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Abstract

Objectives: In clinical practice, many prediction models cannot be used when predictor values are missing. We, therefore, propose and
evaluate methods for real-time imputation.

Study Design and Setting: We describe (i) mean imputation (where missing values are replaced by the sample mean), (ii) joint
modeling imputation (JMI, where we use a multivariate normal approximation to generate patient-specific imputations), and (iii) condi-
tional modeling imputation (CMI, where a multivariable imputation model is derived for each predictor from a population). We compared
these methods in a case study evaluating the root mean squared error (RMSE) and coverage of the 95% confidence intervals (i.e., the pro-
portion of confidence intervals that contain the true predictor value) of imputed predictor values.

Results: —RMSE was lowest when adopting JMI or CMI, although imputation of individual predictors did not always lead to substan-
tial improvements as compared to mean imputation. JMI and CMI appeared particularly useful when the values of multiple predictors of the
model were missing. Coverage reached the nominal level (i.e., 95%) for both CMI and JMI.

Conclusion: Multiple imputations using either CMI or JMI is recommended when dealing with missing predictor values in real-time
settings. © 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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What is new?

Key findings

e Multiple imputation approaches can be adapted
without much difficulty to allow for real-time
imputation of missing predictor variables.

e Both conditional modeling imputation (CMI??)
and joint modeling imputation (JMI??) give more
accurate estimates of missing predictor values
when compared to mean imputation.

What this adds to what was known?

e Imputation of missing predictor values does not
require “live” access to a source dataset. Simple
population characteristics (such as the mean and
covariance) can be used to generate imputations
that are tailored to a specific individual.

What is the implication, and what should change

now?

e Real-time multiple imputations using either CMI
or JMI should be made available in clinical prac-
tice (e.g., via a computerized decision support sys-
tem) to support guideline-recommended use of
prediction models and to be more transparent about
uncertainty

e When developing or validating a prediction model,
researchers should report the mean and covariance
of the study population, as this information can
directly be used to impute missing values in
routine care.

1. Introduction

In present-day medical practice, characterized by an ag-
ing population, multimorbidity, and high complexity of dis-
eases, attention has grown toward personalized medicine
aiming to administer the most applicable treatment to the
individual patient given their risk profile [1—3]. In cardio-
vascular disease management, guidelines advocate the use
of prediction models to assess the patients’ risk of devel-
oping a certain cardiovascular disease to guide treatment
decision making [1]. For integrating risk-guided care in
daily practice, technological solutions such as computer-
ized decision support systems (CDSS) are increasingly
developed [4,5]. Using predictor values directly extracted
from the electronic health record (EHR), CDSS can provide
an immediate risk assessment of each encountered patient
at a glance [6—8].

The use of prediction models in daily practice in an in-
dividual patient requires real-time availability of the pa-
tient’s values of the predictors in the model. Most

prediction models cannot provide a risk estimate in the
presence of missing predictor values, which hampers im-
plementation and may ultimately limit guideline adherence
[9]. Therefore, predictor values should be measured and
registered (e.g., in the Electronic Health Record; EHR) in
such a way that they are available in real-time. Yet, routine
clinical care data is often incomplete because certain mea-
surements are deemed unnecessary, time-consuming, or
expensive, or because they cannot directly be extracted
from the EHR (e.g., registered as free text) [10].

Missing data is a well-known challenge in (medical)
research, for which several scalable solutions exist [11].
Multiple imputations by chained equations has often been
recommended to handle missing data in a research setting
where data from multiple patients are available for study
analysis purposes [12,13]. This approach, however, is not
directly applicable when applying a prediction model in
real-time to a single patient in the consulting room. In
particular, the models used for imputation cannot be gener-
ated “live” in clinical practice, and therefore, need to be
derived elsewhere and beforehand [14].

One option is to replace missing predictor values by their
respective mean/median, which, in turn, is estimated from
another data set or training sample [15,16]. While straight-
forward to implement, mean imputation may be insufficient
when the predictor with missing values is a strong predictor
or exhibits large variability such that assigning an overall
mean may lead to the less predictive accuracy of the predic-
tion model and misinformed treatment decisions. Mean
imputation does not distinguish between patients and may,
therefore, likely impute values that are unrealistic given the
patient’s observed predictor values. Also, mean imputation
obfuscates any uncertainty about the imputed values.

