to stabilise by the time of 
diagnosis, and therefore these ligands have little utility in tracking Alzheimer’s disease progression 50-

53.

Longitudinal tracking of disease falls most promisingly to ligands binding hyperphosphorylated Tau, 
which have become available in the last decade. Tau-aggregates are a defining feature of AD and 
FTLD-tau, and are modifiers of PD and DLB. In AD, tau but not beta-amyloid distribution determines 
phenotype and severity 54. In molecular terms it is hypothesised that a role of beta-amyloid in 
Alzheimer’s disease is to promote the development and propagation of paired helical filaments of 
tau, which are neurotoxic in either their oligomeric or aggregated form 55-57. This toxicity is amplified 
by the presence of beta-amyloid 58. Several radioligands have been developed to assess regional Tau 
burden, including PBB3 59 and THK5105 60, but the most extensively evaluated is AV-1451, also 
known as T807 or flortaucepir 61 62. This ligand has desirable properties in vitro, co-localising in post 
mortem samples with tau but not beta-amyloid, TDP-43 or synuclein 63. It recapitulates the Braak 
stages of Alzheimer’s disease progression 64-66, shows the expected patterns of regional distribution 
in focal subtypes 67, and is more closely linked to hypometabolism, atrophy and cognitive 
impairment than amyloid-PET 54. 

Outside of Alzheimer’s disease, Tau pathology characterises Progressive Supranuclear Palsy (PSP) 68, 
corticobasal degeneration (CBD) 69, and some forms of fronto-temporal dementia (FTD) 70 71, and is a 
modifier of outcomes in Lewy body disease 72. However, in these non-AD diseases, the Tau isoforms 
differ, lacking the characteristic ultrastructure of paired helical filaments in Alzheimer’s disease 73-75. 
Despite relative in vitro insensitivity to these alternate isoforms, AV-1451 can identify the 
distribution of disease in PSP 76, CBS 77, and FTD due to some mutations of the Tau (MAPT) gene 78 79. 
Binding affinity is lower than that seen in Alzheimer’s disease, seemingly as a function of the 
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structural conformation of pathological Tau 80, and is very low in some Tau-mediated conditions such 
as non-fluent variant Primary Progressive Aphasia 22 81 82. 

AV-1451 also shows non-specific binding properties, such that it can recapitulate the distribution of 
pathology in some diseases not mediated by Tau. For example, semantic dementia (also known as 
semantic variant Primary Progressive Aphasia), is characterised by abnormal aggregation of TDP-43 
type C, in the absence of Tau 83 84. AV-1451 binding is increased in those brain areas most affected by 
this TDP-mediated neurodegeneration 85 86 (without binding to TDP-43 itself). This lack of disease 
specificity is a barrier to some of the proposed roles of AV-1451, such as stratifying cases of FTD by 
underlying molecular sub-type, to enrich clinical trial cohorts. However, there remains the possibility 
of quantifying disease burden longitudinally across a range of disease 87, with differences in ligand 
binding affinity between disease sub-types controlled for by paired assessments within individuals. 
Second generation Tau ligands hold the promise of increasing specificity for Alzheimer-type Tau in 
paired helical filaments, but there remains an unmet need for specific PET ligands for FTLD-Tau, TDP-
43 and synuclein.

Neuroinflammation is a common process across neurodegenerative diseases, demonstrating genetic 
88-90 and epidemiological 91 92 association; and post-mortem 22 93 94 and CSF 95 96 concomitance; with 
possible mechanisms proposed in animal models 97-99. This has led to the development of an array of 
PET radiotracers, targeting various stages of the neuroinflammatory cascade 100. The most 
established target is the 18 kDa translocator protein (TSPO), which is upregulated in activated 
microglia (and to some extent astrocytes). In isolation, increases in microglial activation can be 
visualised in vivo across a range of neurodegenerative diseases 101-106, and the neuroinflammatory 
burden is correlated with cognitive performance 107-109. Neuroinflammation seems to be an early 
process in disease pathogenesis, preceding clinical symptom onset in genetic cases 110, and 
demonstrating consistent involvement through the disease course 22 102-104. Second generation TSPO 
ligands may have improved signal-to-noise, but inter-individual comparisons are confounded by 
genetic polymorphism 111. Novel inflammation-related targets include the P2X7 receptor 112, which is 
expressed by microglia, and has been proposed as a therapeutic target in early Alzheimer’s disease 
113. 

