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Abstract 

Precision medicine has been heralded as an opportunity 

to improve risk prediction, driven significantly by an 

increasing availability of genetic data. Genetic testing for 

rare mutations linked with Mendelian monogenic 

syndromes is available in specialised clinics. For complex 

diseases however, aggregation of common and low 

frequency variants into a “polygenic risk score” (PRS) is 

necessary due to their small individual effect sizes. PRSs 

for coronary artery disease (CAD), hypertension and 

atrial fibrillation have shown some modest success at a 

population level. However, scepticism remains whether the 

genetic effects in CV disease are sufficient to have 

meaningful clinical impact. This review explores recent 

efforts to utilise genomic data for risk prediction using 

CAD as an example.  

 

 

1. Introduction 

Despite significant advances in cardiovascular (CV) 

medicine over the last three decades, risk prediction and 

prevention of disease remains a challenge [1]. Precision 

medicine, an approach which seeks to optimise clinical 

care utilising variability at an individual level has been 

heralded as an opportunity to overcome this problem [2]. 

One component of this could be the use of genetic data 

which has become increasingly available for research as 

the reduction in cost of genotyping continues to fall, and 

could be used in the clinical environment [2]. As genotype 

is determined at birth, exploiting this information has 

potential to determine risk at an early stage before the onset 

of sub-clinical disease. Genetic testing for rare mutations 

linked with Mendelian monogenic syndromes is available 

in specialised clinics with appropriate genetic counselling 

and can guide clinical management. For instance, in Long 

QT syndrome, genotype may influence response to β-

adrenergic blockade and incidence of sudden cardiac death 

[3]. However, many cardiovascular diseases with a major 

public health burden are highly polygenic. Risk prediction 

for such diseases presents unique challenges including the 

construction of polygenic risk scores (PRS) using genetic 

variants associated with the disease which individually 

have a small effect on disease risk [4].  

 

2. Construction of a PRS 

A PRS is usually calculated by summing risk alleles 

which are weighted by effect sizes derived from genomic 

wide association study (GWAS), where the association of 

genetic variants with a phenotype or a surrogate marker of 

interest has been tested [5,6] Regression models can then 

be used to test ability of the PRS to predict clinical events. 

This method of transforming genetic information into a 

single number that quantifies a patient’s propensity for 

developing the disease, poses challenges for which there is 

at present no standardised approach. For example, the 

selection of variants and weighting of effect sizes, a critical 

aspect of PRS calculation, is variable [7]. Different P-value 

thresholds, quality control metrics such as imputation 

quality, and the effect of underlying population 

stratification, can significantly influence the resulting PRS 

[7]. Various software, such as PLINK, LDpred and 

PRSice, have capability for selecting variants and 

constructing a PRS, but each employ different methods [8-

10]. This reflects the challenges faced with optimising PRS 

for risk prediction in common complex diseases. Finally, 

causal variants and their effect sizes may differ according 

to population ancestry [11]. This needs to be considered 

when selecting variants for testing in the target population.   

 

3. PRS for risk stratification of disease in 

the general population 

Despite the above challenges, PRSs for coronary artery 

disease (CAD), hypertension and atrial fibrillation 

amongst others have had some modest success at a 

population level [12-14]. Initial PRSs for CAD were 
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significantly under-powered due to the relative smaller 

sample size of the original GWAS and thus fewer variants 

were available for testing [15]. For example, a PRS 

constructed using 13 CAD variants was associated with an 

increased risk of CAD (hazard ratio (HR) of 1.66 [95% CI: 

1.35 to 2.04]) when comparing the top versus bottom 

quintiles in the PRS distribution [15]. Although this PRS 

translated into a substantial spread of risk in the population 

it did not outperform conventional risk factors. 

Improvement in the density of reference panels for 

genotype imputation and an increase in the sample size of 

GWAS, has led to an increase in the number of significant 

variants identified  [5, 16]. In turn, a larger number of 

potential variants are available for generating a PRS. 