To address these issues, we expand on two well-known
methods that may also be used in real-time imputation of
missing predictor values [14]: joint modeling imputation
(JMI) [17] and conditional modeling imputation (CMI,
known for its common use in multiple imputations by
chained equations) [13]. As opposed to mean imputation,
these methods are able to incorporate the relationship be-
tween multiple patient characteristics, and therefore, allow
imputations to be adjusted for observed patient specific char-
acteristics. Similar to mean imputation, these relations can be
learned from training data, and in real time, applied on new
patients that are not part of the training sample. Additionally,
both methods allow for multiple imputations to be estimated,
reflecting the uncertainty with respect to the imputed value.

Using a real-world example and empirical data set on
cardiovascular risk prediction, we compared the accuracy
and usability of three imputation methods (mean imputa-
tion, JMI, and CMI) to deal with missing values of predic-
tors in the prediction model in real time. Although mean
imputation has been known to be problematic during model
development, it was chosen as a comparison due to its com-
mon use during model application in routine clinical prac-
tice or in decision support [18—21].
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2. Methods
2.1. Imputation methods

For facilitating the live imputation of missing values in
routine care, it is essential to obtain information on the dis-
tribution of the target population. This summary informa-
tion can, for instance, be derived in an epidemiologic
(e.g., cohort) study and then be utilized for training live
imputation models. A key constraint given is that after be-
ing trained, all methods are independent and stand-alone,
which means that they can directly be used for live imputa-
tion in a new, single, patient without requiring the need for
any additional procedures.

The three methods under evaluation are mean imputa-
tion, joint modeling imputation (JMI), and conditional
modeling imputation (CMI) [13,14,17]. All methods were
implemented in R and facilitate live imputation of missing
values in individual patients. Source code is available from
the supplementary information (Appendix D).

2.1.1. Mean imputation

The training sample is used to derive the means of all
predictors in the model (Fig. 1). Missing predictor values
are then imputed by their respective mean (or proportion
in the case of binary variables). This method is relatively
straightforward to implement, and can be extended to
subgroup-specific means (i.e., creating subdivisions based
on certain parameters of a population of which multiple
means are calculated).

2.1.2. Joint modeling imputation

The training sample is used to derive the means and
covariance of all predictor variables (Fig. 2). It is assumed
that all predictor variables of the training sample are nor-
mally distributed, such that imputations for an individual
patient can directly be generated from the mean and covari-
ance of the training sample and the observed predictor

— Mean imputation

values [14,17]. In contrast to overall mean imputation, the
use of covariances between all predictors incorporates the
relation between the predictors, and therefore, allows impu-
tations to be tailored to an individual patient’s own charac-
teristics. A more detailed description is provided in
Appendix A [14].

2.1.3. Conditional modeling imputation

The training sample is used to derive a flexible (e.g.,
regression) model for each predictor (as dependent vari-
able) with all other predictor variables as independent vari-
ables (Fig. 3). These models describe the conditional
distribution of each predictor and usually need to be esti-
mated using a Gibbs sampling procedure (as predictor
values may also be missing in the training sample). Due
to the flexible nature of these conditional models, it is no
longer assumed that predictor variables of the training sam-
ple are normally distributed (as does JMI). For instance, a
logistic regression model can be used to estimate the con-
ditional distribution of a binary predictor variable (e.g., cur-
rent smoker). Subsequently, when the smoking status for a
new patient is unknown, the logistic regression model can
be used to generate a probability that they are a current
smoker. This probability can directly be used as an imputed
value (in case only 1 imputation is needed). Alternatively, if
multiple imputations are required, a Bernoulli distribution
(with the aforementioned probability) can be used to sam-
ple multiple (discrete) values for the patient’s current smok-
ing status. If multiple predictor values are missing, the
conditional models need to be used successively using an
iterative Monte Carlo procedure (Appendix A).

2.2. Simulation study

Cardiovascular disease prevention is an example of a
setting where risk-guided management of predictors—
smoking, blood pressure, cholesterol—is common practice

Training sample

Estimate means of all predictors in
the model using training data

Individual patient data

Identify missing variables given an
individual patient

Imputation

# Use means to fill in missing variables

Fig. 1. Mean imputation.
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—Joint modelling imputation
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Training sample

Estimate means and covariance of all
predictors in the model using training
data

Individual patient data

[apup———
1 1
b d

Identify missing variables given an
individual patient

Imputation

¥
AA

Use derived distribution to generate
imputation for missing variable

Fig. 2. Joint modeling imputation.