PET ligand development continues apace. Changes in synaptic density may precede atrophy and 
symptom onset 114-116, and this can be quantified by targeting synaptic vesicle glycoprotein 2A, SV2A 
with ligands such as 11C-UCB-J, 11C-UCB-J PET has revealed 20-40% reductions in regional synaptic 
density in AD and non-AD dementias, and in proportion to disease severity 116. Cerebral protein 
synthesis rates can be measured with 11 L-[1-11C] Leucine PET 117 118, a technique that has already 
been applied to children with developmental delay 119 and young adults with Fragile X syndrome 120, 
and holds particular promise for upcoming trials targeting the unfolded protein response 121.

Post synaptic pathology can also be measured by PET. For example, TARP γ8 regulates surface 
expression of post synaptic AMPA receptors 122, and ligands targeting this process are in human use, 
including early trials 121 123. 

Advances in PET come partly in the form of new ligands, of different targets or greater sensitivity 
and specificity.  However, there are also new ways to interrogate the PET data.  For example, 
traditional analyses use mass-univariate “voxelwise” tests, or comparisons within specified regions-
of-interest. In contrast, one can study the distribution of binding across disease sub-types. This is 
particularly powerful where the ligand has different affinity for individuals’ molecular pathology, 
such as in AV-1451 ligand’s affinity to protein pathology following different mutations of the Tau 
gene in frontotemporal dementia 78 110, or neuropathological subtypes of FTD 22 76 85 124. Differences in 
affinity undermine the quantitative contrast between groups for any given region or voxel, but they 
do not prevent the multivariate approach assessing the similarity of ligand distributions, and 
classifying individuals into groups based on measures of clustering. This is analogous to the multi-
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voxel pattern analysis techniques used for cognitive decoding in fMRI 125 and 
magnetoencephalography 126. 

Molecular imaging is no longer solely the preserve of PET. Higher MRI field strengths open up the 
possibility of richer applications of spectroscopy, with signal to noise ratios sufficient for 
measurement of GABA possible in vivo in patients 127. Quantitative Susceptibility Mapping (QSM) 128 
can assess the regional burden paramagnetic substances, with iron particularly linked to cognition in 
both Alzheimer’s 129 and Parkinson’s 130 disease.

Neurodegenerative diseases are often accompanied by vascular comorbidity, with which they can 
interact bidirectionally 131. For instance, enlarged perivascular spaces are pathways of clear 
interstitial fluid that may indicate a failure to clear fluid and waste products 132, including amyloid 
and tau protein 133-135. Imaging the size and distribution of perivascular spaces, particularly at high 
fields, can provide new insights into pathological progression of vascular dysfunction in Alzheimer’s 
disease and the interaction between vasculopathy and protein pathology. 7T high-resolution time-
of-flight angiography enables the classification of individual hippocampal vascularization patterns, 
and support individual assessments of hippocampal vascular reserve 136 137. Thus, by combining these 
novel metrics with classical quantifications like white matter intensities and cortical microbleeds, it 
may be possible in the future to establish a comprehensive vascular profile to complement 
molecular, structural and functional imaging for a precision medicines framework.

Multimodal imaging to test disease mechanisms

Multimodal studies combining PET ligands for metabolism, protein aggregation and 
neuroinflammation are particularly powerful to examine underlying disease processes. Early studies 
established the strategy of amyloid PET to confirm underlying Alzheimer’s pathology before 
assessing neuroinflammation 108 138. This is now commonplace in clinical trials of Alzheimer’s disease 
and its precursor of mild cognitive impairment, to supplement clinical diagnosis and enrich cohorts. 

The multimodal approach was extended to demonstrate associations between processes, such as 
neuroinflammation and metabolic impairment 139-141, or the co-localisation of neuroinflammation 
and protein aggregation in Alzheimer’s disease 142, PSP 143 and FTD 22. When used in combination, 
they can address the relative prognostic value of imaging markers, and elucidate the functionally 
relevant processes that would be priorities for disease modifying treatment 144. Together these 
studies provide evidence for the interplay between critical disease processes, elucidating the 
cascade of pathogenic mechanisms.

Molecular imaging with PET can be combined with other imaging modalities that assess neuronal 
connectivity, including diffusion MRI, functional MRI and Magnetoencephalography (MEG). Neuronal 
populations are functionally and structurally connected at a number of scales, from microcircuits 
within a cortical column 145 through local, modular connectivity communities 146 to whole-brain 
networks 147. 