Inouye et al constructed a PRS for CAD with more than 

1.7 million variants, representing 26.4% of the heritability 

of CAD (estimated heritability: 40-60%) [14]. This yielded 

a PRS for the prediction of CAD, with a higher c-index (or 

area under the ROC curve) than individual conventional 

risk factors including family history, smoking status, 

diabetes, hypertension and hypercholesterolaemia  (C = 

0.603; 95% CI: 0.615 to 0.631), with individuals in the top 

20% of the PRS distribution being at more than 4-fold risk 

than those in the bottom 20%. Despite this, when 

combining the PRS with all conventional risk factors, only 

a small gain in discrimination was observed (C=0.670 for 

all conventional risk factors combined vs C=0.696 after 

integrating the PRS). Although showing that inclusion of 

genetic variants to clinical based scores independently 

contribute to predicting risk of CAD, this study was limited 

by the use of self-reported information for risk factors such 

as lipids. CV risk scores used in clinical practice 

commonly utilise biochemistry data, such as serum 

cholesterol/high-density lipoprotein, which improve risk 

stratification such as QRISK3 [17]. Thus, to effectively 

draw comparisons with tools currently used in CV 

medicine and understand the role of genotype in clinical 

practice, careful consideration needs to be made for the 

choice and measurement of variables included in models.  

Further study is also necessary to understand the 

relationship of some standard risk factors with genetic 

scores and how to best integrate both. For example, a 

family history of CAD is considered an important risk-

factor and likely incorporates both genetic and 

environmental factors. Some evidence suggests a PRS may 

provide additive prognostic value to family history when 

included in the prediction of coronary events [18, 19].  

The prospect of being able to screen at a population 

level for cardiovascular disease is enticing, as it offers 

potential for early intervention including lifestyle advice, 

targeted medical therapy and may guide frequency of 

clinical monitoring for disease. A PRS will not however, 

obliviate the need for established clinical markers as non-

modifiable risk factors, such as sex and age, along with 

environmental predictors, will continue to have an 

important role in risk prediction. Results from PRS 

analyses therefore need to be evaluated in the correct 

context. The limited gains in predictive ability at a 

population level are perhaps unsurprising at this stage, 

given the need for further optimisation of existing methods 

for constructing a PRS. However even beyond CV disease, 

PRS continues to offer potential for the prediction of 

disease [20]. 

 

4. Role of PRS in patient sub-groups 

A PRS may have a role beyond risk prediction at a 

general population level. Ellis et al explored the predictive 

value of a PRS in a cohort of patients with Familial 

Hypercholesterolaemia (FH) and compared with a history 

of CAD [21]. This study, although limited by the lack of 

prospective follow up, showed a significantly higher odds 

ratio for a history of CAD with increasing PRS. This 

association was stronger in patients with a recognised 

mutation associated with FH in a multivariate analysis 

including clinical risk factors. This study in a real-world 

clinical setting, highlights the potential application of PRS 

in high risk cohorts to guide early intervention. It also 

suggests there may be a role in utilising common variation 

in patients with monogenic conditions, which is also of 

interest in inherited channelopathies [22]. Other high risk 

patient groups worthy of separate testing of a CAD PRS 

include those with a history diabetes, chronic kidney 

disease and hypertension. 

 

5. PRS in the prediction of response to 

treatment 

Response to medical therapy is governed by several 

mechanisms, including the pharmacodynamic and 

pharmacokinetic properties of a drug. Such mechanisms 

are also influenced by genetic variation. Polymorphisms in 

Cytochrome P450 (CYP450) enzymes are well recognised 

to alter metabolism and excretion of drugs, such as 

clopidogrel, an anti-platelet agent used in the management 

of acute coronary syndrome (ACS) and stroke [23]. A 

pharmacogenetic polygenic risk score using 31 candidate 

CYP450 polymorphisms was associated with an increase 

in cardiovascular events and cardiovascular-related death 

with increasing number of effect alleles, in a cohort of 

patients taking clopidogrel [24]. Additionally, a post-trial 

ad-hoc analysis of Alirocumab, an antibody that blocks 

PCSK9 (proprotein convertase subtilisin/kexin type 9) 