[22]. Numerous risk prediction models have been devel-
oped, and the (international) guidelines advocate the use
of risk classification to inform treatment decisions
[23,24]. These models are typically implemented in a
CDSS, where a patient’s characteristics of the predictors
can be entered manually or are automatically retrieved from
the patient’s EHR [4,6,25].

For this study, we used a data set of the ongoing Utrecht
Cardiovascular cohort initiative (UCC). This cohort in-
cludes all patients who come for a first-time visit to the
Center for Circulatory Health at the UMC Utrecht for the
evaluation of a symptomatic vascular disease or an asymp-
tomatic vascular condition. A minimum set of predictors,
according to the Dutch Cardiovascular Risk Management
Guidelines, is collected in all patients. No data on outcomes
(i.e., time-to-event data) was recorded. UCC has been
approved by the Institutional Review Board of the UMC
Utrecht (Biobank Ethics committee). For the present ana-
lyses, an anonymized dataset was used of the UCC cohort
up to November 2018 [26,22].

The sample consisted of 3,880 patients with information
on 23 variables, measured during the patient’s visit (Table 1
and Appendix B). For clarity of exposition, we completed
this dataset using all 23 variables in k-nearest neighbor
imputation, which aggregates the values of the k nearest
neighbors to an imputation [27]. In practice, regular multi-
ple imputation techniques can be used in case of incomplete
training data.

For evaluating the quality of the three selected imputa-
tion methods in individual patients, a leave-one-out-cross-
validation (LOOCYV) procedure was used in the completed
UCC dataset. In LOOCY, all but one patient are used as the
training sample from which the overall mean or proportion
(method 1) or imputation models (methods 2 and 3) are
derived (Fig. 4). In the remaining hold-out patient, missing
values are introduced for one or more predictor variables.
As we apply each scenario to each patient exactly once,
the missing data mechanism is essentially missing-
completely-at-random (MCAR) [18]. The summary infor-
mation from the training sample is then used to impute
the missing predictor values in the hold-out patient. For
CMI and JMI, we generated 50 imputations for each
missing predictor value. This process is repeated until all
patients have been taken from the dataset exactly once.

We consider eight scenarios where missing values occur
for one predictor variable, and eight scenarios where multiple
predictor variables are simultaneously missing (Fig. 5). A
detailed description of how the scenarios were selected and
of the R code are listed in Appendix C and D, respectively.

2.3. Measures of performance

To evaluate the performance of the three imputation
methods, we used four performance metrics:

1. We calculated the root-mean-squared error (RMSE)
between the average of the multiple imputed
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— Conditional modelling imputation

[ dependent  independent o ] .
In a training sample with n predictors
model 1 [ derive a regression model for
model 2 [ | @ each predictor (as dependent
. variable) with all other variables as
model n . B independent variables

LR Identify if the patient has a single or
b) 1 e e multiple missing predictor variable(s)

| When a single predictor has a missing
value, the fitted regression model of
that predictor can directly be used to
generate an imputed value

When multiple predictors have missing

rmmma o @ values, the fitted regression models
SR Sl S ! have to be combined via Markov Chain

Monte Carlo sampling

Y - BN -

model 3

2 - ~ Missi | first initiliazed :
1 P 2 a e ISSINg values are 1rst Initiliazed on an

arbitrary number

| Then updated iteratively by applying

R | a the procedure for a single missing value :
2 131 4 o] ; - |
. successively on each missing value until :

imputation converges on a single value :

1 2 [ : A7

Fig. 3. Conditional modeling imputation.

predictor values (i.e., 50 imputations) and the true,
original (i.e., before the simulation of missing) pre-
dictor value to evaluate the accuracy of the imputa-
tions. The RMSE is a performance measure that
aggregates error due to bias and variability. Generally,
an RMSE of zero means perfect imputation and an
increasing RMSE means decreasing performance of
the imputation. The clinical relevance of an RMSE
depends on the natural range of the predictor. For
example, an RMSE of 0.5 is large for LDL-c (mean

3.0 SD 1.3 mmol/L) but not for SBP (mean 143 SD
24 mmHg).

. For each hold-out patient, we assessed whether the

original predictor value was in the 95% confidence in-
terval around the imputed predictor value. Subse-
quently, we calculated the proportion of confidence
intervals that consisted the original value (coverage).
For a 95% ClI, the coverage should ideally be equal to
95% [28]. A lower coverage translates to imputed
predictor values that are too precise (which, in turn,
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Table 1. Descriptive statistics (after imputation)
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Variables (unit)