While there is a high degree of correspondence between structure and function in the healthy brain, 
the same is not necessary true in dementia or other neurodegenerative disorders. For example, 
early synaptic loss and neurotransmitter deficits can alter function (cognitive physiology) without 
cell death (atrophy) 148 149. The transition from pre-symptomatic to symptomatic stages of 
neurodegeneration appears to be more closely related to a loss of functional connectivity and 
information transfer in brain networks than a sudden change in brain structure 150. In Alzheimer’s 
disease this is reflected in close associations between tau burden and hippocampal function, 
irrespective of hippocampal volume 151, and a stronger relationship between functional connectivity 
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and memory than with atrophy 152. Functional adaption may occur in structurally healthy brain 
remote from the site of neurodegeneration 153, or within areas of early neurodegeneration 154.

Seemingly contradictory and inconsistent reports of the relationship between brain atrophy and 
hypometabolism can be reconciled when considered at the network scale. For example, Weil, et al. 
155 demonstrated that, while the published neuroimaging studies of dementia in Parkinson’s disease 
did not show consistent effects when meta-analysed with traditional univariate methods, a network 
mapping approach revealed consistent dysfunction in a network centred on the hippocampus. 
Further, they showed that dissociable network abnormalities were associated with visual 
hallucinations and mild cognitive impairment, supporting a move away from views of 
neuropsychiatric abnormalities in Parkinson’s disease as a unitary construct. Similar approaches 
have both reconciled similar controversies in Alzheimer’s disease and highlighted the involvement of 
different connectivity networks across neurodegenerative syndromes 156. 

It has been consistently observed in both the structural 157 and functional 158 ‘connectomes’ that 
those brain regions that are most densely connected are most vulnerable to neurodegeneration. The 
properties of these densely connected ‘hubs’ 159 can be quantified mathematically, for example with 
graph theory 160 or structural equation modelling 161. These approaches have yielded novel insights 
into disease mechanisms in dementia, including vulnerability of long connections in Huntington’s 
disease 162; disease initiation in Alzheimer’s 163 and mechanisms of hallucinations in Parkinson’s 
dementia 164. 

In models of Alzheimer’s disease, hub regions may be vulnerable because they are most likely to 
receive pathological proteins that propagate trans-neuronally, in a “prion-like” manner 165-167. Much 
as countries with highly connected airports are more vulnerable to epidemics, hub regions are more 
likely to receive pathology from ‘seed’ regions affected in early stages of the disease 168-172. This 
hypothesis has been tested by combining PET ligands of protein aggregation and functional imaging 
of brain connectivity using MRI and MEG. The combination provides in vivo evidence for this process 
in humans that was only previously available in animal models 23 82 173-175, and allows probing of 
disease across temporal as well as spatial scales. 

Although implicated in several neurodegenerative diseases, transneuronal spread may not be the 
only cause of hub vulnerability. Multimodal imaging studies have demonstrated that in Parkinson’s 
disease, differential gene expression contributes 176 while, in progressive supranuclear palsy (PSP), 
higher metabolic demand 177 or reduced trophic support 178 may account for the relationship 
between protein aggregation and abnormal functional connectivity 23. It is likely that differences in 
the ultrastructure of the pathological protein impact its propensity to traffic trans-neuronally 74, 
which may account for differences between widespread pathology in network-level diseases such as 
Alzheimer’s and motor neurone disease (ALS/MND) and more focal neurodegeneration in PSP and 
semantic dementia, despite abnormal aggregation of common proteins (here, tau and TDP-43 
respectively). Similar principles apply in synucleopathies, with different strains in MSA and LBD 179.
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Relating neuronal properties to complex behaviours

Functional imaging can assess real-time connectivity between regions, principally based on data 
from fMRI, M/EEG or direct electrode recordings. These fall into two broad categories 180: (i)  
‘Functional connectivity’ describes activity between brain regions that is correlated over time or 
phase-coherent, reversing the Hebbian principle to state that neurons that are wired together fire 
together; and (ii) ‘Effective connectivity’ describes the application of techniques such as dynamic 
causal modelling 181 or Granger causality 182 to infer directed influence of one brain region over 
another.

In the healthy brain, the structure of connections is closely matched to the strength of their 
functional connectivity, set within overall cortical connectivity gradients 183 that span a range of 
spatial scales 184. This applies both when the mind is at rest (the so-called ‘resting state’), and when it 
is engaged in a task 185 186. However, the same is not true in neurodegenerative disease. It is a 
consistent observation that the strength of resting-state connectivity between two brain regions falls 
as those regions are affected by neurodegeneration 187 188. However, when those regions are 
engaged by a task, their connectivity can be paradoxically increased compared to healthy controls, 
perhaps in compensation as they work harder to perform a cognitive operation with a less efficient 
neural architecture 189 190.