compared response to therapy with a CAD PRS in patients 

with ACS and elevated serum lipid levels [25]. This 

analysis identified an absolute reduction of 6% and relative 

risk reduction of 37% (HR 0.63 (95%CI: 0.40 – 0.86) for 

the incidence of CAD related events in patients in the top 

10% of PRS distribution taking Alirocumab compared 

with placebo. This was compared to a smaller risk 

reduction of 13% (HR 0.87) in patients in the lower 10%. 
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Similar findings have also been identified in a nested case-

control study for Evacetrapib [26]. These studies, while 

preliminary, and thus should be approached with caution, 

identify potentially important roles for a PRS in the 

selection of medical therapy. A large proportion of 

ischaemic events following percutaneous coronary 

intervention, including stent thrombosis, occur while 

patients are still on anti-platelet agents such as Clopidogrel 

[27]. Such events are likely in-part due to individual 

variability in the response to drug treatment [28]. 

Therefore in this scenario, using personalised information 

such as genotype to predict response to a specific drug, 

could inform the choice of anti-platelet used, thus reducing 

stent related complications. Side-effects from medication 

have a significant impact on healthcare services, morbidity 

and mortality and mental health [29]. A US study reported 

over 6% of hospitalisation were due to adverse drug related 

events [30]. Targeted medical therapy aided by a PRS 

could reduce the number of patients exposed to side-effects 

when a reduction in risk of CV events is likely to be limited 

and aid the prioritisation of resources.   

 

6. Limitations and future perspectives 

A major current limitation for the successful 

implementation of PRS in clinical practice is that the 

overwhelming majority of published studies are from 

European-ancestry populations. A PRS may be more 

predictive in one ancestry compared with another, 

particularly when using variants from a GWAS from an 

ancestry different to the test population, as causal variants, 

allele frequencies or effect sizes may significantly vary 

[11]. A recent study evaluating a CAD PRS derived in 

South-Asian cohorts identified a significantly increased 

risk for CAD in individuals in the top 5% of the GRS 

distribution [31]. However, such studies are rare, often 

under-powered and require expansion going forward.  

Beyond evaluating the predictive value of a PRS, 

education for patients and health-care professionals needs 

to be disseminated. A wider discussion is also necessary on 

the use of genetic data covering informed consent, data 

governance and the perception of what risk means to the 

patient, medical staff and the global community.  

Scepticism remains whether the genetic effects in CV 

traits are large enough to have meaningful clinical impact. 

For CV disease, many conditions have a gap where a 

significant proportion of the heritability is yet to be 

explained, however this may be address with further 

improvements in association testing for example with 

whole genome sequencing.  

The association between PRS and the trait being studied 

is usually assessed in terms of the relative risk of 

individuals at the two opposite extreme of the PRS 

distribution, with odds or hazard ratios typically < 5.  

However, it has been demonstrated that a PRS, as is the 

case with any other risk factor, may need to be 

characterised by a much higher odds or hazard ratio (>100) 

to show both high sensitivity and specificity to be used as 

an effective screening tool [34]. For instance, despite 

showing a hazard ratio of 4.17 (comparing extreme 

quintiles), the recent PRS for CAD developed by Inouye et 

al showed low discriminative power (area under the ROC 

curve ~0.62) [14]. According to a risk screening converter, 

this would be consistent with a sensitivity of just 13% for 

a specificity of 95% [35, 36]. This however may also 

reflect that risk using a PRS is not linearly distributed and 

individuals at the extreme ends of the PRS distribution will 

have a greater cumulative risk. 

 

7. Conclusion 

The link between the genome and clinical outcomes is 

complex and yet to be clearly understood however there 

has been some promise with early work utilising PRS for 

CV risk prediction and personalisation of clinical 

management. Continued improvement in the methods for 

constructing a PRS, identification of additional variants 

associated with disease and testing in non-European 

ancestry populations, may improve the discriminative 

power of the PRS.  
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