Part of missing data scenarios

Mean (SD) or n/total (%)*

Original missing %

Age (yr) No
Sex (1 = female; O = male) No
Smoking (1 = yes; O = no) No
SBP (mmHg) Yes
TC (mmol/L) Yes
LDL-c (mmol/L) Yes
HDL-c (mmol/L) No
eGFR (mL/min/1.73 m?) Yes
History of CVD (1 = yes; O = no) Yes
History of PAD (1 = yes; O = no) No
History of CHD (1 = yes; O = no) No
History of CHF (1 = yes; O = no) No
History of CVA (1 = yes; O = no) No
History of DM (1 = yes; O = no) No
Polyvascular disease No
Number of medications No
BP lowering medication (1 = yes; O = no) No
Statin (1 = yes; O = no) No
HbA1lc (mmol/mol) No
Years after first CVD (yr) Yes
Diabetes (1 = yes; 0 = no) Yes
Diabetes duration (yr) No
Pulse pressure (mmHg) No

61.7 (18.2) 0.00
1,987/3,880 (51.2) 0.00
363/3,880 (9.4) 24.07
142.8 (24.2) 10.54
5.1(1.2) 24.54
3.1(1.3) 26.01

1.4 (0.4) 25.39

81.8 (24.6) 15.98
1,971/3,880 (50.8) 23.45
335/3,880 (8.6) 23.45
591/3,880 (15.2) 23.45
284/3,880 (7.3) 23.45
579/3,880 (14.9) 23.45
607/3,880 (15.6) 23.45
0.6 (0.7) 23.45

0.8 (1.7) 27.24
705/3,880 (18.2) 27.24
415/3,880 (10.7) 27.24
40 (10.7) 26.37

4.6 (8.1) 26.21
755/3,880 (19.5) 8.12
11.3(7.3) 86.11

61.7 (18.9) 10.54

Abbreviations: SBP, systolic blood pressure; TC, total cholesterol; LDL-c, low-density lipoprotein cholesterol; HDL-c, high-density lipoprotein
cholesterol; eGFR, estimated glomerular filtration rate according to the CKD epi formula; CVD, cardiovascular disease; PAD, peripheral artery dis-
ease; CHD, coronary heart disease; CHF, chronic heart failure; CVA, cerebrovascular accident; DM, diabetes mellitus; BP, blood pressure; HbAlc,

glycated hemoglobin.
@ After KNN-imputation.

may lead to estimates of predicted risk that are too
precise), whereas a coverage above 95% indicates
that imputed predictor values are too imprecise
[13]. We assessed coverage only for continuous pre-
dictor variables.

3. We assessed the effect on treatment decision support

for blood pressure in patients with manifest cardio-
vascular disease (n = 1,971) to evaluate the clinical
implications of the imputed predictor values. Guide-
lines indicate that all patients with a history of
CVD should receive blood pressure-lowering treat-
ment when their blood pressure is higher than 140/
90 mmHg [1,22]. We adopted the LOOCYV approach
and set values for SBP missing in the hold-out pa-
tient. Subsequently, we imputed the missing value
and compared the treatment decision for the true
value with the treatment decision for the imputed
value (SBP <> 140 mmHg). Afterward, we calcu-
lated the sensitivity, specificity, positive predictive

value, and negative predictive value. Also, we illus-
trated the importance of reporting confidence inter-
vals based on imputed values to inform the
discussion around treatment commencement.

. We compared the risk predictions that were obtained

in the absence of missing values (i.e., in the original
data) with the risk predictions that are based on impu-
tations to evaluate the impact of the imputed values
on the precision of predicted risk. Ideally, the predic-
tions that are based on imputed values should have a
similar distribution as the predictions that are derived
from the complete original data. To explore any devi-
ation, we assessed the interquartile range of predicted
risk for a single missing predictor scenario and a mul-
tiple missing predictor scenario. Rather than devel-
oping a new prediction model ourselves, we applied
the previously developed SMART prediction model
for the risk of 10-year recurrent vascular disease as
reported in the original development study [23][.
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— Missing data simulation with LOOCV

hold-out patient
- In a dataset with n patients take one
training set . .
hold-out patient for analysis.
patient 1 (1)
. We repeat this procedure until all
patient 2 :
patients have been taken from the
dataset exactly once
patient n

In each hold-out patient do:

Impose missing values using pre-

Scenario 1 . )
determined scenarios

! I r-i--| I P-l-'l

[App—— [Apep—

I._T_.l

r
1
-
1
.