Watershed models 191 use the analogy of a river and tributary system to explain how a large number 
of biological, psychological and social variables contribute hierarchically to the overall expression of 
disease. Intermediate stages of this hierarchy are termed ‘endophenotypes’, which can be observed 
as cognitive or neural properties. Such models can be powerfully applied to multi-modal 
neuroimaging data to explain properties such as fluid intelligence 192. Furthermore, they can give an 
insight into what factors might mediate epidemiological observations; for example Ronan, et al. 193 
demonstrated that the recognised association between mid-life obesity and late-life 
neurodegeneration can be accounted for by changes in white matter integrity.  The concept of these 
models can be extended by the addition of a phenotypic “delta” at the end of the metaphorical 
river; recognising that multiple cognitive and behavioural outputs stem from different admixtures of 
common neuronal quantities. Multivariate analysis of large cohorts 194 can powerfully relate imaging 
and cognitive parameters, and can account for how this relationship changes as the brain ages 195 196. 

In future, as larger and larger publically-available databases are generated, there will be an 
increasing role for big data informatics and ‘AI’ 197. Such methods are already being applied to large 
repositories such as the UK biobank 198, which is collecting longitudinal neuroimaging of 100,000 
participants, along with genetic, demographic, physiological, cognitive and behavioural data. 

The way in which age and disease moderates the relationship between structure, function and 
behaviour is not linear. For example, in mild cognitive impairment hippocampal or entorhinal 
atrophy results in hyperactivation of medial temporal lobe circuitry, perhaps as inefficient 
compensation to rescue cognitive performance 152 199. Such excessive local activity may act in a 
vicious circle to promote local amyloid deposition 200. This may be a more general property of 
neurodegenerative disease, as highly active ‘hubs’ compensate for declines in structural connectivity 
by increasing their firing rate in early disease 201. Later in disease this metabolically demanding 
compensation breaks down 202. Cross-sectional studies relating neuronal connectivity to pathological 
protein deposition have been crucial to corroborating these hypotheses 23, and will be strengthened 
in future by large, longitudinal cohort studies employing multi-modal imaging. Overall, studies of this 
type can be extremely powerful in connecting symptomatology to neuronal dysfunction and disease 
pathogenesis, allowing both generation and testing of prevention and treatment hypotheses (figure 
1).
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Assessing microcircuit-levels in humans

So far, we have discussed the macroscopic level of brain structure and function, representing large 
neuronal populations and the major white-matter connections between them. We turn next to the 
microscopic level, where initiating events in the neurodegenerative cascade occur 1-4. Neuroimaging 
is not blind to changes at this scale. 

Ultrahigh resolution structural imaging with 7-tesla MRI can still be considered mesoscopic, being 
sensitive to functional and volumetric changes on the order of hundreds of microns (cf. a grain of 
sand). However, these field strengths are particularly sensitive to susceptibility changes, and as a 
result are able to detect microbleeds 203 that were previously only demonstrable at post-mortem 204. 
Recent advances in laminar fMRI have opened up the ability to examine degenerative changes 
within specific layers and address mechanistic questions at a microcircuit scale 205-208.

Synapse loss correlates closely with symptoms in Alzheimer’s disease 209, perhaps related to the 
direct synaptotoxicity of Amyloid and tau aggregates 148 210-213. This is reflected in functional imaging, 
for example by tau-related reductions in fMRI hippocampal novelty responses 151, amyloid-related 
resting state alterations 214, and inflammation related changed in connectivity of the medial 
temporal lobe 215. Amyloid pathology can also be associated with intrinsic neuronal hyperexcitability 
of pyramidal neurons 216. This is paralleled by inhibitory dysfunction, which is thought to underlie the 
generation of network hyperexcitability and hypersynchrony that is observed in neurocognitive 
circuits of patients 217 218. Within the hippocampus-cortical circuitry, synaptotoxic effects, 
hyperexcitability, compensatory hyperactivity and neurodegeneration are interacting on a very small 
spatial scale. Therefore, a combination of very high resolution structural imaging with meso-scale 
resolution fMRI can advance an in vivo understanding of these factors in humans and their temporal 
succession in the course of Alzheimer’s disease.

The temporal resolution of magnetoencephalography provides the opportunity to assess the 
neurophysiological signatures of neurodegenerative diseases, most notably in terms of oscillatory 
dynamics. Neurodegenerative diseases are commonly classified by the site of pathology, which 
tends to track phenotype, but they also cause distinctive changes in the temporal structure of 
neuronal communication, both in the resting state 219, and when engaged in a task 220. These 
changes can support disease classification even between patients in whom the localisation of 
pathology is the same, providing a first step towards single subject precision medicine approaches 
when therapies become available for specific proteinopathies.  

The spatial resolution of imaging and image-based neuronal models can also be exploited. For 
example, in frontotemporal dementia there is non-uniform loss of cortical cells 221, with 
supragranular layers 222 223 and von Economo neurons 224 particularly vulnerable. Biophysical models, 
such as dynamic causal modelling (DCM) 225 can be applied to MEG/EEG 226 and fMRI 181 data, to 
make powerful inference about the state of the laminar-specific cellular populations, in cortical 
microcircuits 145 227. When combined with pharmacological intervention, these techniques can assess 
dynamics that are specific to individual neurotransmitters and even receptor populations 228, 
allowing a precision of in vivo therapeutic assessment that was hitherto only possible with preclinical 
models of dementia.
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Experimental medicine studies

Neuroimaging can enhance experimental medicine studies in several ways. 

First, imaging biomarkers can be used as a screening tool to identify pre-symptomatic cases. Early 
intervention may be more effective to reduce the long term burden of disease, or even prevent 
symptom onset. For example, amyloid PET imaging is commonly used to identify those with 
Alzheimer pathology, either as latent disease in presymptomatic individuals, or to confirm 
Alzheimer’s disease pathology as the likely cause of mild pre-dementia cognitive impairment and 
high risk of conversion to dementia 229 230. There is a 3% annual risk of conversion to amyloid 
positivity in cognitively normal over 65s, and this increases to 7% in those positive for apolipoprotein 
ε4 231. These individuals show more rapid cognitive decline than their amyloid-negative peers 232. 
This already provides an inclusion criterion for many clinical trials. However, screening for 
Alzheimer’s pathology is problematic: elderly amyloid positive cognitively healthy individuals still 
only have an 11% annual risk of conversion to MCI or AD 233, meaning that trials enriched in this way 
would still take years. Tau imaging with the ligand flortaucipir may help to stratify such cohorts. 
Moving forwards, such imaging biomarkers  will be increasingly important to identify pre-
symptomatic pathology in those at risk of sporadic or genetically determined dementias, whether 
Alzheimer’s disease 18 19 or FTD 16 17. 

Second, neuroimaging provides an array of surrogate outcome measures that may change more 
quickly and be quantified with more precision and sensitivity than behavioural and cognitive 
measures. While rescuing imaging biomarkers is not sufficient without changing the patient’s clinical 
course, it can provide evidence of a treatment’s effect on brain and degeneration as a prelude to 
clinical endpoints in later phase trials 234. Atrophy is most widely used in this way, the logic being 
that a treatment that slows atrophy has influenced neuronal survival and is more likely to be 
clinically effective that a treatment that does not slow atrophy.  Volumetric MRI is not standard in 
clinical trials, and is often more sensitive than clinical endpoints 235 236. Ultrahigh field imaging (7-
Tesla MRI) increases the anatomical resolution and neurochemical sensitivity of MRI several times 
over, compared to 3T MRI 237. For example hippocampal subfield volumes can be imaged with a 
resolution of a few hundreds microns 238. Observational studies are now underway to determine 
whether this technological advance supports earlier or more accurate diagnosis. 

However, atrophy as a result of extensive cell death is a very late process in the pathogenesis of 
dementias. Upstream events may in principle be more suitable for earlier intervention studies, such 
as the loss of synapses 114-116 and inflammation 22 142. To test the relative performance of imaging 
biomarkers, against each other and against fluidic biomarkers and clinical ratings scales, requires a 
head to head comparison of assay performance  in the same participants. To this end, the deep and 
frequent phenotyping study 239 is underway, to compare established and novel metrics of the 
presence of Alzheimer pathology, and longitudinal progression. Functional MRI, multiligand PET and 
magnetoencephalography are longitudinally assessed alongside behavioural measures, CSF, blood 
and saliva biomarkers. 