Impute missing values using mean, JMI
or CMI

i Evaluate accuracy of imputation
methods

Evaluation

Fig. 4. Missing data simulation procedure.

The prediction model includes 11 variables: age, sex,
current smoker, SBP, diabetes, history of cerebrovas-
cular disease, aortic aneurysm or peripheral vascular
disease, polyvascular disease, HDL-cholesterol, and
total cholesterol.

3. Results
3.1. Root-mean-squared error

With the exception of smoking, all predictor variables in
single missing predictor scenarios had a lower RMSE when
using JMI or CMI as compared to mean imputation
(Table 2). For most multiple missing predictor scenarios,
the RMSE is consistently lower when using JMI or CMI
as compared to mean imputation. The exceptions being
the history of CVD and smoking. Performance diminished
as more variables were missing. For example, the RMSEs
of years after the 1st CVD event are 6.30 and 6.26 for
JMI and CMI respectively when univariately missing, while
mean imputation has an RMSE of 8.06. When additional

variables (e.g., SBP, history of CVD, and smoking) are
missing, the RMSE for years after the 1st CVD event for
both JMI and CMI increases to 7.58 and 7.84, respectively.

3.2. Coverage rate

For JMI, the coverage reached nominal levels for all sin-
gle missing predictor scenarios and multiple missing pre-
dictor scenarios (Table 3). For CMI, the coverage reached
nominal levels for all single missing predictor scenarios
and multiple missing predictor scenarios. For mean imputa-
tion, coverage was 0% by definition for all imputed predic-
tors because no uncertainty is taken into account.

3.3. Clinical decision accuracy

When assessing the treatment decision for blood pres-
sure management according to the prevailing clinical
guidelines (see above), we selected 1,971 out of the total
3,880 patients with manifest cardiovascular disease. We
found that 1,134 patients (57.53%) should be treated. How-
ever, when blood pressure values were set to miss, the
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—_Multivariable missing data scenarios
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Scenario 2 Observed in 7.19% of patients
Scenario 3 Observed in 6.08% of patients
Scenario 4 Observed in 2.73% of patients
Scenario 5 Observed in 2.55% of patients
Scenario 6 Observed in 2.11% of patients
Scenario 7 Observed in 1.29% of patients
Scenario 8 Observed in 1.26% of patients

Fig. 5. Multivariable missing data scenarios.

overall mean imputed value was 142 mmHg (Table 1),
which is just above the treatment threshold of 140 mmHg.
As a result, everyone would have been treated when adopt-
ing overall mean imputation, such that 837 patients
(42.47%) would have been treated unnecessarily. When
adopting JMI or CMI, only 16.08% or, respectively,
15.98% of patients would have been treated unnecessarily
(Table 4). Hence, the imputation of missing blood pressure
values using CMI or JMI was more than adequate than the
mean imputation in terms of decision making.

To illustrate the importance of measuring uncertainty,
we provided an example in which we compare the use of
imputation in a real-life situation (Table 5). In the example,
a patient with an imputed SBP of 144 mmHg was given an
indication for blood pressure-lowering treatment according
to the guidelines [1]. However, given that the uncertainty
around the imputed predictor value crosses the treatment
line of 140 mmHG (scenario A), there is reasonable doubt
this imputation is too uncertain to be used for treatment de-
cision making.

3.4. Effect on risk predictions

The predicted risks, given each method, did not seem to
deviate much from the originally predicted risk, given the
complete data (Table 6). When assessing the single missing
predictor scenario, there was a difference between overall
mean imputation (median difference of —1.713% to the
originally predicted risk) and the combination of JMI and
CMI (median difference of respectively 0.301% and
0.399% to the originally predicted risk). Further, we found

that predicted risks for mean imputation were more similar
when compared to the complete data (standard devia-
tion 15.12 vs. the reference of 18.91). In contrast, the
standard deviations of JMI and CMI were 17.87 and
17.86, respectively.

In the multiple missing predictor scenario, there was a
similar difference between mean imputation (median differ-
ence of —2.064% to the originally predicted risk) and JMI
and CMI (median difference of respectively 0.375% and
0.390% to the originally predicted risk). With multiple
missing predictors, the predicted risks for mean imputation
were again more similar than the predicted risk given the
complete data (standard deviation = 14.42 vs. the reference
of 18.91). The standard deviations of JMI and CMI were
17.67 and 17.68, respectively.

The difference between mean imputation and both JMI
and CMI is especially apparent in high-risk patients (i.e.,
75% IQR) where mean imputation, as expected, underesti-
mates the risk. This is because mean imputation pulls the
risk predictions of patients with missing values toward
the prediction for an *“‘average™ patient. As such, JMI and
CMI perform much better with regards to their impact on
prediction in high-risk patients when compared to mean
imputation.

4. Discussion

This project described the development and performance
of three imputation methods to handle missing data on an
individual patient level in real-life clinical decision making.
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Table 2. RMSE for each combination of, individual or multiple, missing predictor values

Single missing variable scenarios

Years after 1st Total HDL-

Variable name Diabetes SBP EGFR History of CVD CvD Smoking cholesterol cholesterol
(type of data) (binary) (continuous)  (continuous) (binary) (continuous) (binary) (continuous)  (continuous)
Mean imputation® 0.40 24.24 24.56 0.50 8.06 0.29 1.24 0.36
JMI 0.17 22.31 19.60 0.39 6.30 0.30 1.19 0.34
CMI 0.21 22.29 19.69 0.39 6.26 0.29 1.19 0.34
Multiple missing variables scenarios
Method Scenario Diabetes SBP eGFR History of Years after Smoking Total HDL-

CVD 1st CVD cholesterol cholesterol
JMI 1 0.46 7.59 0.30
CMI 1 0.51 7.78 0.29
JMI 2 19.68 1.19 0.35
CMmI 2 19.69 1.20 0.35
JMI 3 1.19 0.33
CMmI 3 1.19 0.35
JMI 4 0.17 0.48 7.65 0.30 1.22 0.35
CMmI 4 0.20 0.50 7.83 0.28 1.21 0.35
JMI 5 0.17 22.62 19.86 0.47 7.66 0.30 1.23 0.35
CMmI 5 0.21 22.48 19.87 0.51 7.86 0.29 1.22 0.35
JMI 6 22.45 19.61 1.19 0.34
CMI 6 22.50 19.59 1.20 0.34
JMI 7 0.17 19.83 0.48 7.69 0.30 1.22 0.35
CMI 7 0.21 19.75 0.50 7.84 0.29 1.23 0.35
JMI 8 22.36 0.46 7.58 0.30
CMmI 8 22.35 0.51 7.84 0.29

Abbreviations: JMI, joint modeling imputation; CMI, conditional modeling imputation; SBP, systolic blood pressure; eGFR, estimated glomer-
ular filtration rate according to the CKD epi formula; CVD, cardiovascular disease.

The RMSE should ideally be 0. Multiple missing predictor scenarios: (1) history of CVD, years after 1st CVD event & smoking, (2) eGFR, total
cholesterol & HDL-cholesterol, (3) total cholesterol & HDL-cholesterol, (4) all variables but SBP & eGFR, (5) all variables, (6) SBP, eGFR, total
cholesterol & HDL-cholesterol, (7) all variables but SBP and (8) SBP, history of CVD, years after 1st CVD event and smoking.

@ Mean imputation is only included in the single missing variable scenarios, as the performance of the model when multiple variables are

missing, is equivalent.

As expected, both JMI—using draws from a normal distri-
bution constructed from means and covariance in the
training sample and observed values in the patient—and
CMI—using a conditional distribution of each variable
based on regression models fitted on all other variables,
were more accurate and showed better coverage as
compared to mean imputation, resulting in fewer inappro-
priate treatment decisions and lower impact on predicted
risk.

The accuracy measures—RMSE, coverage, and clinical
decision accuracy—were comparable for JMI and CMI.
Hence, both methods can be used for generating live impu-
tations in routine care. Based on usability, we recommend
JMI, as its implementation in decision support systems is
fairly straightforward and only requires information on
the mean and covariance of the target population. Although
its assumption of multivariate normality may be unrealistic

for real-life clinical data, simulation studies have demon-
strated that this rarely affects the performance of imputa-
tion [29—31].