Third, neuroimaging can test candidates for restoration of the neural mechanisms of aberrant 
behaviour in small-n studies, over short timescales. For example, Hughes, et al. 240 used 
magnetoencephalography to demonstrate that the frontal lobe neurophysiological signatures of 
behavioural inhibition were reduced in behavioural variant FTD. They hypothesised that this might 
be due to reduced serotonergic innervation 241, building on evidence that selective serotonin 
reuptake inhibition modulates response inhibition in preclinical models, healthy adults and other 
neurodegenerative disorders 242. By combining the psychopharmacological challenge with 
magnetoencephalography, Hughes, et al. 240 demonstrated that citalopram restored the imaging 
markers of inhibitory control. No change was demonstrated in behaviour, either because of power 
of because, using the watershed analogy described above, serotonergic deficiency is only one 
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tributary to the river of behavioural disinhibition in FTD, alongside atrophy, loss of frontal oscillatory 
connectivity 219 220 and GABA-ergic depletion 127 243. 

Fourth, by identification of the causes of heterogeneity, neuroimaging methods enable cohort 
enrichment and stratification at inclusion; and can provide post hoc explanations of variation in a 
treatment response. For example, the selective noradrenaline reuptake inhibitor atomoxetine was 
unsuccessful in rescuing response inhibition in an group of people with Parkinson’s disease, but sub-
group analysis revealed that the drug was effective in those with relatively more severe disease, and 
intact fronto-striatal white matter connectivity 244. The preservation of cortical outflow tracts was 
proposed as necessary for behavioural function to be restored through following functional 
restoration ‘upstream’ in prefrontal cortex 245 246. Such post hoc analyses of multivariate data can 
reveal effects from studies of heterogeneous populations, and develop protocols to predict 
individual responses to medication, i.e. personalised medicine 247. The heterogeneity of a cohort can 
be formally dissected according to stage (severity) and phenotype. For example, the SuStaIn model 
uses machine learning to distinguish subtypes from progression of disease, against which treatment 
efficacy could be individually assessed 248.

Fifth, neuroimaging with novel PET ligands can be applied in proof of concept and dose finding. For 
example, inhibition of O-GlcNAcase reduces phosphorylation of Tau in mice 249, and has been 
proposed as a therapeutic strategy in Alzheimer’s disease and Progressive Supranuclear Palsy. 
ASN120290 is a novel, orally delivered inhibitor of this enzyme that has completed phase 1 safety 
trials 250. In advance of a phase 2 trial, a dose finding study is using PET to directly image enzymatic 
function in vivo in real time 251. This novel approach will reduce the number of groups needed in 
phase 2 trials, a crucial advantage when dealing with rare diseases. Similarly, 11 L-[1-11C] Leucine PET 
allows for in vivo quantification of the degree of suppression of the unfolded protein response in 
upcoming trials 121.

Finally, neuroimaging can add value to clinical trials of investigational medicines, to inform our 
understanding of disease processes, establishing a ‘positive feedback’ loop in translational research. 
Early and late phase studies can be designed in a way that they include longitudinal follow-up of 
large disease cohorts with both established and novel biomarkers 18. The benefit of these 
approaches is increased by data sharing, which is now practicable even for very large file sizes, 
previously a limitation to open data for neurophysiological data in particular. Meta-analysis and 
repurposing has been facilitated by consensus formats such as BIDS 252 253 and infrastructure like the 
Dementias Partnership UK Portal. This will enhance the value of imaging data through open Data, 
meta-analysis and repurposing. 

Big data and the advent of artificial intelligence 

As computing capabilities expand, the concept of ‘big data’ evolves, but it generally describes 
information too large or complex to be analysed in traditional ways. Artificial intelligence and 
machine learning techniques applied to large, multi-modal datasets hold huge promise for the 
discovery of complex, non-linear relationships between pathological and environmental factors, 
improving diagnosis, prevention and treatment (figure 1). However, with larger-scale data one must 
be careful to minimise the risks of false discovery through statistical chance or hidden biases 197 254, 
guard against the over-interpretation of small effect sizes 255, and maintain interpretability in multi-
modal analyses 256.

Big data may arise from a coordinated effort to obtain a standard set of measures, or to repurpose 
data generated for other purposes such as healthcare. The former is exemplified by the Human 
Connectome Project, with four hours’ of imaging in 1,200 young volunteers 257, and similar 
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acquisitions in 1,200 older individuals, 1350 teens, 500 babies/toddlers, and 1500 foetuses 258. A 
second example is the UK Biobank, which aims to acquire MRI in 100,000 individuals for combination 
with lifestyle, biomarker and genomic data 198. Around 40,000 scans have been acquired to date. 

Big data can also be built by fusion of smaller studies. Data sharing is now readily available, 
facilitated by infrastructure like the Dementias Partnership UK Portal 259, which enables research 
teams to deposit imaging and behavioural measures at medium or large scales. This facilitates 
replication and extension, and generation of very large cross-cohort analyses. Consensus data 
formats such as BIDS, initially developed for MRI 252 and now extended to MEG 253 make this process 
easier. Consortium efforts to accounting for differences between scanner and acquisition protocols 
such as ENIGMA are increasing our ability to pool inference across diverse cohorts, allowing meta-
analysis and repurposing 260. 

Big data hold particular promise for hypothesis generation, linked to bespoke studies for hypothesis 
testing. This reduces the risk of recruitment bias resulting in very large normative cohorts. For 
example, one must consider whether those with pre-dementia are equally likely to volunteer for a 
cohort study? Their numbers might either be reduced by latent cognitive difficulties or apathy, or 
increased by a wish to understand subjective complaints 261.

The simplest approach to the analysis of big data is the application of a standardised univariate 
method at large scale. However, critical effects may be multivariate, complex and non-linear. 
Assessing these complex effects is better suited to methods collectively known as Artificial 
Intelligence (AI). This umbrella term is not precisely defined, and describes a range of approaches 
from supervised machine learning classification algorithms like support vector machines 262, through 
to ‘deep learning’ efforts that apply multiple, increasingly abstract, processing layers 263. Through 
such brute force associative techniques in large datasets, deep learning can achieve very high 
diagnostic accuracies for dementia 264. However, these accuracies are vulnerable to over-fitting, 
sometimes give little insight into what disease mechanisms are driving classification, and can fall 
down if the classifier comes across abnormalities or variants it has not previously observed.

The application of big data approaches to dementia also raises a number of ethical considerations, 
beyond those of privacy, data security and governance common to all healthcare datasets 265 266. 
Firstly, it may require a change in mind-set among clinical specialists, with hard-earned diagnostic 
acumen, to trust algorithms and methods that rely on interactions and hidden states that are not 
transparent. Secondly, the responsibility for inaccurate diagnosis would be unclear - a problem likely 
to be particularly challenging for rarer dementia syndromes. Thirdly, the social, financial and 
psychological consequences of making a pre-dementia diagnosis in the absence of disease modifying 
treatment are difficult to manage. The response to these challenges requires consultation beyond 
the neuroimaging community, maintaining a clear distinction between applications for research and 
direct patient care.

A roadmap to clinical trials

We are entering an exciting phase in dementia research, moving from observational to therapeutic 
studies, and validating preclinical models in terms of the mechanistic analysis of human dementia 
pathogenesis. Many novel therapeutic targets have been identified and diverse disease modifying 
agents are coming to clinical trials. Although the ultimate goal is to prevent cognitive and 
behavioural decline in a way that is meaningful for patients and families, and with health economic 
benefits, there is an intermediate stage of experimental medicine that will need to exploit 
quantitative imaging of neuronal and physiological function. 
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There are large, observational, longitudinal cohort studies with multi-modal assessment that serve 
as foundational data on natural history and biomarkers to inform evidence-based interventional trial 
design. Large-scale collaborative efforts such as the Alzheimer’s disease neuroimaging initiative 
(ADNI) have changed the landscape by bringing together clinical, imaging and fluid biomarkers to 
feed into clinical trials. This prototypical study is now in its 3rd phase and expanded to include MCI 
267. It has set the stage for a large number of other collaborative international studies involving 
advanced imaging, clinical cognitive and fluid biomarkers, including the Parkinson’s Progression 
Markers Initiative 268 (PPMI; ~400 patients with Parkinson’s, 200 controls over 30 sites in 12 
countries); the Genetic Frontotemporal dementia Initiative 16 (GENFI, ~1,100 people from families 
with familial FTD across 11 countries); ARTFL-LEFFTDS Longitudinal Frontotemporal Lobar 
Degeneration 17 269 (ALLFTD ~1,500 patients with FTD); the Dominantly Inherited Alzheimer Network 
Trial 18 19 (DIAN-TU, ~200 patients with familial Alzheimer’s, specifically focussed on early-stage drug 
trials, with several thousand in the expanded cohort); the Australian Imaging, Biomarker & Lifestyle 
Flagship Study of Ageing 270 (AIBL, ~1,000 aging individuals, some with AD or MCI); the DZNE 
Longitudinal Cognitive Impairment and Dementia Study study 271 (DELCODE, ~1,000 individuals with 
pre-dementia); the 4 Repeat Tauopathy Neuroimaging Initiative 272 (4RTNI, ~100 patients); and the 
Longitudinal Early-Onset Alzheimer's Disease Study 273 (LEADS, ~600 patients aged between 40 and 
64). 