Previous studies on imputation methods to handle
missing data on an individual patient level have focused
on the impact of missing values on the performance of a
prediction model and evaluated the use of mean imputation,
as well as the (re)development of a simplified prediction
model [15,16]. Mean imputation was recommended due
to its applicability in practice and relatively good perfor-
mance compared to other models but was considered insuf-
ficient when strong predictors were missing. For this
reason, our proposed multiple imputation models appear
particularly relevant when strong or multiple predictors
are missing. This was confirmed in our simulation study:
RMSE and coverage did not deteriorate much with the
increasing number of predictor values that were
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Table 3. Coverage for each combination of individual or multiple imputations

Coverage: Single missing variable scenarios

SBP eGFR Years after1st CVD Total cholesterol HDL-cholesterol
JMI 0.945 0.948 0.952 0.952 0.950
CMI 0.945 0.948 0.954 0.953 0.948

Coverage: Multiple missing variable scenarios

Method Scenario SBP eGFR Years afterlst CVD Total cholesterol HDL-cholesterol
JMI 1 0.951

CMI 1 0.948

JMI 2 0.947 0.951 0.951
CMI 2 0.946 0.955 0.949
JMI 3 0.949 0.951
CMI 3 0.950 0.949
JMI 4 0.951 0.950 0.951
CMI 4 0.949 0.952 0.952
JMI 5 0.944 0.947 0.951 0.952 0.951
CM™I 5 0.948 0.948 0.946 0.953 0.953
JMI 6 0.945 0.950 0.951 0.948
CMI 6 0.948 0.948 0.949 0.949
JMI 7 0.950 0.951 0.951 0.951
CMI 7 0.947 0.950 0.948 0.951
JMI 8 0.945 0.952

CMI 8 0.945 0.950

Abbreviations: JMI, joint modeling imputation; CMI, conditional modeling imputation; SBP, systolic blood pressure; eGFR, estimated glomer-
ular filtration rate according to the CKD epi formula; CVD, cardiovascular disease.

The presented values depict the coverage of 95% confidence intervals (hence, the reference value is 0.95). Multiple missing predictor sce-
narios: (1) history of CVD, years after 1st CVD event & smoking, (2) eGFR, total cholesterol & HDL-cholesterol, (3) total cholesterol & HDL-
cholesterol, (4) all variables but SBP & eGFR, (5) all variables, (6) SBP, eGFR, total cholesterol & HDL-cholesterol, (7) all variables but SBP

and (8) SBP, history of CVD, years after 1st CVD event and smoking.

simultaneously missing for the individual patient. Because
of the way missing data was introduced, it is noted that our
simulations were not able to distinguish between various
mechanisms by which data can be missing, for example,
data that is missing at random (MAR) vs. data that is
missing-completely-at-random (MCAR??) [18].
Furthermore, because the described imputation methods
can accommodate numerous patient characteristics that are
not necessarily disease-specific, they are highly scalable to
other settings and populations. However, it is likely that
some local tailoring is necessary when imputation models
are derived from specific studies or settings that do not fully
match the intended target population. For JMI, the means
and covariances could, for instance, simply be replaced
by their respective values in a local “training” sample.
For CMI, the regression coefficients can be revised using
recently described updating methods [32]. When the (local)
training data are affected by missing predictor values,
advanced methods exist to estimate the mean and the
covariance [33]. All methods can be potentially incorpo-
rated within an EHR based computerized decision support
system and generate imputations based on observed data

from individual patients extracted from the EHR.
Evidently, before implementing imputation models in clin-
ical practice, it is of the utmost importance to assess their
validity, likely impact on treatment decisions, patient out-
comes, as well as any practical, security, and ethical
constraints.

Although multiple imputations offer a computational
framework to account for missing values, we always
recommend optimizing data collection first and avoid hav-
ing missing values: clinical decision making should never
be based solely on imputed values. However, imputed
values can serve as a proxy for prior risk, setting an indica-
tion for more (advanced) diagnostic tests. This is especially
useful for expensive tests, tests associated with complica-
tions, or when tests are unavailable. Additional diagnostic
testing should preferably only be performed when it is ex-
pected to change treatment, and the potential clinical
benefit outweighs the risk of the tests). Note that in this
study, we do not take into account the (un)certainty around
imputed values when assessing treatment decision support.
Additionally, due to the limited data at our disposal, a full
evaluation of the impact on predicted risk was not possible.
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Table 4. 2 x 2 tables of guideline adherence to treatment threshold given the point estimate of each method