As well as their multimodal imaging data, the open science framework (OSF) of these initiatives 
encourages collaboration, and replication and validation of findings. At an even larger scale, the 
ENIGMA consortium spans diseases and facilitates mega-scale imaging / genetic collaborations to 
answer mechanistic questions only possible with very large numbers of patients 274. 

Complementary to these initiatives, observational cohorts are critical to deeply phenotype patients, 
using multimodal imaging and fluid markers. These enable bespoke, experimental and innovative 
elements to be included and often feed into larger consortia. For example, TRACK-HD 20 and 
TRACKON-HD 21 are a multisite observational cohort study of Huntington’s disease. Alongside clinical 
and fluid biomarker data, advanced neuroimaging data are collected, including structural and 
functional MRI with graph theoretical approaches. Crucially, clinical trials of antisense 
oligonucleotide designed to reduce mutant huntingtin protein are underway 275 and neuroimaging 
metrics refined in observational cohorts inform long term trials of these and similar agents. Similar 
comprehensive multimodal observational cohorts have now been established across 
neurodegeneration: in Parkinson’s disease (PD), the Vision in Parkinson’s study collates retinal, 
visual, fluid and genetic markers with advanced imaging 276 277 with the aim of refining markers of 
progression in PD to stratify patients for clinical trials. The genetic frontotemporal initiative (GENFI)16 
is a multicentre observational study of people with or at risk of genetic FTD, focussed on imaging, 
cognition and fluid biomarkers. It has shown for example that in progranulin-associated FTD, white 
matter hyperintensities correlate with disease severity and plasma markers of neurodegeneration 
(neurofilament light) 278, providing target markers for forthcoming clinical trials.

This approach emphasises the value of early-stage feasibility trials to produce meaningful insights 
into disease mechanisms, paving the way for larger trials over longer time periods. For example, the 
AZA-PD study 279 is an early phase double-blind placebo-controlled trial of immunosuppression in 
early but high-risk Parkinson’s disease, aiming to modify progression by reducing 
neuroinflammation. Azathioprine is a drug that exerts its effect slowly, and it is anticipated that 
efficacy as measured by traditional motor scores will be weak in an 18 month trial. However, by 
including repeated longitudinal PET imaging with the TSPO ligand PK-11195, and MRI, one can show 
proof of concept for the therapy.

Overall, intelligent design of the neuroimaging component of trials enables true proof of concept, 
illustrating feasibility and de-risking the process by providing early surrogate endpoints that enable 
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Go/Nogo decisions to longer-term cognitive and behavioural endpoints. Medical, scientific, and 
commercial considerations are complementary, but each enhanced by neuroimaging to work 
towards a cure for dementia.

Summary

Advances in neuroimaging are critical for the transition from discovery-science and drug-discovery 
through to effective and timely clinical trials of novel treatments for dementia and 
neurodegeneration. In this review, we have illustrated how methodological advances in PET, MRI and 
neurophysiology, linked to detailed disease models and AI analysis methods, can elucidate the 
pathophysiology of human disorders. Understanding of the causes of heterogeneity can in turn be 
applied to stratify clinical trials, and in due course to the realisation of precision medicine. Building on 
cross-sector collaboration and best practices for open science, advanced in brain imaging will enhance 
good clinical care and dementia prevention strategies.  
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Figures

Figure 1: A cartoon illustrating the ways in which neuroimaging can contribute towards prevention, 
diagnosis and treatment of dementia, as we work towards an overall cure. 

Figure 2: A cartoon illustrating the levels and scales at which neuroimaging can help us consider 
pathology, between the underlying gene and cause and eventual clinical trials of investigational 
medicines.
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A cartoon illustrating the ways in which neuroimaging can contribute towards prevention, diagnosis and 
treatment of dementia, as we work towards an overall cure. 
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A cartoon illustrating the levels and scales at which neuroimaging can help us consider pathology, between 
the underlying gene and cause and eventual clinical trials of investigational medicines. 
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