True value
Mean imputation Treatment advised (=140 mmHg) Treatment not advised (< 140 mmHg) Totals
Point estimate
Treatment advised (>140 mmHg) 1,134 837 1,971
Treatment not advised (<140 mmHg) 0 0 0
Totals 1,134 837 1,971
True value
Joint modeling imputation Treatment advised (=140 mmHg) Treatment not advised (<140 mmHg) Totals
Point estimate
Treatment advised (> 140 mmHg) 946 317 1,263
Treatment not advised (<140 mmHg) 188 520 708
Totals 1,134 837 1,971
True value
Conditional modeling imputation Treatment advised (=140 mmHg) Treatment not advised (<140 mmHg) Totals
Point estimate
Treatment advised (> 140 mmHg) 960 315 1,275
Treatment not advised (<140 mmHg) 174 522 696
Totals 1,134 837 1,971

Sensitivity 100%, specificity 0%, Positive Predictive Value 58%, Negative Predictive Value (cannot be calculated) %.
Sensitivity 83%, specificity 62%, Positive Predictive Value 75%, Negative Predictive Value 73%.
Sensitivity 85%, specificity 62%, Positive Predictive Value 75%, Negative Predictive Value 75%.

Ideally, uncertainty in imputed values should be propagated
to (additional) uncertainty in predicted risk and evaluated
with presented confidence intervals. The predicted risk in
this paper primarily serves as a way to illustrate how impu-
tations could influence the predicted risk.

In cardiovascular risk management, the decision to start
treatment of a risk factor is based on (i) the predicted risk
for a cardiovascular disease or patient characteristics that
are per definition associated with a high risk for cardiovas-
cular disease and (ii) the absolute value of the risk factor
itself. We focused on imputation models to recover the
missing value and to quantify its uncertainty. We demon-
strated that the choice of imputation method might impact
risk predictions and decision making. While the magnitude
of this effect was not always substantial, it may vary ac-
cording to the number of missing predictors and their
weight in the decision-making process and should, there-
fore, be evaluated when applying these models in different
settings and populations.

Last, traditional (e.g., regression-based) prediction
models assume complete input data, which is often not real-
istic in routine clinical practice. Although we developed
models for imputing the missing values, which can subse-
quently be used to generate predictions, it is also possible
to develop prediction models that do not require complete
information on the predictors. Well-known examples are
the use of decision trees with surrogate or sparsity-aware
splits [34—36], the use of submodels [37], or the use of
missing indicator variables [38]. More research is war-
ranted to evaluate whether these methods may offer any
improvement in model predictions, as well as facilitate
their implementation in routine care.

In summary, this study describes three imputation
methods to handle missing values in the context of comput-
erized decision support systems in clinical practice. We
found that JMI and CMI provide imputations that are closer
to the original value (as compared to mean imputation) and
able to reflect uncertainty due to missing data. We,

Table 5. Clinical interpretation of imputed SBP values and 95% confidence intervals from a patient with a history of CVD

True

Scenario A Scenario B

SBP (95%Cl) 144
Treatment based on point estimate
Treatment based on 95% ClI NA

> 140 mmHg, Start treatment

144 (138-150)
>140 mmHg, Start treatment
Uncertain

144 (142—-146)
> 140 mmHg, Start treatment
>140 mmHg, Start treatment

Abbreviations: SBP, systolic blood pressure; 95% Cl, 95% confidence interval; A, hypothetical situation where imputed value interval contains
treatment threshold; B, hypothetical situation where imputed value interval does not contain treatment threshold.
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Table 6. Differences in predicted 10-yr risk of CVD for both a single missing predictor scenario and a multiple missing predictor scenario

Absolute risk

Single missing difference to

Absolute risk
difference to

Absolute risk
difference to

predictor: eGFR 25% IQR completed data Median completed data 75% 1R completed data
Predicted risk 8.382% — 13.711% — 28.170% —
complete data
Predicted risk 7.287% -1.095% 11.997% -1.713% 23.035% -5.135%
(mean)
Predicted risk (joint) 8.767% 0.385% 14.012% 0.301% 27.734% 0.435%
Predicted risk 8.786% 0.404% 14.110% 0.399% 27.783% 0.387%
(conditional)
Multiple missing
predictors:
SBP, TC, LDL-c
and eGFR
Predicted risk 8.382% - 13.711% - 28.170% -
complete data
Predicted risk 7.473% —0.909% 11.647% —2.064% 22.692% -5.478%
(mean)
Predicted risk 8.809% 0.427% 14.085% 0.375% 28.410% 0.240%
(joint)
Predicted risk 8.786% 0.404% 14.100% 0.390% 28.267% 0.097%
(conditional)
therefore, recommend their implementation in situations References

where information on relevant predictors is often incom-
plete due to practical constraints.
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